
Advanced Cell-DEVS Models of Dendritic Growth in
Supercooled Liquids

Daniella Niyonkuru
1
 Damián Vicino

1, 2

1
Dept. of Systems and Computer Engineering

Carleton University 1125 Colonel By Dr., Ottawa, ON, Canada K1S 5B6

2
INRIA Sophia Antipolis, Université Nice Laboratoire I3S UMR CNRS 7271, Sophia Antipolis, France

{Daniella.Niyonkuru, Damian.Vicino}@carleton.ca

ABSTRACT

2D Cell-DEVS models were developed to study both free

and constrained dendritic growth in supercooled liquids.

The defined models include rules that consider heat

diffusion, the influence of the curvature on the equilibrium

freezing temperature and latent heat evolution. Previously,

we implemented a 3D supercooling model showing

macroscopic structures and observed that the velocity of the

dendrite tip growth was proportional to the supercooling

temperature. In this paper, we focus on microstructures and

analyze parameters that affect them. Our new simulations

show primary and secondary dendritic arms, as well as the

impact of different parameters.

1. INTRODUCTION

From causing airplanes accidents [1] [2] to creating perfect

slush beverages and preserving organs [3], supercooling [4]

can be both beneficial and harmful. Supercooling [5], also

referred to as undercooling, is the process of lowering the

temperature of a liquid below its freezing temperature

without it becoming solid. In a pure liquid such as distilled

water, particles (also called nucleation sites) responsible of

solidification are missing. Usually, crystallization occurs

around those small nuclei that are often impurity particles.

The first crystal has the shape, for instance face-centered

cubic for silver (Ag), into which the liquid will naturally

solidify. Then, as the crystal grows, it tends to develop

spikes and its shape changes into a tree-like form called a

dendrite.

Dendrites [6] [7] are usually observed in materials

solidifying with low entropies of fusion and freeze such that

dendrite arms grow in specific crystallographic directions.

As a dendrite grows, additional side arms can grow behind

the growing tip. Moreover, dendrites can be either free or

constrained. They are termed free dendrites when they form

individually and grow in supercooled liquids. In this case,

growth happens radially leading to an equiaxed shaped

grain until collision with another growing dendrite takes

place. Constrained dendrites, on the other hand, grow from

a surface in a columnar fashion, such that the primary

dendrite arms are in the direction of the heat flow.

Over the past fifty years, numerous attempts were made to

study both analytically and experimentally the

characteristics of dendritic growth since they play a major

role in determining the final quality and properties of a

solidified structure, especially metal alloys. However, the

dendritic microstructures usually require complex

computations and remain hard to study. In our previous

work, we have shown the relationship between the

undercooling temperature and the crystal growth speed, as

well as macroscopic features. For this work, we will focus

on the microscopic aspect that is the growth of the crystal

and exhibit dendritic features. To achieve this goal, we have

built several Cell-DEVS models from the most basics to

complex ones using the extended CD++ tool [8] to render

the behavior of dendritic growth and observe their

microscopic characteristics. Our models implement the

solidification process as well as the heat conduction that

influence dendritic growth. We were able to observe both

primary and secondary dendritic arms, and have run

experiments for both free and constrained dendritic growth.

In this paper, we will first revisit the factors that influence

dendritic growth and briefly review some existing models.

Then, we will present the newly defined models, describe

the experiments, and show results. Finally, we will

conclude this paper with the analysis of the obtained results.

2. BACKGROUND

As introduced in the previous section, the evolution of a

dendritic crystal depends on the complex interaction of

several physical phenomena that includes latent heat

evolution and its removal from the solid-liquid interface,

solid-liquid interfacial energy, the influence of solid-liquid

interface curvature on the equilibrium freezing temperature

and the atomic mechanism of the crystal growth process.

Two factors in particular control the growth of the

dendrites: Heat liberated at the solid/liquid interface, and

the local curvature of the solid/liquid interface. Therefore,

both the heat transfer and the dendrite morphology

problems are influenced by these conditions: the first is the

local equilibrium freezing temperature, determined by the

local interface curvature, and known as the Gibbs-Thomson

effect. The second condition is that latent heat released

when freezing must be removed from the solid liquid

interface.

Most numerical methods that implemented the above

factors were not able to simulate the oscillatory formation

and growth of dendrite arm branches [9]. Afterwards, 2D

rule-based models (Cellular Automata - CA) were proposed

to show not only the macroscopic patterns, but also

simulate dendritic branches formation. The first elementary

model uses window automata to simulate dendritic growth

by applying simple rules where the number of solid

neighbors should neither bee too high nor too low in order

for a site to freeze [10]. This model, however, does not take

into account the temperature factor. Packard later

introduced a model that adds the temperature by integrating

a continuous variable at each site to simulate heat transfer.

As the degree of influence of curvature on the freezing

temperature was reduced, the growth forms changed from

amorphous to tendril like (tip splitting) to dendritic like

structures exhibiting side branching [11]. For this paper, we

will implement, using the extended Cell-DEVS syntax, the

window automata model [10], add improvements made by

Packard [11] and then proceed to the experiences presented

in [9] that studies columnar and free dendritic growth.

2.1. Modelling Dendritic growth with CA – A review

2.1.1. Window Automata and Dendritic Growth

A crystal grown from a seed in solution can develop lacy

dendritic shapes. This type of crystalline growth occurs

when the seed is much colder than the surrounding solution.

The heat dissipated by the crystallization process leads to

the growth of dendrites that spread out into the solution to

find colder zones of the liquid. This type of growth can be

modelled by the use of “window” cellular automata [10].

The need to dissipate the heat generated by crystallization is

handled by not allowing an automaton to change to state 1

if the number of its neighbors in state 1 is too large. The

growth process of course requires the presence of a seed,

and so a transition to state 1 cannot occur if the number of

neighbor in state 1 is too small. The combination of these

two tendencies means that a state 0 automaton can change

its state to 1 only if the number of its neighbors in state 1 is

neither too large or too small.

