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Abstract Social behavior has been under studies for decades with lots of questions been ask on why certain rational 

individuals will choose to exploit the weak for material gains or why nations will choose to go to war and overthrow 

other nations for economic benefits; with many more of this questions still left unanswered. This behavioral traits are 
not only observable in humans but a study of animal behavior show some degree of corporation but majorly 

characterized with survival (fight) of the fittest to ensure subsequent evolution of the genes of the stronger as described 

in Darwin’s Theory of Evolution [9]. Experimental studies of this interesting phenomena will be overwhelming using 

live scenarios as so much time and effort will be expanded. This term paper builds upon the Spatial Cellular Automata 
(CA) model of the game “Prisoner’s Dilemma” which has been canonized in game theory as an acceptable model for 

studying social interaction by extending this model to Cell-DEVS simulation environment using RISE (RESTful 

Interoperability Simulation Environment) remote simulation. 

 
 

 

I. INTRODUCTION 

1 

The 21st century has witnessed tremendous 

innovation in the area of research and exploration as we 

have continue to see an ever increasing demand for 

supercomputers with inbuilt software simulation and 

analysis tools to ensure ease of computation, and 

accuracy in research result obtained. We are currently 

witnessing a paradigm shift to the age of cloud 

computing which has tremendous prospect in not only 

delivering the expected results but also cutting overall 

cost, improved collaboration between colleagues, 

better performance, scalability, flexibility, data 

recovery and backup, and lots more. We explore this 

advantages of cloud computing to our study of the 

game Prisoner’s Dilemma using Cell-DEVS 

Simulation running on cloud computing technology 

RISE (RESTful Interoperability Simulation 

Environment). RISE is a simulation middleware to 

support RESTful-CD++ web services for remote 

simulation, which aims to support interoperability and 

 
 

mash-ups of distributed simulations regardless of the 

model formalisms, model languages or simulation 

engines [12].  

 

There are so many question been ask that are yet to 

be answered such as why a rational individual will 

choose to cooperate at a certain time and at another time 

choose not. Prisoner’s Dilemma is a game widely 

accepted in game theory which have provided a 

mechanism which we can easily employ to formulate 

some of this question and then use mathematical 

methods to analyze and draw some conclusions. In this 

paper we employ the Cell-DEVS software simulation 

to carryout simultaneous simulations of the Cellular 

Automata (CA) model of this game under different 

input parameters and startup configurations to draw a 

conclusions on this observable spatial changes as we 

relate this to social behavior. 

 

II. BACKGROUND 

 

Prisoner’s Dilemma was originally framed by Merrill 

Flood and Melvin Dresher while at work at the 



American Research and Development Corporation 

(RAND) in 1950. Albert W. Tucker formalized the 

game with prison sentence rewards and gave it the 

name "Prisoner's Dilemma". Tucker’s formalism 

follows that two criminal who are serving a year prison 

sentence are later discovered to be involved in more 

severe crime than the ones they are been punished for 

and the police not willing to let them get away with it 

seeks to find a way to pin the crime on them. But 

without sufficient evidence they resort to convincing 

either of the criminals into betraying the other. They 

propose the following to both of them 

 If either of the prisoners betray the other 

while the other keeps silent the defector 

(termed the betrayer here) will be set free, 

while the cooperator (the one who keeps 

silent) gets additional 5 years jail time. 

 If both of the prisoners were betray each 

other they both get two years jail time 

 If both of them where to remain silent they 

will serve their remaining jail time of a 

single year. 

 

 

 
 

Table I.  Payoff Matrix of both prisoners in Tucker’s 

Prisoner’s Dilemma Formalism. 

 

 

Assuming that the decision made by the prisoners 

have no effect on their future reputation, a careful look 

at the summary of the outcomes of the prisoner’s 

decisions otherwise known as the Payoff Matrix 

displayed in Table I gives the intuition that the best 

move for either of the prisoners will be to go with 

defection as this gives the maximum benefit and less 

risk of uncertainty when considering the other prisoners 

decision. We see a choice of betrayal more appealing 

than the benefit of Mutual Corporation which will 

better both parties. Several analysis of the prisoners 

decision can be made for instance if the prisoners where 

to play the game multiple times, the previous decisions 

in the other games will affect their present decision 

(termed Tit for Tat) and several more different 

scenarios like this can be presented. 

