

Carleton University
Department of Systems and Computer Engineering

SYSC 5104: Methodologies for discrete-event modelling and simulation
Fall Semester 2011

Assignment # 1: FSCM DEVS Model Report

Saman Jafartayari
uOttawa ID: 5453154

Cheryl Anne D’souza

Carleton ID: 100771069

2

Table of Contents

Conceptual Model ... 3

Model Specifications .. 9

Atomic models ... 9

Administrator .. 9

Testing Strategy ... 15

Warehouse ... 16

Testing Strategy ... 19

Powder Room ... 20

Testing Strategy ... 22

Press Room .. 23

Testing Strategy ... 25

Blister Room .. 26

Testing Strategy ... 28

Pack Room .. 29

Testing Strategy ... 30

Coupled models .. 31

Pharmaceutical Manufacturing Plant (PMP) ... 31

Testing Strategy ... 32

Factory ... 32

Testing Strategy ... 33

Testing and Simulation Analysis .. 34

Test Case 1: Valid Inputs ... 36

CD++ Console View... 38

Test Case 2: Invalid and Valid values for OrderInfo2 ... 39

CD++ Console View... 41

Test Case 3: Invalid and Valid values for RawMaterials2 ... 42

CD++ Console View... 43

Bibliography .. 44

3

Conceptual Model

Supply Chain Management (SCM) is the key to having a competitive edge in the

current global market. It involves effeciently managing the flow of materials, cash,

information and services. In order to evalute various advantages and disadvantages

of different SCM models, simulation before implementation is key [1]. Thus, a part of

SCM Discrete Event Simulation (DEVS) model was was designed to facilitate the

simulation of a system of interconnected businesses that are linked together to

provide products and services to the end user. This particular part models the

manufacturing process of a particular pharmaceutical product. The model includes

four major components: administrator, warehouse, and pharmaceutical

manufactuing plant (PMP).

Note that the orginial model that was proposed seemed to be too complicated and

beyond the scope of the course requirements. Hence, only a part (factory) of the

originial model (SCM) was modeled and simulated.

As seen the block diagram in Figure 1, the role of the factory is to transform the raw

material it receives from its suppliers to the final product. Therefore, internally the

inventory of raw material and final products should be checked. This is done for a

number of reasons:

(1) In order to minimize the lead time involved processing and shipping the raw

materials from the supplier;

(2) To ensure the factory is producing products at the current demand level.

The administrative duties such as: receiving good from the supplier, attaining the

orders from the distributor, placing orders with the supplier and shipping finished

products to the distributor; are modeled by the administrator atomic model. It is

comprised of seven input ports: RawMaterials2, OrderInfo2, FacWar_out1,

4

FacWar_out2, Busy1, PMP_out and Send. It should be noted that the administrator

always tries to maintain a full capacity of finished products.

i. RawMaterials2 is the port through which the supplier transports raw

materials to the factory. In order for the supplies to be transferred from the

supplier to the factory there exists variable lead times (due to factors such as

transportation delay). However, for the purpose of simplicity, we will model

this as a constant time delay of 1 day.

ii. OrderInfo2 is a one-way port that originates from the distributor and

terminates at the factory. It is used to place orders to replenish the

distributor’s inventory. Realistically the delay of information flow can vary

from case to case. To avoid complexity we set this delay to a constant value of

12 hours.

iii. FacWar_out1 is the port through which the warehouse sends its raw

materials to the administration.

iv. FacWar_out2 is the port through which the warehouse sends its finished

products to the administration.

v. Busy1 is the port that is Boolean; it is set to true if the powder atomic model

(coupled in the factory’s pharmaceutical manufacturing plant) is busy and

false otherwise.

vi. PMP_out is the port through which the factory’s pharmaceutical

manufacturing plant (in particular the packing model) communicates with

administration.

vii. Send is the port through which the factory’s administrator communicates to

the warehouse how many raw materials or finished products it needs.

5

Figure 1: DEVS model block diagram of factory

6

In addition to input ports, the factory also encompasses four output ports:

FinishedPro1, FacWar_in1, FacWar_in2 and PMP_in.

i. FinishedPro1 port is utilized by the factory to ship its finished products to

the distributor. The shipment delay for this modeled as a constant value of 1

day.

ii. FacWar_in1 is the port through which the administration transports raw

materials to the factory’s warehouse.

iii. FacWar_in2 is the port through which the administration transports finished

products to the factory’s warehouse.

iv. PMP_in is the port through which the administration communicates with the

factory’s pharmaceutical manufacturing plant (in particular the powder

room model).

The role of the factory’s warehouse is also to act as a storage facility for the factory’s

raw materials and finished products. It has a maximum carrying capactiy of 80

batches for raw materials (represented as positive integers ranging from 111 to

180) and 20 batches for finished products (represented as positive integers ranging

from 181 to 200). In the event of an overflow of either raw materials and/or

finished products, the redundant batches will just be discarded without notification.

It recieves raw materials and finished products from the admistrator through the

ports FacWar_in1 and FacWar_in2, recpectively. In addition, it sends raw materials

and finished products as the admistrator requires it through the ports FacWar_out1

and FacWar_out2, respectively. Lastly, the number or products (both raw materials

and finished products) that need to be sent to the administrator is communicated

through the port Send.

The role of the pharmanceutical manufacturing plant is to manufacture pills (i.e.

convert raw materials into a pill that will then be stored in the warehouse and then

sent to the distibutor). This is modeled by four atomic models: powder room, press

machines, blistering machines and packaging. In order to model all four tasks, each

atomic model is associated with a time delay and does not have internal storage.

7

Since the whole pharmaceutical manufacturing plant has no internal storage, it is

important to have a negative feedback at every stage in the plant. These negative

feedbacks are the boolean ports: Busy1, Busy2, Busy3, and Busy4.

The powder room model is comprised of two input ports: PMP_in and Busy2; and

two output ports: Busy1 and Press. The powder room recieves its raw materials

from the administration through PMP_in and then converts it into a powder with

appropriate amounts for each pill. Each batch of powder is created with four

batches of raw materials. The time delay associated with creating this is a constant

of two hours. The boolean variable, Busy2, indicates if the press machines are busy

or not. If this variable is true, indicating that the press machines is indeed busy, the

powder room must hold its contents before proceeding. Once this varible is false,

indicating that the press machines is free, the powder room sends one batch of

material to the press machines through the port Press. The port Busy1 is a boolean

variable that indicates if the powder room is busy or not. This is to avoid overflow of

materials. If the powder room is busy, the administrator must wait until the powder

room (indicated by a false transferred through the port Busy1) is free to send more

materials to it.

