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this study is to model these migration patterns created by the interaction between
changes in the social structure of households and the positive or negative social attractors
in the neighborhood. Specifically, this study links residential mobility to the dynamic
interplay between the micro-environment existing within a household and the meso-
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Computational modeling environment that structures a neighborhood. The cellular automata model developed in
Residential migration this study incorporates transition rules which govern households in their decision to
Crime attractor move. The results represented by a cellular grid demonstrate that residential mobility is
Urban density significantly influenced by density rates, individual household factors and neighborhood

attractors. Three contrasting scenarios are presented in this paper to illustrate the impact
of occupancy, density, neighborhood social influence, and the effect of a conglomeration
of negative social attractors in a neighborhood. Future iterations of this model will
incorporate census and crime data in order to test whether the rules governing this model
are an accurate reflection of residential mobility in a mid-sized Canadian city.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Residential urban migration is an integral aspect of city and crime control planning. This type of movement does not
occur uniformly over time and space, rather there are specific social dynamics occurring within cities that render certain
areas more transient and others more stable (see [1-8]). Furthermore, other social problems overlap the transient areas,
whereas there are fewer issues in stable neighborhoods (see [9,3-6]). For instance, there is more crime in areas where there
is high residential mobility, but less so in established neighborhoods (see [3,4]). While this is a simple illustration of the
social problems related to higher residential mobility, the underlying mechanisms of urban migration continue to be of
concern to a number of social agencies. The growing availability of data in this area provides researchers with the empirical
knowledge to further investigate this urban phenomenon (see [10-16]). In order to effectively study the complex social
processes involved in urban migration, a non-linear mathematical method needs to be applied (see [17-22]).

Since the beginning of the 20th century, as American cities began to expand at a rapid speed, criminologists turned
their attention to urban migration because they found that it followed the aggregate crime patterns in a city (see [23,5,6]).
In 1925, Park and Burgess developed the first concise criminological model to describe the relationship between urban
migration and crime. The concentric zone model was derived from data collected in the city of Chicago and as such followed
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the urban development occurring in that city [6]. As an American city grows, the more affluent move to the periphery of the
city while poorer residents stay close to the central business district where they have easier access to transit and work [6].
Social disorganization is a centrally important concept emerging from this model [6]. It is a reciprocal social process which
accompanies the urban growth of American cities and with disorganization comes reorganization [6].

The increasing availability of data in the 1940s allowed McKay and Shaw (1969) to apply juvenile delinquency rates
to the Concentric Zone Model in Chicago [5]. They found that these rates followed the zones and delinquency was more
concentrated in zones of transition where social disorganization was physically apparent [5]. These results were also
reflective of delinquency patterns in other cities. The authors conclude that crime is most prevalent in transitional zones
where the majority of delinquents reside [5]. Transitional neighborhoods are defined as inner city areas where population
movement is high, where there are more individuals who have lower education and median family income, and where
housing is in a deteriorated state [5].

During the 1980s criminologists reviewed the link between crime and urban migration (see [1,2,7]). For instance,
Brantingham and Brantingham (1984) study the crime patterns of several cities [2]. They see the Park and Burgess Concentric
Zone Model as a compelling explanation for crime rates in urban areas from the 1930s to the 1950s [2]. However, the zones are
too large a unit to properly analyze and even McKay and Shaw abandoned this model in their later research [2]. The areas of
social disorganization are sometimes dispersed throughout the city and the patterns are not concentrically predictable [2].
Rather, smaller urban areas are better suited units with which to investigate urban crime patters [2]. The Brantinghams
found that three structural factors determined higher crime rates: residential mobility, low social economic status, and
ethnic heterogeneity [2].

The reciprocal process of social disorganization and reorganization is examined by Sampson and Groves (1989). In their
study, they build on the determinants of social disorganization developed by McKay and Shaw, however, they also develop
a social organization construct which allows them to test the reciprocal nature of these two factors [7]. Regression analysis
is used to look at this relationship [7]. There are limitations to this linear statistical approach as it cannot fully describe
the non-linear dynamic interplay existing between these two constructs. Indeed, urban migration happens in a non-linear
fashion in space and in time and is best studied using non-linear mathematical methods (see [11,20,21,24-27,22]).

