
 1


Abstract—In this paper, a simple model of a pharmaceutical

plant is simulated using a new extension of CD++ toolkit. With
this feature, a model is written using state machines. The
graphical interface of CD++ toolkit simplifies the process of
modeling and simulation and as a result cost and time is saved.
Moreover, modification and debugging of such model would be
easier and more straightforward. In addition, since this tool
permits the user to combine only-graphical notations with
standard representation of C++, both the capabilities of CD++
have been employed to simulate the simplified model of the
pharmaceutical plant in a more complex way.

Index Terms—CD++, State Machines, DEVS, DEVS graphs,
Discrete event simulation

I. INTRODUCTION

RAPHICAL notations are always used to present a model
in a more clear and accurate way. This can help the

modeler to see if the model’s behavior is as desired or not.
Besides, it can give him/her a good outlook of the model and
find out where the shortcomings might be originated from.
One of the graphical notations used widely in computer
science is the state diagrams. They show the different states of
a model and the transition conditions that can make the model
move from one state to another. In DEVS-graphs, not only the
states and transition conditions are shown, the internal and
external transitions, time base, inputs, outputs and the output
functions are defined as well.

In this paper, a simulation of a simplified model of a

pharmaceutical factory which itself is a part of a supply chain
of a specific tablet (pill) is presented. Since the graphical
interface of the CD++ permits the users to combine only-
graphical notations with standard representation of C++, both
of these methods are used in defining the model and
simulating it. Therefore, to keep the complexity of the model,
the main coupled model includes both graphical and standard
sub-models.

II. BACKGROUND

A. Supply Chain Management

Supply Chain Management (SCM) is the key to having a

competitive edge in the current global market. It involves
efficiently managing the flow of materials, cash, information
and services. In order to evaluate various advantages and
disadvantages of different SCM models, simulation before
implementation is key [1].

B. DEVS graphs

The formalism used for describing the graphical DEVS
models is somehow the same as the DEVS formalism used
previously for describing the behavior of a discrete event
system in which we had inputs, states, outputs, internal and
external functions, output function and time advance
functions. The atomic DEVS is defined formally by[3]:

M= < X, S, Y, int, ext, , ta>

A coupled DEVS model is described by inputs, outputs, set of
models (atomic or coupled), index of influences and the
function that converts the output of one model to an input port
of another. Therefore, a coupled DEVS model is defined
formally by [3]:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} >

The formalism used for defining a DEVS-graph is an
extended version of the one used for transitional DEVS
models. This formalism for atomic graphs includes the
definition of inputs, states based on internal and external
transition functions. It is describe by:

GGAD = < X M , S, Y M , int, , ext , , D >
X M {(p,v)| p IPorts, v X p } set of input ports;
Y M = {(p,v)| p OPorts, v Y p } set of output ports;
S = B x P(V) states of the model,
B = { b | b Bubbles } set of model states.
V = { (v,n) | v Variables, nR0 } intermediate state
variables of the model and their values [3].

1. S. Jafartayari . E-mail : sjafa059@uottawa.ca

Modeling a Pharmaceutical Plant Using the
Graphical Interface of CD++

Saman Jafartayari 1

G

 2

III. CONCEPTUAL MODEL

The model used for this simulation is a part of a whole

supply chain of a pharmaceutical product. The whole supply
chain covers the system that contribute to the provision of raw
material, production of the tablets, distributing the final
products to retailers and delivering them in the hands of
customers.

One chunk of this chain is the mother factory which acts the

main role in this process. This factory includes an
administration that controls all the transactions inside the
factory and acts as a communicator between different sections.
The warehouse holds the inventory of raw materials and final
products in a way that whenever new batches of raw materials
are delivered or a batch of final product is produced, they are
sent by the administrator to the warehouse. This batch of final
products are produced at the pharmaceutical manufacturing
plant(PMP) and with the order that is placed by the
administrator to replenish the capacity of the warehouse.
Another role of the administrator is to send the demanded
amount of products to retailers as soon as enough stock is
available in the warehouse. The PMP itself has some
subsection through them the raw material is transformed to
final packed product.

DEVS model block diagram of the initial factory model is
shown in Figure 1. For simplicity purposes, the PMP model
which was initially considered and coded using C++ standard
representation as a coupled model is defined using graphical
interface of CD++ and is considered as a coupled model
consisting of different atomic model representing different
section of the plant. The factory’s warehouse’s C++ model is
replaced with a graphical DEVS. It resulted the same outputs
and same characteristics from the whole factory model. This
modified version of block diagram is shown in Figure 2.

