
3D rock-fall simulation using CELL-DEVS model

Pei Jin Yang An

Department of Electrical and Computer Engineering

University of Ottawa

550 Cumberland Street

Ottawa, ON. K1N-6N5 Canada

{pjin049, yan073}@uottawa.ca

ABSTRACT: When a theory is proposed for discrete-event system, it means that simulation of a

complicated system can be resolved by dividing the whole system into hierarchical and modular

components. In this way, the process of simulation can be improved significantly due to its advantages

in many aspects, such as the reuse of model, cost of maintenance and test times. As the development of

Cell-DEVS, it has been used in many practical systems, such as computer networks, emergency

evacuation, traffic controllers, and flexible manufacturing plants. In our simulation, we will use

Cell-DEVS model to simulate the commonplace natural phenomenon- rock fall in 3D version. Each

cell presents a stone on the surface of the mountain which is divided into 3 zones- slopes with different

degrees (75, 45 and 15). Each cell has different rules and neighbors in three zones. Also, we compared

and analyzed how the simulation behaves when different values of state variables are assigned to each

cell.

1. Introduction

Simulation is model execution which is

presented by computer coding program generally

describes the real system. As using real system

to simulate is too expensive, simulation by a

computer can really save time and cost. In recent

years, a number of modeling techniques have

been introduced in order to improve the

definition and analysis of complex dynamic

systems. The development of simulation tools

has often been closely related to the execution of

these models [1].

Cell-DEVS, as one of discrete-time simulation

models, is very commonplace now, which can be

seen from many fields, such as, traffic control,

passengers boarding and intellectual games and

is also used to simulate some natural

phenomenon like fire spread, mining, etc.

Rock fall is a quite normal phenomenon in the

natural activities, which poses a threat to the

mountain area all over the world. It is a hard

work to predict when it will happen because

different areas or regions have various rock

properties. Once it happens, it has a huge

damage to the humanity, animals and the nature.

A rock fall starts from a loose rock falling along

vertical and sub-vertical paths together.

Apparently, as for the vertical path, the velocity

can reach a very high speed by accumulating

stones. The much heavier rock is, the faster

speed has. In terms of sub-vertical rock fall, it

can only get a relatively small horizontal speed

brought by the collision of near stones at first,

while as they are rolling all the time and they

can be fast as well finally before they reach the

bottom of mountain.

In our simulation, we will use Cell-DEVS model

to simulate the process of rock-fall in 3D version.

And we will analyze different results and

compare different zones of the mountain with

different slope degrees, ranging from 15, 45 to

75. In addition, in order to simulate the process

of rock-fall approaching to the reality, we also

add many different state variables- motionless,

toppling, rolling, bouncing and falling.

2. Background

2.1 DEVS model

Discrete simulation is the modeling of a system

as it evolves over time by a representation in

which the state variables change only at a

countable number of points in time. At these

points an event occurs, where an event is taken

to be an instantaneous occurrence that may

change the state of a system [2]. As a large

number of models are not static and they will

change with the time moving, lasting from this

time point to that one, a discrete time simulation

models are required.

The basic DEVS model can be regarded as a

integration of sub-models, which can represent a

whole system. Each model can be executed and

it has input, output, state, time and function. The

DEVS model can be represented as:

M = < I, X, S, Y, δint, δext, λ, D >

Here, I is the model’s interface, X is the input

events set, S is the state set, and Y is the output

events set. There are also several functions: δint

manages internal transitions, δext external

transitions, λ the outputs, and D the elapsed time

[3].

2.2 Cell-DEVS model

Apparently, timed Cell-DEVS model is more

complicated than the DEVS model. Its atomic

model can be presented as the following:

TDC=< I, X, Y, θ, N, delay, d, δint, δext, τ , λ, D>

I is the model’s interface, X is the set of input

events, and Y is the set of output events. D is an

index of components, and for each i ∈ D, Mi

is a basic DEVS model (that is, an atomic or

coupled model). Ii is the set of influences of

model i. For each j ∈ Ii, Zij is the i to j

translation function. Finally, select is a

tie-breaking function defining which model

executes if more than one is activated

simultaneously [3].

The time advancement is also necessary in our

simulation model, because the process of

collision of different sizes and shapes of stones

is different. In addition, the stones in different

slopes of the mountain are various as well. So

we need use corresponding delays to represent

state changes of different stones.

2.3 Benefits of RISE in our model

All parameters are different and difficult to

quantify and calculate in real world. So a lot of

simulators choose to use random components to

test the rock fall situation due to local conditions.

After reading these papers we decide to use

different random probabilities to represent the

combination of different parameters of nature

geographic information. We know that one fall

rock can cause different affects to different

dimensions, which we use different probabilities

to represent in this project. Here are some

explains about the idea which is the foundation

of this simulation.

Thanks to the benefits of RISE version of the

software, we can add neighbor ports to each cell

and set more state variables like motionless,

toppling, rolling, bouncing and falling rather

than only two choices in the old version of

CD++ version.

So here, after we learned from the paper [4], we

know that there are several parameters which

may affect the result of the simulation. For

instance, it varies dramatically and is

unpredictable once we take initial velocity and

kinetic energy, shapes and sizes of stones and

friction between stones and the surface of the

mountain into consideration.