More recently, the study of urban migration has gone further than the aggregate studies previously discussed to now
include the micro-factors that influence a household’s decision to move. More specifically, researchers have looked at the
impact of victimization, both direct and indirect, on the decision to move [28]. This variable is also compared to other
household specific factors such as unemployment, education and age [28]. The results of these studies show the confluence
of influences on this decision (see [29,28,8]). Indeed, a household’s decision to move is triggered by internal factors such as
a change in income level, but also indirect factors such as neighboring households being victimized by crime.

Additional research has shown that certain neighborhood features such as school catchment areas or questionable
establishments also influence the household’s decision to move (see [29]). These can be considered as positive or negative
social attractors. Positive social attractors are associated with the institutions within the community that further strengthen
the social structure of a household. For instance, a school with a good reputation attracts households that value such positive
community attributes. On the other hand, negative locations such as bars that are likely to attract crime may be viewed as
negative social attractors (see [30]). The decision to move closer to either type of social attractor, be it positive or negative,
would resonate with the social structure of the household making such a decision.

The decision to move may be dependent upon multiple factors such as trading up with the aim to save for retirement,
a new birth in the family thus generating need for space, or other factors such as loss or gain of employment. However in
the decision to move, households will balance the pull of the community with the quality of the house (see [31]). Research
findings indicate that households look for both better neighborhoods and better housing when they move. Similarly when
neighborhoods begin to decline, household will look to leave in order to secure the asset (see [4]).

In the past decade, mathematical modeling has been applied to the study of crime and urban development
(see [11,32,19-21,33,24-27,16]). This type of method is highly applicable because it can model urban dynamics both
spatially and temporally [17]. The mathematical approach used in this study is cellular automata (CA) modeling. In CA
modeling each cell can be assigned various values which can change over time following transition rules [34]. Cells can
represent multiple factors present in the urban domain and they can also model the interaction between these factors [34].
For instance, a cell can be a household and the transition rules for these cells can replicate the social interactions between
households. The goal of this study is to present a mathematically structured method to describe the dynamic social
interaction of individuals in a community. A CA model of urban migration is developed to show the social relationship
between households. This model effectively describes the impact of the social structure in a household in the decision to
stay or move.

2. Model development

The project team consisted of members from the fields of Computing Science, Criminology, Environmental Science,
Geography and Mathematics. Covering such interdisciplinary breadth proved invaluable in terms of having the expertise to
be able to undertake the project. Transforming well-expressed domain knowledge into something computable may appear
natural, but in fact hidden inconsistencies and ambiguities may make this problematic [35]. Furthermore, ensuring that
all team members are on the same page can be difficult when differences in academic background and terminology are



1754 V. Dabbaghian et al. | Mathematical and Computer Modelling 52 (2010) 1752-1762

Conceptual Mathematical Computational

Modeling Modeling Modeling
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Fig. 2. System-wide process model of a single time step.

present. In order to address these challenges, the development methodology presented in Modeling criminal activity in urban
landscapes was implemented [13]. In this method, model building consists of three phases: conceptual, mathematical and
computational (see Fig. 1).

In the conceptual modeling phase, the subject and its general behavior are identified using domain knowledge and
described in natural language. This description is then formalized in the next phase into an abstract model that is
fundamentally mathematical in nature. It is important at this point that the model is both precise in a mathematical sense
while still remaining comprehensible to all team members. In other words, technical details or terminology should not
obfuscate any defined property of the model. We used Control State Diagrams, such as Figs. 2 and 3, as well as mathematical
formulae to build the model in this phase [36]. We also maintained written documentation to serve as an auxiliary
explanation of these formalizations. These measures ensured that it was straightforward to verify that the mathematical
model accurately captured the essence of what had been described in the conceptual modeling phase. This methodology
for developing the formal structure of the model was chosen because it is precise and mathematical without being overly
technical. As such, it is an appropriate methodology for a small interdisciplinary research team in an academic setting. For a
wider-scale distribution or use with a larger group, it would be worthwhile to consider using the Unified Modeling Language
(UML) to document the model.