Figure 1: Initial DEVS model block diagram of factory

Figure 2: Modified DEVS model block diagram

A more detailed description of all the models is followed:

A. Administration

The administrative duties such as: receiving good from the
supplier, attaining the orders from the distributor, placing
orders with the supplier and shipping finished products to the
distributor; are modeled by the administrator atomic model. It
is comprised of seven input ports: RawMaterials2,
OrderInfo2, FacWar_out1, FacWar_out2, Busy1, PMP_out
and Send. It should be noted that the administrator always
tries to maintain a full capacity of finished products.

i. RawMaterials2 is the port through which the supplier
transports raw materials to the factory. In order for the
supplies to be transferred from the supplier to the factory there
exists variable lead times (due to factors such as transportation
delay). However, for the purpose of simplicity, we will model
this as a constant time delay of 1 day.

ii. OrderInfo2 is a one-way port that originates from the
distributor and terminates at the factory. It is used to place
orders to replenish the distributor’s inventory. Realistically the
delay of information flow can vary from case to case. To
avoid complexity we set this delay to a constant value of 12
hours.

iii. FacWar_out1 is the port through which the warehouse
sends its raw materials to the administration.

iv. FacWar_out2 is the port through which the warehouse
sends its finished products to the administration.

 3

v. Busy1 is the port that is Boolean; it is set to true if the
powder atomic model (coupled in the factory’s pharmaceutical
manufacturing plant) is busy and false otherwise.

vi. PMP_out is the port through which the factory’s
pharmaceutical manufacturing plant (in particular the packing
model) communicates with administration.

vii. Send is the port through which the factory’s
administrator communicates to the warehouse how many raw
materials or finished products it needs.

In addition to input ports, the Administrator also encompasses
four output ports: FinishedPro1, FacWar_in1, FacWar_in2
and PMP_in.

i. FinishedPro1 port is utilized by the factory to ship its
finished products to the distributor. The shipment delay for
this modeled as a constant value of 1 day.

ii. FacWar_in1 is the port through which the administration
transports raw materials to the factory’s warehouse.

iii. FacWar_in2 is the port through which the administration
transports finished products to the factory’s warehouse.

iv. PMP_in is the port through which the administration
communicates with the factory’s pharmaceutical
manufacturing plant (in particular the powder room model).

B. Factory Warehouse

The role of the factory’s warehouse is also to act as a

storage facility for the factory’s raw materials and finished
products. It has a maximum carrying capacity of 80 batches
for raw materials (represented as positive integers ranging
from 111 to 180) and 20 batches for finished products
(represented as positive integers ranging from 181 to 200). In
the event of an overflow of either raw materials and/or
finished products, the redundant batches will just be discarded
without notification. It receives raw materials and finished
products from the administrator through the ports FacWar_in1
and FacWar_in2, respectively. In addition, it sends raw
materials and finished products as the administrator requires it
through the ports FacWar_out1 and FacWar_out2,
respectively. Lastly, the number or products (both raw
materials and finished products) that need to be sent to the
administrator is communicated through the port Send.

C. Pharmaceutical Manufacturing Plant (PMP)

The role of the pharmaceutical manufacturing plant is to
manufacture pills (i.e. convert raw materials into a pill that
will then be stored in the warehouse and then sent to the
distributor). Since the pharmaceutical manufacturing plant has
no internal storage, it is important to have a negative feedback
from the plant. The negative feedback is the Boolean port:
Busy1.

IV. MODEL SPECIFICATIONS

The factory is modeled as a two-level DEVS model with

three components that are described as atomic models.
Initially this same model had been design in three levels, two
coupled models with six atomic components. The DEVS
formal specification for each model is outlined below starting
from atomic models and concluding with the factory itself.
This also proves to be the appropriate order for
implementation and testing.

A. Atomic models

Administrator

Administrator = <S, X, Y,δext,δint,λ, ta>
Where
InPorts = {“OrderInfo2”, “RawMaterials2”,

“FacWar_out1”, “FacWar_out2”}, where XOrderInfo2 =
{1,2,3,...,18,19,20}, XRawMaterials2 = {1,2,3,...,58,59,60},
XFacWarout1 = {111, 112, 113, ..., 178, 179, 180},
XFacWarout2 = {181,182,183, ... , 197, 198, 200}

X = {(p,v)|p∈InPorts, v∈Xp} is the set of input ports and
values

OutPorts = {“ FinishedPro1”,“FacWar_in1”,
“FacWar_in2”, “Send”}, where YFinishedPro1 =
{1,2,3,...,18,19,20}, YFacWar_in1 = {111, 112, 113, ..., 178,
179, 180}, YFacWar_in2 = {181,182,183, ... , 197, 198, 200},
YSend = {100, 102, 103, ..., 198, 199, 200}

Y = {(p,v)|p∈OutPorts, v∈Yp } is the set of output ports
and values

S = {phase, sigma, currentship, current_finished,
warehouseFinishRequest, warehouseFinishQuantity,
current_raw, rawRecieved, warehouseRaw, rawMaterial,
readyToPMP, finishedProduct, readyToShip, powderStat,
sent, inProgress, storefinishedProduct, shipToWarehouse,
requestRaw, warehouseRawQuantity}

