ﬁﬂ]‘][—‘j 11 Department of
@ ':“’w-,a.'-'i{-’n Systems and g’.‘,om puter

Cngineeting

SYSC 5104 METHODOLOGIES FOR DISCRETE EVENT MODELLING AND SIMULATION

Assignment #2

Part #2

CELL-DEVS MODELLING OF RULE 150

Student # 100868021
Colin Timmons

15 November 2011

TABLE OF CONTENTS

1. Y 2 3
1.1 IDENTIFICATION ..ttuuneetuuusetuuueeettuneeteuaeeetunaeetsnasetansseesnnseasasseeesnseessnnsseesnsseeesnssesssnsseensnnseeesnnseeesnnseennnneens 3
2. Y0 I | 4
2.1 FORMAL SPECIFICATION «.ettuuuieeeeeeettuuuiaeeeeeettuaasaeeeeeetasunasseeeeessssannseeeeaessssnnseeeeeessssnnsnseeeseesssnnnseeeeeeeessnnnnens 4
2.2 NEIGHBOURHOOD LIST «etuiieiiiiet ettt et ettt e e et e et e e et e e e et e e e et e e eeba e e e aba e e eeaan e aesansaeasnnaeesnnsaensnnssennnnnns 5
2.3 DETAILED DESCRIPTION ¢ tettuutettuueettuueettuneeettnseeetuaseeetsaseeesasasessnsseessssseesnseessnsseeesnsseensnsseresnsseeesnseeennnneees 6
2.4 IMPLEMENTATIONuvteuteeuseesseesseesseesseesseesessseesseesseesseassesssesssesssessssessesssssssesssesssesssesssesssesssesssesssesssessesssenns 7
2.5 CELL-DEVS COUPLED IMIODEL . tttttttttttttteeteeeeseeseseeeeeeeeeessesseseseeeeeeeeeee s e e s s e s e e e e s e s e e e e s e s es e e e e sssesesnsnnnnnnnnnnnnnns 8
2.6 IMPLEMENTATION PROBLEMS ...veeuveeuteesteesseesseesseesseesseesseesseesseesseessessseessesssesssesssesssesssesssesssesssesssssssesssesssesssenns 9
3. BOOLEAN RULE GENERATOR.......cccctuuuiiiiniiimmmnesssieniimesssssssissiimmsssssssssstimmssssssssssstssssssssssssssssssssssssssssssssssnss 10
4. TESTING ..coveiiiiiiiiiinniiiiiniiiienueiissiiresssssssssstimesssssssssssttressnns 13
4.1 TESTING DETAILS eiieeieeeee ettt e aaaaaaaaaaaaaaaaaaaaaaaaaaeeaaaeaaeeeeaeeaeaeeees 16
4.1.1 30 DY 30 OULDUL ...ttt e aaaaaaaeaaaeassaasessaassaaaaaaasaaasaaaaaasaaaaaaaeeeees 17
4.1.2 100 DY 100 OULDUL......eveeeeeeeieeeeeeeesissssssaessssasessnssnnnnsssnnnssnnsnssnnnnsnnnnnnnnnnnnnnnn 17
4.1.3 200 DY 200 OULDULcv.eeeeeeeeseeeeseeeeeeeeeeeeeseee e eee et e e s tee st e e e e eeee s st s eee e eseesasssesees s seseseesnsesneens 17
4.1.3 500 DY 500 OULPUL ...t e e e ettt e e e e ee eeeeeaaasaeaaaesaaaaaesaaasaaaaaaaaaaaaaaaaaeees 17
4.1.4 BOOIEAN RUIE GENEIGLONeevveeeeeiiiiieee ettt e et e e e e ettt e e e e s esastaaeeeeensssannes 18
TABLE OF FIGURES