2.3.1 State variables

We used 3D dimensional geometry to depict the

scenario of a falling rock. We use 20*20*20

cubes to implement the environment.

We initialize the whole cubes with the value 0,

which represents the stones on the slope of the

mountain are stable. Then, the value of cube will

begin to change to different values according to

change of its neighbors, which indicts the

motionless stone on this slope begin to change to

other states- toppling, rolling, bouncing and

free-falling. Obviously, it has a great

improvement than the old CD++ version, which

can only have one state variable, really limiting

the scope of application.

2.3.2 Add neighbor ports

It is easy to understand that different possible

results will generate when a stone is collided

with a falling stone. Since the probability that a

stone will keep motionless or change to topple,

roll, bounce or fall is difficult to predict in the

real world, we simply it by calculating 5

neighbor ports of each cell to determine which

state the stone will change to.

Finally, the stone should have different velocities

as it may be affected by different stones from

different directions, so different time delays are

used to describe this case. And these delays can

be understood easily. For instance, the shortest

delay is the case that the stone is collided by the

upper falling stone.

Figure 1. Effects of different heights of

stones on their speeds when they start to

fall

Figure 1 mainly shows that on different heights,

the falling stones have different speeds. The

much higher the height is, the faster the speed is.

Then, we change this height to relative height

and distance. For instance, because the relative

height between the upper stone with the lower

one neighbour is the biggest, so we can assume

its speed is the fastest and the momentum is the

biggest. So, as for this direction, it has the

shortest delay time and in the same way, it will

affect next lower stone with largest probability.

2.3.3 Different zones

In order to make the simulation approaching to

the real world, we divide the whole surface of

the mountain into 4 different zones- 15, 45 and

75 slope degree of the mountain.

Figure 2. Rugged topography of the real

mountain

As can be seen in the figure 2, the real mountain

has different slopes. However, if it is not

inerratic in one zone, it will be difficult to define

cell’s neighbors and cannot guarantee each cell

has the same behavior. Consequently, the whole

mountain will probably collapse. So in each

zone, we just consider the stones only with

changes of position in the axis x.

a a a a a a a a

1 2

Figure3. Plane x

In this case, if we see the plane x regardless of

which zone (15, 45 and 75) it belongs to, we will

not take stones 1 and 2 into consideration in

order to define the same behavior of each cell a.

The zone which has 0 degree slope means it is

the bottom of the mountain. The normal result of

rock fall in nature is that a huge amount of

stones is accumulated on the bottom. In terms of

the process of simulation, the value of cell in the

plane will have a change, it is really easy to

implement, but we do no choose to do it finally

because it will add more cells which will take a

long time to simulate. Also, because our model

is divided into zones, so we should give at least

one initial cell in each zone, but it will not make

sense in that zone.

3. Model definition

3.1 Take 45 degree slope (zone 2) as an

example

Figure 4. Formal specification of simple

rock-fall model

Figure 4 shows the simple formal specification

of rock-fall model. The simple model means the

whole slope of the mountain is 45 degrees with

the horizontal line. In this simple model, we just

need to define the 5 neighbors of each cell

((-1,-1,-1), (0, -1, -1), (1,-1,-1), (-1,0,0), (0,0,0)

(1,0,0)). Because we only focus on the part of

slope of the mountain, so it should not be

wrapped.

In our model, assuming the point (0, 0, 0) is the

stone that will be checked whether it will begin

to move, which state it will change to-

Cell-DEVS formal specification

M = < Xlist, Ylist, I, X, Y, S, θ, N, d,

τ, δint, δext, λ, ta >

Xlist = { Ф}

Ylist = { Ф}

I = < 6, 0, Ф, Ф>

X = Ф

Y = Ф

S = {s| s ∈ (0, 6)}

θ = {(s, phase, σqueue, σ), s ∈ S,

phase ∈ (0, R)}

N = {(-1,0,0), (0,0,0) (1,0,0), (1,-1,-1),

(0,-1,-1), (-1,-1,-1) }

d = 100 ms

ta (passive) = INFINITY

ta (active) = d

motionless or start to roll according to the values

of its 5 neighbors which means 5 stones adjacent

to it. And the detail of rules of each cell will be

explained in the next part of model definition.

As we can see from the YoZ platform, the 5

neighbors ((-1,-1,-1), (0, -1, -1), (1,-1,-1),

(-1,0,0), (0,0,0) (1,0,0)) are listed in the Figure 5.

One thing should be noticed is that each row of

the figure 5 does not belong to the same plane.

For instance, the first row (-1, -1, 1), (-1, 0, 0)

and (-1, 1, -1) is in the upper plane, the second

row (0, -1, 1), (0, 0, 0) and (0, 1, -1) is the

middle one and the third row (1, -1, 1), (1, 0, 0)

and (1, 1, -1) is the lower one. So there are 5

neighbors for each cell in different planes, but

the physical constant that is multiplied with

received energy they transfer to the stone (0, 0, 0)

is ranging from 0.23, 0.38 to 0.50 according to

the reasonable circumstance. In addition, all of

stones’ initial values are set to 0. If the affected

stone falls, the value will change from 0 to 1

(falling). Then the falling stone will bounce or

roll depending on the shape of stone.