The press machines room is also modeled as an atomic model that has two input

ports: Press and Busy3; and two output ports: Busy2 and Blister. In reality, the role

of the press machine is to take various powedered raw materials and apply force to

shape them into a pill (tablet). For the sake of simplicity this is modeled as a time

delay. When the blistering machines are free, indicated by a the boolean variable

Busy2 being false, the powder room sends 1 batch of powder to be pressed. Once

the press machine recieves the powder it automatically sets Busy2 to be false, thus

avoiding any overflow. This is modeled by a constant time delay of four hours. If the

boolean variable Busy3 is false, it sends the pressed products to the blistering

machines room through the port Blister. If the boolean variable Busy3 is true, it

waits until it is false to send the pressed products.

8

Blistering is the first of two parts to packing the pills/tablets. For simplicity, this

process is modeled by an atomic model that functions a time delay. The blistering

atomic model has two inputs and two outputs. The two input ports are Blister and

Busy4; and the two output ports are Busy3 and FinalPack. Once the blistering room

is free (indicated by a setting the variable Busy3 to true), the blistering room can

accept inputs from the press machine room. The blistering room recieves its raw

materials from the press machine room through the port Blister. Blitering involves a

1:1 ratio of raw materials: finished products. Once the raw materials are recieved it

sets Busy3 to false and then introduces a constant six hour time delay, at which

point the materials are sent to the packing room (through the port FinalPack) if it is

not busy. The boolean variable Busy4 indicates if the packaging room is busy (true)

or free (false).

Packaging is the last atomic model in the pharmaceutical manufactuing plant. It is

the second part to packaging the final products. This atomic model has three ports,

one input port: FinalPack; and two output ports: Busy4 and PMP_out. This input

(Busy4), is boolean variable, it is initially set as false. However, once the blistering

model moves blistered products to the packing model, the boolean variable, Busy4,

automatically sets itself to true. While the the boolean variable, Busy4, is false, the

packing model is in passive mode. This occurs infinetly, until it recieves an input

through the port, FinalPack. At this point the boolean varibale, Busy4, is set to false

and the packing model is in active mode. It then converts a batch of blister pack to

one batch of complete finished and packaged product. Upon completion, it sends the

finished product to the administration through the port PMP_out. The packaging

room instill a time delay of eight hours in the whole process.

9

Model Specifications

The factory is modeled as a three-level DEVS model with two components that are

described as coupled models and six components that are described as atomic

models. The DEVS formal specifications [2] for each model is outlined below starting

from atomic models and concluding with the factory itself. This also proves to be the

appropriate order for implementation and testing.

Atomic models

Administrator

Administrator = <S, X, Y,δext,δint,λ, ta>

Where

InPorts = {“OrderInfo2”, “RawMaterials2”, “FacWar_out1”, “FacWar_out2”},

where XOrderInfo2 = {1,2,3,...,18,19,20}, XRawMaterials2 = {1,2,3,...,58,59,60}, XFacWarout1

= {111, 112, 113, ..., 178, 179, 180}, XFacWarout2 = {181,182,183, ... , 197, 198, 200}

X = {(p,v)|p∈InPorts, v∈Xp} is the set of input ports and values

OutPorts = {“ FinishedPro1”,“FacWar_in1”, “FacWar_in2”, “Send”}, where

YFinishedPro1 = {1,2,3,...,18,19,20}, YFacWar_in1 = {111, 112, 113, ..., 178, 179, 180},

YFacWar_in2 = {181,182,183, ... , 197, 198, 200}, YSend = {100, 102, 103, ..., 198, 199,

200}

Y = {(p,v)|p∈OutPorts, v∈Yp } is the set of output ports and values

S = {phase, sigma, currentship, current_finished, warehouseFinishRequest,

warehouseFinishQuantity, current_raw, rawRecieved, warehouseRaw,

rawMaterial, readyToPMP, finishedProduct, readyToShip, powderStat, sent,

inProgress, storefinishedProduct, shipToWarehouse, requestRaw,

warehouseRawQuantity}

= {“passive”, “active”} × R0+ × {0,1,2,...,18,19,20} × {0,1,2,...,18,19,20} × {true,

false} × {181,182,183,...,198,199,200} × {0,1,2,...,78,79,80} × {0,1,2,...,78,79,80} ×

{true, false} × {0,1,2,3,4} × {true, false} × {0,1,2,...,18,19,20} × {true, false} ×

10

{true, false} × {true, false} × {0,1,2,...,18,19,20} × {101,102,103,...,178,179,180} ×

{true, false} × {true, false} × {104}

δext(phase, sigma, currentship, current_finished,

warehouseFinishRequest, warehouseFinishQuantity, current_raw,

rawRecieved, warehouseRaw, rawMaterial, readyToPMP,

finishedProduct, readyToShip, powderStat, sent, inProgress,

storefinishedProduct, shipToWarehouse, e){

if(msg.port() == OrderInfo2){

 if(msg.value() <=0){

 Display error message! Invalid order!

 }else if((msg.value() >= 1) && (msg.value() <= 20)){

 if (currentship+msg.value()>current_finished){

 Display error message! Can’t ask for more than

available!

 }else{

 currentship= currentship+msg.value();

 warehouseFinishRequest=true;

 warehouseFinishQuantity=currentship+180;

 current_finished=current_finished-currentship;

 }

 } else {

Display error message! No order can be greater than 20

units, distributor should never request more.

 }

 }

 if (msg.port()== RawMaterials2){

 if (msg.value()<=0){

11

Display Error Message because Supplier should not

negative or zero input to factory!

