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A paper by (Henri E.Z Tonnand et al., 2009) was published in the Ecological Modeling journal 2009, 
which examined the impact of biological control of the Diamondback moth through the use of the Lotka-
Volterra models. The following paper is an attempt to recreate the models from this study. Additional 
further insights will be drawn from the models created.  



1.0 Introduction 

 

 The Diamondback moth(DBM) is a dangerous pest to many cultivated plants and are 

now found worldwide (Henri E.Z Tonnad, 2009).  The DBM arrived in North America from 

Europe in the mid 1800s and destroys many vegetable crops (especially from the mustard 

family) including; canola, mustard, broccoli, cabbage and several greenhouse plants (Duke, 

2001). The impact of the DBM is most significant  in the Canadian Parries and the north  central 

region of the United States (Duke, 2001). Currently the only method for controlling DBM 

population levels is with the use of pesticides, even though there are several species of 

parasitoids native in areas that the DBM are found (Duke, 2001) (Henri E.Z Tonnad, 2009). The 

cost of pesticide currently is an estimated billion dollars annually worldwide (N.S Talekar, 1993).   

Diamondback Moth 

 The life cycle of the DBM has four stages; egg, larvae, pupae and adult. It takes 

approximately 32 days for the DBM to mature from an egg and new generations occur every 

21-51 days depending on environmental conditions (Duke, 2001). 

Eggs  

 The eggs are laid on the upper and lower leaves and can appear singly or in 

groups of two or three. They appear usually along a vein in the leaf where the surface is 

uneven and are oval with a yellowish-white color (Duke, 2001).  After 5 or 6 days the 

eggs will hatch and the larvae will emerge.  

Larvae 

 Upon hatching the larvae will burrow itself into the leaf and begin feeding on the 

inside of the leaf. Once the larvae has increased in size, usually after 10 days, it will 

emerge from the bottom of the leaf and continue feeding (Duke, 2001). To reach 

maturity the larvae will moult three times and will reach maturity in 10 to 21 days 

depending on the environmental factors, i.e. abundance of food and temperature. Once 

the larvae have reached maturity they are about 12mm long (Duke, 2001). 

 Pupae 

 The larvae pupae of the Diamondback moth is a fine, white, meshed cocoon that 

is attached to the host plant by the; stem, leafs or seed pods. This stage will last 

anywhere from 5 to 15 days, again depending on the environmental conditions (Duke, 

2001). 



Adult 

 When the adult emerges from the cocoon it is; 8-9mm long and has a wing span 

of 12-15mm. The female will lay close to 160 eggs during its 16 lifespan. 

 The damage to vegetable crops occurs when the eggs hatch and become larvae. The 

larvae feed on the leaves, buds, flowers, seed pods as well as parts of the stem (Duke, 

2001)which can destroy the plant, depending on its growth stage as well as the larvae density 

(Duke, 2001).  

 Pesticide sprays often lose their effectiveness because of the resistance that the DBM 

develops. For this reason new pesticides are constantly required, or a new solution must be 

developed (Asian Vegetable Research and Development Center, 1997). 

Parasitoids  

 As previously mentioned the DBM have predators. Where ever the diamond back moth 

is found there are parasitoids that will attack the DBM in one of its 4 stages depending on the 

specific species (Duke, 2001).  However, these parasitoids usually are not abundant enough to 

keep the DBM population in check. In Europe, where the DBM originated, there are over 40 

species of parasitoids that attack the Diamondback moth and therefore measures rarely need 

to be taken to keep the damage at a minimum (Asian Vegetable Research and Development 

Center, 1997).  

 It would seem then that a logical way to control the DBM levels would be to introduce 

species European parasitoids to areas where they are not normally found. The Diadegma 

semiclausum, a parasite found in Europe has been successfully used to control the 

Diamondback population in several countries including; Australia, New Zealand, Indonesia, 

Malaysia, Taiwan and the Philippines (Asian Vegetable Research and Development Center, 

1997).  

