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ABSTRACT: When a theory is proposed for discrete-event system, it means that simulation of a 

complicated system can be resolved by dividing the whole system into hierarchical and modular 

components. In this way, the process of simulation can be improved significantly due to its advantages 

in many aspects, such as the reuse of model, cost of maintenance and test times. As the development of 

Cell-DEVS, it has been used in many practical systems, such as computer networks, emergency 

evacuation, traffic controllers, and flexible manufacturing plants. In our simulation, we will use 

Cell-DEVS model to simulate the commonplace natural phenomenon- rock fall in 3D version. Each 

cell presents a stone on the surface of the mountain which is divided into 3 zones- slopes with different 

degrees (75, 45 and 15). Each cell has different rules and neighbors in three zones. Also, we compared 

and analyzed how the simulation behaves when different values of state variables are assigned to each 

cell. 

 

1. Introduction 

 

Simulation is model execution which is 

presented by computer coding program generally 

describes the real system. As using real system 

to simulate is too expensive, simulation by a 

computer can really save time and cost. In recent 

years, a number of modeling techniques have 

been introduced in order to improve the 

definition and analysis of complex dynamic 

systems. The development of simulation tools 

has often been closely related to the execution of 

these models [1].  

 

Cell-DEVS, as one of discrete-time simulation 

models, is very commonplace now, which can be 

seen from many fields, such as, traffic control, 

passengers boarding and intellectual games and 

is also used to simulate some natural 

phenomenon like fire spread, mining, etc.  

 

Rock fall is a quite normal phenomenon in the 

natural activities, which poses a threat to the 

mountain area all over the world. It is a hard 

work to predict when it will happen because 

different areas or regions have various rock 

properties. Once it happens, it has a huge 

damage to the humanity, animals and the nature.  

A rock fall starts from a loose rock falling along 

vertical and sub-vertical paths together. 

Apparently, as for the vertical path, the velocity 

can reach a very high speed by accumulating 

stones. The much heavier rock is, the faster 

speed has. In terms of sub-vertical rock fall, it 

can only get a relatively small horizontal speed 

brought by the collision of near stones at first, 

while as they are rolling all the time and they 

can be fast as well finally before they reach the 

bottom of mountain. 

 

In our simulation, we will use Cell-DEVS model 

to simulate the process of rock-fall in 3D version. 

And we will analyze different results and 

compare different zones of the mountain with 



different slope degrees, ranging from 15, 45 to 

75. In addition, in order to simulate the process 

of rock-fall approaching to the reality, we also 

add many different state variables- motionless, 

toppling, rolling, bouncing and falling.  

 

2. Background 

 

2.1 DEVS model 

 

Discrete simulation is the modeling of a system 

as it evolves over time by a representation in 

which the state variables change only at a 

countable number of points in time. At these 

points an event occurs, where an event is taken 

to be an instantaneous occurrence that may 

change the state of a system [2]. As a large 

number of models are not static and they will 

change with the time moving, lasting from this 

time point to that one, a discrete time simulation 

models are required.  

 

The basic DEVS model can be regarded as a 

integration of sub-models, which can represent a 

whole system. Each model can be executed and 

it has input, output, state, time and function. The 

DEVS model can be represented as: 

  

M = < I, X, S, Y, δint, δext, λ, D > 

 

Here, I is the model’s interface, X is the input 

events set, S is the state set, and Y is the output 

events set. There are also several functions: δint 

manages internal transitions, δext external 

transitions, λ the outputs, and D the elapsed time 

[3].  

 

2.2 Cell-DEVS model 

 

Apparently, timed Cell-DEVS model is more 

complicated than the DEVS model. Its atomic 

model can be presented as the following: 

 

TDC=< I, X, Y, θ, N, delay, d, δint, δext, τ , λ, D> 

I is the model’s interface, X is the set of input 

events, and Y is the set of output events. D is an 

index of components, and for each i ∈ D, Mi 

is a basic DEVS model (that is, an atomic or 

coupled model). Ii is the set of influences of 

model i. For each j ∈ Ii, Zij is the i to j 

translation function. Finally, select is a 

tie-breaking function defining which model 

executes if more than one is activated 

simultaneously [3].  

 

The time advancement is also necessary in our 

simulation model, because the process of 

collision of different sizes and shapes of stones 

is different. In addition, the stones in different 

slopes of the mountain are various as well. So 

we need use corresponding delays to represent 

state changes of different stones.  

 

2.3 Benefits of RISE in our model 

 

All parameters are different and difficult to 

quantify and calculate in real world. So a lot of 

simulators choose to use random components to 

test the rock fall situation due to local conditions. 

After reading these papers we decide to use 

different random probabilities to represent the 

combination of different parameters of nature 

geographic information. We know that one fall 

rock can cause different affects to different 

dimensions, which we use different probabilities 

to represent in this project. Here are some 

explains about the idea which is the foundation 

of this simulation. 

 

Thanks to the benefits of RISE version of the 

software, we can add neighbor ports to each cell 

and set more state variables like motionless, 

toppling, rolling, bouncing and falling rather 

than only two choices in the old version of 

CD++ version.  

 

So here, after we learned from the paper [4], we 

know that there are several parameters which 



may affect the result of the simulation. For 

instance, it varies dramatically and is 

unpredictable once we take initial velocity and 

kinetic energy, shapes and sizes of stones and 

friction between stones and the surface of the 

mountain into consideration.  

 

2.3.1 State variables 

 

We used 3D dimensional geometry to depict the 

scenario of a falling rock. We use 20*20*20 

cubes to implement the environment.  