Figure 1. Boolean Model RUIE 110[2]uuuuuuuuuuuuuuniuniiie s 3
Figure 2. 600 by 600 RUIE 110 IMOEIuuuuueiiiiiiiiiii s 6
Figure 3. BOOIEAN RUIE GENEIATONuuuiueiiiiiiiii s 10
Figure 4. Boolen Rule GeNerator OULPUL..........uuuuuuuuueii s 11
Figure 5. 75 by 75 Final Drawing Output RENAEIINGuuuuuuuiei s 14
Figure 6. Cell-Devs Animation of @ 75 by 75 INteration ... 15
Figure 7. Vineyard Appearance Of RUIE 110uuuuuuuuuuuumuuuiiii s 16
TABLES

Table 1. NeighbOUrNOOd LiSt.......uuuueiiiiiiiiiiiiiii e nan 5
Table 2. RUIE 110 BiNary LOZIC.....uuuuuuueuiuiiiiiiiiiieiiiit e nan 5
Table 3. Row Comparison between CD++ Modeller and the Boolean Rule Generatorcccccceeeeennnn. 11

1. Partl

1.1 Identification

The cellular automata that will be modelled for this assignment is gathered from Stephan Wolfram’s
website (accessed 30 Oct 11).[1] In particular, the model to be implemented into Cell-Devs is Boolean
model - Rule 110. This modelling of information is more designed towards developing a thorough
understanding of the modelling tool and its aspects rather than the complexity of its model.

Figure 1. Boolean Model Rule 110[2]

Current cell 111 | 110 | 101 | 100 | 011 | 010 | 001 | 000
New state of centre cell 0 1 1 0 1 1 1 0

In the future, after the assignment delivery, | would like to build on the amount of effort required and
recoding necessary for the tool to construct increasing multiple dimensions with this simple rule as an
example.

[1] http://www.stephenwolfram.com/publications/recent/architecture/
[2] http://en.wikipedia.org/wiki/File:CA rule110s.png

http://www.stephenwolfram.com/publications/recent/architecture/
http://en.wikipedia.org/wiki/File:CA_rule110s.png

2. PartlIl

2.1 Formal Specification

The formal specification <X, Y, S, N, type, d, 1, 8int, dext, A, ta> for the Cell-DEVS Rule 110
model is defined as follows:

X ={o}
Y = {2}
s={[0,1]}

N = { (010)1 (_1’_1)’ (_1’0)! ('1!1) }
Type = transport
d=10ms

Sint, dext, A and ta are defined using Cell-DEVS specifications

2.2 Neighbourhood List

(-1,0) | (0,-1) | (1,1)
(0,0)

Table 1. Neighbourhood List

As Table 1 demonstrates, the neighbourhood of the cell is the immediate upper left, upper centre and
upper right neighbours. The value of the contents of these cells determines the value of the desired cell.

Rule 110 is called 110 because the active or ‘1’ condition of the neighbourhood cells can be related to
their combined binary value as demonstrated in Table 2.

111

110

101

100

011

010

001

000

0

1

1

0

1

Table 2. Rule 110 Binary Logic

The possible output states in binary 01101110 = 0*2A7 +1*2/6 + 1*2/5 +0*2/4 +1*2/3 +1%2/2 +1%2/1
+0*270 =110. Recursively, Rule 110 is an elementary cellular automata and each row develops from the

previous row. Continuing this process, the developed automaton generates into a class 4 behaviour that
is neither stable nor chaotic.

2.3 Detailed Description

Rule 110 has been described as capable of universal computation. At its simplest, Rule 110 is a simple
Turing machine, capable of universality which means that many of their properties will be non-
decidable, and not amenable to closed-form mathematical solutions.

The function of the universal machine in Rule 110 requires an infinite number of localized patterns to be
embedded within an infinitely repeating background pattern. The background pattern is fourteen cells
wide and repeats itself exactly every seven iterations. The pattern is 00010011011111.

Three localized patterns are of particular importance in the Rule 110 universal machine. They are shown
in the image below, surrounded by the repeating background pattern. The leftmost structure shifts to
the right two cells and repeats every three generations. It comprises the sequence 0001110111
surrounded by the background pattern given above, as well as two different evolutions of this
sequence.[3]

As shown in Figure 2, these patterns are present and highlighted in orange and red respectively.