 

 

Recently, it has been suggested by Nowak and May 

that spatial effect alone are sufficient to cause 

corporative behavior [8]. In their Cellular Automata 

(CA) model of the Prisoner’s Dilemma all of the sites 

of a two-dimensional lattice are occupied by players. 

The players interact with their nearest neighbor players 

in a pair-wise manner, over a number of time steps. The 

interaction strategies used by each player is determined 

as follows: 

1. In a given time step, each player interacts with 

itself and with its eight nearest neighbors (e.g. 

the nine sites in the Moore neighborhood of the 

player if Moore Neighborhood is chosen) using 

either a cooperative strategy or an 

uncooperative strategy.  

2. The total payoff to each player resulting from 

the nine interactions is determined, and each 

player adapts for the next time step the strategy 

of the player in its neighborhood (including 

itself) who received the biggest payoff.  

 
 

 
 

Table II. Payoff Matrix of a prisoner in Novak and May 

Prisoner’s Dilemma CA Formalism. 

 

 

This simple and purely deterministic, spatial version 

of the Prisoner's Dilemma, with no memories among 

players and no strategically elaboration, can generate 

chaotically changing spatial patterns in which 

cooperators and defectors both persist indefinitely (in 

fluctuating proportions about predictable long-term 

averages). If the starting configurations are sufficiently 

symmetrical, these ever-changing sequences of spatial 

patterns-dynamic fractals-can be extraordinarily and 

beautiful, and have mathematical properties. There are 

potential implications of the dynamics to a wide variety 

of spatial extended systems in physics, politics, 

biology, law etc. [7]. 
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We observe from Table II that the payoff matrix in 

Novak and May’s formalism have been greatly 

simplified, using only ’0’, ‘1’ and a value ‘b’ the reward 

for defection. In this paper we extend this framework 

of the Prisoner’s Dilemma using Cell-DEVS 

simulation to analyze the effect of different values of 

the ‘b’ parameter rightly pointed out by Novak and 

May. Also we look at different startup (initial) 

configuration of the cells and try out a different 

neighborhood (with Von Neumann neighborhood in 

mind) in the aim to show that this spatial effect can also 

be observed with a different neighborhood and 

highlight the characteristic observed with this choice of 

neighborhood. 

 

III. DEFINING THE MODEL 

 

Cell-DEVS which is based on CD++ specification 

language has been successful used to model and 

simulate complex cellular automata models having the 

advantage of evaluating the cells asynchronously with 

different timing delays. It provides an easy to use 

software visualization environment to study the 

behavior of these models which are specified using 

simple defined rules. This rules replicate the 

characteristic behavior of the system in real life and the 

output result based on this rules provides sufficient data 

and information to aid in our analysis. We will employ 

the use of a Lopez Model which is an extension of Cell-

DEVS that permits cells to use multiple state variables 

and multiple ports for inter-cell communications to 

define our model for the Prisoner’s Dilemma.   
  

A. Formal Specification 

 

The formal specifications <X, Y, I, S, , N, d, , δint, 
δext, λ, ta> for the atomic Lopez model of the 

Prisoner’s Dilemma CA is defined as follows: 

 

X = {} // Input external event 

Y = {} // Output external event 
I =  <45, 4, {Px}, {Py}> // Model’s modular interface 

with the neighborhood size  = 45, 
number of other ports          µ = 4, 
[{Px} {Py}] = {state, stage, cState, totalPayoff}, 

Which are all internal ports used to send and 

receive values from cells within the neighborhood 

of a cell. 

Where [state] = used to exchange 

information on the current state and previous 
state between each cell and its neighbor. 

[stage] = keeps information of the current 

phase of each cell. 