In the figure 6, we see the whole model from the

XoY dimension rather than the YoZ, as the result,

3 cells are in the figure, in which only 1 cells (0,

-1, -1) that can affect the cell (0, 0, 0) can be

seen. It is easy to understand that the stone (the

cell (0, 1, -1)) starts to fall can affect the stone

(the cell (0, 0, 0)). Although it does make sense

because, in the real world, the lower stone

supports the upper stone, which is regarded as

the foundation, we do not take it into

consideration, that is, we do not take them as

(0,0,0) neighbors.

3.2 Rules of model

The rule of this simulation model is based on the

basic physical principle that a motionless stone

starts to fall from the static state. Specifically,

we assume the stone is triggered by the

absorption of the kinetic energy from neighbor

stones. Then, the falling stone will be

determined to keep to static state or change to

topple, bounce or roll according to the numerical

difference value between the kineticEnergyVal

and frictionVal, which are state variables.

Another state variable should be noticed is

stateVal, which represents the state of a cell. The

details of behavior of a cell, that is, the change

of states, will be explained in 3.2.1, 3.2.2, 3.2.3

and 3.2.4.

3.2.1 The basic model definition

 (0,1,-1)

(0,0,0)

 (0,-1,1)

Figure 6. From the (XoY) dimension

(-1,-1,1) (-1,0,0) (-1,1,-1)

(0,-1,1) (0,0,0) (0,1,-1)

(1,-1,1) (1,0,0) (1,1,-1)

Figure 5. From the YoZ dimension

Figure 7. (a)FallRock model definition

Figure 8. (b) FallRock model definition

As can be seen from the figure 8, the initial

value of each cell is 0 and some cells should not

be zero, while represents the stones that trigger

the rock fall. However, we do not assign them

special values and the default value of all cells is

0. Instead, we use state variable (stateVal) to

determine the change of cell’s state. That value

will be given in the initial.stvalues file which is

used to assign initial values of state variables of

all cells.

3.2.2 Rules of different cell states in the 45

degree slope (Zone 2)

As for the second zone of the mountain, the

slope degree is 45 with the horizontal line, under

the first zone (75 degree) and above the last zone

(15 degree). So the neighbors of (0,0,0) are

(1,-1,-1), (0,-1,-1), (-1,-1,-1), (1,0,0) and

(-1,0,0). The condition of the cell in this zone is

that the initial stateVal is 0 which means it stay

motionless. If it cannot obtain enough kinetic

energy from its neighbors smaller than the

resistance, it will keep motionless and the kinetic

energy of itself is 0. And we output negative ten

to its neighbors, differentiating with the state-

toppling. Also, it will make sense when

computing its neighbor cell because it means

that the neighbor cell will get a negative value

from it, representing the neighbor cell will need

more kinetic energy to make the two motionless

stones to begin to move.

[FallRock]

type : cell

dim : (8,8,8)

delay : transport

defaultDelayTime : 100

border : nowrapped

neighbors : FallRock(1,-1,-1)

FallRock(0,-1,-1) FallRock(-1,-1,-1)

neighbors : FallRock(1,0,0)

FallRock(0,0,0) FallRock(-1,0,0)

neighbors : FallRock(1,1,1)

FallRock(0,1,1) FallRock(-1,1,1)

initialValue : 0

initialCellsValue : init.val

StateVariables : stateVal kineticEnergyVal

frictionVal shapeVal countVal

stateValues : 0 0 0 0 0

InitialVariablesValue : initial.stvalues

localTransition : FallRockBehavior

%Motionless

rule :

{

 (0 - $frictionVal)

}

{

 $stateVal := 0 ;

 $kineticEnergyVal := 0 ;

}

100

{

 ((0.98689 * $kineticEnergyVal +

+0.23*(1,-1,-1)~neighborChange

 +0.50 * (0,-1,-1)~neighborChange

 + 0.23 * (-1,-1,-1)~neighborChange

 + 0.38 * (1,0,0)~neighborChange

 + 0.38 * (-1,0,0)~neighborChange

) < $frictionVal

) AND

 ($stateVal = 0)

}

Figure 9. The rule of motionless

Figure 10. The rule of toppling

The prerequisite of this rule of the cell in this

zone is that the initial stateVal is 0 (means it is

motionless) or 1 (means it is toppling). In short,

the stone does not leave its place. And then, if it

obtains some kinetic energy from its neighbors

larger than the resistance but smaller than the

resistance plus 20, the stateVal will change from

0 to 1, which means the state of the stone

changes from motionless to toppling or the

sateVal will keep toppling and in both cases, the

kinetic energy of itself is 0. And we output zero

to its neighbors, differentiating with the state-

motionless.

Figure 11. The condition of rule of falling

The prerequisite of this rule of the cell in this

zone is that the initial stateVal is 0 (means it is

motionless) or 1 (means it is toppling). In short,

the stone does not leave its place. And at the

same time, if it obtains enough kinetic energy

from its neighbors larger than the resistance plus

20, it will change state.

