
DEVS Simulation of Peer-To-Peer File-Sharing

[SYSC 5104 Term Project Report]

Alan Davoust
Carleton University

Dept of Systems and Computer Engineering
Network Management and Artificial Intelligence Lab

adavoust@sce.carleton.ca

ABSTRACT
We present a set of tools to simulate peer-to-peer (P2P)
file-sharing networks based on a discrete-event model. Un-
like existing P2P simulation tools, that are mostly geared
towards performance evaluation, we focus on the network
content evolution, and include a model of the queries and
documents shared by the peers. We describe the underly-
ing modeling of file-sharing networks, and show how these
models were converted into DEVS models and implemented
with the tool CD++. Our system, can be decomposed into
two main models, a peer model and a network model. Us-
ing scripting techniques we were able to combine thenetwork
model with many instances of the peer model, and thus gen-
erate large-scale network models (several hundred peers) and
execute them in reasonable time. Among our tools, we im-
plemented a visualization tool that can show a simulation
run as an animated graph.

Keywords
Peer-To-Peer, Simulation, DEVS

1. INTRODUCTION
This work is part of a broader research project about peer-
to-peer file-sharing.

Most recent work in the field of peer-to-peer (P2P) sys-
tems has focused on two main characteristics of the P2P
paradigm. The distributed infrastructure offers on one hand
potentially high performance and scalability, both in terms
of storage space and in terms of computational power, and
on the other hand distributed control, without need for global
coordination, and no single point of failure.

The performance aspects motivate a large body of work
related to structured P2P network systems, such as Dis-
tributed Hash Tables (DHT). DHT aim to organize the net-
work structure and file storage in order to make provide the
peer community with a very large storage space, while opti-

mizing the access time to the resources. Files are typically
stored in a single place (or with just one backup copy), as
multiple copies imply a waste of space, and the peer network
is organized to minimize both the time for any peer to access
any piece of data in the network, and the bandwidth used by
the query system. Minimizing these parameters maximizes
the scalability of the network.

The distributed control aspects are mostly explored in the
database research community, specifically in the area of P2P
data integration. P2P data integration is a general decen-
tralized approach to data integration, where database man-
agement systems are interconnected in an arbitrary graph,
rather than through a central mediator (which is the more
traditional daa integration approach). Research in P2P data
integration then examines the formal properties of query al-
gorithms over these distributed systems, and related prob-
lems such as consistency issues between databases.

P2P file-sharing is an application that typically runs over
unstructured networks, where peers find files of interest by
means of very simple queries (typically keyword queries),
and download them. P2P file-sharing is notorious for being
both hugely popular, accounting by some estimates to more
than 50% of internet traffic, and mostly illegal, as the shared
files are often copyright-protected music and video.

In P2P file-sharing, no attempt is made to optimize the stor-
age of files : users download resources from the network
with the purpose of using a local copy (i.e. listening to mu-
sic, viewing the video, etc.). The replication of files thus
naturally follows the popularity of files : popular files are
more frequently downloaded and widely available through
the network, while obscure files that few people are inter-
ested in may be much more difficult to come across, as only
a handful of copies will exist in the network, and only be
available when their owner peers are online.

Another interesting characteristic then emerges, which is a
natural filtering of the network content, whereby the most
popular files also have the highest availability.

Furthermore, some protocols, such as the Gnutella protocol,
offer only a limited view of the network : queries are only
propagated to a certain horizon (normally seven network
hops for Gnutella), and such protocols thus contribute to
the filtering effect.



This emergent filtering can be compared to Google’s pager-
ank algorithm, which addresses the problem of sorting the
(typically millions of) web pages potentially relevant to a
search engine keyword query : pagerank, essentially, pushes
to the top the of the result list the pages that are the most
linked to, which is a way of measuring their reputation or
popularity.

In the information retrieval world, this type of filtering has
proved to be of utmost importance, and the pagerank ex-
ample is certainly relevant, as it made the reputation and
fortune of its authors.