2.1.2. Packard Model

The Packard model [11] adds growth restriction rules

related to the sum of neighboring sites. For dendritic

growth, he added growth inhibition rules that depend on the

local equilibrium temperature. The author defines a 2D

Cellular Automaton with two states per cell and transition

rules. The states denote presence or absence of solid, and

the rules depend on their neighbors only through their sum.

Four types of behavior can be observed:

 No growth

 Plate structure reflecting the lattice structure

 Dendritic structure with side branches growing along

lattice directions

 Growth of an amorphous, asymptotically circular form

Two important ingredients are needed for correct dendritic

behavior modelling:

 The Flow of Heat – modeled by addition of a

continuous variable at each lattice site to represent

temperature, and

 The Effect of Solidification on the Temperature Field –

when solid is added to a growing seed, the latent heat

of solidification must be radiated away.The

temperature is set to a constant high value when new

solid is added.

The model include hybrid of discrete and continuum

elements. Different parameters can be used to study

dendritic growth the :

 diffusion rate,

 latent heat added upon solidification, and the

 local temperature threshold

Packard shows few results to compare with when

reproducing but the specific experiment parameters are not

given. We will also show the impact of additional

parameters.

2.1.3. Columnar and Free Dendritic Growth Simulation
with Rule-Based Lattice Models (By Brown [9])

In [9], a cellular automaton model is presented and will be

the reference for this study. An orthogonal grid will be

used. Each cell will have its own temperature and

state/phase. Initial temperatures will be set to supercooling

values for each cell, and top and bottom borders will be

insulated while side borders are set to be in contact with

each other. It is assumed that dendrites were thermal in

nature, and both constrained and free growths are studied.

2.1.5. Other Models

In [12], two Cellular Automata models are proposed based

on the Moore and Von Neuman neighborhoods. In both

cases, the neighbors are not only affected by the state of the

near neighbors but also the extended neighbors, i.e.

neighbors of each neighboring cell. This model defines

three possible states: solid, characterized by a unit value;

near-solid that are liquid cells with at least one solid

neighbor; and liquid, liquid cells with no solid neighbors.

Each cell value represents the concentration of solid

particles. For instance, solid cells have a 100%

concentration. Depending on the category, different

equations are applied to obtain the next state of the cell. If

the state is solid, it remains solid. In the case of a liquid

cell, a diffusion formula is used to compute the new

concentration. For near-solid cells, the same formula is used

with an extra increment since solid particles are diffusing

from the solid neighbors. The formula requires two

parameters, alpha and beta, that respectively represent the

weight diffusion and the constant increment (for near-solid

cells). A particularity of this model is that the temperature

is not set in a direct manner when simulating. The two types

of neighborhood produce different results. In particular, the

Moore (see Figure 19) model produce results with a 45

degrees rotation shift comparatively to the Von Neumman.

The paper includes several examples and parametrization

values to reproduce the experiments.

In [13] a more complex approach is taken using partial

solidification for each cell and several additional

parameters. The model evaluates 21 equations per step for

each cell. These equations include some partial differential

equations. The approach uses Virtual Front Tracking, takes

in account several microscopic phenomena such as the

crystallographic orientation and alloys concentration.

 [14] reviews previous models and suggests a new approach

based on thermal fields. In this case, the model analyzes

mesh-induced anisotropy for the traditional capture rules

such as Von Neumann’s and Moore’s capture rules and

simulate the tip growth velocity.

2.2. Cell-DEVS

An alternative formalism, Cell-DEVS [15], can be used to

model this kind of behaviours. This formalism combines

the advantages of Cellular Automata with those from

Discrete-Event System Specification (DEVS). This

approach provides more flexibility at the time of modelling

cells and allows the combination of models defined using

different formalisms.

In Cell-DEVS, each cell is defined as a Cell-DEVS atomic

model, which is formally defined by the following tuple:

< X, Y, S, N, type, d, τ, δint, δext, λ, ta >

where:

 X is the set of input external events;

 Y is the set of output external events;

 S is the set of states;

 N is the set of input values

 type is the type of delay (transport, inertial, other);

 d is the delay for the cell;

 τ is the local computing function;

 δint is the internal transition function;

 δext is the external transition function;

 λ is the output function; and

 ta is the time advance function.

To combine the cells a Cell-DEVS coupled model is

necessary, this model is defined as the tuple

< X, Y, Xlist, Ylist, η, N, {m, n}, C, B, Z, select >

where:

 X is the set of input external events;

 Y is the set of output external events;

 Xlist are the list of input couplings;

 Ylist are the list of output couplings;

 η is the neighbourhood size;

 N is the neighbourhood set;

 {m, n} is the size of the cell space;

 C is the cell space set;

 B is the border cell set;

 Z is the translation function; and

 select is the tie breaking function

Each cell is an atomic DEVS model; it receives inputs from

neighboring cells and sends output to its neighbors after

defined time delays. After the behavior of a cell has been

defined and proper delays specified, two essential aspects

need to be delineated: the neighbors and the rules. The

neighbors define the input sources of the cell and this later

uses this compute its local computing function. The rule

section defines the local computing function using this

format:

If state variables are used, the assignment portion can also

be added to the previous format:

In the following sections, the previously described dendritic

models will be modeled using Cell-DEVS. Advanced Cell-

DEVS [15], in particular, offers multiple state variables and

neighboring ports that will be convenient for

implementation. As mentioned previously, several factors

are involved in order to simulate accuratelydendritic

growth.