= {“passive”, “active”} × R0+ × {0,1,2,...,18,19,20} ×
{0,1,2,...,18,19,20} × {true, false} ×
{181,182,183,...,198,199,200} × {0,1,2,...,78,79,80} ×
{0,1,2,...,78,79,80} × {true, false} × {0,1,2,3,4} × {true,
false} × {0,1,2,...,18,19,20} × {true, false} × {true, false} ×
{true, false} × {0,1,2,...,18,19,20} ×
{101,102,103,...,178,179,180} × {true, false} × {true, false} ×
{104}
δext(phase, sigma, currentship, current_finished,

warehouseFinishRequest, warehouseFinishQuantity,
current_raw, rawRecieved, warehouseRaw, rawMaterial,
readyToPMP, finishedProduct, readyToShip, powderStat,
sent, inProgress, storefinishedProduct, shipToWarehouse, e){

if(msg.port() == OrderInfo2){
if(msg.value() <=0){
Display error message! Invalid order!
}else if((msg.value() >= 1) && (msg.value() <= 20)){
if (currentship+msg.value()>current_finished){

 4

Display error message! Can’t ask for more than available!
}else{
currentship= currentship+msg.value();
warehouseFinishRequest=true;
warehouseFinishQuantity=currentship+180;
current_finished=current_finished-currentship;
}
} else {
Display error message! No order can be greater than 20

units, distributor should never request more.
}
}
if (msg.port()== RawMaterials2){
if (msg.value()<=0){
readyToPMP=true;
}
}
if (msg.port()== FacWar_out2){
if (msg.value()>20){
Display Error Message because total capacity for

warehouse is only 20 so this should never happen
}else if(msg.value () <=20 && msg.value()>0){
finishedProduct=msg.value();
readyToShip=true;
}else{
Display Error Message because simulation should never

reach this
}
}
if(msg.port()==Busy1){
if(msg.value()==1){
powderStat=true;
}else if (msg.value()==0){
powderStat=false;
sent=false;
}else{
cout<<"Error: Port Busy1 should never receive an input

other than 0 or 1!"<<endl;
}
}
if(msg.port()==PMP_out){
if (msg.value()!=1){
Display Error Message because PMP_out should only

output a value of 1
}else if(msg.value()==1){
int temp=msg.value();
if (current_finished>=20){
Display Error Message because Simulation should never

get here!
}
inProgress=inProgress-1;
storefinishedProduct=temp+180;
current_finished=current_finished+1;
shipToWarehouse=true;
}
}

}
δint(phase, sigma, current_finished, inProgress,

current_raw, powderStat, sent, requestRaw,
warehouseRawQuantity){

if(active){
if((20-current_finished-inProgress)>0 && (20-

current_finished-inProgress)<=20 && current_raw>=4 &&
!powderStat && !sent){

requestRaw=true;
warehouseRawQuantity=4+100;
current_raw=current_raw-4;
}else{
passivate();
}
} else {
//this will never happen
if(passive){
Display Error Message!
}
}
}
λ (phase, sigma, warehouseFinishRequest, requestRaw,

sent, readyToPMP, powderStat, inProgress, readyToShip,
shipToWarehouse){

if(warehouseFinishRequest){
warehouseFinishRequest=false;
send output "warehouseFinishQuantity" to send
}
if(requestRaw){
requestRaw=false;
sent=true;
send output "warehouseFinishQuantity" to send
}
if(warehouseRaw){
warehouseRaw=false;
send output "current_raw" to FacWar_in1
}
if(readyToPMP && !powderStat &&

((inProgress+current_finished)<20)){
readyToPMP=false;
powderStat=true;
inProgress=inProgress+1;
send output "rawMaterial" to PMP_in
}
if(readyToShip){
readyToShip=false;
send output "finishedProduct" to FinishedPro1
}
if(shipToWarehouse){
shipToWarehouse=false;
send output "storefinishedProduct" to FacWar_in2
}
}
ta(“passive”) = ∞;
ta(“active”) = (0,0,1,0);

 5

Testing Strategy for Administrator

1. Verify the effects of overflow – if the shipment will incur
overflow, the shipment must not be accepted and an error
message should be displayed.

2. Verify the effects non-positive - error message should be
displayed.

3. Verify the current_finished is always at max capacity, if
it is not request raw materials from administrator and send to
PMP_in.

4. Verify the raw_current is decreased by finished_units
when there is an input to FacWar_out1.

5. Verify the finished_current is decreased by
finished_units when there is an input to FacWar_out2.

6. Verify the raw_current is increased by raw_units when
there is an output from FacWar_out1.

7. Verify the finished_current is increased by finished_units
when there is an input from FacWar_out2.

Warehouse

Warhouse = < X M , S, Y M , int, , ext , , D >
 Where

InPorts = {“FacWar_in1”, “FacWar_in2”, “Send”}, where
XFacWar_in1 = {111, 112, 113, ..., 178, 179, 180},
XFacWar_in2 = {181,182,183, ... , 197, 198, 200}, YSend =
{100, 102, 103, ..., 198, 199, 200}

X M = {(p,v)|p∈InPorts, v∈Xp} is the set of input ports and
values

OutPorts = {“FacWar_out1”, “FacWar_out2”}, where
YFacWarout1 = {111, 112, 113, ..., 178, 179, 180},
YFacWarout2 = {181,182,183, ... , 197, 198, 200}

Y M = {(p,v)|p∈OutPorts, v∈Yp } is the set of Output ports
and values .