In our research, we are interested in applying the P2P file-
sharing paradigm to other applications than simply sharing
music and video. One aspect of this research is to study
how this emergent ranking of content can be interpreted in
the context of these new P2P applications. For example,
within a network of interconnected databases, there could
arise an inconsistency between a data entry found in one
particular database, and a contradictory data entry found
many times all over the network: in this case, the popularity
of the latter data entry could be a determining factor to
resolve the inconsistency.

Clearly, the emergent ranking of data that we envision can-
not easily be studied in a real deployment: our prototype ap-
plications are currently only deployed in a handful of nodes
within our lab. Ideally, by simulating a large-scale P2P net-
work, we can produce some interesting emergent group phe-
nomena, that result from reasonable assumptions on the in-
dividual peers’ behavior.

The primary goal of this simulation is thus to simulate the
behavior of peers in a network, with respect to particular
queries and documents. Most existing simulation tools for
P2P networks are mostly designed to generate realistic traf-
fic in terms of volume and network latency.

This paper describes describes the current state of our project.
So far, we have simulated a network with a large number of
peers (up to 150), where peers exhibit a simple file-sharing
behavior and their queries are properly routed through the
network. We have also implemented a tool to visualize the
output of a simulation in an animated graph.

The rest of this paper is organized as follows. After a brief
description of related work in Section 3, we describe in Sec-
tion 2 the general formal model of a file-sharing network,
obtained in previous work, that we used as a basis for our
DEVS modeling. Then in Section 4 we provide detailed spec-
ifications of the DEVS models that we have implemented in
our P2P simulator.

In section 5 we describe the other tools that we have im-
plemented for this project, including our visualization tool.
In Section 6we present some preliminary results and direc-
tions for future work, and finally in Section 7 we draw a few
conclusions.

2. BACKGROUND: FORMAL MODEL OF
P2P FILE-SHARING

This work builds on previous work [3], where we introduced
a formal model of a P2P file-sharing system. We briefly
describe here this file-sharing model, which was used as a
basis for the DEVS models developed in this project.

2.1 Modeling an Unstructured Network
A network formed by a set of peers {Pi} can be modeled
by a Labelled Transistion System (LTS), which is a special
case of a deterministic automaton, where there is no notion
of “accepting state” (i.e. all states are accepting).

Each state of the network is a graph where the nodes of
the graph are a subset of {Pi} and the edges represent the
connections between the peers. The initial state of the LTS
is an empty graph.

The possible events in a given state are addition or removal
of a vertex or edge in the graph, i.e. one of the following :

• a (previously offline) peer goes online

• a (previously online) peer goes offline

• an online peer connects to another online peer

• an online peer drops its connection to another online
peer

The conditions indicated for a given event (e.g. a peer can
only go offline if it was previously online) indicate which
state this event may occur in, and the resulting state after
the event is fairly straightforward : if a peer goes online, the
next state is the same graph with a new vertex associated
with the peer.

2.2 File-Sharing Community
We now define the concept of a file-sharing community.

A file-sharing community is defined by :

• a set of peers

• a network formed by this set of peers (i.e. in any state,
a subset of these peers forms the graph)

• a query protocol

• a data schema : we will ignore this component for now

In this community, each peer stores some data and is capable
of outputting queries.

In terms of data and queries, we can consider the data items
{d ∈ D} and the queries {q ∈ Q} to be two disjoint sets of
abstract entities, and we have a binary relation which we will
call match on these two sets (i.e. on the cartesian product
Q × D).

The community protocol is a function that takes a graph
and a particular node of this graph as input, and returns a
subset of nodes of this graph. This abstract function can



be applied to a particular state of a network: if a peer (con-
nected in the network) outputs a query, the protocol specifies
which peers receive the query. In this model we ignore time
considerations (i.e. network delays) and network reliability
issues (such as the possibility of messages being lost).

A peer has access to the following data operations :

• publish (d: data item) : add d to the peer’s local repos-
itory;

• remove (d: data item) : if d is in the peer’s local repos-
itory, then remove d;

• output (q: query) : output the query q to the network.
The peer receives as a response the list of data items
matching the query, and stored by the peers that were
reached by the query (this being determined by the
protocol);

• download (d: data item) : this operation assumes as
a precondition that the peer does not store d locally,
and that d was a response to a previous query by the
peer. The post-condition of the operation is that the
peer publishes a copy of d to its local repository.