 }else if (msg.value()>(80-current_raw)){

Display Error Message because Supplier should not send more

raw materials than capacity dictates

 }else if (msg.value()>=0 && msg.value()<=(80-current_raw)){

 current_raw=current_raw+ msg.value();

 rawRecieved= msg.value()+100;

 warehouseRaw=true;

 }

 }

 if (msg.port()== FacWar_out1){

 if (msg.value()!=4){

Display Error Message because powder room can never

anything other than an input of 4 raw material units

 }else if(msg.value () ==4){

 rawMaterial=msg.value();

 readyToPMP=true;

 }

 }

 if (msg.port()== FacWar_out2){

 if (msg.value()>20){

Display Error Message because total capacity for warehouse is

only 20 so this should never happen

 }else if(msg.value () <=20 && msg.value()>0){

 finishedProduct=msg.value();

 readyToShip=true;

 }else{

12

 Display Error Message because simulation should never reach

this

 }

 }

 if(msg.port()==Busy1){

 if(msg.value()==1){

 powderStat=true;

 }else if (msg.value()==0){

 powderStat=false;

 sent=false;

 }else{

cout<<"Error: Port Busy1 should never receive an input other

than 0 or 1!"<<endl;

 }

 }

 if(msg.port()==PMP_out){

 if (msg.value()!=1){

 Display Error Message because PMP_out should only output a

value of 1

 }else if(msg.value()==1){

 int temp=msg.value();

 if (current_finished>=20){

 Display Error Message because Simulation should never

get here!

 }

 inProgress=inProgress-1;

 storefinishedProduct=temp+180;

 current_finished=current_finished+1;

 shipToWarehouse=true;

13

 }

 }

}

δint(phase, sigma, current_finished, inProgress, current_raw, powderStat,

sent, requestRaw, warehouseRawQuantity){

if(active){

 if((20-current_finished-inProgress)>0 && (20-current_finished-

inProgress)<=20 && current_raw>=4 && !powderStat && !sent){

 requestRaw=true;

 warehouseRawQuantity=4+100;

 current_raw=current_raw-4;

 }else{

 passivate();

 }

 } else {

 //this will never happen

 if(passive){

 Display Error Message!

 }

 }

}

λ (phase, sigma, warehouseFinishRequest, requestRaw, sent,

readyToPMP, powderStat, inProgress, readyToShip, shipToWarehouse){

if(warehouseFinishRequest){

 warehouseFinishRequest=false;

 send output "warehouseFinishQuantity" to send

 }

 if(requestRaw){

 requestRaw=false;

 sent=true;

14

 send output "warehouseFinishQuantity" to send

 }

 if(warehouseRaw){

 warehouseRaw=false;

 send output "current_raw" to FacWar_in1

 }

 if(readyToPMP && !powderStat &&

((inProgress+current_finished)<20)){

 readyToPMP=false;

 powderStat=true;

 inProgress=inProgress+1;

 send output "rawMaterial" to PMP_in

 }

 if(readyToShip){

 readyToShip=false;

 send output "finishedProduct" to FinishedPro1

 }

 if(shipToWarehouse){

 shipToWarehouse=false;

 send output "storefinishedProduct" to FacWar_in2

 }

}

ta(“passive”) = ∞;

ta(“active”) = (0,0,1,0);

15

Testing Strategy

1. Verify the effects of overflow – if the shipment will incur overflow, the

shipment must not be accepted and an error message should be displayed.

2. Verify the effects non-positive - error message should be displayed.

3. Verify the current_finished is always at max capacity, if it is not request raw

materials from administrator and send to PMP_in.

4. Verify the raw_current is decreased by finished_units when there is an input

to FacWar_out1.

5. Verify the finished_current is decreased by finished_units when there is an

input to FacWar_out2.

6. Verify the raw_current is increased by raw_units when there is an output

from FacWar_out1.

7. Verify the finished_current is increased by finished_units when there is an

input from FacWar_out2.

16

Warehouse

Warehouse = <S, X, Y,δext,δint,λ, ta>

Where

InPorts = {“FacWar_in1”, “FacWar_in2”, “Send”}, where XFacWar_in1 = {111, 112,

113, ..., 178, 179, 180}, XFacWar_in2 = {181,182,183, ... , 197, 198, 200}, YSend = {100,

102, 103, ..., 198, 199, 200}

X = {(p,v)|p∈InPorts, v∈Xp} is the set of input ports and values

OutPorts = {“FacWar_out1”, “FacWar_out2”}, where YFacWarout1 = {111, 112, 113, ...,

178, 179, 180}, YFacWarout2 = {181,182,183, ... , 197, 198, 200}

Y = {(p,v)|p∈OutPorts, v∈Yp } is the set of Output ports and values

S = {phase, sigma, currentRaw, rawMaterialCapacity, currentFinished,

finishedProductCapacity,

rawTobesent, sendRaw, finishedTobesent, sendFinished}

= {“passive”, “active”} × R0+ × {101, 112, 113, ..., 178, 179, 180} × {180}×

{181,182,183, ... , 197, 198, 200} × {200} × {1, 2, 3,...,78, 79, 80} × {true,false} × {1, 2,

3,...,18, 19, 20} × {true,false}

δext(phase, sigma, currentRaw, rawMaterialCapacity, currentFinished,

finishedProductCapacity, rawTobesent, sendRaw, finishedTobesent,

sendFinished, e, send){

if(msg.port() == FacWar_in1){

 if((msg.value() > 100)&&(msg.value() <= 180)){

 int temp = msg.value() + currentRaw-100;

 //Warehouse overflow; discard surplus

 if(temp > rawMaterialCapacity){

 temp = rawMaterialCapacity;

Display error message – overflow!

 }

 currentRaw=temp;

 }else{ //if the input is out of range

17

 Display error message – input out of range!

 }

}

if(msg.port() == FacWar_in2){

 if((msg.value() > 180)&&(msg.value() <= 200)){

 int temp = msg.value() + currentFinished-180;

 if(temp > finishedProductCapacity){

 temp = finishedProductCapacity;

 Display error message – finished products overflow!

 }

 currentFinished=temp;

 }else{ //if the input is out of range

 Display error message – input out of range!

 }

 }

if(msg.port() == Send){

 if(msg.value()>=101 && msg.value()<=180){

 rawTobesent=msg.value()-100;

 if (currentRaw>=rawTobesent && this->state() == passive){

 sendRaw=true;

 }else{

 Display error message – not enough raw units in

warehouse!

 }

 }else if (msg.value()>=181 && msg.value()<=200){

 finishedTobesent=msg.value()-180;

 if (currentFinished>=finishedTobesent && this->state() ==

passive){

 sendFinished=true;

 }else{

 Display error message – not enough finished units in

18

warehouse!

