
Modelling spread of worm in LAN using Cell-DEVS

Name: Wubin Ouyang Student I.D: 100934089

Email: Wubin.ouyang@carleton.ca

I. DESCRIPTIONS

This is a model to simulate a typical process of spread of worm, in a LAN. It is

implemented in CD++, and can be viewed in CD++ modeler directly. We should admit

that there is not a satisfactory definition of a computer virus because this notion has

been overloaded with many definitions over the years, and usually it has been mistaken

for a Trojan horse or a worm. Nevertheless, one can state that a computer virus is a

hidden and malicious program that infects a computer by copying itself to other

programs or files. The computer virus is executed when the host program is opened.

Then, it searches for uninfected files and tries to attach itself to them too. The action of

computer viruses hinders the normal working of computers and includes deleting files,

trashing the BIOS, leaving backdoors, spying private data, etc. Consequently, the

design of mathematical models that allow one to simulate the computer virus spreading

in a computer network is an important issue.

In this simulation, we introduce several states and parameters to make it more realistic.

However, parameters may depend on the functionality of a worm and the level of

awareness of users. Even the pattern of communication in this LAN may play an

important role in the process of spread. Thus, in this simulation, we do not expect to

achieve a precise process of spread. Instead, we provide a framework that can adjust to

different type of worms and LANs by setting different parameters. And in the following

demonstration, several examples will be explained to show this idea.

Several models have been proposed. A popular one is SEIS model, mentioned in A

Computer Virus Spread Model Based on Cellular Automata on Graphs by A. Mart´ın

del Rey. In this model, each node/computer of the network can be at one of the following

three states: S (susceptible), E (exposed), or I (Infected). Unfortunately, there may be

some errors in this paper, and there is no response after my inquiring via E-mail.

Another paper written by A. Mart´ın del Rey is A SIR e-Epidemic Model for Computer

Worms Based on Cellular Automata. It presents an S (Susceptible), I (Infected), and R

(Recovered) model to simulate the spread of a worm. In recent years, models that

involves more states are proposed. A five-state model with S (Susceptible), Q

(Questionable), DI (Deadly Infected), I (Infected), and D (Diagnosed) is presented in

Simulation of worm viruses in Network Based on Cellular Automata (Written in

Chinese).

In my modelling, to balance the accuracy and complexity, I will use a four-state model

to show the spread of worm, which is composed by S (susceptible), Q (questionable), I

(Infected), R (Recovered). Further details are provided below.

II. DEFINITIONS

1. Cell model

The following is the formal definition for the CELL-DEVS model.

CD = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >

X = Ø

Y = Ø

S = {-1, 0, 1, 2}

N = { (-1, 0), (0, -1), (0, 1), (1, 0), (0,0), (-1, -1), (-1, 1), (1, -1), (1, 1),(-2, -2), (-2, -1),

(-2, 0), (-2, 1), (-2, 2), (-1, -2), (-1, 2), (0, -2), (0, 2), (1, -2), (1, 2), (2, -2), (2, -1), (2, 0),

(2, 1), (2, 2) }

d = 100 ms

δint: based on the rules explained later.

2. Two kinds of neighbor

To distinguish influences among different neighbors, we introduce two kinds of

neighbor. The first sort is called “adjacent category” which is next to the central cell.

Another one called “remote category” which is a little farther. In my model, the

“adjacent category” includes cells of { (-1, 0), (0, -1), (0, 1), (1, 0), (0,0), (-1, -1), (-1,

1), (1, -1), (1, 1) }, while the “remote category” includes { (-2, -2), (-2, -1), (-2, 0), (-2,

1), (-2, 2), (-1, -2), (-1, 2), (0, -2), (0, 2), (1, -2), (1, 2), (2, -2), (2, -1), (2, 0), (2, 1), (2,

2) }.

Figure-1 Two kinds of neighbors.