3. RELATED WORK
There have been many other approaches to modeling P2P
networks. Mostly the purpose of these efforts have been to
accurately model aspects such as network traffic and band-
width use, with the goal of estimating the scalability and
efficiency (in terms of query response time) of P2P net-
works with particular structures and query protocols. Re-
cent modeling efforts have modeled P2P networks as queue-
ing systems (See for example [6]), a model that completely
abstracts from the documents that are shared in the net-
work.

Simulation tools are also mostly geared towards evaluating
protocol performance, and most existing simulators thus fo-
cus on overlay protocols for structured P2P networks, such
as Chord, CAN, Pastry, etc. A good example of such a sim-
ulation engine is Peersim [4], and another one built using a
discrete-event modeling approach is Oversim [1]. As these
systems are focused on performance evaluation, we spec-
ulate 1 that tracking particular documents and extending
the systems towards managing, for instance, multiple types
of documents and relationships between the documents is
quite orthogonal to the development of these projects.

4. DEVS MODEL
In this section we describe in detail the different DEVS mod-
els that were implemented in this project.

4.1 Overview
The diagram in figure 1 shows the high-level design of the
coupled model.

Our coupled model includes a variable number of sub-components:
many peers and a single network component.

1We cannot be assertive as we have not properly investigated
these simulators’ inner design...

A peer is an autonomous component that attempts to make
connections to its acquaintances (other peers), publishes
documents, and outputs queries. We will consider down-
loads as particular cases of publishing. A peer’s activity
in the network starts with the peer going online, and ends
when the peer goes offline.

Our coupled model includes a fixed number of peers, but not
all of them are necessarily active (online) at the same time.

In our model, the peers are all connected to a single, rela-
tively complex, Network coupled model. The Network main-
tains the state of the network connections and the data
stored by all the peers all the peers, and uses this infor-
mation to route queries in the network, and answer queries.
The network is itself divided into sub-components, to main-
tain the network connection graph, to manage the query
routing, to maintain the peers’ databases, etc.

We note that as the Network is connected to each and every
peer (with a different output port for each peer) some files
within the network model must be generated by the same
script that generates all the peers.

This coupled model does not have any overall inputs or out-
puts. In any simulation run, all the peers will go online,
output some queries, then go offline again. The simulation
ends when all peers have terminated their sessions.

4.2 Peer DEVS Model
A peer is a coupled model composed of two atomic mod-
els : The Connection Manager and the Session Manager.
The outputs of the peer represent its network-related behav-
ior, such as going online or trying to connect to other peers
(through the “connect” output ports), its querying behavior
(through the “query” output port). The peer also publishes
documents (and removes them) through its“data ops”ports.
The detailed list of all input and output ports for the coupled
model is given in Table 1.

Table 1: Peer coupled model : Input and Output

ports

Port name I / O Comments
query output (file-sharing) queries

publish output files published by the peer
remove output removes a published file
online output peer goes online
offline output peer goes offline

out connect output peer attempts a connection
out disconnect output peer disconnects from a neighbor

in connect input notifies of a connection
being established

in disconnect input notifies a connection
being dropped

queryhit input queryhit (response to a query)

Each peer has a set of acquaintances, that it attempts con-
nect with while it is online. The acquaintance graph is gen-
erated by a separate tool (see section 5 for more details),
and its topology has the properties known as “small world”
that characterize real social networks [2]. In most tradi-
tional peer-to-peer networks, peers do not normally connect



Figure 1: P2P System Coupled Model

Figure 2: Peer Coupled Model



to“friends”but rather to“well-known”nodes that act mainly
as access points to the network and are found in listings on
the web. We are interested (in future work) in including
some identification of peers and a social aspect to our P2P
systems, as that will allow more possibilities to model trust
relationships between peers.

4.2.1 Connection Manager
The connection manager is a component that simulates the
behavior of the peer attempting to connect to the peers that
it is acquainted with; this behavior, in a real system, would
be built into the P2P client application.