Lotka-Volterra Model 

 The Lotka-Volterra equation is often used to model a predator-prey relationship. For 

this study we will use a modified set of equations (equation 1.1, 1.2 (Henri E.Z Tonnad, 2009)) 

to model the predator-prey relationship between the Diamondback moth and a mixed group of 

parasitoids. While the Lotka-Volterra equation has been used in many different studies, in many 

different biological fields, no study has ever tried to predict and assess the impact of a 

parasitoid (Henri E.Z Tonnad, 2009). In the study performed by (Henri E.Z Tonnad, 2009) their 

hope was that by using the empirical data they would be able to mathematically estimate the 

parameters and fit the Lotka-Volterra equations to the field data sets (Henri E.Z Tonnad, 2009). 

The purpose being, if the results confirmed the positive impact of the pests on the population 



of Diamondback moths, then such modeling techniques could be used for pest management for 

this system and potentially others as well (Henri E.Z Tonnad, 2009). 

The goal of this study is to confirm the model and subsequent results of the study by (Henri E.Z 

Tonnad, 2009)  and demonstrate further uses of such models. To verify the results of the 

simulation, results will be compared to the theoretical results they generated. 

 

2.0 Methods 

Lotka-Volterra Model 

 As previously stated, the following equations, 1.1-2, will be used to estimate the 

populations of the Diamondback moth and the parasitoids. For the purpose of this model all 

parasites, both indigenous and released, will be counted as a single species. 

                   
  

  
         

         

                   
  

  
          

       (Henri E.Z Tonnad, 2009) 

In this equation alpha, beta and gamma correspond to the estimated parameter values found in 

Table 1 of the study done by (Henri E.Z Tonnad, 2009).  

Creating the Models  

 In order to recreate the results they generated and be able to compare them the same 

steps where followed. A series of five simulation where run with the first being Werugha before 

release and the last being Tharuni following release. 

 A basic model could easily be coded in R to represent this. It would have the following 

form: 

parameters <-(alpha, beta, gamma.....) #initialize the parameters 

yo <- c(x,y) #set initial conditions 

time <- seq(0,t,0.01) #generate time sequence 



calc<-function(parameters){ insert equation} 

results <- ode(y=yo,time,calc,parameters) 

 

While this is easy to code initially it becomes time consuming to be changing the parameters 

and initial values for each data set. 

 Therefore to make user input easier and more efficient a simulation was made that 

produce all five results simultaneously. To do this the code was broken into several parts. First 

was a definition of universal variables, i.e. variables that are called upon in several functions, 

next are several defined functions that perform all the calculations and return the results and 

finally the executables, i.e. the calling of each function. 

Variables 

This section included the following: 

-definition of the initial population sizes  

-main time sequence for the ode's 

-dimensions of the data structure required 

The reason the parameters were not defined here, is because if in the future the 

parameters were calculated instead of given it would be easier to implement since they 

already defined in a function 

Functions 

The functions are the backbone of the simulation. By having all the required calculations 

isolated in separate functions it is not only easier to navigate through the simulation, 

but if in the future changes were to be made to the model it would easier to add or 

change the model. The functions that where made include: 

-Calculation Function 

-Parameters Function 



-Plot function 

-Graph Function 

-Graph2 Function 

-Prediction Function 

-Average Function 

The calculation function will be used to call up the pre-built ode function. This will be 

used to generate a matrix for the solutions to equations 1.1-2. 

As mentioned before the parameters function is currently used to define the 

parameters that were given, however, it would be simple to adapt this function to 

estimate the parameters. 

The plot function is used to set up and provide all the necessary information for the 

calculation function, then take the results and store them in a single ordered matrix. 

This allows all five graphs to be produced at once without having to manually adjust and 

change the settings. 

The graphing function takes the final results matrices and separates and organizes the 

results to be displayed. 

The second graphing function can be run instead of the first to graph the five unique 

phase plots. 

To provide an example of the usefulness of the model, (Henri E.Z Tonnad, 2009) used 

their model to find the best initial release numbers for the parasitoids to control the 

population. While their methodology isn't explained,  similar results were reconstructed 

in the predictions function. This function was rather complex in that it simulated the 

equations 1.1-2 over many different initial population values of DBM as well as several 

different initial population values of the parasitoid. This was done to determine if there 

was a optimal value, and if there was to prove the usefulness of using purely 

mathematical models to estimate real world scenarios. For this simulation the model 

will be run for only the first 100 iterations, instead of a 1000, and will be run for 



densities of DBM from 0 to 25 in steps of 0.1. The initial populations of parasitoids that 

will be used will be (0.49,0.69,1.38,5,20,100). The first 3 appear in the original study, 

however for a better understanding of the trends three additional values where added. 

