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ABSTRACT 

2D Cell-DEVS models were developed to study both free 

and constrained dendritic growth in supercooled liquids. 

The defined models include rules that consider heat 

diffusion, the influence of the curvature on the equilibrium 

freezing temperature and latent heat evolution. Previously, 

we implemented a 3D supercooling model showing 

macroscopic structures and observed that the velocity of the 

dendrite tip growth was proportional to the supercooling 

temperature. In this paper, we focus on microstructures and 

analyze parameters that affect them. Our new simulations 

show primary and secondary dendritic arms, as well as the 

impact of different parameters. 

1. INTRODUCTION 

From causing airplanes accidents [1] [2] to creating perfect 

slush beverages and preserving organs [3], supercooling [4] 

can be both beneficial and harmful. Supercooling [5], also 

referred to as undercooling, is the process of lowering the 

temperature of a liquid below its freezing temperature 

without it becoming solid. In a pure liquid such as distilled 

water, particles (also called nucleation sites) responsible of 

solidification are missing. Usually, crystallization occurs 

around those small nuclei that are often impurity particles. 

The first crystal has the shape, for instance face-centered 

cubic for silver (Ag), into which the liquid will naturally 

solidify. Then, as the crystal grows, it tends to develop 

spikes and its shape changes into a tree-like form called a 

dendrite.  

Dendrites [6] [7] are usually observed in materials 

solidifying with low entropies of fusion and freeze such that 

dendrite arms grow in specific crystallographic directions. 

As a dendrite grows, additional side arms can grow behind 

the growing tip.  Moreover, dendrites can be either free or 

constrained. They are termed free dendrites when they form 

individually and grow in supercooled liquids. In this case, 

growth happens radially leading to an equiaxed shaped 

grain until collision with another growing dendrite takes 

place. Constrained dendrites, on the other hand, grow from 

a surface in a columnar fashion, such that the primary 

dendrite arms are in the direction of the heat flow.  

Over the past fifty years, numerous attempts were made to 

study both analytically and experimentally the 

characteristics of dendritic growth since they play a major 

role in determining the final quality and properties of a 

solidified structure, especially metal alloys. However, the 

dendritic microstructures usually require complex 

computations and remain hard to study. In our previous 

work, we have shown the relationship between the 

undercooling temperature and the crystal growth speed, as 

well as macroscopic features. For this work, we will focus 

on the microscopic aspect that is the growth of the crystal 

and exhibit dendritic features. To achieve this goal, we have 

built several Cell-DEVS models from the most basics to 

complex ones using the extended CD++ tool [8] to render 

the behavior of dendritic growth and observe their 

microscopic characteristics. Our models implement the 

solidification process as well as the heat conduction that 

influence dendritic growth. We were able to observe both 

primary and secondary dendritic arms, and have run 

experiments for both free and constrained dendritic growth.  

In this paper, we will first revisit the factors that influence 

dendritic growth and briefly review some existing models. 

Then, we will present the newly defined models, describe 

the experiments, and show results. Finally, we will 

conclude this paper with the analysis of the obtained results. 

 

2. BACKGROUND 

As introduced in the previous section, the evolution of a 

dendritic crystal depends on the complex interaction of 

several physical phenomena that includes latent heat 

evolution and its removal from the solid-liquid interface, 

solid-liquid interfacial energy, the influence of solid-liquid 

interface curvature on the equilibrium freezing temperature 

and the atomic mechanism of the crystal growth process. 

Two factors in particular control the growth of the 

dendrites: Heat liberated at the solid/liquid interface, and 

the local curvature of the solid/liquid interface. Therefore, 

both the heat transfer and the dendrite morphology 

problems are influenced by these conditions: the first is the 

local equilibrium freezing temperature, determined by the 

local interface curvature, and known as the Gibbs-Thomson 

effect. The second condition is that latent heat released 

when freezing must be removed from the solid liquid 

interface. 

Most numerical methods that implemented the above 

factors were not able to simulate the oscillatory formation 

and growth of dendrite arm branches [9]. Afterwards, 2D 



rule-based models (Cellular Automata - CA) were proposed 

to show not only the macroscopic patterns, but also 

simulate dendritic branches formation. The first elementary 

model uses window automata to simulate dendritic growth 

by applying simple rules where the number of solid 

neighbors should neither bee too high nor too low in order 

for a site to freeze [10]. This model, however, does not take 

into account the temperature factor.  Packard later 

introduced a model that adds the temperature by integrating 

a continuous variable at each site to simulate heat transfer. 

As the degree of influence of curvature on the freezing 

temperature was reduced, the growth forms changed from 

amorphous to tendril like (tip splitting) to dendritic like 

structures exhibiting side branching [11]. For this paper, we 

will implement, using the extended Cell-DEVS syntax, the 

window automata model [10], add improvements made by 

Packard [11] and then proceed to the experiences presented 

in [9] that studies columnar and free dendritic growth. 

 
2.1. Modelling Dendritic growth with CA – A review 

2.1.1. Window Automata and Dendritic Growth 

A crystal grown from a seed in solution can develop lacy 

dendritic shapes. This type of crystalline growth occurs 

when the seed is much colder than the surrounding solution. 

The heat dissipated by the crystallization process leads to 

the growth of dendrites that spread out into the solution to 

find colder zones of the liquid. This type of growth can be 

modelled by the use of  “window” cellular automata [10]. 

The need to dissipate the heat generated by crystallization is 

handled by not allowing an automaton to change to state 1 

if the number of its neighbors in state 1 is too large. The 

growth process of course requires the presence of a seed, 

and so a transition to state 1 cannot occur if the number of 

neighbor in state 1 is too small. The combination of these 

two tendencies means that a state 0 automaton can change 

its state to 1 only if the number of its neighbors in state 1 is 

neither too large or too small.  

 

2.1.2. Packard Model 

The Packard model [11] adds growth restriction rules 

related to the sum of neighboring sites. For dendritic 

growth, he added growth inhibition rules that depend on the 

local equilibrium temperature. The author defines a 2D 

Cellular Automaton with two states per cell and transition 

rules. The states denote presence or absence of solid, and 

the rules depend on their neighbors only through their sum. 