I Cellular Automata [ﬂ_hr

Figure 2. 600 by 600 Rule 110 Model

The yellow circle represents the interaction of these two structures as they pass through each other
without interference to produce a third unique structure, deemed as self-reproduction.

[3] http://en.wikipedia.org/wiki/Rule 110

http://en.wikipedia.org/wiki/Rule_110

2.4 Implementation

Since Rule 110 is a binary combination of the previous neighbour’s data value, the binary sequence of
the neighbour’s data value were placed into a Karnaugh Map to reduce the equation into its simplest
representation as a product of sums.

Thus, letting A represent the upper left neighbour
B represents the upper centre neighbour
C represents the upper right neighbour
Rule 110 logic was replaced from:
Rule 110 = ABC+AB|C+A|BC+A|B|C+ |ABC+ |AB|C+ |A|BC+ |A|B|C
to
Rule 110 = |AB + |BC + B|C.
In terms of CD++, this rule was rewritten as
rule:110{(((-1,0)=0and(-1,1)=1)or((-1,-1)=0and(-1,0)=1)or((-1,0)=1and(-1,1)=0))}

Rule 110’s state is either a 1 or a 0. The opening row has the initial condition that all data values are 0
except for the rightmost digit which is a 1. This implementation was the simplest to clearly demonstrate
patterns listed in Section 2.3. With this input, the data evolves into the pattern shown in Figure 2.

In order to perpetuate Figure 2, a transition rule was implemented that the cells retain their changed
state from a non-determined state (i.e. 0 or non-calculated) to a 1. This rule was

rule:{(0,0) }100{t}

2.5 Cell-Devs Coupled Model

Thus the coupled model description for the Rule 110 was as follows. Note the comments on dimensions
as the model is set up for 100 iterations:.

[top]
components : RulellO

[Rulell0]

type : cell

%$Change dimensions for different size of iterations

dim : (100,100)

delay : transport

defaultDelayTime : 10

border : nowrapped

neighbors : RulellO(-1,-1) Rulell0(-1,0) RulellO(-1,1) Rulell0(0,0)

initialvalue : O

%change Rulell0O.val for different dimensions as spcified above
initialCellsValue : RulellO.val

localtransition : RulellO-rule

[RulellO-rule]

o°

Karnaugh mapping the boolean equation reduces it from

|A|BIC + |A|IB C + |ABIC+ |ABC+ AIBIC + A|IBC+ AB|C+ A
C
where A = (-1
where B (-1
where C = (-1
to

|IBC + |AB + B|C
rule 1 10{ (((-1,0) =0 and (-1,1) =1) or ((-1,-1) = 0 and (-
1,0) =1) or ((-1,0) =1 and (-1,1) =0)) }
rule { (0,0) } 10 { t }

o©

4

)

Il

~
= O
vv'_\

4

o0 o0 d° o oe T

2.6 Implementation Problems

CD++ on the eclipse platform, was able to produce 200 iterations of Rule 110 fairly fast. At this level, the
structures listed in section 2.3 were not fully visible; however, the gliders or spaceships pattern was
developing. Raising the iteration above 400 took the CD++ simulator 6 to 8 hours on a 17-2600K over
clocked to 4.2 GHz with 16 Gig of memory. The transition was lowered to 0.01 ms in order to attempt to
speed up the processing time; however, though beneficial to the execution time, the
Rule110DRW_3_log produced an immediate transition time causing the drawlog executable to produce
only the final state output rather than the transitional growth diagrams.

The eclipse platform installed with CD++ Builder is a virtual 32 bit machine that has a limited default java
heap space of 40 Megs of memory. As this assignment required a default configuration, the testing time
was not conducive to multiple test cases of high resolution. Raising the iterations further caused, out of
memory problems with eclipse and termination of the platform. Specially, the size formatting of the drw
files were unable to be rendered using the text editor in java. Microsoft wordpad was used instead
because of this limitation.