The averaging function is used to estimate where the equilibrium lies if the model has 

not run till stabilization. 

 

By following these steps in creating the model, an accurate reproduction of the original model 

was able to be made.   

 

 
3.0 Results 

 

As previously mentioned the simulation will generate all the necessary graphs as seen in figure 

1.1 and the phase plots in 2.0. However, for the purpose of examination the plots where 

separated. 

 

Werugha Before Release (Fig 1.2 and Fig 2.1) 
 

The parameters where set for the pre-release parameters as found in the region of Werugha 

before any parasitoids where released. The model predicted that there would be a damped 

oscillation that reached a maximum peak of approximately 12 DBM per plant and a minimum of 

approximately 2 DBM per plant before damping to an equilibrium of approximately 5.2 DBM 

per plant.  While the density levels of the parasitoid oscillated slightly they never rose greater 



than approximately 1.6 and soon settled at around 0.6 parasitoids per plant. This is further 

demonstrated in the phase plot by the helical shape that winds inward towards 5.2, 0.6.  

Werugha After Release (Fig 1.3, Fig 2.2) 
 

After the parasitoids where released in the Werugha region the density of DBM per plant 

decayed rapidly to less than 1 DBM per plant, however it soon rose again, which suggest a low 

frequency oscillation that would soon settle to approximately 2.1 DBM per plant. The density of 

the parasitoid seemed to remain steady at approximately 0.2, however upon examining the 

phase diagram it is obvious that it is oscillating between a high of 0.23 and a low of 0.14.  

Tharuni Before Release (Fig 1.4, 2.3) 
 

The parameters where set for the pre-release parameters as found in the region of Tharuni 

before any parasitoids where released. The model predicted that there would be a damped 

oscillation that reached a maximum peak of approximately 10 DBM per plant and a minimum of 

approximately 2.6 DBM per plant before damping to an equilibrium of approximately 6 DBM 

per plant.  While the density levels of the parasitoid oscillated slightly they never rose greater 

than approximately 1.6 and soon settled at around 0.6 parasitoids per plant, with the minimum 

reaching approximately 0.15. This is further demonstrated in the phase plot by the helical shape 

that winds inward towards 6.1, 0.58.  

 

Tharuni After Release 1 (Fig 1.5, 2.4) 
 

After the release of parasitoids into the region, the density of the DBM dropped rapidly, to a 

low of approximately 3.3 DBM per plant, than overshooting to a new high of approximately 4.1 

DBM per plant, before settling to equilibrium of approximately 3.8 DBM per plant and 0.1 

parasitoids per plant. This appears as a spiral on the phase diagram that settles at 



approximately 3.8 and 0.8 respectively. We also notice from the phase plot that the density of 

the parasitoids reached a high of 0.38 and a low of almost 0.07.  

Tharuni After Release 2 (Fig 1.6, 2.5) 
 

Similar to the previous release, the results where that of a oscillation with an eventual 

equilibrium at a lower population density. However the frequency of the oscillation was higher 

with a larger difference between the minimum and maximum. The density first rose to over 11 

DBM per plant, than quickly fell to a low of approximately 1.7 DBM per plant followed by an 

overshoot to approximately 5.8 DBM per plant. The population density of the DBM eventually 

settle to approximately 3.6 DBM per plant. The parasitoid densities oscillated as well, clearly 

demonstrated in fig 2.5, where it reached a maximum at 1.35 and a minimum of approximately 

0.1 before settling new 0.35. These oscillations are clearly seen in the phase diagram. 

Prediction 
 

Since the prediction model seemed to have run longer than in the study, it showed that at a 

high enough initial population of DBM, they might actually drive themselves to extinction. With 

a initial parasitoid value and DBM of 0.49 and approximately 3 respectively, the DBM peaked at 

almost 10 DBM per plant after two weeks. The same extinction could occur with the parasitoid. 