Once a robust mathematical model has been produced, it can be used as the foundation for building an executable
computational model that is capable of running experiments. The results of these experiments can be used for both technical
and domain-specific purposes. They may answer experimental queries, highlight new issues to investigate, or suggest
improvements to the model. The three modeling phases imply a natural order moving from conceptual to mathematical
to computational, but in practice the entire process is iterative and can involve returning to previous stages when changes
or corrections are made. However, the flexibility provided by this development style allowed us to progressively improve
and add to our model as our understanding grew. It also helped emphasize the role of the model as a vehicle for knowledge
discovery, rather than as a goal in and of itself.

3. Cellular automata model

A cellular automata (CA) is a mathematical method which can effectively analyze the non-linear qualities of dynamic
human interaction among the individuals in a community (see [17,37]). A CA model can further assist in describing and
understanding urban migration patterns [17]. This analytical method is suitable for this type of research because it can take
into account both local interactions and also more distant influences [17].
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Fig. 3. Decision making process of an individual household.

An urban environment can be represented in a CA model as a two dimensional grid where each cell represents a
household in the urban area [17]. The state of each cell can vary depending on pre-determined rules. These rules are derived
from an existing theoretical framework describing a particular phenomenon and are used to model what is happening in
the real world. In order to simplify the complexity of human behavior, CA modeling must make assumptions which are
supported by previous research in this area.

In a CA model, interactions happen over time. Since each cell has the capability of holding the information pertaining to
that cell, changes can be recorded. In general, CA models measure time discretely, in other words, progress through time is
represented as a series of time steps. The cells capture the information at each time step and have the ability to alter states
through successive iterations. The state of the cells is updated simultaneously at each time step following pre-determined
transition rules [17].

In this model, the underlying premise is that households are biased and want an appropriate place to live based on their
social structure. As well, the social structure of a household is influenced by others in the community. In this model each
cell can potentially be influenced by neighbors in its neighborhood.

4. Model description

The objective of this CA model is to simulate the impact of social structure in the household on residential migration
in an urban area. The model generates scenarios depicting decisions to move by households and the consequential effect
of positive and negative social attractors in the neighborhood. In this study, social structure refers to a combination of
household variables such as the average age of residents, average income, number of parental figures, employment status,
and criminal propensity of residents within the household. These variables affect the behavior of the people residing in the
household. The social structure of each household is represented by a single value that changes over time based on the
dynamics of the CA model. The decision to move emerges when there is a significant discrepancy between a household and
its neighbors. Once the decision to move is formulated, the household selects a position in the model based on its own social
structure and on neighborhood social attractors.

5. Theoretical framework

This cellular automata model is based on four general assumptions. First, households frequently experience minor
changes in their social structure due to relatively inconsequential events (see [12,29,38,5]). However, a household will
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occasionally experience a significant change due to events such as a job promotion, employment loss, marriage or death
in the family (see [1,38,7]). These events either increase or decrease the social structure of the household and can result in
a move.

Second, the social structure of a household is influenced by the social structure of neighboring households [1]. In essence
there is a social balance between households and when a sharp contrast emerges the balance is offset and this can trigger a
move (see [1,5,6]). This assumption is supported by research findings on how community structure can either positively
or negatively influence behavior. For example neighborhoods that contain residents with similar social characteristics
promote shared supervision of community residents, thereby diminishing the opportunity for unregulated problematic
activities [7]. Conversely, socially disordered neighborhoods, such as those dominated by low-income, unemployed or single
parent households can impose a negative influence on their residents through a non-cohesive and less trusting community
structure that offers minimal community supervision and fewer pro-social adult role models (see [2,8]).

Third, a household’s decision to move is influenced by the difference between its social structure and that of its neighbors.
This may refer to situations in which social order declines and leads to poor community cohesiveness and increased criminal
activity [38]. In addition, a similar discrepancy between the social structure of a household, and that of its neighbors, may
be brought on by a new job or a growing family, either encouraging a move into an area with a higher social structure,
or necessitating a move to an area with better access to schools. While the converse situation of gentrified neighborhoods
leading to displacement of current residents may exist, there appears to be limited evidence to support this process [3].
Regardless, our model generalizes this process and considers both possible types of social change.