 

We initialize the whole cubes with the value 0, 

which represents the stones on the slope of the 

mountain are stable. Then, the value of cube will 

begin to change to different values according to 

change of its neighbors, which indicts the 

motionless stone on this slope begin to change to 

other states- toppling, rolling, bouncing and 

free-falling. Obviously, it has a great 

improvement than the old CD++ version, which 

can only have one state variable, really limiting 

the scope of application. 

 

2.3.2 Add neighbor ports 

 

It is easy to understand that different possible 

results will generate when a stone is collided 

with a falling stone. Since the probability that a 

stone will keep motionless or change to topple, 

roll, bounce or fall is difficult to predict in the 

real world, we simply it by calculating 5 

neighbor ports of each cell to determine which 

state the stone will change to.   

 

Finally, the stone should have different velocities 

as it may be affected by different stones from 

different directions, so different time delays are 

used to describe this case. And these delays can 

be understood easily. For instance, the shortest 

delay is the case that the stone is collided by the 

upper falling stone.  

 

 

Figure 1. Effects of different heights of 

stones on their speeds when they start to 

fall 

 

Figure 1 mainly shows that on different heights, 

the falling stones have different speeds. The 

much higher the height is, the faster the speed is. 

Then, we change this height to relative height 

and distance. For instance, because the relative 

height between the upper stone with the lower 

one neighbour is the biggest, so we can assume 

its speed is the fastest and the momentum is the 

biggest. So, as for this direction, it has the 

shortest delay time and in the same way, it will 

affect next lower stone with largest probability.  

 

2.3.3 Different zones 

 

In order to make the simulation approaching to 

the real world, we divide the whole surface of 

the mountain into 4 different zones- 15, 45 and 

75 slope degree of the mountain.  

 



 

Figure 2. Rugged topography of the real 

mountain 

 

As can be seen in the figure 2, the real mountain 

has different slopes. However, if it is not 

inerratic in one zone, it will be difficult to define 

cell’s neighbors and cannot guarantee each cell 

has the same behavior. Consequently, the whole 

mountain will probably collapse. So in each 

zone, we just consider the stones only with 

changes of position in the axis x.  

 

a a a a a a a a 

1 2 

 

Figure3. Plane x 

 

In this case, if we see the plane x regardless of 

which zone (15, 45 and 75) it belongs to, we will 

not take stones 1 and 2 into consideration in 

order to define the same behavior of each cell a.  

 

The zone which has 0 degree slope means it is 

the bottom of the mountain. The normal result of 

rock fall in nature is that a huge amount of 

stones is accumulated on the bottom. In terms of 

the process of simulation, the value of cell in the 

plane will have a change, it is really easy to 

implement, but we do no choose to do it finally 

because it will add more cells which will take a 

long time to simulate. Also, because our model 

is divided into zones, so we should give at least 

one initial cell in each zone, but it will not make 

sense in that zone.  

3. Model definition 

 

3.1 Take 45 degree slope (zone 2) as an 

example 

 

 

Figure 4. Formal specification of simple 

rock-fall model 

 

Figure 4 shows the simple formal specification 

of rock-fall model. The simple model means the 

whole slope of the mountain is 45 degrees with 

the horizontal line. In this simple model, we just 

need to define the 5 neighbors of each cell 

((-1,-1,-1), (0, -1, -1), (1,-1,-1), (-1,0,0), (0,0,0) 

(1,0,0)). Because we only focus on the part of 

slope of the mountain, so it should not be 

wrapped.  

 

In our model, assuming the point (0, 0, 0) is the 

stone that will be checked whether it will begin 

to move, which state it will change to- 

Cell-DEVS formal specification 

 

M = < Xlist, Ylist, I, X, Y, S, θ, N, d, 

τ, δint, δext, λ, ta > 

 

Xlist = { Ф}  

Ylist = { Ф}  

I = < 6, 0, Ф, Ф> 

X = Ф  

Y = Ф  

 

S = {s| s ∈ (0, 6)}  

 

θ  = {(s, phase, σqueue, σ ), s  ∈  S, 

phase ∈ (0, R)} 

N = {(-1,0,0), (0,0,0) (1,0,0), (1,-1,-1), 

(0,-1,-1), (-1,-1,-1) }   

 

d = 100 ms 

ta (passive) = INFINITY  

ta (active) = d 



motionless or start to roll according to the values 

of its 5 neighbors which means 5 stones adjacent 

to it. And the detail of rules of each cell will be 

explained in the next part of model definition.  

 

As we can see from the YoZ platform, the 5 

neighbors ((-1,-1,-1), (0, -1, -1), (1,-1,-1), 

(-1,0,0), (0,0,0) (1,0,0)) are listed in the Figure 5.  

 

 

 

 

 

 

 

 

 

 

One thing should be noticed is that each row of 

the figure 5 does not belong to the same plane. 

For instance, the first row (-1, -1, 1), (-1, 0, 0) 

and (-1, 1, -1) is in the upper plane, the second 

row (0, -1, 1), (0, 0, 0) and (0, 1, -1) is the 

middle one and the third row (1, -1, 1), (1, 0, 0) 

and (1, 1, -1) is the lower one. So there are 5 

neighbors for each cell in different planes, but 

the physical constant that is multiplied with 

received energy they transfer to the stone (0, 0, 0) 

is ranging from 0.23, 0.38 to 0.50 according to 

the reasonable circumstance. In addition, all of 

stones’ initial values are set to 0. If the affected 

stone falls, the value will change from 0 to 1 

(falling). Then the falling stone will bounce or 

roll depending on the shape of stone. 