Four types of behavior can be observed: 

 No growth  

 Plate structure reflecting the lattice structure 

 Dendritic structure with side branches growing along 

lattice directions 

 Growth of an amorphous, asymptotically circular form 

 

Two important ingredients are needed for correct dendritic 

behavior modelling: 

 The Flow of Heat – modeled by addition of a 

continuous variable at each lattice site to represent 

temperature, and  

 The Effect of Solidification on the Temperature Field – 

when solid is added to a growing seed, the latent heat 

of solidification must be radiated away.The 

temperature is set to a constant high value when new 

solid is added.  

The model include hybrid of discrete and continuum 

elements. Different parameters can be used to study 

dendritic growth the : 

 diffusion rate, 

 latent heat added upon solidification, and the 

 local temperature threshold 

Packard shows few results to compare with when 

reproducing but the specific experiment parameters are not 

given. We will also show the impact of additional 

parameters. 

2.1.3. Columnar and Free Dendritic Growth Simulation 
with Rule-Based Lattice Models (By Brown [9]) 

In [9], a cellular automaton model is presented and will be 

the reference for this study. An orthogonal grid will be 

used. Each cell will have its own temperature and 

state/phase. Initial temperatures will be set to supercooling 

values for each cell, and top and bottom borders will be 

insulated while side borders are set to be in contact with 

each other. It is assumed that dendrites were thermal in 

nature, and both constrained and free growths are studied. 

2.1.5. Other Models 

In [12], two Cellular Automata models are proposed based 

on the Moore and  Von Neuman neighborhoods. In both 

cases, the neighbors are not only affected by the state of the 

near neighbors but also the extended neighbors, i.e. 

neighbors of each neighboring cell. This model defines 

three possible states: solid, characterized by a unit value; 

near-solid that are liquid cells with at least one solid 

neighbor; and liquid, liquid cells with no solid neighbors. 

Each cell value represents the concentration of solid 

particles. For instance, solid cells have a 100% 

concentration. Depending on the category, different 

equations are applied to obtain the next state of the cell. If 

the state is solid, it remains solid. In the case of a liquid 

cell, a diffusion formula is used to compute the new 

concentration. For near-solid cells, the same formula is used 

with an extra increment since solid particles are diffusing 

from the solid neighbors. The formula requires two 

parameters, alpha and beta, that respectively represent the 

weight diffusion and the constant increment (for near-solid 

cells). A particularity of this model is that the temperature 

is not set in a direct manner when simulating. The two types 

of neighborhood produce different results. In particular, the 

Moore (see Figure 19) model produce results with a 45 

degrees rotation shift comparatively to the Von Neumman. 



The paper includes several examples and parametrization 

values to reproduce the experiments. 

In [13] a more complex approach is taken using partial 

solidification for each cell and several additional 

parameters. The model evaluates 21 equations per step for 

each cell. These equations include some partial differential 

equations. The approach uses Virtual Front Tracking, takes 

in account several microscopic phenomena such as the 

crystallographic orientation and alloys concentration. 

 [14] reviews previous models and suggests a new approach 

based on thermal fields. In this case, the model analyzes 

mesh-induced anisotropy for the traditional capture rules 

such as Von Neumann’s and Moore’s capture rules and 

simulate the tip growth velocity.  

2.2. Cell-DEVS 

An alternative formalism, Cell-DEVS [15], can be used to 

model this kind of behaviours. This formalism combines 

the advantages of Cellular Automata with those from 

Discrete-Event System Specification (DEVS). This 

approach provides more flexibility at the time of modelling 

cells and allows the combination of models defined using 

different formalisms. 

 

In Cell-DEVS, each cell is defined as a Cell-DEVS atomic 

model, which is formally defined by the following tuple: 

< X, Y, S, N, type, d, τ, δint, δext, λ, ta > 

where: 

 X is the set of input external events; 

 Y is the set of output external events; 

 S is the set of states; 

 N is the set of input values 

 type is the type of delay (transport, inertial, other); 

 d is the delay for the cell; 

 τ is the local computing function; 

 δint is the internal transition function; 

 δext is the external transition function; 

 λ is the output function; and  

 ta  is the time advance function. 

 

To combine the cells a Cell-DEVS coupled model is 

necessary, this model is defined as the tuple  

< X, Y, Xlist, Ylist, η, N, {m, n}, C, B, Z, select > 

where: 

 X is the set of input external events; 

 Y is the set of output external events; 

 Xlist are the list of input couplings; 

 Ylist are the list of output couplings; 

 η is the neighbourhood size; 

 N is the neighbourhood set; 

 {m, n} is the size of the cell space; 

 C is the cell space set; 

 B is the border cell set; 

 Z is the translation function; and 

 select is the tie breaking function 

Each cell is an atomic DEVS model; it receives inputs from 

neighboring cells and sends output to its neighbors after 

defined time delays. After the behavior of a cell has been 

defined and proper delays specified, two essential aspects 

need to be delineated: the neighbors and the rules. The 

neighbors define the input sources of the cell and this later 

uses this compute its local computing function. The rule 

section defines the local computing function using this 

format: 
  

If state variables are used, the assignment portion can also 

be added to the previous format: 

 
  

In the following sections, the previously described dendritic 

models will be modeled using Cell-DEVS. Advanced Cell-

DEVS [15], in particular, offers multiple state variables and 

neighboring ports that will be convenient for 

implementation. As mentioned previously, several factors 

are involved in order to simulate accuratelydendritic 

growth.  

 

3. MODELS DEFINITION 

3.1. Window Automata and Dendritic Growth 

3.1.1. Cell-DEVS Formal Specification 

The formal specification is described as follows: 

CD = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, 

D > 

X = Ø 

Y = Ø 

S = {0,1} 

N = {(0,-1),(0,1),(0,0),(1,0),(-1,0)} 

d = 100 ms 

τ: NS: 

S = 1 if ((0,0)=0 and truecount = 1) or 

((0,0)=1) 

S = 0 in other cases 

3.1.2. Neighborhood and Rules 

Assuming the von Neumann neighborhood, the following 

transition rule will result in interesting dendritic growth 

patterns: 

1. An automaton in state 1 will always stay in state 1. 

2. An automaton in state 0 changes to state 1 only if 

exactly one of its neighbor is in state 1. 

Therefore, if only one of the up, down, left or right 

neighbour is solid, a liquid cell will transition to solid. Once 

a cell is solid, it remains solid. 