S = B x P(V) states of the model,
B = { wait, SendRaw, SendFinished, RawReceived,
FinishedReceived, InvalidInput} set of model states.
V = { currentRaw, currentFinished, RawToBeSent,
FinishedToBeSent, RawCapacity, FinishedCapacity}.

The warehouse model was designed using the graphical
interface of CD++ toolkit. The design is depicted in Figure 3.

Figure 3: FactoryWarehouse model designed using DEVS-Graphs

The code associated with this graphical notation in a CDD

file is as followed:

 [Top]
%input ports declaration
in:FacWar_in1 FacWar_in2 Send
%output ports declaration
out:FacWar_out1 FacWar_out2
%variables declaration
var:CurrentRaw CurrentFinish RawToBeSent
FinishTobeSent RawCapacity FinishCapacity
%set of states
state:active RawReceived FinishedReceived
SendRaw SendFinished Invalidinput
%initial state definition
initial:active
%external transition functions (ex. In the
%first line we have a transition between
%two states of active and RawReceived with
%some conditions in which the value of the
%input ports are tested.
ext:active RawReceived
Between(FacWar_in1,100,180)?1{CurrentRaw=C
ompare(Minus(Add(FacWar_in1,CurrentRaw),10
0),RawCapacity,RawCapacity,RawCapacity,Min
us(Add(FacWar_in1,CurrentRaw),100));}
ext:active Invalidinput
And(Less(FacWar_in1,100),Greater(FacWar_in
1,180))?1
ext:active Invalidinput
And(Less(FacWar_in2,180),Greater(FacWar_in
2,200))?1
ext:active Invalidinput
Greater(Send,201)?1
int:Invalidinput active
ext:active FinishedReceived
Between(FacWar_in2,180,200)?1{FinishTobeSe
nt=Compare(CurrentFinish,Minus(Send,180),C
urrentFinish,CurrentFinish,Minus(Send,180)
);CurrentFinish=Minus(CurrentFinish,Finish
TobeSent);}
ext:active SendRaw
And(Greater(Send,100),Less(Send,180))?1{Ra
wToBeSent=Compare(CurrentRaw,Minus(Send,10
0),CurrentRaw,CurrentRaw,Minus(Send,100));
CurrentRaw=Minus(CurrentRaw,RawToBeSent);}
ext:active SendFinished
And(Greater(Send,181),Less(Send,200))?1{Fi
nishTobeSent=Compare(CurrentFinish,Minus(S
end,180),CurrentFinish,CurrentFinish,Minus
(Send,180));CurrentFinish=Minus(CurrentFin
ish,FinishTobeSent);}
%internal transition functions
%lifetime of the bubbles are defined
%(Ex. For “wait” state the holdin
%function has the time value of infinity)
int:RawReceived active
int:FinishedReceived active
int:SendRaw active FacWar_out1!RawToBeSent
int:SendFinished active
FacWar_out2!FinishTobeSent

 6

%initialization of the variables
active:22:00:00:00
RawReceived:00:00:00:00
FinishedReceived:00:00:00:00
SendRaw:00:00:00:00
SendFinished:00:00:00:00
Invalidinput:00:00:00:00
CurrentRaw:50
CurrentFinish:19
RawToBeSent:0
FinishTobeSent:0
RawCapacity:80
FinishCapacity:20

Testing Strategy for the Warehouse

1. Verify the effects of overflow – all surplus units should
be discarded without warning.

2. Verify the effects non-positive – they should not be
accepted.

3. Verify the raw_current_units is decreased by raw_units
when there is an output to FacWar_out1.

4. Verify the finished_current_units is decreased by
finished_units when there is an output to FacWar_out2.

5. Verify the raw_current_units is increased by raw_units
when there is an input from FacWar_out1.

6. Verify the finished_current_units is increased by
finished_units when there is an input from FacWar_out2.

Powder Room

PowderRoom = <X, Y, S,δext,δint,λ, ta>
Where
InPorts = {“PMP_in”}, where XPMP_in = {4}
X M = {(p,v)|p∈InPorts, v∈Xp} is the set of input ports and

values
OutPorts = {“Busy1”, “Press”}, where YBusy1 =

{true,false}, YPress = {1}
Y M = {(p,v)|p∈OutPorts, v∈Yp } is the set of Output ports

and values
S = B x P(V) states of the model,

B = {wait, ready, Powdering, InvalidInput, Keep}
set of model states.
V = {Powder. PowderStat}

The Powder Room model was designed using the graphical

interface of CD++ toolkit. The design is depicted in Figure 4.