%Toppling

rule :

{ 0 }

{ $stateVal := 1 ; $kineticEnergyVal := 0 ;

}

100

{ ((0.98689 * $kineticEnergyVal

 +0.23*(1,-1,-1)~neighborChange

 +0.50 * (0,-1,-1)~neighborChange

 + 0.23 * (-1,-1,-1)~neighborChange

 + 0.38 * (1,0,0)~neighborChange

 + 0.38 * (-1,0,0)~neighborChange

) > $frictionVal

) AND

 ((0.98689 * $kineticEnergyVal

 +0.23*(1,-1,-1)~neighborChange

 +0.50 * (0,-1,-1)~neighborChange

 + 0.23 * (-1,-1,-1)~neighborChange

 + 0.38 * (1,0,0)~neighborChange

 + 0.38 * (-1,0,0)~neighborChange

) < ($frictionVal+20)

) AND

 ($stateVal = 0 OR $stateVal = 1)

}

100

{

 ((0.98689 * $kineticEnergyVal

 +0.23*(1,-1,-1)~neighborChange

 +0.50 * (0,-1,-1)~neighborChange

 + 0.23 * (-1,-1,-1)~neighborChange

 + 0.38 * (1,0,0)~neighborChange

 + 0.38 * (-1,0,0)~neighborChange

) > ($frictionVal + 20)

) AND

 (

 $stateVal = 0 OR $stateVal = 1

)

}

Figure 12. The rule of falling

After the time delay- 100, the stateVal will

change from 0 to 2 and the energy of this cell

will change to the obtained energy distracted by

its resistance and store them into its state

variables- stateVal and kineticEnergyVal,

respectively. Then, the cell outputs the

remaining kinetic energy to its neighbors.

In the real world, this rule presents the moment

that the stone is collided with the rolling stone

and become separated from the adjacent stones.

Actually, it is the state before the state- rolling.

And at this moment, it has enough kinetic

energy.

Figure 13. The rule of bouncing

This rule is used to represent the bouncing stone

which has an irregular shape. When it is collided

with other stones, it could not move as the stone

with regular ones. So the track of moving is

bouncing rather than rolling in the regular path

defined initially.

Figure 14. The rule of rolling

This rule is quite different from the above three

rules. In fact, it is the rule that will trigger the

%falling

rule :

{

 ((0.98689 * $kineticEnergyVal

 +0.23*(1,-1,-1)~neighborChange

 +0.50 * (0,-1,-1)~neighborChange

 + 0.23 * (-1,-1,-1)~neighborChange

 + 0.38 * (1,0,0)~neighborChange

 + 0.38 * (-1,0,0)~neighborChange

) - $frictionVal)

}

{

 $stateVal := 2 ;

 $kineticEnergyVal :=

 ((0.98689*$kineticEnergyVal

 +0.23*(1,-1,-1)~neighborChange

 + 0.50 * (0,-1,-1)~neighborChange

 + 023 * (-1,-1,-1)~neighborChange

 + 0.38 * (1,0,0)~neighborChange

 + 0.38 * (-1,0,0)~neighborChange

) - $frictionVal) ;

}

%bouncing

rule :

{ 0 }

{

$stateVal := 4 ;

$kineticEnergyVal :=

(0.98689*$kineticEnergyVal+0.50) ;

}

100

{

 ($stateVal = 2 OR $stateVal = 4)

AND

 ($shapeVal = 1)

}

%rolling

rule :

{

 (0.98689 * $kineticEnergyVal)

}

{

 $stateVal := 3 ;

 $kineticEnergyVal :=

 (0.98689 * $kineticEnergyVal) ;

}

100

{

 ($stateVal = 2 OR $stateVal = 3) AND

 ($shapeVal = 0)

}

whole simulation. Its state variable- stateVal is 2

or 3 which means falling or already rolling. Also

its shape should be 0 which means the shape is

regular. That is totally opposite to the rolling

state. After 100 time delay, it will outputs its

kinetic energy. And it transfers its stateVal to 3

and stores its energy in the state variable.

In our simulation, we will assign the value- 2 to

one of the cell which means it is the first moving

stone. And then it will output its kinetic energy.

At next time advancement, its neighbors will get

its energy which value is multiplied by a

constant 0.98689. The lost energy is consumed

to compromise the air resistance. And in this way,

the whole rock fall will spread widely.

3.2.3 Zone 1

The reason that I introduce the first zone after

the degree 45 slope zone is the 45 slope degree

has the most integral rules and neighbors, that is,

it is the most complicated zone.

As for the first zone of the mountain, the slope

degree is 75 degree slope and above the 45

degree slope of the mountain. The neighbors of

(0,0,0) are (0,-1,-2), (0,-1,-1), (1,-1,-1) and

(-1,-1,-1).

In the real world, 75 degree slope is really

precipitous, so when one of the four upper

adjacent stones are moving and colliding with

the lower stone. Then the lower stone will get

different amounts of energy from them. The

difference between it and 45 degree slope is that

the second layer of above will also offer the

stone energy because the slope is more

precipitous than that of 45 degree. When it falls

down, it will collide with the second layer

below.

3.2.4 Zone 3

As for the third and the bottom zone of the

mountain, the slope degree is 15 degree slope

and under the 45 degree slope of the mountain.

The neighbors of (0,0,0) are (0,-2,-1), (1,-2,-1)

and (-1,-2,-1).

In the real world, 15 degree slope is really

gradual, so when the stones are falling from the

45 degree slope and collided with the stone in

this zone. Due to the difference of slope degree,

the collided stone will start to bounce rather than

to roll as that in the 45 degree zone. So in this

way, the first collided stone will collide with

next stone. One thing should be noticed that this

stone is not adjacent to the first collided stone.