 

3.1.3. Cell-DEVS Implementation 

This version uses the extended CD++ syntax, and has a 

state variables value for the cell state. A value of 1 means 

that the cell is solid, and a value of 0 indicated a liquid cell. 
[top] 

components : 2dsupercooling 



[2dsupercooling] 

type : cell 

width : 100 

height : 100 

delay : transport 

defaultDelayTime : 100 

border : wrapped 

neighbors :  2dsupercooling(-1,0) 

2dsupercooling(0,-1) 

neighbors : 2dsupercooling(0,0)  

2dsupercooling(0,1) 2dsupercooling(1,0)   

initialvalue : 0 

localtransition : windowgrowth-rule 

statevariables: value 

statevalues: 0 

initialvariablesvalue: 2dsupercooling.stvalues 

 

[windowgrowth-rule] 

rule : { $value } { $value := 1; } 100 { $value =0 

and truecount = 1 } 

rule : { $value } { $value := 1; } 100 { $value =1 

} 

rule : { $value } { $value := 0; } 100 { t } 

 

Note that a version compatible with the original Cell-DEVS 

syntax is also available for this model and all the following 

that will be presented. 

 

Initial State Variables file (2dsupercooling.stvalues) 

The initial state variable file contains the coordinate of the 

solid seed. Here, one cell placed in the middle of the 

100x100 space is used to observe free dendritic growth: 

 
(49,49)=1 

 

Simulations were run using the Cloud RISE and their 

results will be presented in section 4. 

 

3.2. Packard Model 

3.2.1. Dendritic Growth Behaviors 

As mentioned in section 2, Packard’s model uses growth 

rules related to the sum of neighboring sites. Packard 

considers rules, which have the property that a site value of 

one remains one (no melting or sublimation). The rules also 

depend on neighboring site values only through their sum:   

=    f(  )     with             =  (1) 

 

The domain of f ranges from zero to number of 

neighbors; f takes on values of one to zero. These rules 

display four types of behavior for growth from small seeds: 

 No growth when the rule maps all values of σ to 

zero, i.e.  f(σ)=0 for all σ 

 Plate Structure when for instance f(σ)=1 for σ>0 

 Dendritic structure with side branches when 

growth inhibition is added for example f(σ)=1 

when σ=1 

 Growth of an amorphous circular form when even 

more growth inhibition is added. That is the case 

for f(σ)=1 when σ=2. 

For this paper, we will particularly focus on the dendritic 

structure growth since we want to observe microscopic 

patterns. 

Apart from the previous behaviors, Packard also added 

growth inhibition rules that depend on the local equilibrium 

temperature. In addition to the presence of solid sites in the 

neighborhood, a liquid cell temperature (Ti) must be less 

than a threshold defined as (with σ:sum of solid neighbors): 

 

   (2) 

3.2.2. Cell-DEVS Formal Specification 

The formal specification (that uses the Von Neumann 

neighborhood) is described as follows: 

 
CD = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 

X = Ø 

Y = Ø 

S.Phase = {0,1}   

S.Temperature = {-60 - +10}  

N = {(0,-1),(0,0),(0,1),(1,0),(-1,0) } 

d = 100 ms 

τ: NS 

S: 

 Phase(cell(0,0)) = 1 and 

Temperature(cell(0,0)) = latentHeatCst if 

Phase(cell(0,0))=0 and # of solid 

neighbors = 1 and cell’s temperature < 

Tthresh (TThresh as in (2),latentHeatCst: 

constant temperature for heat release) 

 Temperature(cell(0,0)) = Moved towards 

Average (Temperature(cell(0,1)), 

Temperature(cell(0,-1)), 

Temperature(cell(1,0)), Temperature(cell(-

1,0)) ) by DiffusionRateCst 

 

The cell phase denoted by S.Phase is a discrete variable and 

can take one of these two values: 0 or 1, where 0 indicates 

liquid and 1 solid. The temperature S.Temperature is 

continuous but should have appropriate supercooling values 

(we limited the range to from -60⁰C to 10⁰C). 

 

3.2.3. Neighborhood and Rules 

Both Von Neumann and Moore Neighborhood were used to 

implement the model. Implemented rules include the 

following: 

 A site will solidify only if it has one neighboring cell 

and its temperature is less than the local threshold. This 

is done using (1) and (2).  

 Temperature is set to a constant high value 

(latentHeatCst) when new solid is added. Hence, heat 

flows and inhibits the solidification of neighboring 

sites. For this case, the temperature will be set to a high 

constant that will represent the latent heat. 

 The temperature of each cell is constantly updated by 

moving the temperature of the cell toward the average 



of the four near neighbors. A constant is used for the 

diffusion rate. 

 

Different parameters, i.e. the diffusion rate, latent heat 

added upon solidification and the local temperature 

threshold (or more specifically ) can be used to study 

dendritic growth for this. 

 

3.2.4. Cell-DEVS Implementation 

A 50x50 model that has a Von Neumann neighborhood is 

defined. The model is defined as to have periodic 

boundaries on the left and right sides i.e. considered in 

contact with each other. Two special zones are defined for 

the top and bottom in order for them to be insulated. For the 

state, the cells are all liquid at the beginning and the 

temperature set to the initial supercooling temperature. The 

crystal seeds, from which the solidification starts is in 

defined in the supercooling2dext.val file. 

 
#include(Supercooling2DExtMacros.inc) 

 

[top] 

components : supercooling2D 

 

[supercooling2D] 

type : cell 

dim : (50,50) 

delay : transport 

defaultDelayTime  : 100 

border : wrapped  

neighbors : supercooling2D (-1,0)  

neighbors : supercooling2D (0,-1)  supercooling2D 

(0,0) supercooling2D (0,1) 

neighbors : supercooling2D (1,0)  

zone : insulatingTop-rule { (0,0)..(0,49) } 

zone : insulatingBottom-rule { (49,0)..(49,49) } 

initialValue : -1 

initialCellsValue : supercooling2dext.val 

stateVariables : latentHeat lambda diffusionRate 

initialTemperature 

stateValues : -20 3 5 -36 

neighborports: phase temperature 

localtransition : supercooling2d-rule 

   
This version uses the extended CD++ syntax, and has 

multiple state variables and ports. For the state variables, 

we have chosen diffusionRate, latentHeat, lambda and the 

initial undercooling temperature for parameters that 

influence the state and temperature of each cell. These were 

deducted from the different parameters that were cited in 

Packard [11] and presented previously. They can be 

initialized to different values in order to conduct 

experiments. The default values are -20⁰C for the latent 

heat (that is the temperature is raised to -20⁰C when a site 

solidify; this value should be greater than the initial 

supercooling temperature which is -36⁰C by default); 3 for 

lambda used in (2) for the computation of the local freezing 

threshold temperature. For the diffusion rate, a default value 

of 5 is used to move the temperature of a cell towards the 

neighboring sites average.  