As the Boolean logic of Rule 110 and its accompanying neighbours was logically easy to program, a
Boolean rule generator was coded that simplified and produced the same output using the pixels of a
dialog to represent the states changes for low and high end resolution and is discussed next.

3. Boolean Rule Generator

A Boolean logic generator was created using Visual Studio 2010 to verify that the rules in CD++ were

correct and that the system would develop correctly to overcome the speed limitation of the eclipse
platform. The data between the two systems, i.e the drw output to the log output representation were
compared. In the random samples checked, the two outputs were examined and verified as correct and

identical.

The Boolean Rule Generator can produce any of the 256 possible combinations besides Rule 110 and is

submitted as a development tool for cellular automata.

The setting of the pixels was used as compared to z-buffering a bitmap to show the developmental

growth of the cellular automata rather than the final output. The program is designed to increase the

dialog size to match the size of the rows and columns.

-
. Rule Generator - Colin Timmaons

(o |

Rule Rows

Columns

110 500 500

First Row
Value

010110011101110000001000001111010001111011113000101111100010001001001111001001
101011100001111001001101011000110111001001100111100010110011100010001011011011
011010111030010100011111000011001000111000100011101111000101010010100100110011
111110011100111000111110111110110100011100001110000100101111010011110110010011
100001101110010110100110110001110001011111001100010001111111010001001010001001

Controls

Populate Random | Generate ... |

Set Colour Clear Display Cancel

Populate 0,1 | Cydic Pattern | [Loagging

Figure 3. Boolean Rule Generator

10

r
! Cellular Automata

Pl P Fm (N |[Fe |

Figure 4. Boolen Rule Generator Output

Comparison example at line 28, using cd++ produced the first row output while the Boolean Rule
generator logger produced the second row.

0/1|2|3|4|5|6/7|8/9|1|1|1|1|1|1|1|1|1|1]|2|2|2|2|2|2|2|2]|2|2

0(1(2|3|4|5|6|7|8|9|0|1|2|3|4|5|6|7|8]9

o|1/1|0f1/0f/0l0Ofl2/1|2|O|1|1|1|0O|21|1|O|1|O|O|1|1|1|O|O|1 1|0

o|1/1|0f1/0f/0l0Ofl2f/1|2|O|1|1|1|0O|1|1|O|1|O|O|1|1|1|O|O|1 1|0
Table 3. Row Comparison between CD++ Modeller and the Boolean Rule Generator

The neighbours in the Boolean Rule Generator are set for the previous neighbours. as shown in the
snippet of code to determine the rule and the neighbours’ values.

11

LITTTTTITT 7077777707777 7777771777777777777

//

//

Method: DetermineRule

Attributes: int - position of the cell in the vector

Function: Using the rule entered on the dialog
the method compares the loading of the
previous row cells with the present cell
in question and returns true for
population of the vector if the
conditions are correct

Return: bool - true if successful

[1717777777777777777777177777777177771777177777
bool CRuleDlg::DetermineRule(int nValue)

{

int nBinary = 0;

int mask = 1;

char nTempChar[3] = {0,0,0};

char nTempNeighbour[3] = {0,0,0};

//The value of each column for the row was passed through from the vector
//Assign stack memory to the heap memory value for speed
nTempNeighbour[2] = vecRow.at(nValue - 1);

nTempNeighbour[1] = vecRow.at(nValue);

nTempNeighbour[@] = vecRow.at(nValue + 1);

//Range checked at the endfocus method but safety first
if(nRule <= Q)
return false;

//check the value of each bit

for(int i = 0; i < 8; i++)

{
//determine if a one is present in the rule
nBinary = nRule & mask;

if(nBinary)

//depending on the position the neighbour will have a specific value
m_Neighbour[2] (i»>=4)?»1: 0;

m_Neighbour[1] (i&0x2)?1: 0;

m_Neighbour[0] (i&09x1)?1: o;

//Now compare to actual data through memcmp to see if the value

matches the theory

char nCompare = memcmp(nTempNeighbour, m_Neighbour, sizeof(

nTempNeighbour));

//memcmp returns @ if true so return success
if(@ == nCompare)
return true;
}
//Set the mask higher to get the next bit
mask <<= 1;
}
//no valid comparison so return false
return false;

12

4. Testing

Samples of various dimensions were examined. Concise generation of output structure and their
transition and development was best developed by a single setting of a one value input on the top row.