We can say the process of rock falling in this

zone is stone jumping not rolling. So in this zone,

rule of rolling is not required.

4. Simulation results and analysis

After simulating our model in the new CD++

version, I obtain results (the .log file generated

by the server) of three zones- 75, 45 and 15 in a

(20, 20, 20) dimension of cells and analyze how

the rock fall spreads from few falling stones.

And I will also analyze some factors which will

affect the process of rock fall, such as kinetic

energy, resistance energy, and shape of each cell.

Furthermore, we show the 3D results of the old

CD++ version in order to see the general process

of rock fall directly. Also, some advancement of

the new version will be presented by the

comparison between the old and new version.

Finally, thanks to the addition of state variables

and neighbor ports in the new version, it offers

us more choices to make it happen. For example,

we use the state variable (called stateVal) to

record the state of the cell and it is used as one

of conditions to determine which state the cell

will change to. Detailed analysis will be

discussed separately.

4.1 Shape=0 (all cells) and kinetic

energy=500, 1000 and 8000 (special cells)

4.1.1 Rock fall on the slope with 75 degree

As can be seen from the figure 15, the yellow

cell regarded as the cell will be triggered to fall

when it obtains enough kinetic energy from its

three neighbors (0,-1,-2), (0,-1,-1), (1,-1,-1) and

(-1,-1,-1). It is reasonable that in the real world,

the stone will be collided with three adjacent

stones in the first layer of above and one in the

second layer of above, because this slope is

much steeper and the cell (0,-1,-2) will fall and

collide with (0,0,0).

In the first case, we make all shapes of cells

equal to 0, all state values and kinetic energy

equal to 0 except for special cells, which are

(4,2,4), (4,2,5), (4,4,8) and (4,10,14) with initial

state, kinetic energy state variables (2, 500)

respectively. The state variable value of friction

of each cell is generated randomly ranging from

0-100.

Figure 16. Time 00:00:00:000:00 of (4,2,4)

and (4,2,5)

At time 00:00:000:00, all cells load the initial

cell values and output 0. And all cells are shown

in order, like (4,2,4), (4,2,5) and (4,2,6).

Figure 17. Time 00:00:00:100:0 of (4,2,4)

and (4,2,5)

At time 00:00:100:00, specials cells start to

output energy (493.94501) in the figure above,

which is calculated by multiplying a physical

constant 0.98689 plus a constant value 0.50. At

the same time, other cells output negative values,

such as (4,2,2) with -67.00000. 67 is the friction

of it, and according to the rule defined before, so

it will output (0-67.00000) = -67.00000. It

means it is now in the motionless state. As

explained before, motionless cells output

negative values so they can be differentiated

with toppling state. Also, the larger the negative

value is, more kinetic energy will be required to

make it fall. (That is, it is fixed well by adjacent

stones.)

Figure 15. The cell and its neighbors

in the zone 1

Figure 18. The collided cells in the first zone

(3,3,5), (4,3,5), (4,3,6) and (5,3,6)

As time moves on, the neighbor cell obtains the

kinetic energy from the special cells. As shown

in the figure 13, now the yellow cell is (4,3,6)

and the red cells in middle of the two upper

layers are (4,2,4) and (4,2,5). It obtains the

energy from both of the two special cells, so its

energy is larger (718.73861) than the two values

(493.94501) at the time 00:00:100:00. Also,

(4,3,5) gets the energy only transferred by the

cell (4,2,4), so the received energy is not that

much, having 372.76541. One thing should be

noticed is the received energy of each cell is

already added by the other neighbors’ resistance

energy (negative value) which is represented by

the state variable- friction. In the figure 16, it

also shows energy outputs of cells another zone

due to the order of showing log file. The details

of the other two zones will be analyzed in 4.1.2

and 4.1.3 later.

The z axis of (4,3,6) is in the last layer of the

first zone because the range of this zone is from

(0,0,0) to (19,19,6). Energy of each cell will

remain and not change any more. So at next time

advancement no changes are in the each cell,

they will not output their energy. They will not

appear in the log file.

Figure 19. Time 00:00:00:300:0

(energy=500)

Figure 20. Time 00:00:00:300:0

(energy=1000)

Based on the comparison of figure 19 and figure

20 above, we can see that the same cell in the

same zone has more energy when the initial cell

given more initial kinetic energy. Also, because

of more energy can be transferred between cells,

more cells will be triggered to fall, such as (5,3,6)

in the second case (with more initial energy-

1000). By contrast, in the first case, the cell

(5,3,6) could not get enough kinetic energy to

fall due to the total of neighbors’ resistance

larger than received energy.

Figure21. 00:00:01:600:0(energy=8000)

In this case, we assign the initial cells with more

energy in order to ensure all the cells do the

transition at least one time according to the rules

at the overtime 00:00:01:600:0. In the real world,

it means that most of parts of the whole

mountain crush.

4.1.2 Rock fall on the slope with 45 degree

As can be seen from the figure 22, the yellow

cell regarded as the cell will be triggered to fall

when it obtains enough kinetic energy from its

five neighbors (0,-1,-1), (1,-1,-1), (-1,-1,-1),

(1,0,0) and (-1,0,0). This zone is different from

the upper zone with two more neighbors, so

more cells can be triggered.