Besides state variables, we define two ports:  temperature 

(in degree Celsius) and phase (0 when liquid, and 1 for 

solid). 

 

For the rule implementation, a first initialization rule sets all 

the ports to the right value (that is initialises the cells to the 

correct phase and temperature ports) since ports all have the 

same value:  value of initialValue 

 
[supercooling2d-rule] 

%Initialization 

rule : { ~phase := 0; ~temperature := 

$initialTemperature; } 100 { (0,0)~phase = -1 AND 

(0,0)~temperature = -1 } 

rule : { ~phase := 1; ~temperature := 

$initialTemperature; } 100 { (0,0)~phase = -2 AND 

(0,0)~temperature = -2 } 

 

After the initialization process, two main steps happens: 

phase transition for liquid cells that meet the conditions, 

and the heat conduction phase where the cell temperature is 

updated. macro(C) counts the sum of solid neighbors (1). 

 
%Ice Propagation 

% Solidification and Latent Heat Release 

rule : { ~phase := 1;~temperature := $latentHeat; 

} 100 { ((0,0)~phase = 0) AND ( #macro(C) = 1) AND 

(#macro(temperature) < $lambda*(#macro(C)*(1 - 

#macro(C))) ) } 

% Heat Conduction 

rule : { ~temperature :=(0,0)~temperature -  

$diffusionRate; } 100 { (0,0)~temperature - 

(((0,1)~temperature + (0,-1)~temperature + 

(1,0)~temperature + (-1,0)~temperature)/4) > 

$diffusionRate} 

rule : { ~temperature :=(0,0)~temperature +  

$diffusionRate; } 100 { (((0,1)~temperature + (0,-

1)~temperature + (1,0)~temperature + (-

1,0)~temperature)/4) - (0,0)~temperature > 

$diffusionRate} 

 

rule : { ~temperature :=(((0,1)~temperature + (0,-

1)~temperature + (1,0)~temperature + (-

1,0)~temperature)/4); } 100 { t } 

 
#BeginMacro(C) 

( (0,1)~phase + (0,-1)~phase + (1,0)~phase +  (-

1,0)~phase ) 

#EndMacro 

 

For the insulated borders, that is the top and bottom edges, 

special rules are defined. We also have a fully insulated 

implementation, with non-periodic left and right sides. The 

insulating top rule removes the above neighbor, (-1,0), from 

the solid neighbors count and the temperature computation.  

 
[insulatingTop-rule] 

%Initialization 

rule : { ~phase := 0; ~temperature := 

$initialTemperature; } 100 { (0,0)~phase = -1 AND 

(0,0)~temperature = -1 } 

rule : { ~phase := 1; ~temperature := 

$initialTemperature; } 100 { (0,0)~phase = -2 AND 

(0,0)~temperature = -2 } 

 



%Ice Propagation 

% Solidification and Latent Heat Release 

rule : { ~phase := 1;~temperature := $latentHeat; 

} 100 { ((0,0)~phase = 0) AND ( #macro(CTop) = 1) 

AND (#macro(temperature) < 

$lambda*(#macro(CTop)*(1 - #macro(CTop))) ) } 

% Heat Conduction 

rule : { ~temperature := (0,0)~temperature -  

$diffusionRate; } 100 { (0,0)~temperature - 

(((0,1)~temperature + (0,-1)~temperature + 

2*(1,0)~temperature)/4) > $diffusionRate }  

rule : { ~temperature := (0,0)~temperature +  

$diffusionRate;  } 100 { (((0,1)~temperature + 

(0,-1)~temperature + 2*(1,0)~temperature)/4) - 

(0,0)~temperature > $diffusionRate }  

rule : { ~temperature := (((0,1)~temperature + 

(0,-1)~temperature + 2*(1,0)~temperature)/4); } 

100 { t }  

 

The insulating top rule removes the below neighboring cell 

(1,0) from the solid neighbours count and the temperature 

computation. 

 
[insulatingBottom-rule] 

%Initialization 

rule : { ~phase := 0; ~temperature := 

$initialTemperature; } 100 { (0,0)~phase = -1 AND 

(0,0)~temperature = -1 } 

rule : { ~phase := 1; ~temperature := 

$initialTemperature; } 100 { (0,0)~phase = -2 AND 

(0,0)~temperature = -2 } 

 

%Ice Propagation 

% Solidification and Latent Heat Release 

rule : { ~phase := 1;~temperature := $latentHeat; 

} 100 { ((0,0)~phase = 0) AND ( #macro(CBottom) = 

1) AND (#macro(temperature) < 

$lambda*(#macro(CBottom)*(1 - #macro(CBottom))) ) 

} 

% Heat Conduction 

rule : { ~temperature := (0,0)~temperature -  

$diffusionRate; } 100 { (0,0)~temperature - 

(((0,1)~temperature + (0,-1)~temperature + 2*(-

1,0)~temperature)/4) > $diffusionRate }  

rule : { ~temperature := (0,0)~temperature +  

$diffusionRate;  } 100 { (((0,1)~temperature + 

(0,-1)~temperature + 2*(-1,0)~temperature)/4) - 

(0,0)~temperature > $diffusionRate }  

rule : { ~temperature := (((0,1)~temperature + 

(0,-1)~temperature + 2*(-1,0)~temperature)/4); } 

100 { t }  

 
3.3. Rule-Based Lattice Computer Models for Dendritic 

Growth Simulation 

The objective of this part was to study the application of 

rule-based lattice modelling to simulate and understand the 

growth of branched dendrites.  Heat transfer and 

solidification are simulated based on a 2D cubic lattice. 

Two set of simulations illustrated the application of the 

simulation models to the solidification of columnar and 

equiaxed dendritic grain structures. Initial crystal seeds are 

attributed different id. 