With an initial value of 100 per plant, it seemed to control the population at first, however with 

higher DBMs as well as maybe more time the parasitoids may drive themselves to extinction. 

The best result occurred at an initial population density of 0.69, however a value of 1.38 

reached equilibrium at approximately the same value. For the remaining higher initial values, it 

would appear that, while they do keep the population in control, when the DBM density is low, 

when faced with a higher density they did not perform as well.  

 

 



 

 

4.0 Discussion 

 

By creating purely mathematical models I was able to generate results that matched the results 

of the study. The results showed that not only would introducing parasitoids into the 

environment reduce the overall population of Diamondback moths but it would help control 

the population by keeping the levels at a more steady and predictable level. The paper by 

(Henri E.Z Tonnad, 2009) stated in their introduction that if they were able to match the 

empirical results and support the idea that the introduction of parasitoids into the population 

would have a positive effect, than they would have proven that purely mathematical models 

can be used to help manage the population of Diamondback moths by introducing new species 

of parasitoids. By being able to reproduce their results, I have been able to support their 

argument. 

I did however experience several difficulties with their experimental process and will go 

through them in the order I experienced them.  

The first problem I encountered was with their parameters. They stated that they estimated the 

parameters using a series of very complex equation. The problem is this. Since this is a paper on 

the feasibility  of using purely mathematical models to simulate biological events, they should 

have included more details on how they got the parameters. As it stands, the paper would be of 

no use to modeling other regions since the parameters are specific to that region and they give 

no mention of how they could be adapted to fit different locations. However, if their intent is 

solely to prove the point and not to provide  help to future work, then the information given is 

sufficient. 

The next problem was with their timing, i.e. what an iteration represents in real time. To create 

the scale for my figures I had to reference "landmarks" on my graphs to ones that appeared in 



theirs and extrapolate the necessary information to  convert the scale from iterations to weeks. 

Along the same note they seemed to have used a larger step size, which in my opinions was not 

sufficient for the task. Finally their simulation run time was not sufficient in several graphs to 

accurately depict certain trends. For example in Fig 1.2 I have depicted 4 cycles which is enough 

to show that it approaches equilibrium and that it oscillated. As they show it, they only have 1.5 

cycles which barely indicates oscillation and does not hint at the fact that it will reach 

equilibrium. The only reason for this oversight is if they felt that a natural event would not 

reach equilibrium, in which case the parameters should have more accurately reflected that. 

The next is in figure 1.3. They show that the population decays to a steady state, when in-fact 

the model predicts a very low-frequency oscillation that actually reaches equilibrium at a 

significantly higher density then their graph shows. Similarly  to before their version of fig 1.4 

leads the viewer to think that the density is oscillating with little decay. If this is what they 

wished to model, than the parameters where wrong, because my model shows a eventual 

equilibrium. The most significant difference lay in figure 1.5 and 1.6. While the equilibrium 

values remain close to the same, the shape of their curves show zero oscillation while my 

model shows that there would be some. 

The final problem I ran into was with their prediction graph. At first glance it looks like the 

results are completely different, however with an understanding of what is happening, the 

reason is because since they did not provide any sort of scale between iterations and weeks, my 

2 week point may be different from theirs. It is my opinion that my model, as seen in figure 7, 

actually demonstrates the results in a better fashion. Since my model ran for longer with more 

variables it is clear why there is a maximum parasitoid population, even if we disagree on the 

exact value.  

Before the model could be used for any real method of controlling Diamondback moth 

populations a couple changes would have to be made. The parameters function would have to 

be changed so that it would be able to generate a set of estimated parameters for a given area. 

Next, the prediction function would have to be made more powerful and the entire model 

would have to be run on a powerful computer. That is to say, with the model as it is, it takes 



approximately 15 seconds to run. However, in order to be of any use the function would have 

to generate the same graph for every iteration and for more possibilities in order to ensure that 

the choices that are made are indeed the most appropriate. For example, as the model is it runs 

for 100 iterations 251 times for 6 different parasitoid values or 150 600 times. To be more 

accurate the model should run for 1000 iterations for 500 different DBM concentrations and 

100 different parasitoid populations 50 000 000 times as well. 
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