Figure 4: PowderRoom model designed using DEVS-Graphs

The code associated with this graphical notation in a CDD

file is as followed:

[Top]

in:PMP_in
out:Press Busy1
var:Powder PowderStat
state:wait Powdering keep ready
InvalidInput
initial:wait
ext:wait ready
Equal(PMP_in,4)?1{PowderStat=1;}
ext:wait InvalidInput NotEqual(PMP_in,4)?1
int:InvalidInput wait
int:ready Powdering Busy1!PowderStat
int:Powdering keep Press!PowderStat
{Powder=1;PowderStat=0;}
int:keep wait Busy1!PowderStat {Powder=0;}
wait:19:00:00:00
Powdering:02:00:00:00
keep:06:00:00:00
ready:00:00:00:00
InvalidInput:00:00:00:00
Powder:0
PowderStat:0

Testing Strategy for Powder Room

1. Verify that the input received through PMP_in port is
checked to have the value of 4.

2. Verify that the values received through the port Busy2 is
either a zero or one.

3. Verify that the message sent through the port Busy1 is
either 0 or 1.

4. Validate that the port Busy1 sends a value of 1 when the
powder room starts the process of converting raw materials to
powder.

5. Verify that the port Busy1 sends a value of 0 the moment
the powder room is free.

6. Ensure that processing time of the powder room is 2
hours.

 7

7. Verify that the port Press sends a value of 1 once the
powder room has converted the raw materials to powder and
that the press room is free.

Press Room

PressRoom = <X, Y, S,δext,δint,λ, ta>
Where
InPorts = {“Press”}, where XPress = {1}
XM = {(p,v)|p∈InPorts, v∈Xp} is the set of input ports and

values
OutPorts = {“Blister”}, where YBlister = {1}YM =

{(p,v)|p∈OutPorts, v∈Yp } is the set of Output ports and
values

S = B x P(V) states of the model,
B = {wait, ready, Pressing, InvalidInput} et of model states.
V = {Press. PressStat}

The Press Room model was designed using the graphical

interface of CD++ toolkit. The design is depicted in Figure5.

Figure 5: PressRoom model designed using DEVS-Graphs

The code associated with this graphical notation in a CDD

file is as followed:

[Top]
in:Press
out:Blister
var:Pressed PressStat
state:wait Pressing ready InvalidInput
initial:wait
ext:wait ready
And(Equal(Press,1),Equal(PressStat,0))?1{P
ressStat=1;Pressed=0;}
ext:wait InvalidInput
Or(NotEqual(Press,1),Equal(PressStat,1))?1
int:InvalidInput wait
int:ready Pressing
int:Pressing wait Blister!PressStat
{PressStat=0;Pressed=1;}
wait:16:00:00:00
Pressing:04:00:00:00

ready:00:00:00:00
InvalidInput:00:00:00:00
Pressed:0
PressStat:0

Testing Strategy for Press Room

1. Verify that the input received through Press port is
checked to have the value of 1.

2. Ensure that processing time of the press room is 4 hours.
3. Verify that the port Blister sends a value of 1 once the

press room has converted the powder to pill/tablet and that the
blister room is free.

Blister-Pack

BlisterPack = <X, Y, S,δext,δint,λ, ta>
Where
InPorts = {“Blister”}, where XPress = {1}
XM = {(p,v)|p∈InPorts, v∈Xp} is the set of input ports and

values
OutPorts = {“PMP_out”}, where YPMP_out = {1}
YM = {(p,v)|p∈OutPorts, v∈Yp } is the set of Output ports

and values
S = B x P(V) states of the model,

B = {wait, ready, Blistering, InvalidInput}
set of model states.
V = {Blisered. BlisterStat}

The BlisterPack model was designed using the graphical
interface of CD++ toolkit. The design is depicted in Figure 6.

Figure 6: BlisterPack model desinged using DEVS-Graphs

The code associated with this graphical notation in a CDD

file is as followed:

[Top]
in:Blister
out:PMP_out
var:Blistered BlisterStat
state:wait Blistering ready InvalidInput
initial:wait

 8

ext:wait ready
And(Equal(Blister,1),Equal(BlisterStat,0))
?1{BlisterStat=1;Blistered=0;}
ext:wait InvalidInput
Or(NotEqual(Blister,1),Equal(BlisterStat,1
))?1
int:InvalidInput wait
int:ready Blistering
int:Blistering wait PMP_out!BlisterStat
{BlisterStat=0;Blistered=1;}
wait:12:00:00:00
Blistering:08:00:00:00
ready:00:00:00:00
InvalidInput:00:00:00:00
Blistered:0
BlisterStat:0

Testing Strategy for Blister-Pack

1. Verify that the input received through Blister port is
checked to have the value of 1.

2. Ensure that processing time of the pack room is 8 hours.
3. Verify that the port PMP_out sends a value of 1 once the

blister pack room has done blistering and packaging the
tablets.