3. MODELS DEFINITION

3.1. Window Automata and Dendritic Growth

3.1.1. Cell-DEVS Formal Specification

The formal specification is described as follows:

CD = < X, Y, I, S, θ, N, d, δint, δext, τ, λ,

D >

X = Ø

Y = Ø

S = {0,1}

N = {(0,-1),(0,1),(0,0),(1,0),(-1,0)}

d = 100 ms

τ: NS:

S = 1 if ((0,0)=0 and truecount = 1) or

((0,0)=1)

S = 0 in other cases

3.1.2. Neighborhood and Rules

Assuming the von Neumann neighborhood, the following

transition rule will result in interesting dendritic growth

patterns:

1. An automaton in state 1 will always stay in state 1.

2. An automaton in state 0 changes to state 1 only if

exactly one of its neighbor is in state 1.

Therefore, if only one of the up, down, left or right

neighbour is solid, a liquid cell will transition to solid. Once

a cell is solid, it remains solid.

3.1.3. Cell-DEVS Implementation

This version uses the extended CD++ syntax, and has a

state variables value for the cell state. A value of 1 means

that the cell is solid, and a value of 0 indicated a liquid cell.
[top]

components : 2dsupercooling

[2dsupercooling]

type : cell

width : 100

height : 100

delay : transport

defaultDelayTime : 100

border : wrapped

neighbors : 2dsupercooling(-1,0)

2dsupercooling(0,-1)

neighbors : 2dsupercooling(0,0)

2dsupercooling(0,1) 2dsupercooling(1,0)

initialvalue : 0

localtransition : windowgrowth-rule

statevariables: value

statevalues: 0

initialvariablesvalue: 2dsupercooling.stvalues

[windowgrowth-rule]

rule : { $value } { $value := 1; } 100 { $value =0

and truecount = 1 }

rule : { $value } { $value := 1; } 100 { $value =1

}

rule : { $value } { $value := 0; } 100 { t }

Note that a version compatible with the original Cell-DEVS

syntax is also available for this model and all the following

that will be presented.

Initial State Variables file (2dsupercooling.stvalues)

The initial state variable file contains the coordinate of the

solid seed. Here, one cell placed in the middle of the

100x100 space is used to observe free dendritic growth:

(49,49)=1

Simulations were run using the Cloud RISE and their

results will be presented in section 4.

3.2. Packard Model

3.2.1. Dendritic Growth Behaviors

As mentioned in section 2, Packard’s model uses growth

rules related to the sum of neighboring sites. Packard

considers rules, which have the property that a site value of

one remains one (no melting or sublimation). The rules also

depend on neighboring site values only through their sum:

= f() with = (1)

The domain of f ranges from zero to number of

neighbors; f takes on values of one to zero. These rules

display four types of behavior for growth from small seeds:

 No growth when the rule maps all values of σ to

zero, i.e. f(σ)=0 for all σ

 Plate Structure when for instance f(σ)=1 for σ>0

 Dendritic structure with side branches when

growth inhibition is added for example f(σ)=1

when σ=1

 Growth of an amorphous circular form when even

more growth inhibition is added. That is the case

for f(σ)=1 when σ=2.

For this paper, we will particularly focus on the dendritic

structure growth since we want to observe microscopic

patterns.

Apart from the previous behaviors, Packard also added

growth inhibition rules that depend on the local equilibrium

temperature. In addition to the presence of solid sites in the

neighborhood, a liquid cell temperature (Ti) must be less

than a threshold defined as (with σ:sum of solid neighbors):

 (2)

3.2.2. Cell-DEVS Formal Specification

The formal specification (that uses the Von Neumann

neighborhood) is described as follows:

CD = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >

X = Ø

Y = Ø

S.Phase = {0,1}

S.Temperature = {-60 - +10}

N = {(0,-1),(0,0),(0,1),(1,0),(-1,0) }

d = 100 ms

τ: NS

S:

 Phase(cell(0,0)) = 1 and

Temperature(cell(0,0)) = latentHeatCst if

Phase(cell(0,0))=0 and # of solid

neighbors = 1 and cell’s temperature <

Tthresh (TThresh as in (2),latentHeatCst:

constant temperature for heat release)

 Temperature(cell(0,0)) = Moved towards

Average (Temperature(cell(0,1)),

Temperature(cell(0,-1)),

Temperature(cell(1,0)), Temperature(cell(-

1,0))) by DiffusionRateCst

The cell phase denoted by S.Phase is a discrete variable and

can take one of these two values: 0 or 1, where 0 indicates

liquid and 1 solid. The temperature S.Temperature is

continuous but should have appropriate supercooling values

(we limited the range to from -60⁰C to 10⁰C).

3.2.3. Neighborhood and Rules

Both Von Neumann and Moore Neighborhood were used to

implement the model. Implemented rules include the

following:

 A site will solidify only if it has one neighboring cell

and its temperature is less than the local threshold. This

is done using (1) and (2).

 Temperature is set to a constant high value

(latentHeatCst) when new solid is added. Hence, heat

flows and inhibits the solidification of neighboring

sites. For this case, the temperature will be set to a high

constant that will represent the latent heat.

 The temperature of each cell is constantly updated by

moving the temperature of the cell toward the average

of the four near neighbors. A constant is used for the

diffusion rate.

Different parameters, i.e. the diffusion rate, latent heat

added upon solidification and the local temperature

threshold (or more specifically) can be used to study

dendritic growth for this.

3.2.4. Cell-DEVS Implementation

A 50x50 model that has a Von Neumann neighborhood is

defined. The model is defined as to have periodic

boundaries on the left and right sides i.e. considered in

contact with each other. Two special zones are defined for

the top and bottom in order for them to be insulated. For the

state, the cells are all liquid at the beginning and the

temperature set to the initial supercooling temperature. The

crystal seeds, from which the solidification starts is in

defined in the supercooling2dext.val file.