 
3.3.1. Cell-DEVS Formal Specification  
The formal specification (that uses the Von Neumann 

neighborhood) is described as follows: 

CD = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 

X = Ø 

Y = Ø 

S.Phase = {0-20}   

S.Temperature ={-60 - +10}  

N = {(0,-1),(0,0),(0,1),(1,0),(-1,0)} 

d = 100 ms 

τ: NS 

S: 

 Phase(cell(0,0)) = x (x is between 1 and 20) 

and Temperature(cell(0,0)) = cst if 

Phase(cell(0,0)) = 0 and # of solid neighbors 

= 1 (x is the Phase of that solid neighbor) 

and cell’s temperature < < Tthresh (TThresh as 

in (2),latentHeatCst: constant temperature for 

heat release) 

 Temperature(cell(0,0)) = Moved towards Average 

(Temperature(cell(0,1)), Temperature(cell(0,-

1)), Temperature(cell(1,0)), 

Temperature(cell(-1,0)) ) by DiffusionRateCst 

 
The cell phase denoted by S.Phase is a discrete variable and 

can take values between 0 and 20, with 0 indicating liquid 

and values greater than 1 solid. This is to show accurately 

from what seed influenced the solidification of a cell. The 

temperature S.Temperature is continuous but should have 

appropriate supercooling values. 

 
3.3.2.  Rules 

The model basically reuses Packard concept and relies on 

the following rules: 
 

1. Each seed is identified by a number, and each time a 

cell is solidified, it obtains same id number as the 

initial solid seed to track the evolution of the system. 

2. Each cell temperature is adjusted using the average of 

the Von Neumann neighbors. 

3. A cell solidifies when enough neighbours are solid. 

4. The solidification is limited to those cells having lower 

temperature than a critical limit. 

5. The critical limit is computed as the Solid-Liquid 

interfacial energy constant of the material divided by 

the local curvature. For simplification, the local 

curvature is computed using the count of solid 

neighbours. 

6. When a cell solidifies the temperature is raised to a 

constant value. 

7. No sublimation or melting is implemented by the 

model. A solid cell will always stay solid. 

 

For our simulation, we limited the number of different 

initial solid seeds to 20. 

 

 
3.3.3. Cell-DEVS Implementation 

The initialization and solidification rules were changed to 

include the initiator seed id. The phase of each cell is 

always set to the same phase as the crystal seed that enabled 

growth. The following extract shows the main change in the 

solidification rule where the macro getSeedId identifies the 

original solid cell from which the dendrites will grow: 



% Solidification and Latent Heat Release 

rule : { ~phase := #macro(getSeedId); ~temperature 

:= $latentHeat; } 100 { ((0,0)~phase = 0) AND ( 

#macro(C) = 1) AND (#macro(temperature) < 

$lambda*(#macro(C)*(1 - #macro(C))) ) } 

% Heat Conduction 

rule : { ~temperature :=(0,0)~temperature -  

$diffusionRate; } 100 { (0,0)~temperature - 

(((0,1)~temperature + (0,-1)~temperature + 

(1,0)~temperature + (-1,0)~temperature)/4) > 

$diffusionRate} 

rule : { ~temperature :=(0,0)~temperature +  

$diffusionRate; } 100 { (((0,1)~temperature + (0,-

1)~temperature + (1,0)~temperature + (-

1,0)~temperature)/4) - (0,0)~temperature > 

$diffusionRate} 

rule : { ~temperature :=(((0,1)~temperature + (0,-

1)~temperature + (1,0)~temperature + (-

1,0)~temperature)/4); } 100 { t } 

 
#BeginMacro(getSeedId) 

( if( (0,1)~phase != 0, (0,1)~phase, if( (0,-

1)~phase != 0, (0,-1)~phase, if( (1,0)~phase != 0, 

(1,0)~phase, (-1,0)~phase )  )  )  ) 

#EndMacro 

 
3.3.3. Constrained Dendritic growth 

For columnar grain simulation, the above model is used and 

crystal seeds are randomly located along the bottom edge.  

A 50x50 model, instead of 350x350 in the paper, was 

chosen to run the simulation. Crystal seeds are placed on 

the bottom edge of the square for constrained growth. For 

this purpose, we developed crystal seeds file generator that 

outputs different grain configuration. 

 

Crystal Seed Generator 

The random seed generator takes multiples parameters in 

order to generate the val file: the output file name, the width 

and height of the cell space, the initial id (the first seed id, 

others will be automatically generated by incrementation), 

the number of seeds and the dendritic growth type (free or 

constrained). 

The following snippet show how the constrained dendritic 

growth seeds are generated. The X coordinate is fixed while 

Y is obtained by using a random generator.  

 

        case 1:                                                    // Constrained Growth 

            while (cells.size() != seeds){ 

                cells.clear(); 

                int i = height - 1; 

                for (int j = 1; j < width -1; j++ ){ 

                    if (dist(mt) < seeds * height ){      

                    /*  Previous mt declaration: std::mt19937 mt(rd()); */ 

                        cells.push_back(std::pair<int, int>(i, j)); 

                    } 

                } 

            } 

 

VAL file 

The following is a test run example: 

Input:  ConstrainedSeeds.val 50 50 -4 6 1 

Output: A file named ConstrainedSeeds.val with 6 

randomly located solid seeds across the bottom : 
(49,9)  = -4 

(49,13) = -5 

(49,22) = -6 

(49,25) = -7 

(49,31) = -8 

(49,36) = -9 

 

 
3.3.4. Free/Equiaxed Dendritic growth 

Cube shaped crystals were randomly located within the 

square to simulate equiaxed grains.  

 

Crystal Seed Generator 

 The following snippet show how the constrained dendritic 

growth seeds are generated. X and Y seed coordinate are 

generated using a random generator.  

 

        case 0:                                                     // Free Growth 

            while (cells.size() != seeds){ 

                cells.clear(); 

                for (int i = 1; i < width -1; i++ ){ 

                    for (int j = 1; j < height -1; j++ ){ 

                        if (dist(mt) < seeds ){              

                     /*  Previous mt declaration: std::mt19937 mt(rd()); */ 

                            cells.push_back(std::pair<int, int>(i, j)); 

                        } 

                    } 

                } 

            } 

 

VAL file 

The following is a test run example: 

Input:  FreeSeeds.val 50 50 -2 5 0  

Output – FreeSeeds.val:  
(5,12)  = -2 

(12,31) = -3 

(18,24) = -4 

(21,7)  = -5 

(24,10) = -6 

 
3.4. Other Models 

We will mainly discuss the model described in [12] that 

suggests a new dendritic growth cellular automata model. 