B. Coupled models

Pharmaceutical Manufacturing Plant (PMP)

PMP = < X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>
Where
InPorts = {“PMP_in”}, where XPMP_in = {1, 2, 3, 4}
X = {(“ PMP_in” , v) | v∈XPMP_in}
OutPorts = {“PMP_out”, “Busy1”}, where YPMP_out = {1},
YBusy1 = {-1, 1}
Y = {(p,v)|p∈OutPorts, v∈Yp }
D = {PowderRoom, PressRoom, BlisterPack}
MPMP = {MPowderRoom, MPressRoom, MBlisterPack}
EIC = {(PMP, “PMP_in”), (PowderRoom, “PMP_in”)}
EOC = {((PowderRoom, “Busy1”), (PMP, “Busy1”)),
((PackRoom, “PMP_out”), (PMP, “PMP_out”))}
IC = {((PowderRoom, “Press”), (PressRoom, “Press”)),
 ((PressRoom, “Blister”), (BlisterPack, “Blister”))
Select: ({BlisterPack, PressRoom}) = PackRoom
({BlisterPack, PowderRoom}) = BlisterPack
 ({PressRoom, PowderRoom}) = PressRoom

Testing Strategy for PMP

1. Verify that when a value of 1 is passed to PMP through
the port PMP_in there is an output through the port PMP_out
after the pre-defined time of 20 hours.

2. Verify that when a value of 1 is passed to PMP through
the port PMP_in there is an output through the port BUSY1
simultaneously.

Factory = < X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>

InPorts = {“RawMaterials2”, “OrderInfo2”}, where
XRawMaterials2 = {1, 2, 3, … , 78, 79, 80}, XOrderInfo2 =
{1, 2, 3, … , 18, 19, 20}
X = {(p, v) | v∈XPMP_in}
OutPorts = { “FinishedPro1”}, where YFinishedPro1 = {1}
Y = {(p,v)|p∈OutPorts, v∈Yp }
D = {FactoryWarehouse, FactoryAdministrator, PMP}
MFactory = {MFactoryWarehouse, MFactoryAdministrator,
MPMP}
EIC = {(Factory, “RawMaterials2”), (FactoryAdministrator,
“RawMaterials2”)
((Factory, “OrderInfo2”), (FactoryAdministrator,
“OrderInfo2”))}
EOC = {((FactoryAdministrator, “FinishedPro1”), (Factory,
“FinishedPro1”))}
IC = {((FactoryAdministrator, “Send”), (FactoryWarehouse,
“Send”)),
((FactoryAdministrator, “FacWar_in1”), (FactoryWarehouse,
“FacWar_in1”)),
((FactoryAdministrator, “FacWar_in2”), (FactoryWarehouse,
“FacWar_in2”)),
((FactoryWarehouse, “FacWar_out1”),
(FactoryAdministrator, “FacWar_out1”)),
((FactoryWarehouse, “FacWar_out2”),
(FactoryAdministrator, “FacWar_out2”)),
((PMP, “PMP_out”), (FactoryAdministrator, “PMP_out”))
((PMP, “Busy1”), (FactoryAdministrator, “Busy1”))
((FactoryAdministrator, “PMP_in”), (PMP, “PMP_in”))}
Select: ({PMP, FactoryAdministrator }) = PMP
({PMP, FactoryWarehouse }) = PMP
({FactoryAdministrator, FactoryWarehouse }) =
FactoryAdministrator

Testing Strategy for Factory

1. Each atomic model (administrator, warehouse, powder
room, press room and blister pack) was tested and verified
individually according to the test strategies defined above.

2. The coupled model (PMP) was also tested and verified
separately.

3. The following test conditions were used to test and verify
the complete factory model:

1. Send an input of value 10 through the port OrderInfo2 at
00:00:01:01 and send an input of 20 through the port
RawMaterials2 at 00:00:02:01

2. Send an input of value 22 through the port OrderInfo2 at
00:00:01:01 and send an input of 19 through the port
OrderInfo2 at 00:00:02:01

3. Send an input of value 50 through the port
RawMaterials2 at 00:00:01:01 and send an input of 20
through the port RawMaterials2 at 00:00:02:01
Note: All the above test conditions the number of finished
products in the warehouse initially was set to 19 and the
number of raw materials in the warehouse was set to 50. In
addition, initially the pharmaceutical plant (PMP) was not
processing anything in any of its components.

 9

V. TESTING, SIMULATION ANALYSIS AND ANIMATION

Both the atomic and coupled models were all implemented
and tested using the toolkit CD++. The atomic models
(administrator, warehouse, powder room, press room, blister
pack) were implemented and tested independently before there
were incorporated into the coupled models. The PMP coupled
model was also implemented and tested separately before it
was integrated into the factory coupled model. Although
numerous tests were performed to ensure all models were
behaved as desired, only a selected three test cases are
outlined below.

Note that to better understand the test cases; the block

diagram was modified as seen in Figure 7. This not only
ensures that the outputs of the factory coupled model are
outputted, but also shows some processing of the second level
models (administrator, warehouse and PMP). In addition for
all the test conditions outlined below, the number of finished
products in the warehouse initially was set to 19 and the
number of raw materials in the warehouse was set to 50.
Furthermore, initially the pharmaceutical plant (PMP) was not
processing anything in any of its components.