#include(Supercooling2DExtMacros.inc)

[top]

components : supercooling2D

[supercooling2D]

type : cell

dim : (50,50)

delay : transport

defaultDelayTime : 100

border : wrapped

neighbors : supercooling2D (-1,0)

neighbors : supercooling2D (0,-1) supercooling2D

(0,0) supercooling2D (0,1)

neighbors : supercooling2D (1,0)

zone : insulatingTop-rule { (0,0)..(0,49) }

zone : insulatingBottom-rule { (49,0)..(49,49) }

initialValue : -1

initialCellsValue : supercooling2dext.val

stateVariables : latentHeat lambda diffusionRate

initialTemperature

stateValues : -20 3 5 -36

neighborports: phase temperature

localtransition : supercooling2d-rule

This version uses the extended CD++ syntax, and has

multiple state variables and ports. For the state variables,

we have chosen diffusionRate, latentHeat, lambda and the

initial undercooling temperature for parameters that

influence the state and temperature of each cell. These were

deducted from the different parameters that were cited in

Packard [11] and presented previously. They can be

initialized to different values in order to conduct

experiments. The default values are -20⁰C for the latent

heat (that is the temperature is raised to -20⁰C when a site

solidify; this value should be greater than the initial

supercooling temperature which is -36⁰C by default); 3 for

lambda used in (2) for the computation of the local freezing

threshold temperature. For the diffusion rate, a default value

of 5 is used to move the temperature of a cell towards the

neighboring sites average.

Besides state variables, we define two ports: temperature

(in degree Celsius) and phase (0 when liquid, and 1 for

solid).

For the rule implementation, a first initialization rule sets all

the ports to the right value (that is initialises the cells to the

correct phase and temperature ports) since ports all have the

same value: value of initialValue

[supercooling2d-rule]

%Initialization

rule : { ~phase := 0; ~temperature :=

$initialTemperature; } 100 { (0,0)~phase = -1 AND

(0,0)~temperature = -1 }

rule : { ~phase := 1; ~temperature :=

$initialTemperature; } 100 { (0,0)~phase = -2 AND

(0,0)~temperature = -2 }

After the initialization process, two main steps happens:

phase transition for liquid cells that meet the conditions,

and the heat conduction phase where the cell temperature is

updated. macro(C) counts the sum of solid neighbors (1).

%Ice Propagation

% Solidification and Latent Heat Release

rule : { ~phase := 1;~temperature := $latentHeat;

} 100 { ((0,0)~phase = 0) AND (#macro(C) = 1) AND

(#macro(temperature) < $lambda*(#macro(C)*(1 -

#macro(C)))) }

% Heat Conduction

rule : { ~temperature :=(0,0)~temperature -

$diffusionRate; } 100 { (0,0)~temperature -

(((0,1)~temperature + (0,-1)~temperature +

(1,0)~temperature + (-1,0)~temperature)/4) >

$diffusionRate}

rule : { ~temperature :=(0,0)~temperature +

$diffusionRate; } 100 { (((0,1)~temperature + (0,-

1)~temperature + (1,0)~temperature + (-

1,0)~temperature)/4) - (0,0)~temperature >

$diffusionRate}

rule : { ~temperature :=(((0,1)~temperature + (0,-

1)~temperature + (1,0)~temperature + (-

1,0)~temperature)/4); } 100 { t }

#BeginMacro(C)

((0,1)~phase + (0,-1)~phase + (1,0)~phase + (-

1,0)~phase)

#EndMacro

For the insulated borders, that is the top and bottom edges,

special rules are defined. We also have a fully insulated

implementation, with non-periodic left and right sides. The

insulating top rule removes the above neighbor, (-1,0), from

the solid neighbors count and the temperature computation.

[insulatingTop-rule]

%Initialization

rule : { ~phase := 0; ~temperature :=

$initialTemperature; } 100 { (0,0)~phase = -1 AND

(0,0)~temperature = -1 }

rule : { ~phase := 1; ~temperature :=

$initialTemperature; } 100 { (0,0)~phase = -2 AND

(0,0)~temperature = -2 }

%Ice Propagation

% Solidification and Latent Heat Release

rule : { ~phase := 1;~temperature := $latentHeat;

} 100 { ((0,0)~phase = 0) AND (#macro(CTop) = 1)

AND (#macro(temperature) <

$lambda*(#macro(CTop)*(1 - #macro(CTop)))) }

% Heat Conduction

rule : { ~temperature := (0,0)~temperature -

$diffusionRate; } 100 { (0,0)~temperature -

(((0,1)~temperature + (0,-1)~temperature +

2*(1,0)~temperature)/4) > $diffusionRate }

rule : { ~temperature := (0,0)~temperature +

$diffusionRate; } 100 { (((0,1)~temperature +

(0,-1)~temperature + 2*(1,0)~temperature)/4) -

(0,0)~temperature > $diffusionRate }

rule : { ~temperature := (((0,1)~temperature +

(0,-1)~temperature + 2*(1,0)~temperature)/4); }

100 { t }

The insulating top rule removes the below neighboring cell

(1,0) from the solid neighbours count and the temperature

computation.

[insulatingBottom-rule]

%Initialization

rule : { ~phase := 0; ~temperature :=

$initialTemperature; } 100 { (0,0)~phase = -1 AND

(0,0)~temperature = -1 }

rule : { ~phase := 1; ~temperature :=

$initialTemperature; } 100 { (0,0)~phase = -2 AND

(0,0)~temperature = -2 }

%Ice Propagation

% Solidification and Latent Heat Release

rule : { ~phase := 1;~temperature := $latentHeat;

} 100 { ((0,0)~phase = 0) AND (#macro(CBottom) =

1) AND (#macro(temperature) <

$lambda*(#macro(CBottom)*(1 - #macro(CBottom))))

}

% Heat Conduction

rule : { ~temperature := (0,0)~temperature -

$diffusionRate; } 100 { (0,0)~temperature -

(((0,1)~temperature + (0,-1)~temperature + 2*(-

1,0)~temperature)/4) > $diffusionRate }

rule : { ~temperature := (0,0)~temperature +

$diffusionRate; } 100 { (((0,1)~temperature +

(0,-1)~temperature + 2*(-1,0)~temperature)/4) -

(0,0)~temperature > $diffusionRate }

rule : { ~temperature := (((0,1)~temperature +

(0,-1)~temperature + 2*(-1,0)~temperature)/4); }

100 { t }

3.3. Rule-Based Lattice Computer Models for Dendritic

Growth Simulation

The objective of this part was to study the application of

rule-based lattice modelling to simulate and understand the

growth of branched dendrites. Heat transfer and

solidification are simulated based on a 2D cubic lattice.