 }

 }else{

 Display error message – invalid input from administrator!

 }

 }

}

δint(phase, sigma){

 if(this->state() == active){

 passivate();

 }else {

Display error meassage - Simulation should never reach this point

}

}

λ (phase, sigma, sendRaw, currentRaw, rawTobesent, sendFinished,

currentFinished, finishedTobesent){

if(sendRaw){

currentRaw=currentRaw-rawTobesent;

 sendRaw=false;

send output " rawTobesent " to FacWar_out1

}

if(sendFinished){

 currentFinished=currentFinished-finishedTobesent;

 sendFinished=false;

send output " finishedTobesent " to FacWar_out

}

}

ta(“passive”) = ∞;

ta(“active”) = 0;

19

Testing Strategy

1. Verify the effects of overflow – all surplus units should be discarded without

warning.

2. Verify the effects non-positive - error message should be displayed.

3. Verify that no output occurs if either trans_busy is true or pause is true.

4. Verify the raw_current_units is decreased by raw_units when there is an

output to FacWar_out1.

5. Verify the finished_current_units is decreased by finished_units when there is

an output to FacWar_out2.

6. Verify the raw_current_units is increased by raw_units when there is an input

from FacWar_out1.

7. Verify the finished_current_units is increased by finished_units when there is

an input from FacWar_out2.

20

Powder Room

PowderRoom = <X, Y, S,δext,δint,λ, ta>

Where

InPorts = {“PMP_in”, “Busy2”}, where XPMP_in = {1,2,3,4}, XBusy2 = {true, false}

X = {(p,v)|p∈InPorts, v∈Xp} is the set of input ports and values

OutPorts = {“Busy1”, “Press”}, where YBusy1 = {true,false}, YPress = {1}

Y = {(p,v)|p∈OutPorts, v∈Yp } is the set of Output ports and values

S = {phase, sigma, raw, pressStat, powder, powderStat}

= {“passive”, “active”}×R0+×{1,2,3,4}×{ true, false }×{true, false}×{true, false}

δext (phase, sigma, raw, powderStat, pressStat, e){

 if(msg.port() == PMP_in){
 if(msg.value() == 4 && !powderStat){
 raw=msg.value();
 powderStat = true; // change to powder
 holdIn(active, 0); // change to powder
 } else {
 Display error message administrator should only send an input
of 4.
 }
 }

 if(msg.port() == Busy2){
 if(msg.value() == 1){
 pressStat = true;
 holdIn(active, 0);
 }else if(msg.value() == 0){
 pressStat = false;
 holdIn(active, 0);
 }else{
 Display error message! Simulation should never get here;
 }

 }

}

δint (phase, sigma, raw, powder,powderStat){

 if(this->state() == active){
 if (powderStat && !powder && (raw==4)){

21

 powder=true;
 holdIn(active, powderRoom_time);
 }else{
 passivate();
 }
 } else {
 //this will never happen
 if(this->state() == passive){
 Display error message – simulation should never reach this
 }

 }

}

λ (“active”, sigma, powder, powderStat, pressStat){

 if(!pressStat && powder){
 powder=false;
 powderStat=false;
 pressStat = true;
 send output 1 to Press
 }
 if(powderStat){
 send output 1 to Busy1
 }
 if(!powderStat){
 send output 0 to Busy1

 }

}

ta(“passive”) = ∞

ta(“active”) = {powderRoom_time, 0}

22

Testing Strategy

1. Verify that the input received through PMP_in port is checked to have the

value of 4.

2. Verify that the values received through the port Busy2 is either a zero or one.

3. Verify that the message sent through the port Busy1 is either 0 or 1.

4. Validate that the port Busy1 sends a value of 1 when the powder room starts

the process of converting raw materials to powder.

5. Verify that the port Busy1 sends a value of 0 the moment the powder room is

free.

6. Ensure that processing time of the powder room is 2 hours.

7. Verify that the port Press sends a value of 1 once the powder room has

converted the raw materials to powder and that the press room is free.

23

Press Room

PressRoom = <X, Y, S,δext,δint,λ, ta>

Where

InPorts = {“Press”, “Busy3”}, where XPress = {1}, XBusy3 = {true, false}

X = {(p,v)|p∈InPorts, v∈Xp} is the set of input ports and values

OutPorts = {“Busy2”, “Blister”}, where YBusy2 = {true,false}, YBlister = {1}

Y = {(p,v)|p∈OutPorts, v∈Yp } is the set of Output ports and values

S = {phase, sigma, press, pressStat, powder, blisterStat}

= {“passive”, “active”}×R0+×{ true, false }×{true, false}×{0,1}×{true, false}

δext(phase, sigma, powder, blisterStat, preeStat, e){

 if(msg.port() == Press){
 if(msg.value() == 1){
 powder=msg.value();
 pressStat = true; // change to press
 holdIn(active, 0); // change to press
 } else {
 Display error message the powder room should only send an
input of 1.

 }
 }

 if(msg.port() == Busy3){
 if(msg.value() == 1){
 blisterStat = true;
 holdIn(active, 0);
 }else if(msg.value() == 0){
 blisterStat = false;
 holdIn(active, 0);
 }else{
 Display error message! Simulation should never get here;
 }

 }

}

δint(phase, sigma, powder, press, pressStat){

 if(this->state() == active){
 if (pressStat && !press && (powder==1)){
 press = true;

24

 holdIn(active, pressRoom_time); // change to press
 }else{
 passivate();
 }
 } else {
 if(this->state() == passive){
 Display error message, simulation should never reach this.
 }

 }

}

λ(“active”, sigma, press, blisterStat, pressStat){

 if(!blisterStat && press){
 press=false;
 pressStat=false;
 blisterStat = true;
 send output 1 to Blister;
 }
 if(pressStat){
 send output 1 to Busy2;
 }
 if(!pressStat){
 send output 0 to Busy2;

 }

}

ta(“passive”) = ∞

ta(“active”) = {pressRoom_time, 0}

25

Testing Strategy

1. Verify that the input received through Press port is checked to have the value

of 1.