 

 

 

 

 

In the figure 6, we see the whole model from the 

XoY dimension rather than the YoZ, as the result, 

3 cells are in the figure, in which only 1 cells (0, 

-1, -1) that can affect the cell (0, 0, 0) can be 

seen. It is easy to understand that the stone (the 

cell (0, 1, -1)) starts to fall can affect the stone 

(the cell (0, 0, 0)). Although it does make sense 

because, in the real world, the lower stone 

supports the upper stone, which is regarded as 

the foundation, we do not take it into 

consideration, that is, we do not take them as 

(0,0,0) neighbors. 

 

3.2 Rules of model 

 

The rule of this simulation model is based on the 

basic physical principle that a motionless stone 

starts to fall from the static state. Specifically, 

we assume the stone is triggered by the 

absorption of the kinetic energy from neighbor 

stones. Then, the falling stone will be 

determined to keep to static state or change to 

topple, bounce or roll according to the numerical 

difference value between the kineticEnergyVal 

and frictionVal, which are state variables. 

Another state variable should be noticed is 

stateVal, which represents the state of a cell. The 

details of behavior of a cell, that is, the change 

of states, will be explained in 3.2.1, 3.2.2, 3.2.3 

and 3.2.4.  

 

3.2.1 The basic model definition 

 

  (0,1,-1) 

(0,0,0)  

 (0,-1,1)   

     

     

 
Figure 6. From the (XoY) dimension 

 

(-1,-1,1) (-1,0,0) (-1,1,-1) 

(0,-1,1) (0,0,0) (0,1,-1) 

(1,-1,1) (1,0,0) (1,1,-1) 

 
Figure 5. From the YoZ dimension 



 

Figure 7. (a)FallRock model definition 

 

 

Figure 8. (b) FallRock model definition 

 

As can be seen from the figure 8, the initial 

value of each cell is 0 and some cells should not 

be zero, while represents the stones that trigger 

the rock fall. However, we do not assign them 

special values and the default value of all cells is 

0. Instead, we use state variable (stateVal) to 

determine the change of cell’s state. That value 

will be given in the initial.stvalues file which is 

used to assign initial values of state variables of 

all cells. 

 

3.2.2 Rules of different cell states in the 45 

degree slope (Zone 2)  

 

 

 

 

As for the second zone of the mountain, the 

slope degree is 45 with the horizontal line, under 

the first zone (75 degree) and above the last zone 

(15 degree). So the neighbors of (0,0,0) are 

(1,-1,-1), (0,-1,-1), (-1,-1,-1), (1,0,0) and  

(-1,0,0). The condition of the cell in this zone is 

that the initial stateVal is 0 which means it stay 

motionless. If it cannot obtain enough kinetic 

energy from its neighbors smaller than the 

resistance, it will keep motionless and the kinetic 

energy of itself is 0. And we output negative ten 

to its neighbors, differentiating with the state- 

toppling. Also, it will make sense when 

computing its neighbor cell because it means 

that the neighbor cell will get a negative value 

from it, representing the neighbor cell will need 

more kinetic energy to make the two motionless 

stones to begin to move. 

[FallRock] 

type : cell 

dim : (8,8,8) 

delay : transport 

defaultDelayTime : 100 

border : nowrapped 

neighbors :   FallRock(1,-1,-1) 

FallRock(0,-1,-1) FallRock(-1,-1,-1) 

neighbors :    FallRock(1,0,0)  

FallRock(0,0,0)  FallRock(-1,0,0) 

neighbors :    FallRock(1,1,1)  

FallRock(0,1,1)  FallRock(-1,1,1) 

 

initialValue : 0 

initialCellsValue : init.val 

StateVariables : stateVal kineticEnergyVal 

frictionVal shapeVal countVal  

stateValues : 0 0 0 0 0 

InitialVariablesValue : initial.stvalues 

localTransition : FallRockBehavior 

%Motionless 

rule :  

{  

 ( 0 - $frictionVal ) 

}   

{   

 $stateVal := 0 ;  

 $kineticEnergyVal := 0 ;  

}  

100      

{  

       (( 0.98689 * $kineticEnergyVal +  

+0.23*(1,-1,-1)~neighborChange 

  +0.50 * (0,-1,-1)~neighborChange 

  + 0.23 * (-1,-1,-1)~neighborChange 

  + 0.38 * (1,0,0)~neighborChange 

  + 0.38 * (-1,0,0)~neighborChange 

) < $frictionVal 

        )  AND 

        ($stateVal = 0 ) 

} 

Figure 9. The rule of motionless 



 

Figure 10. The rule of toppling 

 

The prerequisite of this rule of the cell in this 

zone is that the initial stateVal is 0 (means it is 

motionless) or 1 (means it is toppling). In short, 

the stone does not leave its place. And then, if it 

obtains some kinetic energy from its neighbors 

larger than the resistance but smaller than the 

resistance plus 20, the stateVal will change from 

0 to 1, which means the state of the stone 

changes from motionless to toppling or the 

sateVal will keep toppling and in both cases, the 

kinetic energy of itself is 0. And we output zero 

to its neighbors, differentiating with the state- 

motionless.  

 

 

Figure 11. The condition of rule of falling 

 

The prerequisite of this rule of the cell in this 

zone is that the initial stateVal is 0 (means it is 

motionless) or 1 (means it is toppling). In short, 

the stone does not leave its place. And at the 

same time, if it obtains enough kinetic energy 

from its neighbors larger than the resistance plus 

20, it will change state. 