3. Features

In this model, we consider a LAN containing 2500 computers. These computers do not

have access to outer network (e.g Internet). The worm is initially rooted in one or

several computers, assuming that it is produced deliberately or brought in incautiously.

Computers in this LAN have 24 contacts at most, which can be used to spread the worm.

16 of them are in “remote category”, while others are in “adjacent category”. Cells in

“adjacent category” have more influences than ones in “remote category”. In this model,

this feature is implemented by two macros “Inner_Factor” and “Outer_Factor”.

4. States and transitions.

There are four states in this model.

0: S (Susceptible). S indicates that computer is not infected and immunized. It may be

infected in the future, or it may turn into questionable.

-1: R (Recovered). R indicates that computer has been recovered from an infected state

or has been immunized and transited from state S. In this state, computers will not be

infected again and keep it forever.

1: Q (Questionable). Q indicates that computer is questioned. It comes from situation

that some neighbors are infected or questionable. Computer in this state will not spread

worm. It is to be recovered and transit its state to R, or to be ruled out to be S.

2: I (Infected). I indicates that computer is infected already. It will spread worm to other

computers nearby. In this state, computer keeps its state or gets recovery to R.

R

S I

Q

Figure-2 States and transitions.

5. Rules.

Rules are implements on the transitions. These rules consider both the functionality of

worm and behavior of users. As mentioned before, we are not expected to commit a

precise model. But we can present a realistic framework to implement sorts of worm

spread. This model is extendable and easy to modify according to features of other

worms.

(1) S->I:

This transition indicates that computer is infected by worm which is spread by other

computers. To trigger this event, there must be at least one computer infected among

neighbors. The possibility of this transition relates to the numbers of infected computers

in “adjacent category” and “remote category”, as well as the “possibility of spreading”

that is associated with the mechanism of worm.

The rule in CD++ can be written as below:

rule : 2 100 { (0,0)=0 and stateCount(2) > 0 and random <

#macro(Possibility_Of_Spreading) * (#macro(Inner_Factor) *

#macro(inner_be2)/8 + #macro(Outer_Factor) * #macro(outer_be2)/16) }

Where Inner_Factor and Outer_Factor indicate influences of “adjacent category” and

“remote category” respectively, and (inner_be2) and (outer_be2) indicate the number

of infected computers in “adjacent category” and “remote category”.

This rule also imply that the number of infected computers in neighbor cell play an

important role in the process of spread. It complies to the natural process of worm

spread.

(2) S->Q

This transition indicates that computer is questionable because of the infecting

happened in neighbor cells or increasing number of questionable cells in neighbor. It

represents that user notices the danger that computer gets to be infected. User may

immunize the computer or rule out it back to S. This transition relates to the number

of infected or questionable neighbors, as well as the vigilance of users.

The rule in CD++ is below:

rule : 1 100 { (0,0)=0 and (#macro(Inner_Factor) * #macro(inner_be2) +

#macro(Outer_Factor) * #macro(outer_be2) > 7) and random <

(#macro(Vigilance) * (#macro(Inner_Factor) * #macro(inner_be2)/8 +

#macro(Outer_Factor) * #macro(outer_be2)/16)) }

rule : 1 100 { (0,0)=0 and (#macro(Inner_Factor) * #macro(inner_be1) +

#macro(Outer_Factor) * #macro(outer_be1) > 0) and random <

(#macro(Vigilance) * (#macro(Inner_Factor) * #macro(inner_be1)/8 +

#macro(Outer_Factor) * #macro(outer_be1)/16)) }

As can be seen in the rule, only the number of infected or questionable neighbors

reaches a threshold, it can be triggered out. This means that an increasing number of

infected neighbors can lead user to be more cautious.

(3) Q->R and Q->S

The first transition indicates that computer is immunized by user from the state of

questionable. In other words, it will not get infected or spread the worm.

The second transition indicates that computer is ruled out from questionable. User

simply ignores the possibility of being infected and does not immunize the computer.