The input and output ports are listed in Table 2. The com-
ponent loads a list of peer identifiers from a file : these are
the peers acquaintances. The connection manager starts in
a passive state, then goes online when an input messages ar-
rives on the “online” input port. It then attempts to connect
to all its acquaintances, repeatedly, until all the connections
are established. It goes passive again when it is notified to
be offline.

Table 2: Connection Manager model : Input and

Output ports

Port name I / O Comments
online input peer goes online
offline input peer goes offline

out connect output peer attempts a connection
out disconnect output peer disconnects from a neighbor

in connect input notifies of a connection
being established

in disconnect input notifies of a connection
being dropped

4.2.2 Session Manager
The Session Manager simulates the conscious behavior of the
human user behind the peer : the user goes online, offline,
outputs queries, and downloads files.

The Session Manager’s input and output ports are listed in
Table 3.

Table 3: Session Manager model : Input and Output

ports

Port name I / O Comments
online output peer goes online
offline output peer goes offline
query output (file-sharing) queries

publish output files published (or downloaded)
by the peer

remove output removes a published file

The session manager’s behavior is loosely based on the study
[5]. This study provides some “ready-to-use” models for the
peer’s behavior. In those model the peers are mostly inac-
tive, and the few peers that are active only output a handful
of queries (a mean of about three) during a session. This
behavior is of course realistic, and is found in P2P networks
where the connex components of the connection graph are

very large (thousands of nodes). In our case, as discussed
previously, we have a limited number of peers and they each
only connect to their acquaintances; and the connex compo-
nents of our graph are small. For the sake of observing some
activity in the graph, we have made the peers mostly active.
Each peer has an assigned list of initial documents, and a
list of queries that it will make while it is online. These lists
are randomly generated, using an external tool(see section
5 for details).

The behavior of a peer can be described as follows:

1. the peer waits a random time before going online (us-
ing an exponential probability distribution)

2. the peer goes online, publishes all its initial documents,
and starts outputting queries from its list of queries

3. each time the peer gets a queryhit, it downloads (pub-
lishes) the corresponding document, unless it already
has it.

4. once the peer has finished querying, it waits a random
time, then goes offline.

In future extensions of this work, we may need to make the
query generator more complex as it may need to simulate
the behavior of a user faced with a more complex application
(such as a wiki, where there are more data operations, and
there may exist relations between different data items).

4.3 Network DEVS Model
4.3.1 Coupled Model Design
The network model will be a coupled model with the struc-
ture illustrated in figure 3.

The Input and Output ports of the Network Coupled Model
are listed in Table 4.

Table 4: Network Coupled Model : Input and Out-

put ports

Port name I / O Comments
query input a peer makes a query

publish input a peer publishes a file
remove input a peer removes a published file

peer online input a peer goes online
peer offline input a peer goes offline

peer connect input a peer attempts a connection
peer disconnect input a peer disconnects from a

neighbor
out [N] output used to notify peer number N of

a queryhit
out c[N] output used to notify peer number N of

a connection or a disconnection

4.3.2 Dispatcher
The role of the dispacher is to generate a unique identifier for
each query that is input into the network. The purpose this
identifier is to track queries through the different network
components. The dispatcher receives messages through its



Figure 3: Network Coupled Model

input port, that encode a query and an identifier of the
peer that output that query. Upon receiving this message,
the dispatcher generates a unique message identifier, then
generates two separate messages: one encodes the identifier
with the query term, and one encodes the identifier with the
query originator (i.e. the number of the peer that sent the
query). These two messages are output through two output
ports, to be used by the other components of the network.

This atomic model does not simulate a particular system
within a real P2P network, and its state transitions are in-
stantaneous.

The Input and Output ports of the Dispatcher Model are
listed in Table 5.

Table 5: Dispatcher Model : Input and Output ports

Port name I / O Comments
msg in input a query is output by a peer
peer id output the peer number and message id
query id output the query term and message id

4.3.3 LTS Network
The LTS network atomic model maintains the connection
graph of the network, and closely matches the Labelled Tran-
sition Model described in section 2.1.

The model receives messages from the peers that go online
or attempt to connect to other peers. Some transitions are
illegal (two peers cannot connect if one is offline, for exam-
ple), and the LTS component only changes the graph state
following legal transitions. If a peer goes offline, all its con-
nections are automatically dropped : the “disconnect” input
port is therefore not used in practice, but we leave it for
future use and consistency with the theoretical model.