 

 

 

 

 

 

 

%Toppling 

rule :   

{ 0 }  

{ $stateVal := 1 ; $kineticEnergyVal := 0 ;  

}  

100 

{ (( 0.98689 * $kineticEnergyVal 

 +0.23*(1,-1,-1)~neighborChange 

 +0.50 * (0,-1,-1)~neighborChange 

 + 0.23 * (-1,-1,-1)~neighborChange 

 + 0.38 * (1,0,0)~neighborChange 

 + 0.38 * (-1,0,0)~neighborChange 

   ) > $frictionVal 

     ) AND 

     (( 0.98689 * $kineticEnergyVal 

 +0.23*(1,-1,-1)~neighborChange 

 +0.50 * (0,-1,-1)~neighborChange 

 + 0.23 * (-1,-1,-1)~neighborChange 

 + 0.38 * (1,0,0)~neighborChange 

 + 0.38 * (-1,0,0)~neighborChange 

   ) < ($frictionVal+20) 

     ) AND 

     ($stateVal = 0 OR $stateVal = 1 )  

} 

100 

{  

     (( 0.98689 * $kineticEnergyVal 

 +0.23*(1,-1,-1)~neighborChange 

 +0.50 * (0,-1,-1)~neighborChange 

 + 0.23 * (-1,-1,-1)~neighborChange 

 + 0.38 * (1,0,0)~neighborChange 

 + 0.38 * (-1,0,0)~neighborChange 

 ) > ($frictionVal + 20) 

     ) AND 

     ( 

       $stateVal = 0 OR $stateVal = 1  

     )  

} 



 

Figure 12. The rule of falling 

 

After the time delay- 100, the stateVal will 

change from 0 to 2 and the energy of this cell 

will change to the obtained energy distracted by 

its resistance and store them into its state 

variables- stateVal and kineticEnergyVal, 

respectively.  Then, the cell outputs the 

remaining kinetic energy to its neighbors. 

 

In the real world, this rule presents the moment 

that the stone is collided with the rolling stone 

and become separated from the adjacent stones. 

Actually, it is the state before the state- rolling. 

And at this moment, it has enough kinetic 

energy.  

 

 

 

 

Figure 13. The rule of bouncing 

 

This rule is used to represent the bouncing stone 

which has an irregular shape. When it is collided 

with other stones, it could not move as the stone 

with regular ones. So the track of moving is 

bouncing rather than rolling in the regular path 

defined initially. 

 

 

Figure 14. The rule of rolling 

 

This rule is quite different from the above three 

rules. In fact, it is the rule that will trigger the 

%falling 

rule :   

{ 

 (( 0.98689 * $kineticEnergyVal 

 +0.23*(1,-1,-1)~neighborChange 

 +0.50 * (0,-1,-1)~neighborChange 

 + 0.23 * (-1,-1,-1)~neighborChange 

 + 0.38 * (1,0,0)~neighborChange 

 + 0.38 * (-1,0,0)~neighborChange 

  ) - $frictionVal)  

}   

{   

 $stateVal := 2 ;  

 $kineticEnergyVal :=  

 ((0.98689*$kineticEnergyVal 

 +0.23*(1,-1,-1)~neighborChange 

 + 0.50 * (0,-1,-1)~neighborChange 

 + 023 * (-1,-1,-1)~neighborChange 

 + 0.38 * (1,0,0)~neighborChange 

 + 0.38 * (-1,0,0)~neighborChange 

 ) - $frictionVal) ; 

}  

%bouncing 

rule :   

{ 0 } 

{   

$stateVal := 4 ;  

$kineticEnergyVal :=  

(0.98689*$kineticEnergyVal+0.50) ;   

}  

100 

{  

   ( $stateVal = 2 OR $stateVal = 4 ) 

AND 

    ( $shapeVal = 1 ) 

} 

%rolling 

rule :   

{  

 (0.98689 * $kineticEnergyVal )  

}   

{   

 $stateVal := 3 ;  

 $kineticEnergyVal :=  

 (0.98689 * $kineticEnergyVal ) ;  

}  

100 

{ 

  ( $stateVal = 2 OR $stateVal = 3 ) AND 

 ( $shapeVal = 0 ) 

} 



whole simulation. Its state variable- stateVal is 2 

or 3 which means falling or already rolling. Also 

its shape should be 0 which means the shape is 

regular. That is totally opposite to the rolling 

state. After 100 time delay, it will outputs its 

kinetic energy. And it transfers its stateVal to 3 

and stores its energy in the state variable. 

 

In our simulation, we will assign the value- 2 to 

one of the cell which means it is the first moving 

stone. And then it will output its kinetic energy. 

At next time advancement, its neighbors will get 

its energy which value is multiplied by a 

constant 0.98689. The lost energy is consumed 

to compromise the air resistance. And in this way, 

the whole rock fall will spread widely. 

 

3.2.3 Zone 1 

 

The reason that I introduce the first zone after 

the degree 45 slope zone is the 45 slope degree 

has the most integral rules and neighbors, that is, 

it is the most complicated zone.  

 

As for the first zone of the mountain, the slope 

degree is 75 degree slope and above the 45 

degree slope of the mountain. The neighbors of 

(0,0,0) are (0,-1,-2), (0,-1,-1), (1,-1,-1) and 

(-1,-1,-1). 

 

In the real world, 75 degree slope is really 

precipitous, so when one of the four upper 

adjacent stones are moving and colliding with 

the lower stone. Then the lower stone will get 

different amounts of energy from them. The 

difference between it and 45 degree slope is that 

the second layer of above will also offer the 

stone energy because the slope is more 

precipitous than that of 45 degree. When it falls 

down, it will collide with the second layer 

below. 

 

 

3.2.4 Zone 3 

 

As for the third and the bottom zone of the 

mountain, the slope degree is 15 degree slope 

and under the 45 degree slope of the mountain. 

The neighbors of (0,0,0) are (0,-2,-1), (1,-2,-1) 

and (-1,-2,-1). 

 

In the real world, 15 degree slope is really 

gradual, so when the stones are falling from the 

45 degree slope and collided with the stone in 

this zone. Due to the difference of slope degree, 

the collided stone will start to bounce rather than 

to roll as that in the 45 degree zone. So in this 

way, the first collided stone will collide with 

next stone. One thing should be noticed that this 

stone is not adjacent to the first collided stone. 