[cState] = used to exchange information of 
current state between each cell and its 

neighbor. 

[totalPayoff] = used to exchange 
information of the total payoff value between 

each cell and its neighbor. 

S = {[11], [12], [21], [22]} // Possible states for a 
given cell. We can also choose to write this as {[CC], 

[CD], [DC], [DD]} respectively 

Where [11] = denotes a player cooperating now 

and cooperated in the   previous step [Color – 
Blue] 

[12] = denotes a player cooperating now and 

defected in the   previous step [Color – Green] 
[21] = denotes a player defecting now and 

cooperated in the   previous step [Color – Yellow] 

[22] = denotes a player defecting now and 
defected in the   previous step [Color – Red] 

= { (s, phase, queue, )} //cells state variable 

where s S //defined above  
phase = {1,2} // which stage defined above keeps 

track off. 

 where [1] = Payoff should be calculated.  

        [2] = Strategy should be updated. 

queue = {(vi, i) / i  N, vi [0, infinity), i  R0+] 

and   R0+  //uses transport delay 

N = {} // set of input events 
d = 100ms //delay for all individual cells 

 = local computing function which will be discussed 
in section B. 

δint://internal transition function that is defined by 
CD++ automatically 

δext://external transition function that is defined by 

CD++ automatically 

λ = { is the output function 
ta(passive) = INFINITY 
ta(active) = d 

 
 

B. Detail Description and Implementation 

 

The Lopez Model of the Prisoner’s Dilemma has 

same basic rules which we have already discussed in 

our background study. We will go straight into how this 

rules are implemented in Lopez and necessary setup 

required. At first an initial choice of the cells geometry 

is decided, in this case we will be using a 2D cell space 



of 45 x 45 with Wrapped around borders and transport 

delay of 100 time units as shown in Fig. 1. The next 

step is a choice of Neighborhood. We start our studies 

using the nine sites of the Moore’s Neighborhood as we 

can see already defined in Fig. 1. 

 
 

 
Fig. 1. Initial Configuration for the Lopez model of 

Prisoner’s Dilemma CA. 

 

 

The initial values for each cells are defined using the  

“InitialRowValue’ as rightly shown in the Fig. 1. We 

then applied a rule based on this initial configuration to 

initialize the value of the ‘ports’ (Lopez model allows 

for definition of multiple ports) to our desired 

configuration. In this case our desire configuration will 

be, stage = 1, totalPayoff = 0 and the state will be 

discussed next. Let’s consider a case of one defector in 

center (whom we assumed also defected in the previous 

step [22] or [DD]) surrounded by 8 defectors (whom 

we assume cooperated in the previous step [21] or 

[DC]) who are then surrounded by cooperators (whom 

we also assume here cooperated in the previous step 

[11]). Fig 2. shows the rules implemented to configure 

the ports as we already discussed while Fig.3 gives a 

pictorial view of how this initial cell configuration 

should look after a successful initialization. 
 

 

 
Fig 2. Rule defining the initialization of the cells.  

 

 

 
Fig 3. Display of Cells after initialization 

 

 

The game is played over a number of rounds (i.e. 

time steps), in each of which every prisoner (site) on 

the lattice interacts with itself and with the eight nearest 

neighbor sites of the Moore Neighborhood. The game 

is subdivided into two stages: 

1) Stage One: Each prisoner interacts with the 
prisoners in its Neighborhood in a pair-wise 

manner. And for each interaction a payoff value is 

computed as follows: 

 If the player and its neighbor both cooperate, 

the player gets a point   

[Cooperate + Cooperate = 1] 

 If the player and its neighbor both defect, the 

player gets nothing. 
[Defect + Defect = 0] 

 If the player defects and its neighbor 

cooperates, the player gets b points (where 

b>1). In this case our b values is chosen to 

be 1.85. Other values of b will be chosen in 
later case. 