The fourth assumption of the model states that a household’s decision to move is influenced by neighboring households
and the positive or negative social attractors (see [29,13,39,32]). A household will move to the most appropriate position
considering both the neighboring households and the proximity of social attractors. The household is not in a position to
select the best position, but rather the most appropriate position.

There is no representation of immigration, emigration, births and deaths in the model at this stage. By assuming that
these phenomena balance each other out, the model is simplified thus allowing the key concepts to come forward. Any
explicit inclusion of such phenomena would introduce additional complexity that is unwarranted at this stage of the project.
In future iterations, these variables can be introduced as the influences of social structure become clearer. This model is
theoretical in nature, and aims to act as a broad simulation of a complex concept, rather than an empirical model aimed
at testing cause and effect. A complex subject is captured using a generalized variable which encompasses a broad range
of factors included in the decision to move. This can include a household’s decision to move to a larger home, or to a
neighborhood with better access to schools, just as it captures the decision to move as a result of increased crime and social
disorder occurring in the immediate neighborhood.

6. Model structure

The model is implemented on a grid of cells that replicates an urban area. Each cell represents a land parcel in which one
or more households may reside depending on the capacity of the cell. Not all cells are occupied by households in order to
facilitate household migration. At each step of the model, the value representing the social structure of a household is subject
to change based on a random variable that triggers a change in the household (assumption one from the previous section).
Next, the neighborhood of each household is evaluated by calculating the average social threshold of the surrounding cells.
Households then make the decision to move when their social structure is different from the average social structure of
the neighborhood (assumption three). In order to ensure that households are not moving at every step of the model, a
probabilistic function is used to determine when they will migrate. The chance of a move occurring is dependent on the
dissatisfaction of the household with their neighborhood, or in other words, the difference between their social structure
and the average social structure of their neighbors.

A household with a different social structure from its neighborhood engages in a search of all cells in the urban area
in order to find a cell that best matches its social structure (assumption four). The household will remain in its current
location if no vacant cells exist. If the household does locate a cell that meets these criteria, it will migrate to the new
cell. All households that do not move and have been in their current neighborhood for a minimal time period have their
social structure recalculated based on the average social structure of the neighborhood (assumption two). That is, the
social structure value of a non-relocated household will move closer towards its neighborhood value. The updating of social
structure values concludes a single time step of the model.

At each time step in the model, two processes are performed to update the states of the cells and households. Updating
the neighborhoods consists of two parts:

1. Calculating the average value of each cell.
2. Compiling a list of vacancies.

In the case of a single occupancy cell, we consider the social structure of the cell itself along with its occupied neighbors
to generate the average value. For a higher capacity cell, the social structure value of the occupants in that cell is used to
generate the neighborhood average. Cells that are not completely full are compiled into a list of vacancies, which is organized
into groups based on social structure. Fig. 2 is comprised of this process and its two parts, along with the process to update
the households.
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Fig. 4. Moore neighborhood superimposed on households.

In this process phase, the changes in each household for one time interval are processed. If the household decides to
move and a viable location exists, they will relocate. Otherwise, if the household has been at their current location for more
time than the threshold value, they will be socially influenced by their neighbors. All households will then have their social
structure adjusted by a random value, in order to reflect changes experienced due to personal events in the family. This
random value follows a normal distribution, so it will be a very small change in the majority of cases, with the occasional
large change in a positive or negative direction. This models the changes that occur in daily activities in the sense that both
minute everyday developments and life-changing disruptions of both the positive and negative variety are represented with
appropriate intensity and frequency. The final step of this phase is to truncate the social threshold value in the case that it
has gone beyond the maximum or minimum value.

At each step, all households undergo varying amounts of change to their social structure. This change in social structure
is influenced strictly by internal factors. In other words, an event such as the death of a family member or a promotion at
work is responsible for a large alteration of the social structure. External, or neighborhood factors, begin to influence the
household when the time stayed in their current location is more than the minimum amount of time a household needs to
settle in and start interacting with their neighbors.

Fig. 3 depicts the decision making process undertaken by each household for each time step. This process is driven by
the social structure of the said household relative to its neighborhood. Based on this relative difference, the household
probabilistically determines whether or not it wants to move. A household which possesses both the willingness and ability
to move identifies an appropriate vacant area from the queue and proceeds to move there. Once moved to its new location,
the household is assigned a new social structure and a time stayed value of zero. If a household lacks either the willingness or
ability to move, it is only subject to the influence of its neighbors as well as changes in its personal life. Households continue
to consider the moving options each time step; however, they will not move until the conditions are right.