We can say the process of rock falling in this 

zone is stone jumping not rolling. So in this zone, 

rule of rolling is not required. 

 

4. Simulation results and analysis  

 

After simulating our model in the new CD++ 

version, I obtain results (the .log file generated 

by the server) of three zones- 75, 45 and 15 in a 

(20, 20, 20) dimension of cells and analyze how 

the rock fall spreads from few falling stones. 

And I will also analyze some factors which will 

affect the process of rock fall, such as kinetic 

energy, resistance energy, and shape of each cell. 

Furthermore, we show the 3D results of the old 

CD++ version in order to see the general process 

of rock fall directly. Also, some advancement of 

the new version will be presented by the 

comparison between the old and new version. 

Finally, thanks to the addition of state variables 

and neighbor ports in the new version, it offers 

us more choices to make it happen. For example, 

we use the state variable (called stateVal) to 

record the state of the cell and it is used as one 

of conditions to determine which state the cell 

will change to. Detailed analysis will be 

discussed separately.   



4.1 Shape=0 (all cells) and kinetic 

energy=500, 1000 and 8000 (special cells) 

 

4.1.1 Rock fall on the slope with 75 degree 

 

 

 

As can be seen from the figure 15, the yellow 

cell regarded as the cell will be triggered to fall 

when it obtains enough kinetic energy from its 

three neighbors (0,-1,-2), (0,-1,-1), (1,-1,-1) and 

(-1,-1,-1). It is reasonable that in the real world, 

the stone will be collided with three adjacent 

stones in the first layer of above and one in the 

second layer of above, because this slope is 

much steeper and the cell (0,-1,-2) will fall and 

collide with (0,0,0).   

 

In the first case, we make all shapes of cells 

equal to 0, all state values and kinetic energy 

equal to 0 except for special cells, which are 

(4,2,4), (4,2,5), (4,4,8) and (4,10,14) with initial 

state, kinetic energy state variables (2, 500) 

respectively. The state variable value of friction 

of each cell is generated randomly ranging from 

0-100.   

 

Figure 16. Time 00:00:00:000:00 of (4,2,4) 

and (4,2,5) 

 

At time 00:00:000:00, all cells load the initial 

cell values and output 0. And all cells are shown 

in order, like (4,2,4), (4,2,5) and (4,2,6). 

 

 

Figure 17. Time 00:00:00:100:0 of (4,2,4) 

and (4,2,5) 

 

At time 00:00:100:00, specials cells start to 

output energy (493.94501) in the figure above, 

which is calculated by multiplying a physical 

constant 0.98689 plus a constant value 0.50. At 

the same time, other cells output negative values, 

such as (4,2,2) with -67.00000. 67 is the friction 

of it, and according to the rule defined before, so 

it will output (0-67.00000) = -67.00000. It 

means it is now in the motionless state. As 

explained before, motionless cells output 

negative values so they can be differentiated 

with toppling state. Also, the larger the negative 

value is, more kinetic energy will be required to 

make it fall. (That is, it is fixed well by adjacent 

stones.) 

 

 

 

Figure 15. The cell and its neighbors 

in the zone 1 



 

Figure 18. The collided cells in the first zone 

(3,3,5), (4,3,5), (4,3,6) and (5,3,6) 

 

As time moves on, the neighbor cell obtains the 

kinetic energy from the special cells. As shown 

in the figure 13, now the yellow cell is (4,3,6) 

and the red cells in middle of the two upper 

layers are (4,2,4) and (4,2,5). It obtains the 

energy from both of the two special cells, so its 

energy is larger (718.73861) than the two values 

(493.94501) at the time 00:00:100:00. Also, 

(4,3,5) gets the energy only transferred by the 

cell (4,2,4), so the received energy is not that 

much, having 372.76541. One thing should be 

noticed is the received energy of each cell is 

already added by the other neighbors’ resistance 

energy (negative value) which is represented by 

the state variable- friction. In the figure 16, it 

also shows energy outputs of cells another zone 

due to the order of showing log file. The details 

of the other two zones will be analyzed in 4.1.2 

and 4.1.3 later.  

 

The z axis of (4,3,6) is in the last layer of the 

first zone because the range of this zone is from 

(0,0,0) to (19,19,6).  Energy of each cell will 

remain and not change any more. So at next time 

advancement no changes are in the each cell, 

they will not output their energy. They will not 

appear in the log file. 

 

 

Figure 19. Time 00:00:00:300:0 

(energy=500) 

     

 

Figure 20. Time 00:00:00:300:0 

(energy=1000) 

 

 



Based on the comparison of figure 19 and figure 

20 above, we can see that the same cell in the 

same zone has more energy when the initial cell 

given more initial kinetic energy. Also, because 

of more energy can be transferred between cells, 

more cells will be triggered to fall, such as (5,3,6) 

in the second case ( with more initial energy- 

1000). By contrast, in the first case, the cell 

(5,3,6) could not get enough kinetic energy to 

fall due to the total of neighbors’ resistance 

larger than received energy. 

 

 

Figure21. 00:00:01:600:0(energy=8000) 

  

In this case, we assign the initial cells with more 

energy in order to ensure all the cells do the 

transition at least one time according to the rules 

at the overtime 00:00:01:600:0. In the real world, 

it means that most of parts of the whole 

mountain crush.    

 

 

 

 

 

 

 

 

 

 

4.1.2 Rock fall on the slope with 45 degree 

 

 

As can be seen from the figure 22, the yellow 

cell regarded as the cell will be triggered to fall 

when it obtains enough kinetic energy from its 

five neighbors (0,-1,-1), (1,-1,-1), (-1,-1,-1), 

(1,0,0) and (-1,0,0). This zone is different from 

the upper zone with two more neighbors, so 

more cells can be triggered.  