For example, the final output of the drw file for a 75 by 75 cellular automata is as follows. The
formatting has been modified for readability.

Line : 24655 - Time: 00:00:00:740
012345678901234567890123456789012345678901234567890123456789012345678901234

11111 |

11 1|

111 11 |

111 111 1
1111111 1 1

11 111 1

111 111 1

11 1 11111 |
11111 11 1
11 1111 11 1|
111 1111 1 111 |
11 1 11 11111 1 |
11111111 11 111 |

SOOI NI WN—O

—

11 1111 11 1 |

111 11 1 11111 1|

111 111 1111 1

211 11111 11 111 1 11 |
11 1 11111 1 11 111 |

23] 111 11 11 11111111 1 |
11 1 111111 11 111 |

25 1111111 1 111 11 1 |
11 1 1111 1 11111 |

111 11 11 111 11 11
111 111 111 111 111 11 |
11111 11 111 111111 11 1 111 1|

11 1 11111 111 11111111 1 |
111 1111 111 1 11 111 |
|
|

NG AN ~ AL L)L LWL W LW [OSH S O S O] [\ [\ DO = = = = = =
NN RV N NS} SOOI AW SOOI ~ S} SOOI N AW~

311
11111 1 11 111 111 11 1
11111111 11 11111 1 111 11111
11 111111 11111111 11 1|
111 11 1 11 1 111 11 |
111 111 11 111 11 11 1 111 1|
11111 111 111111 1111111111 1 1
11 1 11111 11 111 11 111 |
111 11 11 1111 111 111 11 1 |
11 1 111111 11 1 11111 11 1 11111 |
411 1111111 1 111 1111 111111 11 11
11 1 1111 111 1 11 1 111 11 |
43| 111 11 11 111 1 11 111 11 111 111 |
111 111 111 11 11111014601°' 1 111 1111111 1 |
11111 11 111 111111 111 11 1 11 111 |
11 1 11111 111 1 11 111111111 11 1 |
111 1111 111 1 11 11111 1 11111 |
48| 11111 1 11 111 111 11 1 11 11 I

13

491 rrrrrrar 11 11111 1 111 111 11 111 111 11
501 11 111111 11111111 11 1 111 11 111 1 111
511 111 11 1 11 11111111 1 11111 11111 1
521 111 111 11 111 11 111 11 111 111
53| 11111 111 111111 111 111 111 111 111
541 11 1 11111 11 111 111 1111111 1 11111 11111
551 111 11 11 1111 111 11111 11 11111 111 1
561 11 1 111111 11 1 11111 11 1 111 11 1 111 11
57| 1111111 1 111 1111 1111 11 11 1 111 11 11111 111
581 11 1 111y 1111 111 rrrrrrrro 111 11111 111 1
591 111 11 11 111 1 11 111 1111 1 1111111 1 11 111
60| 11 1 111 111 11 111111t 111 1 1111 1 11 11111 1
61| 11111 11 111 111111 111 1 11 11 1 11 11111 111
62| 11 1 11111 111 1 11 111111 111 11 11111 1 111
63| 111 1111 111 1 11 11111 1 11 1111 11 1 11 11111
64| 11111 1 11 111 111 11 1 11 11111 1 111 11 11111 1
651 1111111 11 1111 1111 111 11 11111 1 1111 1 11111 1 11
66| 11 111111 11y 111 111 11 1 1111 11111 1 11 111
67| 111 11 1 11 rrrrrerr rrrr 11 111 11 1 11 11111 1
68| 11 1 111 11 111 11 111 1 111111 11111 11 11111 111
69| 11111 111 11111 1 111 11 1 1111 111 1 11111 1 111
701 11 1 11111 11 111 11 1 Irrrrrr 1 111 1111 1 11 11111
711 111 11 11 111 111 11111 11 111 1111111 1 11 11111 1
72 1 11111 111 11111 11 1 111 11111 11 1111 11 11111 1 11
731 1111111 1 111 1111 1111 11 11 1 11 1111 11 111111 1 11 111
74111 1 (rrr 1111 11 1 11rrrr1roo111o11 1 111 11 I 11 11111 1