7. Rules

This CA model attempts to replicate the physical interaction between households within a neighborhood. The cityscape,
represented in this model with a grid, can easily be conceptualized using the most popular symmetric CA neighborhoods
such as von Neumann or Moore neighborhood (Fig. 4).

The location of cells in the grid is denoted by (i, j) and N; shows a neighborhood of (i, j). The parameters used in this
model are classified into two main classes:

1. household parameters: denoted by H
2. location parameters: specific to each cell in the grid.

This model is scenario based and the parameters with the rules that govern households and the locations in the grid are
meant to reflect the social dynamics underlying urban migration.

7.1. Household parameters

Household parameters represent the social characteristics of the households at each time step.

e T: Time to settle into the neighborhood.
e T;i(t): The length of stay in (i, j) at time t. This is a counter and it resets to 0 when the household moves.
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e s(t): The social structure of the household H at time ¢ and varies from S~ to S™. It is randomly set at the beginning of the
simulation and varies after that.

There is a lapse time (T) built into the households to allow them to settle into a neighborhood. During this time, they
are not influenced by their neighbors. After T has lapsed, the social influence factor is triggered. The social threshold s(t)
captures the multiple factors in a household which can influence a household to move or stay. It depicts the social structure
of a household and varies over time according to various rules.

Hij(t) shows the state of the household (H) at a given time (t). This is represented by:

Hy(t) = [s(0), Ty(t), T1.

7.2. Location parameters

Location parameters are characteristic parameters of each cell (i, j) at each time step. These parameters depend on the
surrounding cells.

e C;: Represent the capacity of residents at (i, ). In this model the capacity for each cell is one household per cell
(low density) or more than one household per cell (high density).

e Cji(t): This represents the capacity at time t. The capacity of the cell is less than or equal to the determined cell capacity.
G;j(t) can vary from zero (not occupied) to the maximum capacity (fully occupied) therefore C;(t) < Gj.

e V;i(t): Value of the cell (i, j) at time t based on the neighborhood social structure. Vj;(t) is the average of the households
in the neighborhood.

Sii(t) is the average social structure of the households that live in (i, j) when C; > 1. Clearly, S;(t) = s(t) in the case
when G; = 1. Let

Vi) =Y Sy ()
which (7, j) varies in the neighborhood Nj;. Then

{v,-j(t) = (1/INgD) ) _Sj(t) if Gy =1
where (i, j) varies in Nj;.

In other words, if a household lives in a cell (i, j) with capacity 1 then the value of social structure of its neighborhood is
the average of the social structure of the cells in that neighborhood. This value is the average of social structure of households
in the cell (i, j), in the case that it lives in a higher capacity cell.

Since there is no specific definition for the parameter s(t) and its value depends on a given what-if scenario, we call s(t)
a scenario parameter. Following that V;;(t) is a scenario parameter. The parameters with specific values are deterministic
parameters. In the future, these values can be obtained by collecting data from previous studies. In this model the parameters
T, Tj(t), G and C;(t) are deterministic.

7.3. Updating cells

In this model cells will be updated according to the following three rules. The first rule updates the social threshold of a
household and the last two rules update cells based on when and where a household moves. At each time step, all cells in
the grid will be updated simultaneously.

7.3.1. Update for s(t)

The parameter s(t) can change over time and there are rules that govern this change. This is a scenario-based variable
that changes gradually. There are two updates for s(t): one is internal to the household and one is external. The internal
factors cannot be changed by the household.