 

This zone is ranging from (0,0,8) to (19,19,12). 

It is important that one layer should be left 

empty after several times tries to make 75 and 45 

degree zone connect well. The reason is that due 

to the ‘nowrapped’ characteristics of our model, 

cells in the first layer of the 45 zone tries to find 

its neighbors in upper layer but they belong to 

the first zone, as a result, invalid neighbor 

exception will be thrown. So we define the 

second zone ranges starting from (0,0,8) rather 

than from (0,0,7). 

 

 

 

 
 

Figure 22. The cell and its neighbors 

in the zone 2 



 
Figure 23. All changed cells at time 

00:00:00:300:0 

 

The result is the same as we expected. The 

number of changed cells in this zone is 8, while 

that in the zone 75 and 15 is 7 and 5, 

respectively. As the energy is not large, so the 

difference is not so much. If the initial energy is 

much larger, the result will be more apparent.  

 

4.1.3 Rock fall on the slope with 15 degree 

 

 

 

As can be seen from the figure 24, the yellow 

cell regarded as the cell will be triggered to fall 

when it obtains enough kinetic energy from its 

three neighbors (0,-2,-1), (1,-2,-1), (-1,-2,-1),. 

This zone is different from the upper zone with 

fewer neighbors. And the cell will bounce rather 

than roll when it is triggered. 

 

 

Figure 25. At time 00:00:00:400:0 

 

In the above figure, we can see that in this zone 

the cell is jumping to transfer energy as we 

explained in the 3.2, such as the cell (4,14,16), 

(4,16,17), (5,16,17) and (6,16,17). The y axis of 

all of them is even not odd. Because the first cell 

value we assign in the stavalues.file is (4,10,14), 

the cell only transfer its energy to cells 

belonging to the y axis (y+1). Also the energy in 

the (4,14,16) is 195.47941 and that in the 

(4,14,17) is 481.33685 in the the lower layer. 

More kinetic energy here means this stone has a 

greater speed. But this energy is transferred by 

the left and right neighbor of (4,14,16) not itself. 

An interesting cell in this figure is (6,16,17), its 

output is 0.00000 (means it is in the toppling 

state), because received energy is just larger than 

its resistance and smaller than the value of 

 

Figure 24. The cell and its neighbors 

in the zone 3 

 



resistance plus 20. So it topples when it is 

collided with other stones but it will not begin to 

fall.    

 

4.2 Effects of different values of state 

variable- friction 

 

 

Figure 26. At time 00:00:00:200:0 with 

random friction from 0-50 

 

 

Figure 27. At time 00:00:00:200:0 with 

random friction from 0-100 

 

Through the analysis and comparison between 

the figure 26 and 27, we can see that more cells 

are triggered to fall with less friction resistance. 

For example, the cell (3,3,6) and (5,3,5) starts to 

output energy at this time, while it is not shown 

in the figure 27. 

 

 

Figure 28. At the time end with random 

friction from 0-50 

 

Figure 29. At the time end with random 

friction from 0-100 



As can be seen from the figure 28 and 29, at the 

time end of the .log life, the time ends at 

00:00:01:200:0 in the first case (random friction 

from 0 to 50) while that ends at 00:00:00:800:0 

in the second one (from 0- 100). We can 

conclude that with less friction resistance, during 

the process of fall rock, consume of energy is 

less, so it will last longer.  

 

4.3 Effects of different values of state 

variable- shape  

 

 

Figure 30. At the time 00:00:00:300:0 with 

cells have more shape 1 than 0 

 

Figure 30 shows the simulation result at time 

00:00:00:300:0 with the same state variable 

value except for ‘shape’. We generate the value 

of shape randomly but ensure that more 1 than 0 

and assign them to each cell. As what we 

explained before, 0 represents the shape of this 

cell is regular, while 1 means irregular.  

 

Figure 31. At the time 00:00:00:300:0 with 

cells have more shape 0 than 1 

 

According to the same method, we generate the 

value of shape randomly but ensure that more 0 

than 1 and assign them to each cell. 

 

Through comparison, it is obvious that in the 

figure 30, many cells are outputting 0.00000 

which means they are in the state- toppling. The 

reason is that when the stone is collided with 

other stone, its state value changes from 0 

(motionless) to 2 (falling). And at the next time 

advancement, if the shape is 1 and the state 

value is 2, the state value will change to 4 

(bouncing) and output 0.  

 

It can make sense well in the real world. When a 

stone is collided with another stone and begin to 

fall down from the mountain, it should bounce to 

affect the stone in the lower layer rather than the 

one adjacent to it if its shape is irregular.  

 

5. Conclusion 

 

We have used the new CD++ version to simulate 

our rock fall model with (20,20,20) dimension in 



3D dimension and analyzed the result of the 

whole process of simulation. 

 

Firstly, we have different zones which represent 

different slops of the mountain. And they present 

different behaviors of rock fall because the cell 

in different zones has different neighbors and 

differing rules. The 15 degree, the (0,0,0) will 

only obtain energy from three neighbors from 

the upper layer, while 75 and 45 degree zone 

receive energy from 4 and 5 neighbors in the two 

layers of the above and left and right and the 

upper layers, respectively.   

 

Secondly, we compared and analyzed the effect 

of state variable- kinetic energy. The larger 

kinetic energy assigned to the starting cells, 

more cells will be triggered to fall. The end time 

will last long and trigger all the cells to make a 

transition according to the rule at least one time 

except for some boundary ones. 