When connections between peers are established, or dropped,
the model outputs a message on its output port“out connect”
that is used to notify the peers about the state of the con-
nection. This allows peers to know the state of their direct
connections.

The model can also provide information about the connec-
tivity in the network by the “in” and “out” ports: messages
input on the “in” port indicate a peer identifier (the sender
of the message) and a sequence of messages is output from
the “out” port indicating which peers were reached by the
message, i.e. which peers were connected to the sender.
This behavior is currently quite tighly tied to the Gnutella
protocol implemented in the Gnutella atomic model, as the
messages passed include the time-to-live, and are “broad-
cast” from a peer to all its connections. However, with only
minor changes it could be adapted to be used for other pro-
tocols.

The inputs and outputs of this model are summarized in the
Table 6.

Table 6: LTS Atomic Network Model : Input and

Output ports

Port name I / O Comments
peer online input a peer goes online
peer offline input a peer goes offline

peer connect input a peer attempts a connection
peer disconnect input a peer disconnects from a

neighbor
out connect output notify of a connection

out disconnect output notify of a disconnection
inroute input a message is broadcast

by a peer
route out output a message reaches

other peers

4.3.4 Gnutella Protocol
This atomic model implements the Gnutella protocol.

The model’s external transition function can be described
by the activity diagram in Figure 4.

Messages to be routed in the network are input on the in-
put port “in route”, and are assigned a certain time-to-live
(TTL): the TTL determines how many hops the message
will follow in the network before being dropped. Each hop is



Figure 4: Gnutella Model : External Transition

Function

simulated by passing the message to the LTSNetwork atomic
model, through the output port “out n” which then inputs
new messages to the input port “in n”, one message for each
new peer that the message reaches.

Each time the message reaches a new peer (a peer that the
message hasn’t previously reached), this event is marked by
an output message on the “route out” output port. The
inputs and outputs of this model are summarized in the
Table 7.

Table 7: Gnutella Model : Input and Output ports

Port name I / O Comments
route in input a query is input to be routed
route out output a query is output by a peer

out n output the message is output from
a particular peer

in n input the message reaches other peers

4.3.5 Database
The database component maintains the data stored by all
the peers. When a query is input to the network model, the
database is notified of the query and its message identifier
through its input port “query in”. The query is then routed
through the network and successively reaches a number of
peer. Each time a peer is reached, the database is notified
on its “peer in” port. These messages include a message
identifier and can thus be correlated with a particular query
that was input earlier. The query term is then matched to
the documents stored by the peer that is reached by the
query, and any queryhits are output on the “queryhit” port.

The database model’s inputs and outputs are summarized
in Table 8.

4.3.6 Demultiplexer

Table 8: Database Model : Input and Output ports

Port name I / O Comments
query in input a query is input
peer in input a peer is reached by a query
queryhit output a queryhit is generated as

an answer to a query

The demultiplexer’s role is to output messages to their desti-
nation peers. The demultiplexer has separate output ports
for each peer that is connected in the network, and mes-
sages that are sent from any component in the network (in
our case the database and the LTSNetwork) are input to
the demultiplexer, then forwarded to the destination peers
through the appropriate output ports.

The demultiplexer maintains a routing table where messages
identifiers are listed with the peer identifiers that the corre-
sponding messages should eb forwarded to.

The Demultiplexer’s ports are listed in Table 9.

Table 9: Database Model : Input and Output ports

Port name I / O Comments
table in input input to the routing table :

a message id is associated to a peer
message in input a message is input to be routed
connect in output a connection notification is input

out [N] output a queryhit for peer [N]
out c[N] output a connection notification for peer [N]

4.4 Message Encoding
Messages exchanged by these different models mostly con-
tain more than atomic pieces of information. Usually they
are meant to represent network messages, and have two or
up to three components to them. We encode the messages
by encoding each piece of information on three digits. For
example, if a message passed from the Gnutella model to the
LTS network model must encode a peer identifier, a message
identifier, and a time-to-live, then the message identifier is
encoded in the three least significant digits, the peer identi-
fier is encoded in digits 4 through 6, and the time-to-live is
encoded in the most significant digits.