2. Verify that the values received through the port Busy3 is either a zero or one.

3. Verify that the message sent through the port Busy2 is either 0 or 1.

4. Validate that the port Busy2 sends a value of 1 when the press room starts

the process of converting powder to pill/tablet.

5. Verify that the port Busy2 sends a value of 0 the moment the press room is

free.

6. Ensure that processing time of the press room is 4 hours.

7. Verify that the port Blister sends a value of 1 once the press room has

converted the powder to pill/tablet and that the blister room is free.

26

Blister Room

BlisterRoom = <X, Y, S,δext,δint,λ, ta>

Where

InPorts = {“Blister”, “Busy4”}, where XBlister = {1}, XBusy4 = {true, false}

X = {(p,v)|p∈InPorts, v∈Xp} is the set of input ports and values

OutPorts = {“Busy3”, “Pack”}, where YBusy3 = {true,false}, YPack = {1}

Y = {(p,v)|p∈OutPorts, v∈Yp } is the set of Output ports and values

S = {phase, sigma, press, packStat, blister, blisterStat}

= {“passive”, “active”}×R0+×{0,1}×{true, false}×{ true, false }×{true, false}

δext(phase, sigma, press, packStat, blisterStat, e){

 if(msg.port() == Blister){
 if(msg.value() == 1){
 press=msg.value();
 blisterStat = true; // change to blister
 holdIn(active, 0); // change to blister
 } else {
 Display error message the press room only send an input of 1
 }

 }

if(msg.port() == Busy4){
 if(msg.value() == 1){
 packStat = true;
 holdIn(active, 0);
 }else if(msg.value() == 0){
 packStat = false;
 holdIn(active, 0);
 }else{
 Display error message! Simulation should never get here;
 }

 }

}

δint(phase, sigma, blister, press,blisterStat){

 if(this->state() == active){
 if (blisterStat && !blister && (press==1)){
 blister = true;
 holdIn(active, blisterRoom_time); // change to blister
 }else{

27

 passivate();
 }
 } else {

 if(this->state() == passive){
 This will never happen
 }

 }

}

λ(“active”, sigma, blister, blisterStat, packStat){

 if(!packStat && blister){
 blister=false;
 blisterStat=false;
 send output 1 to FinalPack;
 packStat = true;
 }
 if(blisterStat){
 send output 1 to Busy3;
 }
 if(!blisterStat){
 send output 0 to Busy3;
 }

}

ta(“passive”) = ∞

ta(“active”) = {BlisterRoom_time, 0}

28

Testing Strategy

1. Verify that the input received through Blister port is checked to have the

value of 1.

2. Verify that the values received through the port Busy4 is either a zero or one.

3. Verify that the message sent through the port Busy3 is either 0 or 1.

4. Validate that the port Busy3 sends a value of 1 when the blister room starts

the process of blistering the pill/tablet that were received from the press

room.

5. Verify that the port Busy3 sends a value of 0 the moment the press room is

free.

6. Ensure that processing time of the blister room is 6 hours.

7. Verify that the port FinalPack sends a value of 1 once the blister room has

blistered the pill/tablet and that the pack room is free.

29

Pack Room

PackRoom = <X, Y, S,δext,δint,λ, ta>

Where

InPorts = {“Final_Pack”, “Busy3”}, where XFinal_Pack = {1}, XBusy4 = {true, false}

X = {(p,v)|p∈InPorts, v∈Xp} is the set of input ports and values

OutPorts = { “PMP_out”}, where YPMP_out = {1}

Y = {(p,v)|p∈OutPorts, v∈Yp } is the set of Output ports and values

S = {phase, sigma, blister, packStat, pack}

= {“passive”, “active”}×R0+×{0,1}×{true, false}×{true, false}

δext(phase, sigma, blister, packStat, e){

 if(msg.port() == FinalPack){

 if(msg.value() == 1){

 blister=msg.value();

 packStat = true; // change to pack

 holdIn(active, 0); // change to pack

 } else {

 Display error message blister room should only send an input

of 1.

 }

 }

}

δint(phase, sigma, pack,packStat, blister){

 if(this->state() == active){

 if (packStat && !pack && (blister==1)){

 pack = true;

 holdIn(active, packRoom_time); // change to pack

 }else{

 passivate();

 }

}else{

30

 // Simulation should never reach this

 }

}

λ(“active”, sigma, pack, packStat){

 if(pack){

 pack=false;

 packStat=false;

 send output 1 to PMP_out;

 }

 if(!packStat){

 send output 0 to Busy4

 }

 if(packStat){

 send output 1 to Busy4

 }

}

ta(“passive”) = ∞

ta(“active”) = {packRoom_time, 0}

Testing Strategy

1. Verify that the input received through FinalPack port is checked to have the

value of 1.

2. Verify that the message sent through the port Busy4 is either 0 or 1.

3. Validate that the port Busy4 sends a value of 1 when the pack room starts the

process of packing the blister packs.

4. Verify that the port Busy4 sends a value of 0 the moment the pack room is

free.

5. Ensure that processing time of the pack room is 8 hours.

6. Verify that the port PMP_out sends a value of 1 once the pack room has

packaged the blister packs.

31

Coupled models

Pharmaceutical Manufacturing Plant (PMP)

PMP = < X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>

Where

InPorts = {“PMP_in”}, where XPMP_in = {1, 2, 3, 4}

X = {(“ PMP_in” , v) | v∈XPMP_in}

OutPorts = {“PMP_out”, “Busy1”}, where YPMP_out = {1}, YBusy1 = {-1, 1}

Y = {(p,v)|p∈OutPorts, v∈Yp }

D = {PowderRoom, PressRoom, BlisterRoom, PackRoom}

MPMP = {MPowderRoom, MPressRoom, MBlisterRoom, MPackRoom}

EIC = {(PMP, “PMP_in”), (PowderRoom, “PMP_in”)}

EOC = {((PowderRoom, “Busy1”), (PMP, “Busy1”)),

 ((PackRoom, “PMP_out”), (PMP, “PMP_out”))}

IC = {((PowderRoom, “Press”), (PressRoom, “Press”)),

 ((PressRoom, “Busy2”), (PowderRoom, “Busy2”)),

 ((PressRoom, “Blister”), (BlisterRoom, “Blister”))

 ((BlisterRoom, “Busy3”), (PressRoom, “Busy3”))

 ((BlisterRoom, “FinalPack”), (PackRoom, “FinalPack”))

 ((PackRoom, “Busy4”), (BlisterRoom, “Busy4”))}

Select: ({PackRoom, PressRoom}) = PackRoom

 ({PackRoom, BlisterRoom}) = PackRoom

 ({PackRoom, PowderRoom}) = PackRoom

 ({BlisterRoom, PressRoom}) = BlisterRoom

 ({BlisterRoom, PowderRoom}) = BlisterRoom

 ({PressRoom, PowderRoom}) = PressRoom

32

Testing Strategy

1. Verify that when a value of 1 is passed to PMP through the port PMP_in there

is an output through the port PMP_out after the pre-defined time of 20 hours.