 

Thirdly, we analyzed the effect of state variable- 

friction. We randomly generated the friction 

value of each cell ranging from 0- 50 and 0- 100 

respectively and assigned them to each cell. 

After analysis, the friction from 0- 50 can make 

more cells change states and output their energy. 

Specifically, the process of rock fall will make 

more stones involved. 

 

Finally, we analyzed the effect of state variable- 

shape. The more values of shape 1 are, the more 

cells output value 0.00000 (means the state- 

toppling) with 0 kinetic energy.  The more 

values of shape 0 are, the more cells output its 

kinetic energy. 
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Appendix 

 
The rule of the FallRockV2 model: 

 

[top] 

components : FallRock 

 

[FallRock] 

type : cell 

dim : (20,20,20) 

delay : transport 

defaultDelayTime : 100 

border : nowrapped 

neighbors : FallRock(0,-1,-2) 

neighbors : FallRock(1,-1,-1) FallRock(0,-1,-1) 

FallRock(-1,-1,-1)  

neighbors : FallRock(1,0,0)  FallRock(0,0,0)  

FallRock(-1,0,0) 

neighbors : FallRock(1,1,1)  FallRock(0,1,1)  

FallRock(-1,1,1) 

neighbors : FallRock(0,-2,-1) FallRock(1,-2,-1)  

FallRock(-1,-2,-1) 

initialValue : 0 

initialCellsValue : init.val 

StateVariables : stateVal kineticEnergyVal 

frictionVal shapeVal 

stateValues : 0 0 0 0 

InitialVariablesValue : initial.stvalues 

zone : slope75 { (0,0,0)..(19,19,6) }  

zone : slope45 { (0,0,8)..(19,19,12) } 

zone : slope15 { (0,0,14)..(19,19,19) }  

localTransition : FallRockBehavior 

 

[slope75] 

%Rock Falls along 75 degree  

 

%Motionless 

rule :  

{  

 ( 0 - $frictionVal ) 

}   

{   

 $stateVal := 0 ;  

 

 

 $kineticEnergyVal := 0 ;  

}  

 

 

100      

{  

       (( 0.98689 * $kineticEnergyVal 

   + 0.40 * (0,-1,-2) 

   + 0.50 * (0,-1,-1) 

   + 0.23 * (1,-1,-1) 

   + 0.23 * (-1,-1,-1) 

   ) < $frictionVal 

        ) AND 

        ( 

         $stateVal = 0  

        ) 

} 

 

%Toppling 

rule :   

{  

 0  

}  

{  

 $stateVal := 1 ;  

 $kineticEnergyVal := 0 ; 

   

}  

100 

{  

       (( 0.98689 * $kineticEnergyVal 

   + 0.40 * (0,-1,-2) 

   + 0.50 * (0,-1,-1) 

   + 0.23 * (1,-1,-1) 

   + 0.23 * (-1,-1,-1) 

   ) > $frictionVal 

        ) AND 

        (( 0.98689 * $kineticEnergyVal 

   + 0.40 * (0,-1,-2) 

   + 0.50 * (0,-1,-1) 

   + 0.23 * (1,-1,-1) 

   + 0.23 * (-1,-1,-1) 

   ) < ($frictionVal+20) 

 



 

        ) AND 

        ( 

         $stateVal = 0   OR  $stateVal = 1  

        )  

} 

 

 

 

%falling 

rule :   

{  

 

  (( 0.98689 * $kineticEnergyVal 

   + 0.40 * (0,-1,-2) 

   + 0.50 * (0,-1,-1) 

   + 0.23 * (1,-1,-1) 

   + 0.23 * (-1,-1,-1) 

   )-  $frictionVal)  

  

}   

{   

 $stateVal := 2 ;  

 $kineticEnergyVal :=  

   (( 0.98689 * $kineticEnergyVal 

   + 0.40 * (0,-1,-2) 

   + 0.50 * (0,-1,-1) 

   + 0.23 * (1,-1,-1) 

   + 0.23 * (-1,-1,-1) 

    )-  $frictionVal) ; 

  

}  

100 

{  

       (( 0.98689 * $kineticEnergyVal 

   + 0.40 * (0,-1,-2) 

   + 0.50 * (0,-1,-1) 

   + 0.23 * (1,-1,-1) 

   + 0.23 * (-1,-1,-1) 

    ) > ($frictionVal + 20) 

        ) AND 

        ( 

         $stateVal = 0   OR  $stateVal = 1  

        )  

 

 

  

} 

 %rolling 

 

rule :   

{  

 ( 0.98689 * $kineticEnergyVal + 0.50 )  

}   

{   

 $stateVal := 3 ;  

}  

100 

{  

 

         $stateVal = 2 AND 

      $shapeVal = 0  

 

} 

 

%bouncing 

rule :   

{  

 0 

}   

{   

 $stateVal := 4 ; 

}  

100 

{  

 

         $stateVal = 2   AND 

     $shapeVal = 1  

 

} 

rule :  

{ ( 0,0,0 ) } 0 { t } 

 

[slope45] 

 

%Rock Falls along 45 degree  

 

%Motionless 

rule :  

 



 

{  

 ( 0 - $frictionVal ) 

}   

{   

 $stateVal := 0 ;  

 $kineticEnergyVal := 0 ;  

}  

100      

{  

       (( 0.98689 * $kineticEnergyVal 

   + 0.23 * (1,-1,-1) 

   + 0.50 * (0,-1,-1) 

   + 0.23 * (-1,-1,-1) 

   + 0.38 * (1,0,0) 

   + 0.38 * (-1,0,0) 

    ) < $frictionVal 

        ) AND 

        ( 

         $stateVal = 0  

        ) 

} 

 

%Toppling 

rule :   