The different encodings used across the models are listed in
Table 10

Table 10: Database Model : Input and Output ports

Message type digits
low mid high

publish doc peer -
query query peer -
(before dispatcher)
queryhit msg id doc peer
peer and id msg id peer -
query and id msg id query -
connect peer1 peer2 1 for connect,
or disconnect 0 for disconnect



5. SUMMARY OF EXTERNAL TOOLS
This section describes the external (non-CD++) tools that
we have written for this project.

• a Python script to generate the peer acquaintance graph
and the files necessary for the simulation.

• a Python script to pre-process log files.

• a Java Applet to view the simulation graphically.

5.1 Generation of Simulation Files
The script inputs the number of peers, and generates a
(partly random) social acquaintance graph, using the al-
gorithm presented in [7]. The social aquaintance graph is
saved in a file, and, in addition, the list of each peer’s ac-
quaintances is also saved in a specific file, to be loaded by
that peer.

Then the lists of documents and queries are generated for
each peer. We use a collection of ten different queries and
ten different documents, such that each query matches three
documents, and each document is matched by three queries.
This graph of queries and matches is defined in an external
file and can be easily modified for some more interesting
behaviors.

The available documents are each randomly assigned to ei-
ther one or two (0.5 probability each) peers; the peers cho-
sen uniformly at random among all the peers in the network.
Each peer is assigned a sequence of queries (the number of
queries follows a Poisson distribution with a mean of six, and
are not necessarily all different). The sequence of queries is
then repeated once.

5.2 Log File Processing
A log file for a simulation run can be quite large (around
30 to 50Mb), and for this reason we have written a “pre-
processing” script that extracts only the meaningful events
that can be visualized in our visualizer (see below). A pro-
cessed log file will only be a small fraction of the original log
file (less than 1%).

5.3 Simulation Visualization
This java applet allows simulation runs to be viewed in real
time in an animated graph. The graph of active peers is
displayed, with the documents that they store. In addi-
tion to these nodes appearing, disappearing, and becoming
connected in the graph, other events such as queries and
queryhits are viewed by the relevant peers changing colors
for brief durations. Please note that this tool is still under
construction. Videos of the animations happening on screen
can be recorded using third-party tools. This is a goal for
future work, once the animations will be show more clearly
interesting emergent behaviors, such as the spreading of files,
etc.

6. RESULTS AND ANALYSIS
6.1 Preliminary Results, and Open Research

Questions

In the current state of our project, we have a full set of
tools to easily generate network models of different sizes,
run simulations and visualize results.

We have generated networks and ran simulations with sev-
eral hundred nodes (up to 500), and have found that the
simulation is very efficient: a full-scale simulation of a 500-
node network can be run in a few minutes, when the sim-
ulation time is close to one hour. This leads us to believe
we can probably tweak our models to simulate much higher
scale networks – several thousand peers – at a reasonable
computational cost.

However, our experiments used the same minimal initial file
distribution as in smaller networks (see section 5), which at
this scale proved very insufficient for there to be any mean-
ingful propagation of the files. In fact, this may be an in-
teresting result in itself: the absolute number of files, as
propagated by the activity of 90 peers, is much higher than
when the files are propagated by the activity of 500 peers.

We can interpret this result as the effect of two main fac-
tors that compete to determine the dissemination of files.
On one hand, a high number of peers querying for the files
should create more replication from a fixed number of origi-
nal copies; and network distance between querying peers and
peers with the matching files only increases at a logarithmic
rate with respect to the number of peers (a property of small-
world networks). On the other hand, as the network distance
(in terms of peer acquaintances) becomes higher, the chance
that there exists a path of active nodes over that distance
decreases geometrically, as it is a product of probabilities.
These two factors, combined with the limited-horizon effect
that the Gnutella protocol creates, seem to result in files not
being propagated when there are too many peers.

We can thus identify several interesting research questions
: is there a tipping point, in terms of network size, before
which the replication of files increases with the peers, and
after which the network becomes somehow fragmented ? If
so, how can this tipping point be characterized ? Another
interesting experiment would be to attempt to leverage this
possible fragmentation effect, and introduce different files in
different parts of the network: would they spread, within a
bounded area, as files do in a smaller network ?