Figure 7: Modified block diagram of Factory model for testing purposes

A. Test Case 1: Valid Inputs

Table 1: Input (event file) and output (out file) displayed in

time sequence for case 1 - valid inputs

The input and output was run for 99:00:00:00. The
simulation shows that for ‘proper’ inputs (i.e. the order placed
for finished products from the distributor is between 0 and 20,
and is less than the current number of products that is held in
the factory’s warehouse. In addition the number of raw
materials received from the supplier is less than or equal to the

available amount of space in the factory’s warehouse for raw
materials, and the input is between the values of 0 and 80)
there were no error messages displayed, and the simulation
ran till the specified time.

This simulation also shows that factory is trying to
replenish its finished products stock from the beginning
(00:00:00:000) since the amount of finished products stored in
its warehouse was not at full capacity. In addition the input
and output times for PMP were verified to be correct. Lastly,
the time at which various values were outputted from the
administrator and warehouse through the ports facwar_in1,
facwar_in2, facwar_out1, facwar_out2 all occurred at desired
times. Thus, it is verified that for correct inputs, the entire
factory model behaves as specified.

Table 1: Input (event file) and output (out file) displayed in time sequence for
case 1 - valid inputs
Inputs
00:00:01:01 OrderInfo2 10

00:00:02:01 RawMaterials2 20

Outputs
00:00:00:000 send 104
00:00:00:000 facwar_out1 4
01:00:00:050 pmp_in 4
00:00:01:090 send 190
00:00:01:090 facwar_out2 10
00:00:01:137 out 10
00:00:02:062 facwar_in1 120
09:00:00:081 send 104
09:00:00:081 facwar_out1 4
10:00:00:131 pmp_in 4
15:00:00:089 facwar_in2 181
18:00:00:162 send 104
18:00:00:162 facwar_out1 4
19:00:00:212 pmp_in 4
24:00:00:170 facwar_in2 181
27:00:00:243 send 104
27:00:00:243 facwar_out1 4
28:00:00:293 pmp_in 4
33:00:00:251 facwar_in2 181
36:00:00:324 send 104
36:00:00:324 facwar_out1 4
37:00:00:374 pmp_in 4
42:00:00:332 facwar_in2 181
45:00:00:405 send 104
45:00:00:405 facwar_out1 4
46:00:00:455 pmp_in 4
51:00:00:413 facwar_in2 181
54:00:00:486 send 104
54:00:00:486 facwar_out1 4
55:00:00:536 pmp_in 4
60:00:00:494 facwar_in2 181
63:00:00:567 send 104
63:00:00:567 facwar_out1 4
64:00:00:617 pmp_in 4
69:00:00:575 facwar_in2 181
72:00:00:648 send 104
72:00:00:648 facwar_out1 4
73:00:00:698 pmp_in 4
78:00:00:656 facwar_in2 181
81:00:00:729 send 104
81:00:00:729 facwar_out1 4
82:00:00:779 pmp_in 4
87:00:00:737 facwar_in2 181
90:00:00:810 send 104
90:00:00:810 facwar_out1 4
91:00:00:860 pmp_in 4
96:00:00:818 facwar_in2 181

 10

B. Test Case 2: Invalid and Valid values for OrderInfo2

Table 2: Input (event file) and output (out file) displayed in time sequence for
case 2

Inputs

00:00:01:01 OrderInfo2 22

00:00:02:01 OrderInfo2 19

Outputs
00:00:00:000 send 104
00:00:00:000 facwar_out1 4

01:00:00:050 pmp_in 4

00:00:02:090 send 199
00:00:02:090 facwar_out2 19
00:00:02:137 out 19
09:00:00:081 send 104
09:00:00:081 facwar_out1 4
10:00:00:131 pmp_in 4
15:00:00:089 facwar_in2 181
18:00:00:162 send 104
18:00:00:162 facwar_out1 4
19:00:00:212 pmp_in 4
24:00:00:170 facwar_in2 181
27:00:00:243 send 104
27:00:00:243 facwar_out1 4
28:00:00:293 pmp_in 4
33:00:00:251 facwar_in2 181
36:00:00:324 send 104
36:00:00:324 facwar_out1 4
37:00:00:374 pmp_in 4
42:00:00:332 facwar_in2 181
45:00:00:405 send 104
45:00:00:405 facwar_out1 4
46:00:00:455 pmp_in 4
51:00:00:413 facwar_in2 181
54:00:00:486 send 104
54:00:00:486 facwar_out1 4
55:00:00:536 pmp_in 4
60:00:00:494 facwar_in2 181
63:00:00:567 send 104
63:00:00:567 facwar_out1 4
64:00:00:617 pmp_in 4
69:00:00:575 facwar_in2 181
72:00:00:648 send 104
72:00:00:648 facwar_out1 4
73:00:00:698 pmp_in 4
78:00:00:656 facwar_in2 181
81:00:00:729 send 104
81:00:00:729 facwar_out1 4
82:00:00:779 pmp_in 4
87:00:00:737 facwar_in2 181
90:00:00:810 send 104
90:00:00:810 facwar_out1 4
91:00:00:860 pmp_in 4
96:00:00:818 facwar_in2 181

The above input and output was run for 99:00:00:000. This

simulation shows how the factory model handles error. Note
that the first input was an improper input – i.e. the order
placed by the distributor was more than 20 finished products.
This is invalid because the model specifications dictate that no
order exceeding 20 can be placed. However, the second order
shows that for a proper input the simulation runs for specified
amount of time.