{  

 0  

}  

{  

 $stateVal := 1 ;  

 $kineticEnergyVal := 0 ; 

   

}  

100 

{  

       (( 0.98689 * $kineticEnergyVal 

   + 0.23 * (1,-1,-1) 

   + 0.50 * (0,-1,-1) 

   + 0.23 * (-1,-1,-1) 

   + 0.38 * (1,0,0) 

   + 0.38 * (-1,0,0) 

    ) > $frictionVal 

        ) AND 

        (( 0.98689 * $kineticEnergyVal 

 

 

   + 0.23 * (1,-1,-1) 

   + 0.50 * (0,-1,-1) 

   + 0.23 * (-1,-1,-1) 

   + 0.38 * (1,0,0) 

   + 0.38 * (-1,0,0) 

    ) < ($frictionVal+20) 

        ) AND 

        ( 

         $stateVal = 0   OR  $stateVal = 1  

        )  

} 

 

%falling 

rule :   

{  

 

  (( 0.98689 * $kineticEnergyVal 

  + 0.23 * (1,-1,-1) 

  + 0.50 * (0,-1,-1) 

  + 0.23 * (-1,-1,-1) 

  + 0.38 * (1,0,0) 

  + 0.38 * (-1,0,0) 

  + 0.50 )-  $frictionVal)  

  

}   

{   

 $stateVal := 2 ;  

 $kineticEnergyVal :=  

   (( 0.98689 * $kineticEnergyVal 

   + 0.23 * (1,-1,-1) 

   + 0.50 * (0,-1,-1) 

   + 0.23 * (-1,-1,-1) 

   + 0.38 * (1,0,0) 

   + 0.38 * (-1,0,0) 

   + 0.50 )-  $frictionVal) ; 

  

}  

100 

{  

       (( 0.98689 * $kineticEnergyVal 

   + 0.23 * (1,-1,-1) 

   + 0.50 * (0,-1,-1) 

   + 0.23 * (-1,-1,-1)  

 



 

   + 0.38 * (1,0,0) 

   + 0.38 * (-1,0,0) 

   + 0.50 ) > ($frictionVal + 20) 

        ) AND 

        ( 

         $stateVal = 0   OR  $stateVal = 1  

        )  

  

} 

 

 %rolling 

 

rule :   

{  

 ( 0.98689 * $kineticEnergyVal + 0.50 )  

}   

{   

 $stateVal := 3 ;   

}  

100 

{  

 

         $stateVal = 2  AND 

  $shapeVal = 0  

 

} 

 

%bouncing 

rule :   

{  

 0 

}   

{   

 $stateVal := 4 ;   

}  

100 

{  

 

         $stateVal = 2 AND 

  $shapeVal = 1 

 

} 

rule :  

 

 

{ ( 0,0,0 ) } 0 { t } 

 

[slope15] 

 

%Rock Falls along 15 degree  

%Motionless 

rule :  

{  

 ( 0 - $frictionVal ) 

}   

{   

 $stateVal := 0 ;  

 $kineticEnergyVal := 0 ;  

}  

100      

{  

       (( 0.98689 * $kineticEnergyVal 

   + 0.50 * (0,-2,-1)  

   + 0.50 * (1,-2,-1) 

   + 0.50 * (-1,-2,-1) 

   + 0.50 ) < $frictionVal 

        ) AND 

        ( 

         $stateVal = 0  

        ) 

} 

 

  

%Toppling 

rule :   

{  

 0  

}  

{  

 $stateVal := 1 ;  

 $kineticEnergyVal := 0 ; 

   

}  

100 

{  

       (( 0.98689 * $kineticEnergyVal 

   + 0.50 * (0,-2,-1) 

   + 0.50 * (1,-2,-1) 

 



 

   + 0.50 * (-1,-2,-1) 

   + 0.50 ) > $frictionVal 

        ) AND 

        (( 0.98689 * $kineticEnergyVal 

   + 0.50 * (0,-2,-1) 

   + 0.50 * (1,-2,-1) 

   + 0.50 * (-1,-2,-1) 

   + 0.50 ) < ($frictionVal+50) 

        ) AND 

        ( 

         $stateVal = 0   OR  $stateVal = 1  

        )  

} 

 

 

 

%falling 

rule :   

{  

 

  (( 0.98689 * $kineticEnergyVal 

   + 0.50 * (0,-2,-1) 

   + 0.50 * (1,-2,-1) 

   + 0.50 * (-1,-2,-1) 

  + 0.50 )-  $frictionVal)  

  

}   

{   

 $stateVal := 2 ;  

 $kineticEnergyVal :=  

   (( 0.98689 * $kineticEnergyVal 

   + 0.50 * (0,-2,-1) 

   + 0.50 * (1,-2,-1) 

   + 0.50 * (-1,-2,-1) 

   + 0.50 )-  $frictionVal) ; 

  

}  

100 

{  

       (( 0.98689 * $kineticEnergyVal 

   + 0.50 * (0,-2,-1) 

   + 0.50 * (1,-2,-1) 

   + 0.50 * (-1,-2,-1) 

 

 

   + 0.50 ) > ($frictionVal + 50) 

        ) AND 

        ( 

         $stateVal = 0   OR  $stateVal = 1  

        )  

  

} 

 

 

%bouncing 

rule :   

{  

 ( 0.98689 * $kineticEnergyVal + 0.50 )  

}   

{   

 $stateVal := 4 ;  

}  

100 

{  

 

         $stateVal = 2   OR  $stateVal 

= 3   

} 

rule :  

{ ( 0,0,0 ) } 0 { t } 

 

 

[FallRockBehavior] 

 

%other cells behavior 

 

rule :  

{ ( 0,0,0 ) } 0 { t } 

 

 

 
 