This zone is ranging from (0,0,8) to (19,19,12).

It is important that one layer should be left

empty after several times tries to make 75 and 45

degree zone connect well. The reason is that due

to the ‘nowrapped’ characteristics of our model,

cells in the first layer of the 45 zone tries to find

its neighbors in upper layer but they belong to

the first zone, as a result, invalid neighbor

exception will be thrown. So we define the

second zone ranges starting from (0,0,8) rather

than from (0,0,7).

Figure 22. The cell and its neighbors

in the zone 2

Figure 23. All changed cells at time

00:00:00:300:0

The result is the same as we expected. The

number of changed cells in this zone is 8, while

that in the zone 75 and 15 is 7 and 5,

respectively. As the energy is not large, so the

difference is not so much. If the initial energy is

much larger, the result will be more apparent.

4.1.3 Rock fall on the slope with 15 degree

As can be seen from the figure 24, the yellow

cell regarded as the cell will be triggered to fall

when it obtains enough kinetic energy from its

three neighbors (0,-2,-1), (1,-2,-1), (-1,-2,-1),.

This zone is different from the upper zone with

fewer neighbors. And the cell will bounce rather

than roll when it is triggered.

Figure 25. At time 00:00:00:400:0

In the above figure, we can see that in this zone

the cell is jumping to transfer energy as we

explained in the 3.2, such as the cell (4,14,16),

(4,16,17), (5,16,17) and (6,16,17). The y axis of

all of them is even not odd. Because the first cell

value we assign in the stavalues.file is (4,10,14),

the cell only transfer its energy to cells

belonging to the y axis (y+1). Also the energy in

the (4,14,16) is 195.47941 and that in the

(4,14,17) is 481.33685 in the the lower layer.

More kinetic energy here means this stone has a

greater speed. But this energy is transferred by

the left and right neighbor of (4,14,16) not itself.

An interesting cell in this figure is (6,16,17), its

output is 0.00000 (means it is in the toppling

state), because received energy is just larger than

its resistance and smaller than the value of

Figure 24. The cell and its neighbors

in the zone 3

resistance plus 20. So it topples when it is

collided with other stones but it will not begin to

fall.

4.2 Effects of different values of state

variable- friction

Figure 26. At time 00:00:00:200:0 with

random friction from 0-50

Figure 27. At time 00:00:00:200:0 with

random friction from 0-100

Through the analysis and comparison between

the figure 26 and 27, we can see that more cells

are triggered to fall with less friction resistance.

For example, the cell (3,3,6) and (5,3,5) starts to

output energy at this time, while it is not shown

in the figure 27.

Figure 28. At the time end with random

friction from 0-50

Figure 29. At the time end with random

friction from 0-100

As can be seen from the figure 28 and 29, at the

time end of the .log life, the time ends at

00:00:01:200:0 in the first case (random friction

from 0 to 50) while that ends at 00:00:00:800:0

in the second one (from 0- 100). We can

conclude that with less friction resistance, during

the process of fall rock, consume of energy is

less, so it will last longer.

4.3 Effects of different values of state

variable- shape

Figure 30. At the time 00:00:00:300:0 with

cells have more shape 1 than 0

Figure 30 shows the simulation result at time

00:00:00:300:0 with the same state variable

value except for ‘shape’. We generate the value

of shape randomly but ensure that more 1 than 0

and assign them to each cell. As what we

explained before, 0 represents the shape of this

cell is regular, while 1 means irregular.

Figure 31. At the time 00:00:00:300:0 with

cells have more shape 0 than 1

According to the same method, we generate the

value of shape randomly but ensure that more 0

than 1 and assign them to each cell.

Through comparison, it is obvious that in the

figure 30, many cells are outputting 0.00000

which means they are in the state- toppling. The

reason is that when the stone is collided with

other stone, its state value changes from 0

(motionless) to 2 (falling). And at the next time

advancement, if the shape is 1 and the state

value is 2, the state value will change to 4

(bouncing) and output 0.

It can make sense well in the real world. When a

stone is collided with another stone and begin to

fall down from the mountain, it should bounce to

affect the stone in the lower layer rather than the

one adjacent to it if its shape is irregular.

5. Conclusion

We have used the new CD++ version to simulate

our rock fall model with (20,20,20) dimension in

3D dimension and analyzed the result of the

whole process of simulation.

Firstly, we have different zones which represent

different slops of the mountain. And they present

different behaviors of rock fall because the cell

in different zones has different neighbors and

differing rules. The 15 degree, the (0,0,0) will

only obtain energy from three neighbors from

the upper layer, while 75 and 45 degree zone

receive energy from 4 and 5 neighbors in the two

layers of the above and left and right and the

upper layers, respectively.

Secondly, we compared and analyzed the effect

of state variable- kinetic energy. The larger

kinetic energy assigned to the starting cells,

more cells will be triggered to fall. The end time

will last long and trigger all the cells to make a

transition according to the rule at least one time

except for some boundary ones.

Thirdly, we analyzed the effect of state variable-

friction. We randomly generated the friction

value of each cell ranging from 0- 50 and 0- 100

respectively and assigned them to each cell.

After analysis, the friction from 0- 50 can make

more cells change states and output their energy.

Specifically, the process of rock fall will make

more stones involved.