[Defect + Cooperate = b] 

 If the player cooperates and its neighbor 

defects, the player gets nothing. 
[Cooperate + Defect = 0] 

 

A sample rule defining the interaction of a cell (0, 
0) with one of its neighboring cell (1, 0) is shown in  

Fig. 4.  and subsequently the total payoff calculated 

for all interactions in one time step from initial 

configuration is shown in Fig.5  
 

 

 
Fig. 4. Rule defining the interaction of cell (0, 0) with (0, 1) 

and payoff computed with b = 1.85 

 

 

11 11 11 11 11 11 11

11 11 11 11 11 11 11

11 11 21 21 21 11 11

11 11 21 22 21 11 11

11 11 21 21 21 11 11

11 11 11 11 11 11 11

11 11 11 11 11 11 11



 

 

 
Fig 5. Display of Payoff computation for one time step after 

initialization. 

 

 

2) Stage Two: Each prisoner now compares its 

total payoff value with itself and all the other 
prisoners in its neighborhood (Moore 

Neighborhood in this case) looking for the prisoner 

that is the most successful in that round. The 

prisoner will then update strategy to the one used by 
its neighbor to achieve the highest score. 

 

A sample rule defining the update of strategy 
assuming the cell (-1, 0) has total payoff value 

greater than that of the neighboring cells is shown 

in Fig.6. Also the pictorial view of two time step 
from initial configuration showing a successful 

update of strategy is displayed in Fig.7. We observe 

that the defectors have increased in number as 

agreed to the prisoner’s dilemma game where each 
prisoner sorts after the highest gain (payoff in this 

case). 

 
 

 
Fig. 6. Rule defining the update of strategy assuming that 
cell (-1, 0) achieved the highest total payoff value. 

 

 

 

 

 
Fig. 7. Display of successful update of strategy at second 

time step 

 

 

IV. SIMULATION RESULT 

 

All simulation where carried out using a 2D cell space 
of 45 by 45 with wrapped around border unless 

otherwise stated. 

 

A. Using Moore Neighborhood with b = 1.85 and 

initial cell configuration of Fig. 3. 

 

The simulation result showed a symmetric pattern of 

defectors gradually invading an entire cell space filled 

with cooperators which is coherent with the result also 

achieved by Novak and May. This interesting result is 

showed in Fig.8.  

 
 

 
Fig 8. Simulation Result for b = 1.85 using Moore 

Neighborhood and startup configuration as shown in Fig. 3. 
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The graphical result of this simulation as shown in 

Fig. 9 shows a steep drop in the number of cooperators 

between time step [0 – 20] which was accompanied by 

increasing number of defectors. We notice that the 

frequency of cooperators gradually decays until the 

cooperators completely diminish. Fig. 9 show a 

graphical plot of the frequency of [CC]…[DD] against 

time steps while Fig. 10 shows an isolated case of only 

CC (labeled Cooperators) and DD (Labeled Defectors). 

 
 

 
Fig. 9. A plot of the Total Number of [CC], [CD], [DC], 

[DD] against Time Step. 

 

 

 
Fig. 10. A plot of the Total Number of Cooperators and 

Defectors against Time Step. 

 

 

Something intrigued us as we viewed the simulation 

result with [b = 1.85]. We observed that areas that were 
at some point taken over by defectors where later at 

some other time step occupied later by cooperators. It 

was a struggle for dominance. Fig. 11 was extracted 
from the simulation result to buttress our observation.  

 

 

 

 
Fig. 11. Observation of cells previously occupied by  

defectors now taken over by cooperators. 

 

 

The arrows in Fig. 11 are pointing to a cell that at 

time step = 4 had as its current value that of a defector 
i.e. [21] or [DC] (yellow) but in the next time step 

choose to be a cooperator [12] or [CD] (green). To 

better understand what is going on we extracted the 
payoff matrix of this cells before the transition as 

shown in Fig. 12. 