6.2 Future Work
As this paper describes a work in progress, we have included
some weaknesses that we have identified in our existing de-
sign, which we will fix in later development stages, as well
as the general direction for future evolutions.

Analyzing the structure of our models, we have found sev-
eral design flaws, that we intend to fix during the next stages
of development. One potential problem is that our network
model is probably too closely tied to the Gnutella protocol.
A network layer that would only model the transportation
and connectivity between pairs of nodes might be a better
approach, in case we want to experiment with other proto-
cols. Some aspects such as the query management (in fact,
the purely Gnutella aspects) could be pushed up into the
peers, and the database component might be better as an
entirely separate module. Fortunately, the modularity of the



modeling framework make these changes appear fairly easy.

In addition, our current approach of designing the peers’
acquaintance graph, the document distribution, and more
importantly the query behavior of the peers in a static, ex-
ternal tool before the simulation is run was a simple solution
to begin, but we see necessary improvements. For example,
there are good reasons to make the peers’ query behavior
part of the peer model. Peers are likely to change their
querying behavior depending on what results they obtained
form previous queries; and this is even clearer if we extend
the peer behavior to include such actions as editing an ex-
isting document.

Currently, our visualization tool lets us see mostly the net-
work graph evolve, and the query and query hits. However,
these mostly serve as an intuitive validation that the model
is somewhat realistic : we see, for instance, how peers with
few acquaintances may stay isolated for a long time just
because their acquaintances happen to be offline. This is a
result of relatively sparse networks, and explains for instance
why “social” applications such as instant messaging clients
are so sensitive to critical masses of users, and their usage
appears to follow fads more than the technical appeal of the
tools themselves.

Evolution. Our long-term goal, of simulating applications
such as wikis, or database-like systems, mostly requires the
development of the database component, to include rela-
tionships between documents, or document metadata. For
example, a wiki page may be an edit of another, and two
web pages may link to one another : these would be two
examples of relationships between documents.

One aspect of our research will be to experiment with pa-
rameters such as trust-related peer behavior, and the filter-
ing effect of file-sharing networks (as discussed in section 1),
to identify applications where the file-sharing paradigm may
have strong added value over centralized approaches, or over
structured network-based approaches.

7. CONCLUSION
The DEVS formalism has proved here to be an efficient tool
to model network applications. Its modularity has made
the generation of large-scale networks an easy task, using a
scripting approach. With the experience that we have built
up during this project we have identified some improvements
in our design, that should make our simulation tool on par
with other tools developed over many years by teams of ded-
icated researchers.

8. REFERENCES
[1] I. Baumgart, B. Heep, and S. Krause. OverSim: A

flexible overlay network simulation framework. In
Proceedings of 10th IEEE Global Internet Symposium
(GI ’07) in conjunction with IEEE INFOCOM 2007,
Anchorage, AK, USA, pages 79–84, May 2007.

[2] J. Davidsen, H. Ebel, and S. Bornholdt. Emergence of a
Small World from Local Interactions: Modeling
Acquaintance Networks. Physical Review Letters,
88(12):128701+, March 2002.

[3] A. Davoust. Collaborative knowledge construction in a
peer-to-peer file sharing network. Master’s thesis,
Carleton University, 2009.

[4] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris.
The Peersim simulator. http://peersim.sf.net.

[5] A. Klemm, C. Lindemann, M. K. Vernon, and O. P.
Waldhorst. Characterizing the query behavior in
peer-to-peer file sharing systems. In Proceedings of the
4th ACM SIGCOMM conference on Internet
measurement, IMC ’04, pages 55–67, New York, NY,
USA, 2004. ACM.

[6] T. Li, M. Chen, D.-M. Chiu, and M. Chen. Queuing
Models for Peer-to-peer Systems. April 2009.

[7] R. Toivonen, J.-P. Onnela, J. Saramaki, J. Hyvonen,
and K. Kaski. A model for social networks. Physica A:
Statistical and Theoretical Physics, 371(2):851–860,
2006.