Two set of simulations illustrated the application of the

simulation models to the solidification of columnar and

equiaxed dendritic grain structures. Initial crystal seeds are

attributed different id.

3.3.1. Cell-DEVS Formal Specification
The formal specification (that uses the Von Neumann

neighborhood) is described as follows:

CD = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >

X = Ø

Y = Ø

S.Phase = {0-20}

S.Temperature ={-60 - +10}

N = {(0,-1),(0,0),(0,1),(1,0),(-1,0)}

d = 100 ms

τ: NS

S:

 Phase(cell(0,0)) = x (x is between 1 and 20)

and Temperature(cell(0,0)) = cst if

Phase(cell(0,0)) = 0 and # of solid neighbors

= 1 (x is the Phase of that solid neighbor)

and cell’s temperature < < Tthresh (TThresh as

in (2),latentHeatCst: constant temperature for

heat release)

 Temperature(cell(0,0)) = Moved towards Average

(Temperature(cell(0,1)), Temperature(cell(0,-

1)), Temperature(cell(1,0)),

Temperature(cell(-1,0))) by DiffusionRateCst

The cell phase denoted by S.Phase is a discrete variable and

can take values between 0 and 20, with 0 indicating liquid

and values greater than 1 solid. This is to show accurately

from what seed influenced the solidification of a cell. The

temperature S.Temperature is continuous but should have

appropriate supercooling values.

3.3.2. Rules

The model basically reuses Packard concept and relies on

the following rules:

1. Each seed is identified by a number, and each time a

cell is solidified, it obtains same id number as the

initial solid seed to track the evolution of the system.

2. Each cell temperature is adjusted using the average of

the Von Neumann neighbors.

3. A cell solidifies when enough neighbours are solid.

4. The solidification is limited to those cells having lower

temperature than a critical limit.

5. The critical limit is computed as the Solid-Liquid

interfacial energy constant of the material divided by

the local curvature. For simplification, the local

curvature is computed using the count of solid

neighbours.

6. When a cell solidifies the temperature is raised to a

constant value.

7. No sublimation or melting is implemented by the

model. A solid cell will always stay solid.

For our simulation, we limited the number of different

initial solid seeds to 20.

3.3.3. Cell-DEVS Implementation

The initialization and solidification rules were changed to

include the initiator seed id. The phase of each cell is

always set to the same phase as the crystal seed that enabled

growth. The following extract shows the main change in the

solidification rule where the macro getSeedId identifies the

original solid cell from which the dendrites will grow:

% Solidification and Latent Heat Release

rule : { ~phase := #macro(getSeedId); ~temperature

:= $latentHeat; } 100 { ((0,0)~phase = 0) AND (

#macro(C) = 1) AND (#macro(temperature) <

$lambda*(#macro(C)*(1 - #macro(C)))) }

% Heat Conduction

rule : { ~temperature :=(0,0)~temperature -

$diffusionRate; } 100 { (0,0)~temperature -

(((0,1)~temperature + (0,-1)~temperature +

(1,0)~temperature + (-1,0)~temperature)/4) >

$diffusionRate}

rule : { ~temperature :=(0,0)~temperature +

$diffusionRate; } 100 { (((0,1)~temperature + (0,-

1)~temperature + (1,0)~temperature + (-

1,0)~temperature)/4) - (0,0)~temperature >

$diffusionRate}

rule : { ~temperature :=(((0,1)~temperature + (0,-

1)~temperature + (1,0)~temperature + (-

1,0)~temperature)/4); } 100 { t }

#BeginMacro(getSeedId)

(if((0,1)~phase != 0, (0,1)~phase, if((0,-

1)~phase != 0, (0,-1)~phase, if((1,0)~phase != 0,

(1,0)~phase, (-1,0)~phase))))

#EndMacro

3.3.3. Constrained Dendritic growth

For columnar grain simulation, the above model is used and

crystal seeds are randomly located along the bottom edge.

A 50x50 model, instead of 350x350 in the paper, was

chosen to run the simulation. Crystal seeds are placed on

the bottom edge of the square for constrained growth. For

this purpose, we developed crystal seeds file generator that

outputs different grain configuration.

Crystal Seed Generator

The random seed generator takes multiples parameters in

order to generate the val file: the output file name, the width

and height of the cell space, the initial id (the first seed id,

others will be automatically generated by incrementation),

the number of seeds and the dendritic growth type (free or

constrained).

The following snippet show how the constrained dendritic

growth seeds are generated. The X coordinate is fixed while

Y is obtained by using a random generator.

 case 1: // Constrained Growth

 while (cells.size() != seeds){

 cells.clear();

 int i = height - 1;

 for (int j = 1; j < width -1; j++){

 if (dist(mt) < seeds * height){

 /* Previous mt declaration: std::mt19937 mt(rd()); */

 cells.push_back(std::pair<int, int>(i, j));

 }

 }

 }

VAL file

The following is a test run example:

Input: ConstrainedSeeds.val 50 50 -4 6 1

Output: A file named ConstrainedSeeds.val with 6

randomly located solid seeds across the bottom :
(49,9) = -4

(49,13) = -5

(49,22) = -6

(49,25) = -7

(49,31) = -8

(49,36) = -9

3.3.4. Free/Equiaxed Dendritic growth

Cube shaped crystals were randomly located within the

square to simulate equiaxed grains.