 
 

Fig. 12. Display of total payoff matrix and resultant update 

of strategy which resulted in cells previously occupied by 

defectors now taken over by cooperators. (Here for instance 

“21_6” denotes “state_totalpayoff”) 

 
 

We observe here that due to the symmetry in patterns 

generated by the simulation result, this spatial 

arrangement at time step 4 favored the cooperators 
giving them more advantage around this cell in 

question as shown in Fig.12. Taking a closer look at the 

cell the arrow points to, the highest payoff recoded by 

the cells within the neighborhood of this cell is 8 which 
is that of a cooperator [CC] and that is why the state 

change to [12]. But in the next time step the symmetric 

pattern changes giving advantage to the defectors hence 
we observed that this same cell was later taken over by 

the defectors. This interesting phenomena is what leads 

to the alternating pattern observed as the Cooperators 
and Defectors battle for dominance of the 2D space. 

Since the benefit of defection is greater than that of 

corporation (i.e. b > 1) we eventually expect each 

prisoner or cell will go for the highest payoff which is 
that of defection. 

 

 
 

 



 

 

 

B. Using Moore Neighborhood with b = 1 and initial 

cell configuration of figure  

 

      Simulating using b = 1 shows an interesting result, 

as we observed that having the payoff for defection 

equal to the gain of corporation, the defector at the 
center was not able to leave his neighborhood to 

occupy any cell instead his neighborhood was taken 

over by cooperators. The case where the price for 
betrayal is same with the price of corporation, any 

rational individual will choose to cooperate. The 

simulation result is shown in Fig. 13. 

 
 

 
Fig 13. Simulation Result for b = 1 using Moore 

Neighborhood and startup configuration as shown in Fig. 3. 

 

 

 

C. Using Moore Neighborhood with b = 1.25 and 

initial cell configuration of figure  

 

Setting [b = 1.25] we observed an interesting 

alternating pattern of cooperators taking over the 
neighborhood of the defector in the center in one round 

and in the next round the defector takes over his 

neighborhood as shown in Fig. 14, a deviation from 
what was observed with b = 1. This same results was 

obtained for different values of b until we got to [b = 

1.85]. The result at [b = 1.85] was maintained for [1.85 
=< b < 2.05]. This alternating pattern was as result of 

the fact that the payoff for Mutual Corporation between 

cells that have the state of a cooperator far outweighs 

the benefits of mutual defection and hence we see the 
cells surrounded the defector acting like a boundary. In 

one time step the cooperators push towards the defector 

in the middle and in the next time step the defector push 
back.  

 

 

 

 

 

 
Fig 14. Simulation Result for 1.25 =< b < 1.85 using Moore 

Neighborhood and startup configuration as shown in Fig. 3. 

 

 

D. Using Moore Neighborhood with b = 2.05 and 

initial cell configuration of figure  

 

Using [b = 2.05] and above showed a rather 

interesting pattern as we saw the defectors forcefully 
making their way through the diagonals. This is due to 

the fact that the total payoff value for defection at the 

corners are very high and hence the defectors will want 

to take all they can get moving in that direction. Fig. 15 
shows the simulation result obtained for this 

configuration. 

 
 

 
Fig 15. Simulation Result for b > 2.05 using Moore 

Neighborhood and startup configuration as shown in Fig. 3. 

 

 

E. Using Moore Neighborhood with b = 1.85 and 

random initial cell configuration  

 

      So far we have explored several scenarios with the 

cells initialized as shown in Fig. 3. This characteristic 

of this configuration resulted in a symmetric pattern 
which was clearly observed (with b = 1.85 and 2.05). 

We present a case here where the cells are initialized 

with a random value for each cell. We observe from the 
simulation result obtained that using this random cell 

initialization and [b = 1.85], there was a loss in 

symmetric pattern we have seen so far as we expected. 

This simulation also showed that the rate at which the 
defectors take over the 2D space greatly depends on 

how many defectors at startup and how closely packed 



they are. Fig. 16 shows our simulation result with a 

random initialization of the cells. 
 

 

 
Fig 16. Simulation Result for b = 1.85 using Moore 

Neighborhood and random initial value for each cell at 

startup. 