o

Figure 5. 75 by 75 Final Drawing Output Rendering

14

Modify Palette

Square

-

Show 2D Only

Available Selected

Rule110DRW_4 |Rule110DRW_4

[| Show Values

[] Show Names

Apply

Delay [10_ |

74

Time | 00:00:00:740 |

Figure 6. Cell-Devs Animation of a 75 by 75 Interation

15

Any other input only causes the output to present a “vineyard appearance” as shown in Figure 5. This

was generated from a random generation of numbers for the top row by the Boolean Rule Generator for

high resolution as discussed above.

. Cellular Automata

-

B Oy
Wby ek b byl
W gt Eha iyt
Wk gkl kb it KRt it
e & ket oy uhet
gt b by ! byt
Rhukb e by by it Py
Aatute et et et Catetata et et
Kbk kb bk by
Aatututity! ettt
P i

Rk

e
Py
el

u!
r

u
Kbkt
abpb bk bty
el s LR L A
by kb ek b by

SRR

T
ey
Pl
P
ehtat e
et

[
Kb Rk kil
ehpkiby byl
Aatu et
!

d L) bk
et Ty
T T T T T e ey
T T T T T ey
P T P D T e P T Ty
P T D P T e P T Ty
T T T T T T T T Ty
Py Py RhLbR L
i T Sututatat ety
u u! bubub by
Lhuk

whu!

! i AT

LEREY o
Rhikpby kbbb bk kb Khpb ik gk
AR b b by i
whpby by b bbb bk by by by Rk, by byt
Ehah ik bk b b kbR Ehpkpb bk b byl
P e P e e e e e e e P,
ehahRp e b k! Rt !
Wby Ry kbbbl T T T T Ty
P T T P T T A P e D P Ty
KRk b bk bk oo
Ay ARt
Whpky kbbb by bk b b b b R
ehpbpb bbby bbby by bk by by
et b etet Aatututnh Aatetutebet ettt et
e Rbpk b bbby b by
ek bbb bbby byl abpbpk bbby bbby by
KhRb bk bk) Khpbpbi b kbbb bbbyt
Rt RhRE LR ! ut
ek by LR Rk
o phpbipb bbb bbb)
Ay !
ey

T e LiLLRR Lt LRt
R L L e

AL LT T e o ey

Lhmi i T

5 Lyl

: 3

Y

Lekit
LRELERL e
KiLiRET bR

u!

ok R
T
T
: Leiekatet

u!
Ty
PrT,
TR T T T T
G L
TS T T T Ty
et et
gk uE st et
B e
ahph bk,
T T
Ty
ahLk b k]
P T e o e
A P P e e T T T T T Ty
g e e T T

B B

[y

o
L
Oy
sttt et e bttt bk
Ry by b
wisiuiuiebchukuh)
bbby byl rr.ﬂrﬂrrr..rr.
AR RERTRERY rr..r.rrr.rrr.
LRt LR
Lttt
iy e iy
oy Py P

[y

Py
oy

e

Py e
ek bbby ek by by!

Ehakk bk by Khpbik by
Khpb g b bk byl Kb pb bbby
WhRbu Ry RhRki Ry
ek bk bbb bkl Rk,
Kbk bk kb Ehpkihy!
ettt e e e whLY
Ehpkik) KRyt

Autute!

Makibubu bbbk bk
phpbpby bbb by b b by
ahpbp bbb bbb bbbyt
pepbpb bbb b b bbb bk
et L oy
whpbp b bbb b i
phpbpbpbpby bbby b bbby byl
P e e

Rbpbpby bbb by
ettt
pbpbpby by bbb by by
o R e

k! wiph !