Internal influences on s(t)

The internal changes in s(t) are meant to illustrate how certain factors or events in a household can change the social
structure of the household. Parameter s(t) is dependent on these changes and they cannot be avoided. This includes both
minor and major circumstances such as a death in the family, a new birth, the loss of a job or a raise at work. These internal
changes affect the social structure of the household, and can alter it enough to put the household in a position to move. At
each step the model is updated according to this internal s(t) rule:

s(t) = min{s(t — 1) +¢€,5*} ifst—1)+€>0
s(t)y = max{s(t — 1) +¢€,5S7} ifs(t—1)4+¢€ <0.
The parameter ¢ is a randomly determined value with a normal distribution centered on zero. In this rule, € represents

the change in social structure that a household experiences at each time step. This change varies at every time step for each
individual household. The standard distribution of this value is a scenario parameter.
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External influences on s(t)

After T, the time required to settle into a neighborhood, the household’s social structure can be influenced by other
households in the neighborhood. If the social structure of the household is less than the average of the neighborhood, then
the household will receive a positive influence. However, if the social structure of the household is more than the average
of the neighborhood, then the household will receive a negative influence. These changes are described in the following
formulae. If T;(t) > T then

sty =s(t— 1) +c ifst—1) < Vy(t)
s(t) =s(t —1) —c ifs(t — 1) > Vy(t).

The value of c indicates the amount of social influence a neighborhood has on a household. It is a fixed scenario parameter.
It can be considered as the incremental effect on the social structure of a household because of the received social interactions
from a neighborhood.

7.3.2. Moving from (i, j)

When the social structure of a household is close to the average, the probability of moving is significantly lower. The
greater the difference between the household and the average, the greater the likelihood of moving. If T;j(t) > T then it
moves with the probability

P(t) = |Vy(t) —s()|/(ST = S7)

where ST and S~ are the upper and lower bounds for social thresholds s(t), respectively.

7.3.3. Moving to (i, j)

When a household moves it will select the most appropriate location which is the closest one to its own social structure.
This move is dependent upon the capacity of the cells. Therefore we have s(t) ~ Vj;(t) and C; > Cij(t). As soon as H moves
to (i, j) the time counter resets and Tj;(t) = 0.

7.3.4. Attractor influence on the decision to move

When a household is deciding to move it will consider locations which have a social structure closest to theirs. Once these
locations are identified, the positive or negative attractors in the model are the final step in the decision making process.
These attractors can be considered as tiebreakers: if there are two identical locations that are available, the location closest
to the appropriate attractor will be selected. There are currently only positive and negative social attractors. Households
that have a positive social structure (>0) are only influenced by positive attractors, whereas households with a negative
social structure (<0) are influenced by negative attractors. In the case where a household has a zero value it is influenced
by both attractors.

8. Simulation and results

For the simulation of this CA model a two dimensional 50 x 100 cell array type was used. Each element of the cell array
is a vector storing household parameters, location parameters, internal influences and external influences. These vector
elements were updated with time following the transition rules. The model was run for 5000 iterations. The time threshold
is set at ten iterations by default, indicating the amount of time a household will spend in a cell before being influenced by
immediate neighbors. The move threshold refers to the neighborhood social structure for a cell, and simulates the required
difference between a household and its neighborhood in order for it to move. Three contrasting household distributions
were simulated.

8.1. No attractors versus positive or negative attractors

An initial run of the model, using the default inputs, reveals the spatial patterning displayed in the No Attractors images
below. After 5000 iterations, there are distinct clusters of households displaying high social structure values displayed in
green cells, and those displaying low social structures are displayed in red cells. There appears to be a transition zone
between the areas of high and low social structures, where values average out to near-zero displayed by the light green,
to white, to light red cells. There are several individual cells with low social structure amidst a generally high socially
structured area and, likewise, several display high social structures in lower social structure areas. These different cells
within the clusters are multi-household cells, and as such, are more influenced by neighbors within the same complex than
single households around them.

A very different spatial pattern is revealed when features are added to the model to represent a positive and a negative
social attractor. Almost immediately, households displaying positive social structures start to cluster around the positive
social attractors which are located in the upper left-hand corner. Likewise, households with negative social structures start
to cluster around the negative social attractor. These patterns are strengthened throughout further iterations, with a near-
equal division between households with positive and negative social structures (see Fig. 5).
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Fig. 6. Low versus high occupancy.

8.2. Low occupancy versus high occupancy

The default input for single occupancy households in this CA model is 90%, therefore the other 10% is multiple occupancy,
representing multi-family dwellings such as apartments or condominiums. The default maximum occupancy for multiple
household cells is 10 households. The occupancy rate is set at 90%, indicating that ten percent of available spaces are left
unoccupied.