Crystal Seed Generator

 The following snippet show how the constrained dendritic

growth seeds are generated. X and Y seed coordinate are

generated using a random generator.

 case 0: // Free Growth

 while (cells.size() != seeds){

 cells.clear();

 for (int i = 1; i < width -1; i++){

 for (int j = 1; j < height -1; j++){

 if (dist(mt) < seeds){

 /* Previous mt declaration: std::mt19937 mt(rd()); */

 cells.push_back(std::pair<int, int>(i, j));

 }

 }

 }

 }

VAL file

The following is a test run example:

Input: FreeSeeds.val 50 50 -2 5 0

Output – FreeSeeds.val:
(5,12) = -2

(12,31) = -3

(18,24) = -4

(21,7) = -5

(24,10) = -6

3.4. Other Models

We will mainly discuss the model described in [12] that

suggests a new dendritic growth cellular automata model.

3.4.1. New CA based on Von-Neumann/Moore Neighbors

The formal specification is described as follows:

CD = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >

X = Ø

Y = Ø

S= [0,1]

N = Moore neighborhood

d = 100 ms

τ: N→S

S: (using beta=0.00001, and alpha=1)

 1 if (0,0) >= 0.98 % solid cell

 (0,0) + 0.00001 + ((1/16)*((-8*(0,0)) +

liquidConcentration((-1,-1),(-1,0),(-1,1)

,(0,-1),(0,1),(1,-1),(1,0),(1,1))

 (0,0) + ((1/16)*((-8*(0,0)) +

liquidConcentration((-1,-1) + (-1,0) + (-1,1)

+ (0,-1) + (0,1) + (1,-1) + (1,0) + (1,1))

Where liquidConcentration returns the sum of the

concentration of only cells that are liquid in the

parameter set(Moore neighborhood here).

The Von Neumann uses the same concept but with different

fractions: 1/8 is used instead of 1/16, and -4 instead of -8 in

both the liquid and near-solid diffusion rules.

The following snippet shows the corresponding advanced

Cell-DEVS model for the Von Neumann neighborhood this

time:

[2dsupercooling]

type : cell

width : 100

height : 100

delay : transport

defaultDelayTime : 1

border : wrapped

neighbors : 2dsupercooling(-1,0)

neighbors : 2dsupercooling(0,-1)

2dsupercooling(0,0) 2dsupercooling(0,1)

neighbors : 2dsupercooling(1,0)

initialValue : -1

initialCellsValue : 2dsupercooling.val

localtransition : 2dsupercooling-rule

neighborports: value phase

% initial value 0.3, state 0

[2dsupercooling-rule]

% Initialization

rule : { ~value := 0.3; ~phase := 0; } 1 {

(0,0)~value = -1 AND (0,0)~phase = -1 }

rule : { ~value := 1.0; ~phase := 2; } 1 {

(0,0)~value = -2 AND (0,0)~phase = -2 }

% Solidifcation Rule

rule : { ~value := 1; ~phase := 2; } 1 {

#macro(isSolid) }

rule : { ~value := (0,0)~value +

#macro(diffusionNearSolid) ; ~phase := 1; } 1 {

#macro(isNearSolid) }

rule : { ~value := (0,0)~value +

#macro(diffusionSolution) ; ~phase := 0;} 1 {

#macro(isSolution) }

In this implementation, a phase of 0 represents

liquid/solution, 1 is for near-solid and 2 indicates a solid

cell. The value of each cell reflects the concentration. For

the rules, a diffusion term is added to liquid and near-solid

cells while solid cells remain solid.

A snippet containing of macros is shown below:
#BeginMacro(isSolution)

((0,0)~value < 1) AND (((-1,0)~value < 1) AND

((0,-1)~value < 1) AND ((0,1)~value < 1) AND

((1,0)~value < 1))

#EndMacro

#BeginMacro(isNearSolid)

((0,0)~value < 1) AND (((-1,0)~value >= 1) OR

((0,-1)~value >= 1) OR ((0,1)~value >= 1) OR

((1,0)~value >= 1))

#EndMacro

#BeginMacro(diffusionSolution)

(1/8)*((-4*(0,0)~value) + if((-1,0)~phase = 0, (-

1,0)~value,0) + if((0,-1)~phase = 0, (0,-

1)~value,0) + if((1,0)~phase = 0, (1,0)~value,0) +

if((0,1)~phase = 0, (0,1)~value,0))

#EndMacro

#BeginMacro(diffusionNearSolid)

0.0001 + ((1/8)*((-4*(0,0)~value) + if((-

1,0)~phase = 0, (-1,0)~value,0) + if((0,-1)~phase

= 0, (0,-1)~value,0) + if((1,0)~phase = 0,

(1,0)~value,0) + if((0,1)~phase = 0,

(0,1)~value,0)))

#EndMacro

We run these simulations using the fastest RISE server

since these were quite heavy. It is also essential to note that

the author might have provided an erroneous rule since

small experiments did not show any dendritic structure.

3.4.2 Other implementations

We also evaluated the possibility of implementing the

models proposed in [13] and [14], but time constraints did

not allow us to complete them.

4. SIMULATION RESULTS

4.1. Window Automata and Dendritic Growth

The following figure shows the expected result and shown

in the reference paper.

In the following figure, the rightmost figure was produced

by the drawlog tool and visualized with CD++ Modeler and

is identical to the leftmost figures that was implemented

using CA.

Figure 1. Theoritical Results [10]

Cellular Automata [10] Cell-DEVS

Figure 2. Simulation Results

For this implementation, colored (blue/purple) cells have a

value of 1. The simulation is initiated with a 2x2 seed

placed at the center of the square. Then, only cells with one

solid neighbor become solid.

 An essential observation that was made is that every 2n

time steps, the growing seed forms a plate structure, then

dendritic arms grow from the corners of the plate, side

branches form, and again all side branches grow into a plate

and the process is repeated.

Figure 4. Dendritic Arms Growth

Complex shapes can also be generated using the window

automata rule. The Moore neighborhood was tested as well

and results are enclosed in the files attached to this paper.