 

 

 

This same configuration was repeated for different 

values of b (i.e. b < 1.85 and b > 1.85). The simulation 

result for b < 1.85 was similar to that obtained in 

Experiment Frame III C. We observed just like in 

Experiment Frame III C the defectors not being able to 

push out of their boundary as a result of the benefit of 

mutual cooperation as we already explained. While for 

[b > 1.85] we saw an intriguing phenomena. The 

defectors which were initially defined in three separate 

units were able to form a bond within themselves and 

push towards the vertices as we previously observed in 

experiment frame III D. It was as if there exist an  

imaginary magnet or if to say an attraction that pulled 

the units together. The units which were at first 

separated at initial point now have a link or bridge 

between themselves. Fig. 17 shows a capture of this 

fascinating result.  
 

 

 

 

 

 

 

 
Fig 17. Simulation Result for b = 2.05 using Moore 

Neighborhood and random initial value for each cell at 

startup. 

 

 

F. Using Von Neumann Neighborhood with b = 

1.85 and initial cell configuration of Fig 18. 

 

   We conclude our simulation by showing that this 

spatial effect we so far studied using Moore 

Neighborhood is also achievable with other choice of 
Neighborhood. We show a final case study using Von 

Neumann Neighborhood and a startup configuration 

having one defector at the center (whom we assumed 
also defected in the previous step [22] or [DD]) 

surrounded by 4 defectors (whom we assume 

cooperated in the previous step [21] or [DC]) who are 
then surrounded by cooperators (whom we also 

assume here cooperated in the previous step [11] or 

[CC]). This initial configuration is shown in Fig. 18.  

 
 

 
 

Fig 18. Display of Cells initialized for the case scenario using 

Von Neumann Neighborhood.  

 
 

   The result obtained using Von Neumann 

Neighborhood was very interesting as we observed a 
symmetric pattern as expected expanding from the 

center in the shape of a cross. The simulation result is 

shown in Fig. 19. 
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     Fig 19. Simulation Result for b = 1.85 using Von 

Neumann Neighborhood and startup configuration as shown 

in Fig. 18. 

 

 

A graphical analysis of this result is shown in Fig. 20 

and Fig.21 while Fig. 20 shows the plot of all the states, 

Fig 20 isolated only the cooperators and defectors. We 

observe from Fig. 21 that between time step [0 – 30] 

there was a steep drop in the number of cooperators 

with an accompanying increase it the number of 

defectors. After time step 30 we see a maintained 

balance in the frequency of the cooperators and 

defectors.   
 

 

 

 
 

Fig. 20. A plot of the Total Number of [CC], [CD], [DC], 

[DD] against Time Step. 

 

 

 

 
 

Fig. 21. A plot of the Total Number of Cooperators and 

Defectors against Time Step. 

 

 

V. CONCLUSION 

 

    We presented how Cell-DEVs can be used to model 
and simulate the game Prisoner’s Dilemma and how its 

unique features enabled us to have an elaborate visual 

display of our simulation result providing us with a 

better analysis and understanding of what is taking 
place at each time units. What we found most appealing 

is that running this extended version of Cell-DEVS 

(Lopez) on RISE greatly shortened the completion time 
for each simulation as compared to running this same 

model on the local machine. Therefore you need not 

worry about the limitations of your local machine or go 
through the strenuous task of installing a complex 

software to be able to visualize the results obtained in 

this paper. The RISE remote simulation web services 

has provided you with the needed comfort and 
convenience to take advantage of. 

 

  The simulation result presented here and analysis 
therein acts as a sample guide to interested individuals 

who in future intend using the CA model of the game 

Prisoner’s Dilemma to model different scenarios in 
politics, biological sciences, social science, economics, 

law etc. We have showed that this model characteristics 

greatly depends on a careful choice of the parameter 

value for b, neighborhood style to use and the initial 
configuration of the cells.  We have provided the 

needed framework for you to build on making it easy 

deciding which futures or characteristics as presented 
in the experiments above resembles your model and 

going ahead to start your implementation with a better 

understanding of how any changes in parameter will 

affect your model. 
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