The impact of the amount of available space becomes clear when the results from a low occupancy run are compared
with a high occupancy run. Households tend to group with similar households if given increased options for locations to
move and defined clusters will form where the social structures of the households are similar. The unoccupied cells, defined
by the light gray cells, increase in the low occupancy rate scenario. Further, in reducing occupancy levels, the transition
zones which separate areas of high and low social structure which are denoted by the light red, white, and light green cells,
increase in size. In this scenario the occupancy is set at 0.7.

Households have far fewer available cells to move into when this model is run with a higher occupancy rate of 0.999.
As such, the households are increasingly impacted by the social structure of their neighbors. As a result, there are strict
divisions between areas of high and low social structures. While smaller clusters of high or low social structure appear in
the initial iterations of the model, these small islands quickly disappeared further into the simulation and are replaced by
larger zones of either low or high social structure (see Fig. 6).

8.3. Low neighborhood influence versus high influence

The influence factor, or the amount of impact that neighboring households have on one another, is set at a default level
of 0.01. The personal factor, or the amount of impact that a random personal event may impact a household’s overall social
structure, is set at 0.1.
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Fig. 7. Low versus high neighborhood influences.

Interesting patterns emerge when the social influence households have on each other is explored. The social influence
factor has a larger impact on the model when there are fewer opportunities for movement. Early in the simulation, there
is significant clustering of similar social value households, but these areas are quickly washed out as households with very
high or very low social structures move closer to a zero value. After multiple simulations, it appears that a low positive social
structure value dominates, with much of the display appearing as very light green (Influence = 0.1).

We see an interesting contrast to this simulation when exploring the impact of low social influence. Households tend to
move to areas that are close to their personal social structure when they are not influenced by their neighbors. This creates
another dramatic division between very high and very low social structured neighborhoods. The results show a near even
split, with only a handful of low social structured cells found in the high social structure zone, and vice versa. In this scenario
the influence factor is set at 0.001 (see Fig. 7).

9. Future directions

There are limitations apparent in the initial test model of migration patterns in a residential urban area. First, the model
design, created to represent an urban neighborhood, is generalized into a series of cells, each capable of containing one
or more households with a randomly assigned social structure. This generalization, in its current state, is certainly not
representative of a real urban landscape. This model does not take into account all of the features in the built environment
that would attract or detract residents because it only includes residential land use. In addition, this model has a number of
parameters that are lacking a specific definition. The social structure of a household is an abstract concept containing any
number of socio-economic or demographic factors. We hope to expand and elaborate on these concepts in later iterations
of this model.

This model simulates aspects of the complex and multi-faceted process associated with urban residential migration.
CA modeling provides an ideal methodology at this theoretical modeling stage because it is a valuable visualization of
the processes and interrelationships between key variables associated with residential migration. This model expands
the current body of knowledge on residential migration and neighborhood structure by exploring the influence of social
structure on the decision to move. Once this model is moved from the abstract into the concrete and applied field of
urban migration, key variables can be introduced into the model. Census data is a logical starting point for expanding and
elaborating on the variables pertaining to the social structure of a household.

The literature emphasizes the importance of socio-economic variables such as income, education level, and housing
tenure [40]. Furthermore, the physical characteristics such as housing type or condition, and proximity to educational
facilities, influence residential mobility. The measures for these variables can be found in the Canadian census, acquired
every 5 years, with the most recent census occurring in May 2006. This data can be scaled to fit this CA model, and at the
same time, other data sources can be introduced. Research indicates that neighborhood-level crime and victimization are
both relevant factors influencing residential migration (see [28,40]). Individual household-level crime data is available for
inclusion in further iterations of this model. Finally, mobility data can be acquired from the Canadian Census, as a method
of verifying further iterations of this model.

In the next phase of model development, data from a subset of a Canadian city will be introduced into the model using
census, land use and crime data. This model will be run over the course of 25 years in order to study the impact of social
structure on the decision to move. Introducing the socio-economic, structural and crime information into the model further
contributes to understanding the complex dynamics associated with residential mobility. With these new parameters, this
model can assist urban policy planners in determining development projects since current neighborhoods can be entered
into the model and future plans can be assessed in terms of migration patterns.
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