3.4.1. New CA based on Von-Neumann/Moore Neighbors 

The formal specification is described as follows: 

CD = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 

X = Ø 

Y = Ø 

S= [0,1]   

N = Moore neighborhood 

d = 100 ms 

τ: N→S 

S:  (using beta=0.00001, and alpha=1) 

 1 if (0,0) >= 0.98 % solid cell 

 (0,0) + 0.00001 + ((1/16)*((-8*(0,0)) + 

liquidConcentration((-1,-1),(-1,0),(-1,1) 

,(0,-1),(0,1),(1,-1),(1,0),(1,1)) 



 (0,0) + ((1/16)*((-8*(0,0)) + 

liquidConcentration( (-1,-1) + (-1,0) + (-1,1) 

+ (0,-1) + (0,1) + (1,-1) + (1,0) + (1,1)) 

Where liquidConcentration returns the sum of the 

concentration of only cells that are liquid in the 

parameter set(Moore neighborhood here).  

The Von Neumann uses the same concept but with different 

fractions: 1/8 is used instead of 1/16, and -4 instead of -8 in 

both the liquid and near-solid diffusion rules. 

The following snippet shows the corresponding advanced 

Cell-DEVS model for the Von Neumann neighborhood this 

time: 

[2dsupercooling] 

type : cell 

width : 100 

height : 100 

delay : transport 

defaultDelayTime : 1 

border : wrapped 

neighbors : 2dsupercooling(-1,0)  

neighbors : 2dsupercooling(0,-1)  

2dsupercooling(0,0)   2dsupercooling(0,1)  

neighbors : 2dsupercooling(1,0)  

initialValue : -1 

initialCellsValue : 2dsupercooling.val 

localtransition : 2dsupercooling-rule 

neighborports: value phase 

 

% initial value 0.3, state 0 

[2dsupercooling-rule] 

% Initialization 

rule : { ~value := 0.3; ~phase := 0; } 1 { 

(0,0)~value = -1 AND (0,0)~phase = -1 } 

rule : { ~value := 1.0; ~phase := 2; } 1 { 

(0,0)~value = -2 AND (0,0)~phase = -2 } 

 

% Solidifcation Rule 

rule : { ~value := 1; ~phase := 2; } 1 { 

#macro(isSolid) } 

rule : { ~value := (0,0)~value + 

#macro(diffusionNearSolid) ; ~phase := 1; } 1 { 

#macro(isNearSolid) }  

rule : { ~value := (0,0)~value + 

#macro(diffusionSolution) ; ~phase := 0;} 1 { 

#macro(isSolution) } 

In this implementation, a phase of 0 represents 

liquid/solution, 1 is for near-solid and 2 indicates a solid 

cell. The value of each cell reflects the concentration. For 

the rules, a diffusion term is added to liquid and near-solid 

cells while solid cells remain solid. 

A snippet containing of macros is shown below: 
#BeginMacro(isSolution) 

((0,0)~value < 1) AND ( ((-1,0)~value < 1) AND  

((0,-1)~value < 1) AND  ((0,1)~value < 1)  AND 

((1,0)~value < 1) ) 

#EndMacro 

 

#BeginMacro(isNearSolid) 

((0,0)~value < 1) AND ( ((-1,0)~value >= 1) OR 

((0,-1)~value >= 1) OR  ((0,1)~value >= 1)  OR 

((1,0)~value >= 1) ) 

#EndMacro 

#BeginMacro(diffusionSolution) 

(1/8)*( (-4*(0,0)~value) + if((-1,0)~phase = 0, (-

1,0)~value,0) + if((0,-1)~phase = 0, (0,-

1)~value,0) + if((1,0)~phase = 0, (1,0)~value,0) + 

if((0,1)~phase = 0, (0,1)~value,0) ) 

#EndMacro 

 

#BeginMacro(diffusionNearSolid) 

0.0001 + ( (1/8)*( (-4*(0,0)~value) + if((-

1,0)~phase = 0, (-1,0)~value,0) + if((0,-1)~phase 

= 0, (0,-1)~value,0) + if((1,0)~phase = 0, 

(1,0)~value,0) + if((0,1)~phase = 0, 

(0,1)~value,0) ) ) 

#EndMacro 

We run these simulations using the fastest RISE server 

since these were quite heavy. It is also essential to note that 

the author might have provided an erroneous rule since 

small experiments did not show any dendritic structure.  

3.4.2 Other implementations 

We also evaluated the possibility of implementing the 

models proposed in [13] and [14], but time constraints did 

not allow us to complete them. 

4. SIMULATION RESULTS 

4.1. Window Automata and Dendritic Growth 

The following figure shows the expected result and shown 

in the reference paper. 

 

 

 

 

 

 

 

 

In the following figure, the rightmost figure was produced 

by the drawlog tool and visualized with CD++ Modeler and 

is identical to the leftmost figures that was implemented 

using CA. 

 

Figure 1. Theoritical Results [10] 

  
Cellular Automata [10]  Cell-DEVS 

Figure 2. Simulation Results 



For this implementation, colored (blue/purple) cells have a 

value of 1. The simulation is initiated with a 2x2 seed 

placed at the center of the square. Then, only cells with one 

solid neighbor become solid. 

 An essential observation that was made is that every 2n 

time steps, the growing seed forms a plate structure, then 

dendritic arms grow from the corners of the plate, side 

branches form, and again all side branches grow into a plate 

and the process is repeated. 

 

 

Figure 4. Dendritic Arms Growth 

 

Complex shapes can also be generated using the window 

automata rule. The Moore neighborhood was tested as well 

and results are enclosed in the files attached to this paper. 

4.2. Packard Model 

 

The following palette is used for all the following 

experiment to identify thermal dendrite; temperature ranges 

are specified on the left side, and the associated color is 

shown on the right: 

 

Figure 5. Temperature Palette used for Dendrites 

Identification 

 

4.2.1. Growth Behaviors 

As mentioned earlier, multiple growth behavior can be 

generated by mapping the solidification function to 

different values of the sum of solid neighbors. We were 

able to observe all of them. We use the Moore variant for 

the result shown in Figure 6 since the Von Neumann was 

presented for the previous results. Note that dark blue 

shows liquid cells at the initial undercooling temperature. 

For the following experiments, the seed is 3x3. 

From the results shown in Figure 6, we can conclude that 

the number of solid neighbors should not be too high or too 

low in order to observe dendritic pattern. 