These rules are relating to the awareness of users. Here it is implemented by a ratio

“Get_Inmune_After_Questioned”.

The rule in CD++ is below:

rule : { if (random < #macro(Get_Inmune_After_Questioned), -1, 0) } 100

{ (0,0)=1 }

(4) I->R

This transition indicates that infected computers are rescued and recovered by users.

Computers get immune and will not be infected any more. It relates to the responsibility

of users to recover their computers and prevent the spread of worm. Considering the

increasing number of infected neighbors will drive users to do the recovery, it as well

involves the number of infected neighbors.

rule : -1 100 { (0,0)=2 and (#macro(Inner_Factor) * #macro(inner_be2) +

#macro(Outer_Factor) * #macro(outer_be2) > 5) and random <

(#macro(Responsibility) * (#macro(Inner_Factor) * #macro(inner_be2)/8 +

#macro(Outer_Factor) * #macro(outer_be2)/16)) }

III. SIMULATIONS AND RESULTS

1. Initial settings.

As shown before, in this model or framework, we declare several parameters to adjust

different type of worms, networks and even users’ behaviors.

To begin this simulation, we need to assign values to those parameters. A bunch of

initial settings are shown below:

Get_Inmune_After_Questioned): 0.5

Outer_Factor: uniform (0, 0.25)

Inner_Factor: 1

Possibility_Of_Spreading: 0.4

Vigilance: 0.6

Responsibility: 0.7

Notice that the “Outer_Factor” which represents the influence made from “remote

category” of neighbors is not a constant. This is due to the variance of frequencies and

contents in contacts. The “possibility_of_spreading” is related to the functionality of

worm, while “Vigilance” and “Responsibility” are relating to the users themselves.

After setting parameters, we now plant worm and some immunized cells among the

2500 computers. As it is shown below:

In this graph, red cell is in the state of infected, while yellow one is in state of

susceptible and green one is in the state of recovered. Later, a blue cell indicates that

the cell is in the state of questionable. Initially, we put one infected cell and three

recovered cells which will not get infected in the whole process of simulation.

2. Simulation

The simulation under initial settings runs 26 steps to global passive state. The

intermediate and final scenes are shown as below:

Intermediate scene

Final scene

In this graph, red cells are still in the state of infected. But because of the large number

of recovered cells, it cannot spread the worm any more. The infected cells are then

isolated to patches. The yellow cells are in the state of susceptible. Similarly, due to the

block of recovered cells, it cannot be infected. The green cells which account most of

the 2500 cells are recovered, and this decisively contributes to the end of spread.

A video in attachments has the whole process of simulation.

3. Different settings

To test the adjustability of this model, we then modify some parameters.

Assuming that we have a more popular worm that has a larger possibility to spread,

we modify the “Possibility_Of_Spreading” to 0.8. Besides, we lower the “Vigilance”

and “Responsibility” to indicate that users are not well prepared for this spread.

Finally, we plant three cells with worm to make it spread faster.

The simulation scenes are shown below:

Obviously, worms in this case are spreading faster than they are in the previous settings.

It is due to the increased number of worm at very beginning. Besides, it has more

infected ones next to recovered cells. This may results from the lower responsibility of

users.

The final scene shows that it has more infected cells left than the previous one.

IV. Conclusion

The simulations presented before prove that this model can be used to simulate the

process of spread of worm in a LAN. Besides, it shows that it has a strong extendibility

and well adjustability. Anyone who wants to reuse this framework only needs to adjust

the parameters to specific values.

This model also needs to be updated in some fields. I will do some improvements later

and make it more reliable to simulate the process of spread of worm.

Reference:

1. A Computer Virus Spread Model Based on Cellular Automata on Graphs. A. Mart

´ın del Rey

2. A SIR e-Epidemic Model for Computer Worms Based on Cellular Automata. A. Mart

´ın del Rey

3. Simulation of worm viruses in Network Based on Cellular Automata.