Ltk
o S
Lat

[e

et

oy

Lkt
ooy
LRLELRLLL
Luiiuts)
o

ey
R T

okttt et et

Lk byl
GEkibpb kb bk
ARk !
ahpk b bbb bbby byl
Khpbk bbby)
KhRb bbb bbby
bakhp b by
Ehpkik) P
Khpbyh by u
whak)

S
whututy!
Lebubutn!

ehet ettt e e e e e e e !
u! ey bbb bkl
LiheRetitil et eR it et L
T T T T T T e s
Ehahih bk b bk
Kbk by Kbk by Khpb kb by
Rt Rt RhRb L
KRk bbby Rk bbby)
ahpbpk bbby Khpbyb by bbby by
& Kbty Khpb bbb by by
it [y P Uy
Ak bkl Wby kbl bk by
abpbybp bbby bbby bk bk bbby
P T T T T T P DT,
P i bbby

w! o oy

ey
iy !

u! ! u!
!
L

n! n!

iy
wht
!

oy

.t

etehebeeute et
ettt !
T o
etutebehette ettt
L e e ey
ehuhutatat b it
P
ehehetetetettu ettt
O ey
P Ty
ehuhe! RhLh

Vineyard Appearance of Rule 110

7

igure

F

Testing Details

4.1

The testing files for the Rule 110 Cell-Devs are stored as bat files as is the drawlog executalbe.

16

4.1.1 30 by 30 Output

The Rule110_30by30.bat file creates a 30 by 30 simulation output while the Rule110_30by30_drw.bat
produces the corresponding drawlog output.

The Rule110.val file is set to (0,29) = 1.
The Rule110.ma is dimensioned to dim : (30,30).
The log files required for this bat file are Rule1100UT.out and Rule110LOG.log.

4.1.2 100 by 100 Output

The Rule110_100by100.bat file creates a 100 by 100 simulation output while the
Rule110_100by100_drw.bat produces the corresponding drawlog output.

The Rule110.val file is set to (0,99) = 1.
The Rule110.ma is dimensioned to dim : (100,100).
The log files required for this bat file are Rule1100UT_1.out and Rule110LOG_1.log.

4.1.3 200 by 200 Output

The Rule110_200by200.bat file creates a 200 by 200 simulation output while the
Rule110_200by200_drw.bat produces the corresponding drawlog output.

The Rule110.val file is set to (0,199) = 1.
The Rule110.ma is dimensioned to dim : (200,200).
The log files required for this bat file are Rule1100UT_2.out and Rule110LOG_2.log.

4.1.3 500 by 500 Output

The Rule110_500by500.bat file creates a 500 by 500 simulation output while the
Rule110_500by500_drw.bat produces the corresponding drawlog output.

Note: This will take many hours to process.
The Rule110.val file is set to (0,499) = 1.
The Rule110.ma is dimensioned to dim : (500,500).

The log files required for this bat file are Rule1100UT_3.out and Rule110LOG_3.log.

17

4.1.4 Boolean Rule Generator

The Boolean Rule Generator executable can generate both a log output comparable to the Cell-Devs
drawlog executable and a visual representation as per the Cell-Devs Animator simultaneously. The first
row can be manually entered, generated as a random value of 0 or 1 for the number of columns, or a
specified right hand value of 1.

The generator has the capability to change the colour of the presentation and clear the display. If this is
not desired the generation command button will repopulate the dialog with the last values of the last
row of the dialog. This presents the opportunity to change the cellular automata rule within having to
enter the data values.

The Boolean Rule generator can generate the output for any of the 256 rules based on the upper
neighbours values. As such a cyclic generation command button was added to provide an automatic
generation capability. The cyclic generation is based on the rule entered or if blank defaulted to zero
and increased. The pattern is then generated and continuously until Rule 255 is reached. The generator
is multi-threaded to allow for user interaction with the parent dialog.

18