2. Verify that when a value of 1 is passed to PMP through the port PMP_in there

is an output through the port BUSY1 simultaneously.

Factory

Factory = < X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>

Where

InPorts = {“RawMaterials2”, “OrderInfo2”}, where XRawMaterials2 = {1, 2, 3, … , 78,

79, 80}, XOrderInfo2 = {1, 2, 3, … , 18, 19, 20}

X = {(p, v) | v∈XPMP_in}

OutPorts = { “FinishedPro1”}, where YFinishedPro1 = {-1, 1}

Y = {(p,v)|p∈OutPorts, v∈Yp }

D = {FactoryWarehouse, FactoryAdministrator, PMP}

MFactory = {MFactoryWarehouse, MFactoryAdministrator, MPMP }

EIC = {(Factory, “RawMaterials2”), (FactoryAdministrator, “RawMaterials2”)

 ((Factory, “OrderInfo2”), (FactoryAdministrator, “OrderInfo2”))}

EOC = {((FactoryAdministrator, “FinishedPro1”), (Factory, “FinishedPro1”))}

IC = {((FactoryAdministrator, “Send”), (FactoryWarehouse, “Send”)),

 ((FactoryAdministrator, “FacWar_in1”), (FactoryWarehouse,

“FacWar_in1”)),

 ((FactoryAdministrator, “FacWar_in2”), (FactoryWarehouse,

“FacWar_in2”)),

 ((FactoryWarehouse, “FacWar_out1”), (FactoryAdministrator,

“FacWar_out1”)),

 ((FactoryWarehouse, “FacWar_out2”), (FactoryAdministrator,

“FacWar_out2”)),

 ((PMP, “PMP_out”), (FactoryAdministrator, “PMP_out”))

 ((PMP, “Busy1”), (FactoryAdministrator, “Busy1”))

33

 ((FactoryAdministrator, “PMP_in”), (PMP, “PMP_in”))}

Select: ({PMP, FactoryAdministrator }) = PMP

 ({PMP, FactoryWarehouse }) = PMP

 ({FactoryAdministrator, FactoryWarehouse }) = FactoryAdministrator

Testing Strategy

1. Each atomic model (administrator, warehouse, powder room, press room,

blister room and pack room) was tested and verified individually according

to the test strategies defined above.

2. The coupled model (PMP) was also tested and verified separately.

3. The following test condition were used to test and verify the complete

factory model:

1. Send an input of value 10 through the port OrderInfo2 at 00:00:01:01

and send an input of 20 through the port RawMaterials2 at

00:00:02:01

2. Send an input of value 22 through the port OrderInfo2 at 00:00:01:01

and send an input of 19 through the port OrderInfo2 at 00:00:02:01

3. Send an input of value 50 through the port RawMaterials2 at

00:00:01:01 and send an input of 20 through the port RawMaterials2

at 00:00:02:01

Note: All the above test conditions the number of finsihed products in

the warehouse initally was set to 19 and the number of raw materials

in the warehouse was set to 50. In addition, initially the

pharmaceutical plant (PMP) was not processing anything in any of its

components.

34

Testing and Simulation Analysis

Both the atomic and coupled models were all implemented and tested using the

toolkit CD++. The atomic models (administrator, warehouse, powder room, press

room, blister room and pack room) were implemented and tested independantly

before there were incorporated into the coupled models. The PMP coupled model

was also implemented and tested seperately before the it was integrated into the

factory coupled model. Although numerous tests were performed to ensure all

models were behaved as desired, only a selected three test cases are outlined below.

Note that to better understand the tests cases, the block diagram was modified as

seen in Figure 2. This not only ensures that the outputs of the factory coupled model

are outputted, but also shows some processing of the second level models

(administrator, warehouse and PMP). In addition for all the test conditions outlined

below, the number of finsihed products in the warehouse initally was set to 19 and

the number of raw materials in the warehouse was set to 50. Furthermore, initially

the pharmaceutical plant (PMP) was not processing anything in any of its

components.

35

Figure 2: Modified block diagram of Factory model for testing purposes

36

Test Case 1: Valid Inputs

Table 1: Input (event file) and output (out file) displayed in time sequence for case 1 - valid inputs