4.2. Packard Model

The following palette is used for all the following

experiment to identify thermal dendrite; temperature ranges

are specified on the left side, and the associated color is

shown on the right:

Figure 5. Temperature Palette used for Dendrites

Identification

4.2.1. Growth Behaviors

As mentioned earlier, multiple growth behavior can be

generated by mapping the solidification function to

different values of the sum of solid neighbors. We were

able to observe all of them. We use the Moore variant for

the result shown in Figure 6 since the Von Neumann was

presented for the previous results. Note that dark blue

shows liquid cells at the initial undercooling temperature.

For the following experiments, the seed is 3x3.

From the results shown in Figure 6, we can conclude that

the number of solid neighbors should not be too high or too

low in order to observe dendritic pattern.

4.2.2. Parameter Variation

a) Effect of Lambda
When lambda is varied, we notice that the structure goes

from tendril growth to a stable dendritic structure. The

Figure 7 shows the obtained results on the left. The right

shows results obtained by Packard. In this later case

however, a different neighborhood is used. When λ is small

Tthresh is lower so that more solidification occurs. In

addition, more heat diffuses before a boundary site

solidifies. That is why the sites have different colors, i.e.

different temperatures since latent heat is only released

when the site becomes solid. The solidification is inhibited

by higher λ since they results in an increased threshold

temperature.

b) Latent Heat Effect

The latent heat parameter determines how warm a newly

solidified cell becomes as to represent the energy liberated

when solidification occurs. The higher the latent heat, the

less neighbor cells solidify. This is because the temperature

at the solid-liquid interface increases and inhibits the

freezing process. Hence, the temperature of the cell will

tend to be higher than TThresh, the Threshold temperature.

Besides, dendrites that form have higher temperature and

are warmer (see palette colors for T=0) compared to lower

latent heat temperature (T=-20). These results are shown in

Figure 8 (shown in a subsequent page),

c) Diffusion Rate Effect

The diffusion rate parameter is the constant that is added or

subtracted in order to move a cell temperature towards the

average of the neighboring cells. When this constant is

high, the cell gets close to the neighboring temperature

faster and the thermal dendrites will tend to be warmer.

This will also highly impact the growth behavior and

structure of the solution as illustrated in Figure 9.

d) Combination of factors

When different parameters are changed, we notice that

some transitions happen. In Figure 10 (shown in the next

pages) for instance, lowering the latent and diffusion rate

made a tendril-like growth become amorphous.

Starting Plate Structure Plate Structure after 2n

steps

Figure 3. Plate Structures

Intermediary Steps: Dendritic arms and Side branches form

No Growth – Moore f(σ)=0

Plate structure reflecting the lattice structure – Moore:

f(σ)= 1 when σ > 0

Dendritic structure with side branches when growth inhibition

is added for example f(σ)=1 when σ=1

An amorphous, asymptotically circular form – Moore:

f(σ)= 1 when σ = 2

Figure 6. Types of Growth Behaviors

The palette shown on the left side (temperature range and
corresponding color) can serve as a guide to visualize the
results above: Dark blue is liquid cell at the initial

temperature (-36⁰C), Dark purple are at the interface of

the solidification. The number of solid neighbors affects
greatly the final structure. An analysis has been done in
4.2.1.and can be read for reference.

Lambda Effect

Cell-DEVS Results (λ=0.01 on Top vs λ=100 on the bottom) Packard Results(Low λ on top vs high λ on bottom)

Figure 7. Lambda Variation Effect (Low lambda on the upper figures and low lambda on the lower figures)

The palette shown on the left side (temperature range and
corresponding color) can serve as a guide to visualize the
results above: Dark blue is liquid cell at the initial

temperature(-36⁰C), Dark purple are at the interface of the

solidification. λ is low for the top figures and high for the

bottom figures. In the latter case, we observe a clear
anisotropy and stable branching. Note that we are using

f(σ)= 1 when σ >= 1 for this experiment. An analysis has

been done in 4.2.2..a)and can be read for reference. t

T=253⁰K or -20⁰C T=273⁰K or 0⁰C

Figure 8. Latent Heat Variation (Low Latent Heat on Left and High Latent Heat on the right - Lambda is as described in Figure 7)

The palette shown on the left side (temperature range and
corresponding color) can serve as a guide to visualize the
results above: Dark blue is liquid cell at the initial

temperature (-36⁰C), Dark purple are at the interface of

the solidification. λ is low for the top figures and high for

the bottom figures. In the latter case, we observe a clear
anisotropy and stable branching. Note that we are using

f(σ)= 1 when σ >= 1 for this experiment. An analysis has

been done in 4.2.2..b). and can be read for reference.

Diffusion Rate Effect

Constant Diffusion Rate = 1 Constant Diffusion Rate = 10

Figure 9. Diffusion Rate Constant Effect (Low rate on Left and High rate on the right - Lambda as described in Figure 7)

The palette shown on the left side (temperature range and
corresponding color) can serve as a guide to visualize the
results above: Dark blue is liquid cell at the initial

temperature (-36⁰C), Dark purple are at the interface of

the solidification. λ is low for the top figures and high for

the bottom figures. An analysis has been done in 4.2.2.c).
and can be read for reference. t

Combination of factors

T=273⁰K=0⁰C, Same Lambda, Diff = 10 T=253⁰K=-20⁰C, Same Lambda, Diff = 5

Figure 10. Multiple Factors Variation (Latent Heat=0⁰C & Diffusion Rate=10 VS Latent Heat=-20⁰C & Diffusion Rate=10)

For figure 10, the palette is the same as in all the previous
cases: Dark blue is liquid cell at the initial temperature (-

36⁰C), Dark purple are at the interface of the solidification.

λ is low for the top figures and high for the bottom figures.

An analysis has been done in 4.2.2..d). and can be read
for reference

For figure 11, solid is dark blue, and liquid is light blue.
See 4.5. for the analysis.