This simulation also shows that factory is trying to
replenish its finished products stock from the beginning
(00:00:00:000) since the amount of finished products stored in
its warehouse was not at full capacity. In addition the input
and output times for PMP were verified to be correct. Lastly,
the time at which various values were outputted from the
administrator and warehouse through the ports facwar_in1,
facwar_in2, facwar_out1, facwar_out2 all occurred at desired
times. Thus, it is verified that for correct inputs, the entire

factory model behaves as specified. In the case 2, we receive
the following error in CD++ console view:

“Error: Factory Administrator asked to send more than 20
finished products at a time!”

This shows that the factory model does handle error as
specified by above.	

C. Test Case 3: Invalid and Valid values for RawMaterials2

Inputs

00:00:01:01 RawMaterials2 50
00:00:02:01 RawMaterials2 20

Outputs
00:00:00:000 send 104
00:00:00:000 facwar_out1 4

01:00:00:050 pmp_in 4
00:00:02:062 facwar_in1 120
15:00:00:089 facwar_in2 181

The above input and output was run for 99:00:00:000. This

simulation shows how the factory model handles error. Note
that the first input was an improper input – i.e. the amount of
raw materials received by the factory from the supplier
exceeded the factory’s warehouse capacity. This is invalid
because the model specifications dictate that the factory will
not accept a shipment of raw materials unless it has the
capacity to store the entire shipment. However, the second
order shows that for a proper input the simulation runs for
specified amount of time.

This simulation also shows that factory is trying to
replenish it’s finished products stock from the beginning
(00:00:00:000) since the amount of finished products stored in
it’s warehouse was not at full capacity. In addition the input
and output times for PMP were verified to be correct. Lastly,
the time at which various values were outputted from the
administrator and warehouse through the ports facwar_in1,
facwar_in2, facwar_out1, facwar_out2 all occurred at desired
times. Thus, it is verified that for correct inputs, the entire
factory model behaves as specified. In addition unlike the
previous two test cases, the factory administrator only sent
one batch of products to be manufactured. This is because no
orders from the distributor were placed and the current
number of finished products held in the warehouse is 19 units.

D. Animation

Animation of coupled and atomic models is another capability
of CD++ toolkit. By animating the models, a simple graphical
notation is extracted from the log files .Therefore we can see
the way data are transferred through the ports and delayed on
different states of the model. This tool shows a state-base
representation of the model. One snapshot of simulating the
warehouse of the factory model is brought in Figure 8 .As
seen; the picture shows the possible states of the model in

 11

which there are no values inputted the model through different
port.

Figure 8: A snapshot of Animation of Warehouse model using CD++ toolkit

A snapshot of the animation of PMP model is depicted in
Figure 9.

Figure 9: A snapshot of Animation of PMP model using CD++ toolkit

VI. CONCLUSION

A simulation of a pharmaceutical plant which is a part of a
supply chain of a pharmaceutical product is performed using a
combination of C++ and DEVS-graph models in CD++
toolkit. This was done following an initial modeling and
simulation using pure C++ standard models in CD++ toolkit.
It is asserted that using the graphical methods is much simpler
and straightforward. One of the advantages of employing
graphical interface of CD++ toolkit is that the model is easily
designed, managed and modified. In addition, in a typical
model, less variable are required to be declared due to the
tools auto generation of the states’ specifications. Employing
this tool however may sacrifice some complexities of the
model. That is because the graphical interface lacks some
detailed definition of internal and external transition functions.
Therefore, the best option is to use a combination of both kind
of models to benefit from both simplicity in modeling and
complexity of design.

ACKNOWLEDGMENT

S. Jafartayari thanks professor G. Wainer for his support
and Cheryl de Souza for her help on the initial programming
of this project in C++.

REFERENCES
[1] James A. Tompkins, "The Challenge of Warehousing," in The

Warehouse Management Handbook, James A. Tompkins and Jerry D.
Smith, Eds. Raleigh, North Carolina, United States of America:
Tompkins Press, 1998, ch. 1, p. 2.

[2] G. Christen, A. Dobniewski, G. A. Wainer, “Modeling State-Based
DEVS Models in CD++,” Proceedings of MGA, Advanced Simulation
Technologies Conference (ASTC04), Arlington, VA. U.S.A - 2004

[3] Gabriel A. Wainer, "Introduction to the DEVS Modeling and Simulation

Formalism," in Discrete-event modeling and simulation: a practitioner's
approach. Boca Raton, United States of America: CRC Press, 2009, ch.
2, pp. 35-54.