Input

00:00:01:01 OrderInfo2 10

00:00:02:01 RawMaterials2 20

Output

00:00:00:000 send 104

00:00:00:000 facwar_out1 4

00:00:01:000 pmp_in 4

00:00:03:001 send 190

00:00:03:001 facwar_in1 120

00:00:03:001 facwar_out2 10

00:00:04:001 finishedpro1 10

02:00:02:000 send 104

02:00:02:000 facwar_out1 4

02:00:03:000 pmp_in 4

06:00:02:000 send 104

06:00:02:000 facwar_out1 4

06:00:03:000 pmp_in 4

12:00:02:000 send 104

12:00:02:000 facwar_out1 4

12:00:03:000 pmp_in 4

20:00:01:000 pmp_out 1

20:00:02:000 facwar_in2 181

20:00:02:000 send 104

20:00:02:000 facwar_out1 4

20:00:03:000 pmp_in 4

28:00:01:000 pmp_out 1

28:00:02:000 facwar_in2 181

28:00:02:000 send 104

28:00:02:000 facwar_out1 4

28:00:03:000 pmp_in 4

36:00:01:000 pmp_out 1

36:00:02:000 facwar_in2 181

36:00:02:000 send 104

36:00:02:000 facwar_out1 4

36:00:03:000 pmp_in 4

44:00:01:000 pmp_out 1

44:00:02:000 facwar_in2 181

44:00:02:000 send 104

44:00:02:000 facwar_out1 4

44:00:03:000 pmp_in 4

52:00:01:000 pmp_out 1

52:00:02:000 facwar_in2 181

37

Table 2: Continuation of Table 1

Input

Output

52:00:02:000 send 104

52:00:02:000 facwar_out1 4

52:00:03:000 pmp_in 4

60:00:01:000 pmp_out 1

60:00:02:000 facwar_in2 181

60:00:02:000 send 104

60:00:02:000 facwar_out1 4

60:00:03:000 pmp_in 4

68:00:01:000 pmp_out 1

68:00:02:000 facwar_in2 181

68:00:02:000 send 104

68:00:02:000 facwar_out1 4

68:00:03:000 pmp_in 4

76:00:01:000 pmp_out 1

76:00:02:000 facwar_in2 181

84:00:01:000 pmp_out 1

84:00:02:000 facwar_in2 181

92:00:01:000 pmp_out 1

92:00:02:000 facwar_in2 181

The above input and output was run for 99:00:00:000. This simulation shows that for

‘proper’ inputs (i.e. the order placed for finished products from the distributor is between 0

and 20, and is less than the current number of products that is held in the factory’s

warehouse. In addition the number of raw materials recieved from the supplier is less than

or equal to the available amount of space in the factory’s warehouse for raw materials, and

the input is between the values of 0 and 80) there were no error messgaes displayed, and

the simulation ran till the specified time.

This simulation also shows that factory is trying to replenish it’s finished products stock

from the beignning (00:00:00:000) since the amount of finished products stored in it’s

warehouse was not at full capacity. In addition the input and output times for PMP were

verified to be correct. Lastly, the time at which various values were outputed from the

administrator and warehouse thorugh the ports facwar_in1, facwar_in2, facwar_out1,

facwar_out2 all occured at desiered times. Thus, it is verified that for correct inputs, the

entire factory model behaves as specified.

38

CD++ Console View

Note that there were no errors recieved.

C:\eclipse\workspace\Factory>cd /D "C:\eclipse\workspace\Factory"

C:\eclipse\workspace\Factory>"C:/eclipse/workspace/Factory/simu.exe" -m"Factory.MA" -e"FactoryCase1.ev" -

o"FactoryCase1OUT.out" -l"FactoryCase1LOG.log" -t"99:00:00:000"

CD++: A Tool to Implement n-Dimensional Cell-DEVS models

--

Version 2.1-R.45 Jun-2010. StandAlone with DEVS-Graphs

Daniel Rodriguez, Gabriel Wainer, Amir Barylko, Jorge Beyoglonian

Departamento de Computacion. Facultad de Ciencias Exactas y Naturales.

Universidad de Buenos Aires. Argentina.

Loading models from Factory.MA

Loading events from FactoryCase1.ev

Message log: FactoryCase1LOG.log

Output to: FactoryCase1OUT.out

Tolerance set to: 1e-08

Configuration to show real numbers: Width = 12 - Precision = 5

Quantum: Not used

Evaluate Debug Mode = OFF

Flat Cell Debug Mode = OFF

Debug Cell Rules Mode = OFF

Temporary File created by Preprocessor = /tmp/ta88.0

Printing parser information = OFF

DEVS-Graphs debug level: 0 (No debug info. Use -g parameter to specify debug level)

Starting simulation. Stop at time: 99:00:00:000

00:00:01:001 / orderinfo2 / 10.00000

00:00:02:001 / rawmaterials2 / 20.00000

Simulation ended!

39

Test Case 2: Invalid and Valid values for OrderInfo2

Table 3: Input (event file) and output (out file) displayed in time sequence for case 2

Input

00:00:01:01 OrderInfo2 22

00:00:02:01 OrderInfo2 19

Output

00:00:00:000 send 104

00:00:00:000 facwar_out1 4

00:00:01:000 pmp_in 4

00:00:03:001 send 199

00:00:03:001 facwar_out2 19

00:00:04:001 finishedpro1 19

02:00:02:000 send 104

02:00:02:000 facwar_out1 4

02:00:03:000 pmp_in 4

06:00:02:000 send 104

06:00:02:000 facwar_out1 4

06:00:03:000 pmp_in 4

12:00:02:000 send 104

12:00:02:000 facwar_out1 4

12:00:03:000 pmp_in 4

20:00:01:000 pmp_out 1

20:00:02:000 facwar_in2 181

20:00:02:000 send 104

20:00:02:000 facwar_out1 4

20:00:03:000 pmp_in 4

28:00:01:000 pmp_out 1

28:00:02:000 facwar_in2 181

28:00:02:000 send 104

28:00:02:000 facwar_out1 4

28:00:03:000 pmp_in 4

36:00:01:000 pmp_out 1

36:00:02:000 facwar_in2 181

36:00:02:000 send 104

36:00:02:000 facwar_out1 4

36:00:03:000 pmp_in 4

44:00:01:000 pmp_out 1

44:00:02:000 facwar_in2 181

44:00:02:000 send 104

44:00:02:000 facwar_out1 4

44:00:03:000 pmp_in 4

52:00:01:000 pmp_out 1

52:00:02:000 facwar_in2 181

52:00:02:000 send 104

40

Table 4: Continuation of Table 3

Input

Output

52:00:02:000 facwar_out1 4

52:00:03:000 pmp_in 4

60:00:01:000 pmp_out 1

60:00:02:000 facwar_in2 181

60:00:02:000 send 104

60:00:02:000 facwar_out1 4

60:00:03:000 pmp_in 4

68:00:01:000 pmp_out 1

68:00:02:000 facwar_in2 181

68:00:02:000 send 104

68:00:02:000 facwar_out1 4

68:00:03:000 pmp_in 4

76:00:01:000 pmp_out 1

76:00:02:000 facwar_in2 181

76:00:02:000 send 104

76:00:02:000 facwar_out1 4

76:00:03:000 pmp_in 4

84:00:01:000 pmp_out 1

84:00:02:000 facwar_in2 181

92:00:01:000 pmp_out 1

92:00:02:000 facwar_in2 181

The above input and output was run for 99:00:00:000. This simulation shows how

the factory model handles error. Note thate the first input was an improper input –

i.e. the order placed by the distributor was more than 20 finished products. This is

invalid because the model specifications dictates that no order exceeding 20 can be

placed. However, the second order shows that for a proper input the simulation

runs for specifed amount of time.