Finally, we analyzed the effect of state variable-

shape. The more values of shape 1 are, the more

cells output value 0.00000 (means the state-

toppling) with 0 kinetic energy. The more

values of shape 0 are, the more cells output its

kinetic energy.

6. References

[1] G. Wainer: "CD++: a Toolkit to Define

Discrete-Event Models", Software, Practice and

Experience, Wiley, Vol. 32, No 3. pp. 1261-1306.

November 2002.

[2] C. Phillips: "A Review of High Performance

Simulation Tools and Modeling Concepts",

Recent Advances in Modeling and Simulation

Tools for Communication Networks and

Services, pp. 29-47, 2007

[3] G. Wainer, N. Giambiasi: "Application of the

Cell-DEVS Paradigm for Cell Spaces Modeling

and Simulation", Simulation, Vol. 71, No. 1, pp.

22-39, January 2001.

[4] F. Guzzetti, G. Crosta, R. Detti and F.

Agliardi, STONE: "a computer program for the

three-dimensional simulation of rock-falls",

Computers & Geosciences, Volume 28, Issue

9, Pages 1079-1093, November 2002

http://link.springer.com/book/10.1007/978-0-387-73908-3
http://link.springer.com/book/10.1007/978-0-387-73908-3
http://link.springer.com/book/10.1007/978-0-387-73908-3

Appendix

The rule of the FallRockV2 model:

[top]

components : FallRock

[FallRock]

type : cell

dim : (20,20,20)

delay : transport

defaultDelayTime : 100

border : nowrapped

neighbors : FallRock(0,-1,-2)

neighbors : FallRock(1,-1,-1) FallRock(0,-1,-1)

FallRock(-1,-1,-1)

neighbors : FallRock(1,0,0) FallRock(0,0,0)

FallRock(-1,0,0)

neighbors : FallRock(1,1,1) FallRock(0,1,1)

FallRock(-1,1,1)

neighbors : FallRock(0,-2,-1) FallRock(1,-2,-1)

FallRock(-1,-2,-1)

initialValue : 0

initialCellsValue : init.val

StateVariables : stateVal kineticEnergyVal

frictionVal shapeVal

stateValues : 0 0 0 0

InitialVariablesValue : initial.stvalues

zone : slope75 { (0,0,0)..(19,19,6) }

zone : slope45 { (0,0,8)..(19,19,12) }

zone : slope15 { (0,0,14)..(19,19,19) }

localTransition : FallRockBehavior

[slope75]

%Rock Falls along 75 degree

%Motionless

rule :

{

 (0 - $frictionVal)

}

{

 $stateVal := 0 ;

 $kineticEnergyVal := 0 ;

}

100

{

 ((0.98689 * $kineticEnergyVal

 + 0.40 * (0,-1,-2)

 + 0.50 * (0,-1,-1)

 + 0.23 * (1,-1,-1)

 + 0.23 * (-1,-1,-1)

) < $frictionVal

) AND

 (

 $stateVal = 0

)

}

%Toppling

rule :

{

 0

}

{

 $stateVal := 1 ;

 $kineticEnergyVal := 0 ;

}

100

{

 ((0.98689 * $kineticEnergyVal

 + 0.40 * (0,-1,-2)

 + 0.50 * (0,-1,-1)

 + 0.23 * (1,-1,-1)

 + 0.23 * (-1,-1,-1)

) > $frictionVal

) AND

 ((0.98689 * $kineticEnergyVal

 + 0.40 * (0,-1,-2)

 + 0.50 * (0,-1,-1)

 + 0.23 * (1,-1,-1)

 + 0.23 * (-1,-1,-1)

) < ($frictionVal+20)

) AND

 (

 $stateVal = 0 OR $stateVal = 1

)

}

%falling

rule :

{

 ((0.98689 * $kineticEnergyVal

 + 0.40 * (0,-1,-2)

 + 0.50 * (0,-1,-1)

 + 0.23 * (1,-1,-1)

 + 0.23 * (-1,-1,-1)

)- $frictionVal)

}

{

 $stateVal := 2 ;

 $kineticEnergyVal :=

 ((0.98689 * $kineticEnergyVal

 + 0.40 * (0,-1,-2)

 + 0.50 * (0,-1,-1)

 + 0.23 * (1,-1,-1)

 + 0.23 * (-1,-1,-1)

)- $frictionVal) ;

}

100

{

 ((0.98689 * $kineticEnergyVal

 + 0.40 * (0,-1,-2)

 + 0.50 * (0,-1,-1)

 + 0.23 * (1,-1,-1)

 + 0.23 * (-1,-1,-1)

) > ($frictionVal + 20)

) AND

 (

 $stateVal = 0 OR $stateVal = 1

)

}

 %rolling

rule :

{

 (0.98689 * $kineticEnergyVal + 0.50)

}

{

 $stateVal := 3 ;

}

100

{

 $stateVal = 2 AND

 $shapeVal = 0

}

%bouncing

rule :

{

 0

}

{

 $stateVal := 4 ;

}

100

{

 $stateVal = 2 AND

 $shapeVal = 1

}

rule :

{ (0,0,0) } 0 { t }

[slope45]

%Rock Falls along 45 degree

%Motionless

rule :

{

 (0 - $frictionVal)