 
4.2.2. Parameter Variation 

a) Effect of Lambda 
When lambda is varied, we notice that the structure goes 

from tendril growth to a stable dendritic structure. The 

Figure 7 shows the obtained results on the left. The right 

shows results obtained by Packard. In this later case 

however, a different neighborhood is used. When λ is small 

Tthresh is lower so that more solidification occurs. In 

addition, more heat diffuses before a boundary site 

solidifies. That is why the sites have different colors, i.e. 

different temperatures since latent heat is only released 

when the site becomes solid. The solidification is inhibited 

by higher λ since they results in an increased threshold 

temperature. 

 

b) Latent Heat Effect 

The latent heat parameter determines how warm a newly 

solidified cell becomes as to represent the energy liberated 

when solidification occurs. The higher the latent heat, the 

less neighbor cells solidify. This is because the temperature 

at the solid-liquid interface increases and inhibits the 

freezing process. Hence, the temperature of the cell will 

tend to be higher than TThresh, the Threshold temperature. 

Besides, dendrites that form have higher temperature and 

are warmer (see palette colors for T=0) compared to lower  

latent heat temperature  (T=-20). These results are shown in 

Figure 8 (shown in a subsequent page), 

c) Diffusion Rate Effect 

The diffusion rate parameter is the constant that is added or 

subtracted in order to move a cell temperature towards the 

average of the neighboring cells. When this constant is 

high, the cell gets close to the neighboring temperature 

faster and the thermal dendrites will tend to be warmer. 

This will also highly impact the growth behavior and 

structure of the solution as illustrated in Figure 9. 

d) Combination of factors 

When different parameters are changed, we notice that 

some transitions happen. In Figure 10 (shown in the next 

pages) for instance, lowering the latent and diffusion rate 

made a tendril-like growth become amorphous. 

 

  
Starting Plate Structure Plate Structure after 2n 

steps 

Figure 3. Plate Structures 

   

Intermediary Steps: Dendritic arms and Side branches form 



 

No Growth – Moore f(σ)=0 

Plate structure reflecting the lattice structure – Moore: 

f(σ)= 1 when σ > 0 

  

Dendritic structure with side branches when growth inhibition 

is added for example f(σ)=1 when σ=1 

An amorphous, asymptotically circular form – Moore: 

f(σ)= 1 when σ = 2 

 

  

Figure 6. Types of Growth Behaviors

 

 

The palette shown on the left side (temperature range and 
corresponding color) can serve as a guide to visualize the 
results above: Dark blue is liquid cell at the initial 

temperature (-36⁰C), Dark purple are at the interface of 

the solidification. The number of solid neighbors affects 
greatly the final structure. An analysis has been done in 
4.2.1.and can be read for reference. 



Lambda Effect 

 

  

Cell-DEVS Results (λ=0.01 on Top vs λ=100 on the bottom) Packard Results(Low λ on top vs high λ on bottom) 

Figure 7. Lambda Variation Effect (Low lambda on the upper figures and low lambda on the lower figures) 

 

  

The palette shown on the left side (temperature range and 
corresponding color) can serve as a guide to visualize the 
results above: Dark blue is liquid cell at the initial 

temperature(-36⁰C), Dark purple are at the interface of the 

solidification.  λ is low for the top figures and high for the 

bottom figures. In the latter case, we observe a clear 
anisotropy and stable branching. Note that we are using 

f(σ)= 1 when σ >= 1 for this experiment. An analysis has 

been done in 4.2.2..a)and can be read for reference. t 

 
 



T=253⁰K or -20⁰C T=273⁰K or 0⁰C 

  

Figure 8. Latent Heat Variation (Low Latent Heat on Left and High Latent Heat on the right  - Lambda is as described in Figure 7) 

 

  

The palette shown on the left side (temperature range and 
corresponding color) can serve as a guide to visualize the 
results above: Dark blue is liquid cell at the initial 

temperature (-36⁰C), Dark purple are at the interface of 

the solidification.  λ is low for the top figures and high for 

the bottom figures. In the latter case, we observe a clear 
anisotropy and stable branching. Note that we are using 

f(σ)= 1 when σ >= 1 for this experiment. An analysis has 

been done in 4.2.2..b). and can be read for reference. 

 
 



Diffusion Rate Effect 

Constant Diffusion Rate = 1 Constant Diffusion Rate = 10 

 
 

Figure 9. Diffusion Rate Constant Effect (Low rate on Left and High rate on the right  - Lambda as described in Figure 7) 

 

 

  

The palette shown on the left side (temperature range and 
corresponding color) can serve as a guide to visualize the 
results above: Dark blue is liquid cell at the initial 

temperature (-36⁰C), Dark purple are at the interface of 

the solidification.  λ is low for the top figures and high for 

the bottom figures. An analysis has been done in 4.2.2.c). 
and can be read for reference. t 

 

 



Combination of factors 

T=273⁰K=0⁰C, Same Lambda, Diff = 10 T=253⁰K=-20⁰C, Same Lambda, Diff = 5 

  

Figure 10.  Multiple Factors Variation (Latent Heat=0⁰C & Diffusion Rate=10 VS Latent Heat=-20⁰C & Diffusion Rate=10) 

For figure 10, the palette is the same as in all the previous 
cases: Dark blue is liquid cell at the initial temperature (-

36⁰C), Dark purple are at the interface of the solidification.  

λ is low for the top figures and high for the bottom figures. 

An analysis has been done in 4.2.2..d). and can be read 
for reference  

For figure 11, solid is dark blue, and liquid is light blue. 
See 4.5. for the analysis. 

 

 

Figure 11. A 3D Simulation Result that uses the Window Automata principle 

 



4.3. Rule-Based Lattice Computer Models for Dendritic 
Growth Simulation 

 

Two set of simulations are presented to show the 

application of the model to the solidification of columnar 

and equiaxed dendritic grain structure. For the following 

experiment results, all the cells have the same initial 

supercooling temperature, -36⁰C.  The growth is initiated 

from 2x2 seeds randomly place at the bottom edge for the 

constrained growth, and randomly dispersed all over the 

cell space for the free dendritic growth case.  

 

For visualizing results, we use a palette that assign a 

specific color by id. The numbers show the seed id, and 

the assigned color is on the right side.  

 

  

Figure 12. Palette used for Dendrites Id 

Hence, we can easily see from which seed, the dendrites 

spread. Note that for thermal visualization, the Packard 

palette is used. 

 

4.3.1. Constrained Growth 

Constrained growth lead to columnar dendrites since the 

neighboring dendrites grown from different seeds inhibit 

horizontal growth once dendrites collide. Indeed the 

temperature is raised, and no solidification occurs. 