This simulation also shows that factory is trying to replenish it’s finished products

stock from the beignning (00:00:00:000) since the amount of finished products

stored in it’s warehouse was not at full capacity. In addition the input and output

times for PMP were verified to be correct. Lastly, the time at which various values

were outputed from the administrator and warehouse thorugh the ports facwar_in1,

facwar_in2, facwar_out1, facwar_out2 all occured at desiered times. Thus, it is

41

verified that for correct inputs, the entire factory model behaves as specified.

CD++ Console View

Note that an error was received (highlighted in red below) – “Error: Factory Administrator

asked to send more than 20 finished products at a time!”. This shows that the factory model does

handle error as specified by above.

C:\eclipse\workspace\Factory>cd /D "C:\eclipse\workspace\Factory"

C:\eclipse\workspace\Factory>"C:/eclipse/workspace/Factory/simu.exe" -m"Factory.MA" -

e"FactoryCase2.ev" -o"FactoryCase2OUT.out" -l"FactoryCase2LOG.log" -t"99:00:00:000"

CD++: A Tool to Implement n-Dimensional Cell-DEVS models

--

Version 2.1-R.45 Jun-2010. StandAlone with DEVS-Graphs

Daniel Rodriguez, Gabriel Wainer, Amir Barylko, Jorge Beyoglonian

Departamento de Computacion. Facultad de Ciencias Exactas y Naturales.

Universidad de Buenos Aires. Argentina.

Loading models from Factory.MA

Loading events from FactoryCase2.ev

Message log: FactoryCase2LOG.log

Output to: FactoryCase2OUT.out

Tolerance set to: 1e-08

Configuration to show real numbers: Width = 12 - Precision = 5

Quantum: Not used

Evaluate Debug Mode = OFF

Flat Cell Debug Mode = OFF

Debug Cell Rules Mode = OFF

Temporary File created by Preprocessor = /tmp/ta90.0

Printing parser information = OFF

DEVS-Graphs debug level: 0 (No debug info. Use -g parameter to specify debug level)

Starting simulation. Stop at time: 99:00:00:000

00:00:01:001 / orderinfo2 / 22.00000

00:00:02:001 / orderinfo2 / 19.00000

Error: Factory Administrator asked to send more than 20 finished products at a time!

Simulation ended!

42

Test Case 3: Invalid and Valid values for RawMaterials2

Table 5: Input (event file) and output (out file) displayed in time sequence for case 3

Input

00:00:01:01 RawMaterials2 50

00:00:02:01 RawMaterials2 20

Output

00:00:00:000 send 104

00:00:00:000 facwar_out1 4

00:00:01:000 pmp_in 4

00:00:03:001 facwar_in1 120

20:00:01:000 pmp_out 1

20:00:02:000 facwar_in2 181

The above input and output was run for 99:00:00:000. This simulation shows how

the factory model handles error. Note thate the first input was an improper input –

i.e. the amount of raw materials recieved by the factory from the supplier exceeded

the factory’s warehouse capacity. This is invalid because the model specifications

dictates that the factory will not accept a shipment of raw materials unless it has the

capacity to store the entire shipment. However, the second order shows that for a

proper input the simulation runs for specifed amount of time.

This simulation also shows that factory is trying to replenish it’s finished products

stock from the beignning (00:00:00:000) since the amount of finished products

stored in it’s warehouse was not at full capacity. In addition the input and output

times for PMP were verified to be correct. Lastly, the time at which various values

were outputed from the administrator and warehouse thorugh the ports facwar_in1,

facwar_in2, facwar_out1, facwar_out2 all occured at desiered times. Thus, it is

verified that for correct inputs, the entire factory model behaves as specified. In

addition unlike the previous two test cases, the factory administrator only sent one

batch of products to be manfucatured. This is because no orders from the

distributor were placed and the current number of finsihed products held in the

warehouse is 19 units.

43

CD++ Console View

Note that an error was received (highlighted in red below) – “Error: Supplier should not

send more raw materials than capacity dictates!”. This shows that the factory model does

handle error as specified by above.

C:\eclipse\workspace\Factory>cd /D "C:\eclipse\workspace\Factory"

C:\eclipse\workspace\Factory>"C:/eclipse/workspace/Factory/simu.exe" -m"Factory.MA" -

e"FactoryCase3.ev" -o"FactoryCase3OUT.out" -l"FactoryCase3LOG.log" -t"99:00:00:000"

CD++: A Tool to Implement n-Dimensional Cell-DEVS models

--

Version 2.1-R.45 Jun-2010. StandAlone with DEVS-Graphs

Daniel Rodriguez, Gabriel Wainer, Amir Barylko, Jorge Beyoglonian

Departamento de Computacion. Facultad de Ciencias Exactas y Naturales.

Universidad de Buenos Aires. Argentina.

Loading models from Factory.MA

Loading events from FactoryCase3.ev

Message log: FactoryCase3LOG.log

Output to: FactoryCase3OUT.out

Tolerance set to: 1e-08

Configuration to show real numbers: Width = 12 - Precision = 5

Quantum: Not used

Evaluate Debug Mode = OFF

Flat Cell Debug Mode = OFF

Debug Cell Rules Mode = OFF

Temporary File created by Preprocessor = /tmp/t128c.0

Printing parser information = OFF

DEVS-Graphs debug level: 0 (No debug info. Use -g parameter to specify debug level)

Starting simulation. Stop at time: 99:00:00:000

00:00:01:001 / rawmaterials2 / 50.00000

00:00:02:001 / rawmaterials2 / 20.00000

Error: Supplier should not send more raw materials than capacity dictates!

Simulation ended!

44

Bibliography

[1] James A. Tompkins, "The Challenge of Warehousing," in The Warehouse

Management Handbook, James A. Tompkins and Jerry D. Smith, Eds. Raleigh,

North Carolina, United States of America: Tompkins Press, 1998, ch. 1, p. 2.

[2] Gabriel A. Wainer, "Introduction to the DEVS Modeling and Simulation

Formalism," in Discrete-event modeling and simulation: a practitioner's approach.

Boca Raton, United States of America: CRC Press, 2009, ch. 2, pp. 35-54.