}

{

 $stateVal := 0 ;

 $kineticEnergyVal := 0 ;

}

100

{

 ((0.98689 * $kineticEnergyVal

 + 0.23 * (1,-1,-1)

 + 0.50 * (0,-1,-1)

 + 0.23 * (-1,-1,-1)

 + 0.38 * (1,0,0)

 + 0.38 * (-1,0,0)

) < $frictionVal

) AND

 (

 $stateVal = 0

)

}

%Toppling

rule :

{

 0

}

{

 $stateVal := 1 ;

 $kineticEnergyVal := 0 ;

}

100

{

 ((0.98689 * $kineticEnergyVal

 + 0.23 * (1,-1,-1)

 + 0.50 * (0,-1,-1)

 + 0.23 * (-1,-1,-1)

 + 0.38 * (1,0,0)

 + 0.38 * (-1,0,0)

) > $frictionVal

) AND

 ((0.98689 * $kineticEnergyVal

 + 0.23 * (1,-1,-1)

 + 0.50 * (0,-1,-1)

 + 0.23 * (-1,-1,-1)

 + 0.38 * (1,0,0)

 + 0.38 * (-1,0,0)

) < ($frictionVal+20)

) AND

 (

 $stateVal = 0 OR $stateVal = 1

)

}

%falling

rule :

{

 ((0.98689 * $kineticEnergyVal

 + 0.23 * (1,-1,-1)

 + 0.50 * (0,-1,-1)

 + 0.23 * (-1,-1,-1)

 + 0.38 * (1,0,0)

 + 0.38 * (-1,0,0)

 + 0.50)- $frictionVal)

}

{

 $stateVal := 2 ;

 $kineticEnergyVal :=

 ((0.98689 * $kineticEnergyVal

 + 0.23 * (1,-1,-1)

 + 0.50 * (0,-1,-1)

 + 0.23 * (-1,-1,-1)

 + 0.38 * (1,0,0)

 + 0.38 * (-1,0,0)

 + 0.50)- $frictionVal) ;

}

100

{

 ((0.98689 * $kineticEnergyVal

 + 0.23 * (1,-1,-1)

 + 0.50 * (0,-1,-1)

 + 0.23 * (-1,-1,-1)

 + 0.38 * (1,0,0)

 + 0.38 * (-1,0,0)

 + 0.50) > ($frictionVal + 20)

) AND

 (

 $stateVal = 0 OR $stateVal = 1

)

}

 %rolling

rule :

{

 (0.98689 * $kineticEnergyVal + 0.50)

}

{

 $stateVal := 3 ;

}

100

{

 $stateVal = 2 AND

 $shapeVal = 0

}

%bouncing

rule :

{

 0

}

{

 $stateVal := 4 ;

}

100

{

 $stateVal = 2 AND

 $shapeVal = 1

}

rule :

{ (0,0,0) } 0 { t }

[slope15]

%Rock Falls along 15 degree

%Motionless

rule :

{

 (0 - $frictionVal)

}

{

 $stateVal := 0 ;

 $kineticEnergyVal := 0 ;

}

100

{

 ((0.98689 * $kineticEnergyVal

 + 0.50 * (0,-2,-1)

 + 0.50 * (1,-2,-1)

 + 0.50 * (-1,-2,-1)

 + 0.50) < $frictionVal

) AND

 (

 $stateVal = 0

)

}

%Toppling

rule :

{

 0

}

{

 $stateVal := 1 ;

 $kineticEnergyVal := 0 ;

}

100

{

 ((0.98689 * $kineticEnergyVal

 + 0.50 * (0,-2,-1)

 + 0.50 * (1,-2,-1)

 + 0.50 * (-1,-2,-1)

 + 0.50) > $frictionVal

) AND

 ((0.98689 * $kineticEnergyVal

 + 0.50 * (0,-2,-1)

 + 0.50 * (1,-2,-1)

 + 0.50 * (-1,-2,-1)

 + 0.50) < ($frictionVal+50)

) AND

 (

 $stateVal = 0 OR $stateVal = 1

)

}

%falling

rule :

{

 ((0.98689 * $kineticEnergyVal

 + 0.50 * (0,-2,-1)

 + 0.50 * (1,-2,-1)

 + 0.50 * (-1,-2,-1)

 + 0.50)- $frictionVal)

}

{

 $stateVal := 2 ;

 $kineticEnergyVal :=

 ((0.98689 * $kineticEnergyVal

 + 0.50 * (0,-2,-1)

 + 0.50 * (1,-2,-1)

 + 0.50 * (-1,-2,-1)

 + 0.50)- $frictionVal) ;

}

100

{

 ((0.98689 * $kineticEnergyVal

 + 0.50 * (0,-2,-1)

 + 0.50 * (1,-2,-1)

 + 0.50 * (-1,-2,-1)

 + 0.50) > ($frictionVal + 50)

) AND

 (

 $stateVal = 0 OR $stateVal = 1

)

}

%bouncing

rule :

{

 (0.98689 * $kineticEnergyVal + 0.50)

}

{

 $stateVal := 4 ;

}

100

{

 $stateVal = 2 OR $stateVal

= 3

}

rule :

{ (0,0,0) } 0 { t }

[FallRockBehavior]

%other cells behavior

rule :

{ (0,0,0) } 0 { t }