 

The following capture shows thermal dendrites results 

obtained by Brown. 

 
Figure 13. Reference Paper Results [9] 

 

With our Cell-DEVS implementation, we obtain similar 

behavior and a similar structure. 

 

Figure 14. Cell-DEVS Columnar Thermal Dendrites 

 

When we add, the identification component, we can easily 

follow how dendritic growth progresses. At the start: 

 

Figure 15. Constrained Dendrites Simulation (Start) 

 

Figure 16. Constrained Dendrites Simulation (22 steps later) 



4.3.2. Free Growth 

Dendrites grow in all crystallographic directions until 

they hit dendrites issued from a different seed. 

 

Figure 17. Free Dendrites Simulation (Start) 

 

After 22 simulation steps, the dendrites have spread in all 

directions. 

 

Figure 18. Columnar Dendrites Simulation (22 steps later) 

We can also notice that results are similar to those in [9], 

except that since dendrites sometimes grow on different 

direction, they might be using hexagonal cells or 

introducing non-deterministic behaviors. However, the 

authors do not give any details about the specifics of their 

implementation but only provide a general description. 

We  noticed that the extended Cell-DEVS syntax did not 

allow the defined zone to behave as specified in the 

border rules. The results show that instead all borders 

were considered periodic. The same insulating concepts 

were tested in the old simulator and performed accurately. 

We did not investigate this issue further since it has 

already been reported before. 

4.4.  Other models 

Apart from the above models, we also tried to implement 

another cellular automata described in [12] in order to 

observe finer dendrites growth. This implementation 

suggests a new technique based on the cell concentration, 

has three phases (liquid, solid and near solid) and uses the 

Von Neumman and Moore neighborhood. Small values 

are used to get results that are more precise as shown 

below but, the model requires heavy computations.  

 

Figure 19. Expected Result for Alpha=1, Beta=0.0001 [12] 

However, the simulation takes more than a day and we 

were not able to gather all the results in time. One of the 

simulation is still running here. Besides, we made certain 

assumptions since the paper was not specific enough: the 

neighborhood defined in the diffusion formula had an 

undefined index and a typo for the initial value. We 

assumed that it meant all neighbors. The experiment was 

run using the same values shown in Figure 19. with an 

initial value of 0.03. 

The first tests lead to different results that do not exhibit 

the expected dendrites forms.  Figure 20 shows the results 

obtained after 2000 simulation steps of a 300x300 cell 

space with a solid seed a placed in the center. The 

simulation took several hours and even when the 

http://vs1.sce.carleton.ca:8080/cdpp/sim/workspaces/test/lopez/2dsupercooling


concentration was raised, there were no new solid cells, 

although near-solid cells(shown in dark blue) appeared  

 

 

Figure 20. First Tests Results 

In the above figure, an RGB is used and maps R to 

solid/liquid (255 for liquid and 0 for solif), and B to the 

concentration. Therefore, black shows liquid cells, dark 

blue for near-solid cells and purple for solid cells (The 

light purple dot in the middle is the initial solid cell). 

Improved versions are still running on the server. The 

objective was to refine the observed dendritic patterns 

from the Packard and Brown models by adding an 

additional phase state and having a more polished solid-

liquid interfaces that also takes into account mushy cells. 

We also wanted to add the temperature component 

introduced by Packard in order to have a simple Cell-

DEVS model were both thermal and phase dendrites 

could be observed.  

Indeed, with the first elementary window automata only 

phase/state dendrites are shown since no temperature is 

considered. Packard adds the temperature key ingredient 

that affects dendrites but does not provide multiple cell 

states  

4.5.  3D Results with Window Automata  

We have also run a simulation of a 3D model using the 

above criteria and observed different patterns. Figure 11 

shows a -35⁰C supercooled model of size 15x15x15. 

Different structures are observed in different planes, and 

can be a mixture of amorphous, tendril-like and dendritic 

forms. We did not investigate this further due to time 

constraints. However, it would be interesting to study 

these patterns in a 3D environment in future work. 

5. CONCLUSION 

We described several rule-based lattice models for 

dendritic growth in supercooled liquids and presented 

their implementation with Cell-DEVS. Results were 

compared to those shown in the reference papers. We 

started with the Window Automata originally presented 

by Weisbuch [10] and that uses simple rules for elegant 

dendritic growth simulation. Then, the Packard model, 

that involves several parameters and combines both 

continuous and discrete elements, was discussed. Multiple 

behaviors similar to those observed in the original paper 

were observed, and the impact of additional different 

parameters analyzed. After that, we studied the 

application of the previous model both free and 

constrained growth by introducing multiple seeds with 

distinct identification.  

We also studied other models to refine the observed 

dendrites but were not able to complete the required 

simulation due to time limitations and missing parameters 

in the paper that required various assumptions. One of the 

most challenging aspects of this project was to reproduce 

experiments since parameters were not given in most 

papers. In some cases, crucial information was missing. 

We believe that providing clear information for 

experiment reproducibility for modelling articles is 

essential, especially for such a subject that still fascinates 

scientists and heavy computation experts. It was quite 

complicates to reproduced the experiments although the 

rules were there. Nevertheless, multiple parameters were 

tested until similar results were obtained.  

The other roadblock was that complementary tools 

provided with CD++ were not able to process some of the 

large models that had up to several GB of logs. 

Sometimes, it took days to get an error message because 

of out of memory exceptions for example. We acted upon 

these issues by reducing the size of our models and also 

developing special parsing and visualization tools. 

Overall, we were able to observe microstructures in 

addition to the macroscopic features that were explore in 

our last assignment.  We also compared the simulation 

time of our previous models when using RISE and the 

difference was remarkable in general (minutes against 

days). The refined model that required heavy computation 

appears to run longer using the RISE server, supposedly 

because it has multiple ports while it completes in a day 

using the original CD++. 

For future work, the defined models could be adapted to 

3D and patterns studied. Other complex behaviors such as 

metal alloys and crystallographic variation [14] should be 

introduced and studied as well. For the tool aspect, the 

visualization tool needs better support for larger files. 



Plus, the CD++ simulation log tool should be improved to 

improve a current design flaw that accumulates logs in 

memory and only writes to the file once the simulation is 

over. The Lopez version has a fix for the log but does not 

generate the equivalent partial drawlog file.  
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