
P2P network Simulation kit

User Guide
-

Alan Davoust
-

December 2010

This is a brief user guide for the P2P network simulation tools found near this document.

The tools consist of the following components
– a collection of DEVS models implemented using the CD++ that can be used to simulate the

interaction of peers in a peer-to-peer file-sharing network;
– a Python script to generate parts of the DEVS models for (possibly) large numbers of peers;
– a Python script to pre-process the log files resulting from a CD++ simulation, with the purpose

of viewing a simulation run in the next tool...
– a java Applet to view a simulation run as it happened, in an animated graph.

1 Requirements

CD++
In order to run simulations, it is assumed that CD++ is installed in eclipse, with the workspace
directory “\eclipse\workspace”.
If the eclipse workspace directory is different, the testing scripts (*.bat files) will have to be slightly
modified as they explicitly refer to this directory.
To the publicly available CD++ distribution, the interested user can also add the latest version of
distri.cpp, that we have updated : it seems that the seeding of the random number generators were
not working properly. They may have relied on standard libraries that have now changed...
alternatively, the authors may be using outdated standard libraries.... in any case if the users find that
their random numbers follow alwayts the same sequence, then consider using the distribution class
provided here. It should be copied to eclipse/plugins/CD++ builder / internal.

Disk Space
Some of the simulations tend to generate large log files. 100Mb is not impossible... be aware.

Python
A python interpreter is required to run the python scripts. In addition, the numpy library is required by
one of the scripts. Numpy can be obtained for free from the address :
http://sourceforge.net/projects/numpy/files/

Without the numpy library, the scripts to generate new file-sharing networks will not work. However,
an example network, with 90 peers, usable as is, is provided.

http://sourceforge.net/projects/numpy/files/

Java
The java applet is provided as a runnable jar file. However, it does require a Java Virtual Machine
supporting java 1.5 or later.

2 Simulating a Peer-To-Peer file-sharing network

Running and viewing a file-sharing network can be done with the following steps.

1 Create a network model
You can create a new network model with your chosen number of peers, randomly acquainted to one
another.
This step is optional, as an example network with 90 peers is provided : see the directory
p2p/coupled/Network90.
To create your own network, simply run the python script graphgenerator.py.
You will be prompted for the nuymber of nodes you want in your network. At this point, that is the only
customizable aspect of this script. The script will generate all the necessary files for the model, and
place them in a directory NetworkXX where XX is the number of nodes that you chose.

2 Compile your model
Within eclipse, use the “build” button in the CD++ perspective, or use the make file.
This step is mandatory : the provided model with 90 nodes is not compiled.

3 Run the simulation
Among other files, the python script invoked in Step 1 has created a handy script to directly run the
simulation. Look for it in your NetworkXX directory: the file is called P2PTest.bat.
Run that windows batch file, either by double-clicking or calling it from the command line. Some of
our models are somewhat verbose, and so if you are testing a network with many peer (say, more than
20) we recommend diverting the output to a file. Example:
C:\eclipse\workspace\p2p\coupled\Network90\>P2PTest.bat > results.txt
Note that if your workspace directory is different, the script will not work as such. You can simply
delete the first line (“cd...”) and invoke it from the command line, or use the “simulate” button in
eclipse.
However, we found that clicking the bat file directly from eclipse started the command line with the
working directory set to the desktop. For this reason the bat file includes a change directory command.
Note that the file of interest to you for visualizing the simulation results will in fact be the log file –
P2PXXLog.log if you used the script, where XX is, as before, the number of peers in the network.

4 Preprocess the log file
The above log file (P2PXXLog.log) can be used for visualizing the simulation run in our java
applet, but it requires a little pre-processing. This pre-processing is done with the other Python script
provided, LogFileReader.py.
This pre-processing step can be skipped as we provide a sample pre-processed log file,
ProcessedLog.txt.
To process a file, just run the script LogFileReader.py. You will be prompted for the name of the
file to process. The output will go to afile named ProcessedLog.txt.

5 View the simulation results.

This can be done with the provided java applet, found in the archive RunnableP2PViewer.jar.
To run it, simply double-click on the jar file, or invoke it from the command line :
>java -jar RunnableP2PViewer.jar
A user interface will pop up and provide you with some instructions.
Select the file that contains your simulation data : it must be in the format of a processed log file. The
provided ProcessedLog.txt is an example of a usable file.
The file will take a short while to load, and then another screen will pop up and you will see a graph
with red and blue nodes floating all over the screen. The layout algorithm for the graph is still being
computed.
The red circles represent peers, and the smaller red squares are documents stored by the peers. This
graph shows you all the peers and documents that will be represented during the simulation. This
layout, once finalized, is then reused in an animation where you see the peers go online, connect to one
another, make and answer queries, and publish documents.
The animation starts after you have stopped the layout algorithm by clicking on the button at the
bottom of the screen.
Until then you can also help it out by moving the nodes around yourself : select “PICKING” from the
“Mouse Mode” drop down box at the bottom, and just select any node: you can drag it across the
screen to a better location. Note that the algorithm will continue to process the layout and the node may
not stay where you moved it to. For best results, select a peer (a red circle) and all the documents that
are attached to it (the smaller square nodes).
In “TRANSFORMING” mouse mode you can zoom and move the whole layout around so that it
comfortably fits into your visualization screen.
Note that both mouse modes will still function while the animation is running.
During the animation, you will see peers appear and disappear, connect, publish documents : this is
simply reflected by the changes in the graph structure.
Peers also output queries : a peer that outputs a query changes color and becomes purple for
approximately 1.5 seconds, then goes back to normal.
A peer than answers a query changes color to pink, for only half a second. When the peer goes pink, the
document that the peer is reporting as a query answer also flickers pink.
In the following seconds you should see a copy of the document appear next to the peer that was
making the query.

Note the “fast-forward” button. It can be used to toggle between normal speed and fast-forward mode.
At “normal speed”, the simulation is viewed following the timeline of the simulation : if a simulated
event is supposed to happen after 17 minutes, you will see it after 17 minutes of animation.
In “fast-forward” mode, the events are all shown in rapid sequence, with only 50 milliseconds interval,
whatever their simulated timeline was.
Additional commands (pause, reverse...) are being prepared for future versions of this applet.
If the user has problems with this applet, an online version can be viewed at the following address:
http://sce.carleton.ca/~adavoust/
(see the link “P2P simulation demo” on the left)

Thanks you for using our P2P simulation tools.
The java code for the applet is found inside the runnable jar file : open it with an archiver such as
WinRar, and see the directory “src”.

http://sce.carleton.ca/~adavoust/