Figure 11. A 3D Simulation Result that uses the Window Automata principle

4.3. Rule-Based Lattice Computer Models for Dendritic
Growth Simulation

Two set of simulations are presented to show the

application of the model to the solidification of columnar

and equiaxed dendritic grain structure. For the following

experiment results, all the cells have the same initial

supercooling temperature, -36⁰C. The growth is initiated

from 2x2 seeds randomly place at the bottom edge for the

constrained growth, and randomly dispersed all over the

cell space for the free dendritic growth case.

For visualizing results, we use a palette that assign a

specific color by id. The numbers show the seed id, and

the assigned color is on the right side.

Figure 12. Palette used for Dendrites Id

Hence, we can easily see from which seed, the dendrites

spread. Note that for thermal visualization, the Packard

palette is used.

4.3.1. Constrained Growth

Constrained growth lead to columnar dendrites since the

neighboring dendrites grown from different seeds inhibit

horizontal growth once dendrites collide. Indeed the

temperature is raised, and no solidification occurs.

The following capture shows thermal dendrites results

obtained by Brown.

Figure 13. Reference Paper Results [9]

With our Cell-DEVS implementation, we obtain similar

behavior and a similar structure.

Figure 14. Cell-DEVS Columnar Thermal Dendrites

When we add, the identification component, we can easily

follow how dendritic growth progresses. At the start:

Figure 15. Constrained Dendrites Simulation (Start)

Figure 16. Constrained Dendrites Simulation (22 steps later)

4.3.2. Free Growth

Dendrites grow in all crystallographic directions until

they hit dendrites issued from a different seed.

Figure 17. Free Dendrites Simulation (Start)

After 22 simulation steps, the dendrites have spread in all

directions.

Figure 18. Columnar Dendrites Simulation (22 steps later)

We can also notice that results are similar to those in [9],

except that since dendrites sometimes grow on different

direction, they might be using hexagonal cells or

introducing non-deterministic behaviors. However, the

authors do not give any details about the specifics of their

implementation but only provide a general description.

We noticed that the extended Cell-DEVS syntax did not

allow the defined zone to behave as specified in the

border rules. The results show that instead all borders

were considered periodic. The same insulating concepts

were tested in the old simulator and performed accurately.

We did not investigate this issue further since it has

already been reported before.

4.4. Other models

Apart from the above models, we also tried to implement

another cellular automata described in [12] in order to

observe finer dendrites growth. This implementation

suggests a new technique based on the cell concentration,

has three phases (liquid, solid and near solid) and uses the

Von Neumman and Moore neighborhood. Small values

are used to get results that are more precise as shown

below but, the model requires heavy computations.

Figure 19. Expected Result for Alpha=1, Beta=0.0001 [12]

However, the simulation takes more than a day and we

were not able to gather all the results in time. One of the

simulation is still running here. Besides, we made certain

assumptions since the paper was not specific enough: the

neighborhood defined in the diffusion formula had an

undefined index and a typo for the initial value. We

assumed that it meant all neighbors. The experiment was

run using the same values shown in Figure 19. with an

initial value of 0.03.

The first tests lead to different results that do not exhibit

the expected dendrites forms. Figure 20 shows the results

obtained after 2000 simulation steps of a 300x300 cell

space with a solid seed a placed in the center. The

simulation took several hours and even when the

http://vs1.sce.carleton.ca:8080/cdpp/sim/workspaces/test/lopez/2dsupercooling

concentration was raised, there were no new solid cells,

although near-solid cells(shown in dark blue) appeared

Figure 20. First Tests Results

In the above figure, an RGB is used and maps R to

solid/liquid (255 for liquid and 0 for solif), and B to the

concentration. Therefore, black shows liquid cells, dark

blue for near-solid cells and purple for solid cells (The

light purple dot in the middle is the initial solid cell).

Improved versions are still running on the server. The

objective was to refine the observed dendritic patterns

from the Packard and Brown models by adding an

additional phase state and having a more polished solid-

liquid interfaces that also takes into account mushy cells.

We also wanted to add the temperature component

introduced by Packard in order to have a simple Cell-

DEVS model were both thermal and phase dendrites

could be observed.

Indeed, with the first elementary window automata only

phase/state dendrites are shown since no temperature is

considered. Packard adds the temperature key ingredient

that affects dendrites but does not provide multiple cell

states

4.5. 3D Results with Window Automata

We have also run a simulation of a 3D model using the

above criteria and observed different patterns. Figure 11

shows a -35⁰C supercooled model of size 15x15x15.

Different structures are observed in different planes, and

can be a mixture of amorphous, tendril-like and dendritic

forms. We did not investigate this further due to time

constraints. However, it would be interesting to study

these patterns in a 3D environment in future work.

5. CONCLUSION

We described several rule-based lattice models for

dendritic growth in supercooled liquids and presented

their implementation with Cell-DEVS. Results were

compared to those shown in the reference papers. We

started with the Window Automata originally presented

by Weisbuch [10] and that uses simple rules for elegant

dendritic growth simulation. Then, the Packard model,

that involves several parameters and combines both

continuous and discrete elements, was discussed. Multiple

behaviors similar to those observed in the original paper

were observed, and the impact of additional different

parameters analyzed. After that, we studied the

application of the previous model both free and

constrained growth by introducing multiple seeds with

distinct identification.

We also studied other models to refine the observed

dendrites but were not able to complete the required

simulation due to time limitations and missing parameters

in the paper that required various assumptions. One of the

most challenging aspects of this project was to reproduce

experiments since parameters were not given in most

papers. In some cases, crucial information was missing.

We believe that providing clear information for

experiment reproducibility for modelling articles is

essential, especially for such a subject that still fascinates

scientists and heavy computation experts. It was quite

complicates to reproduced the experiments although the

rules were there. Nevertheless, multiple parameters were

tested until similar results were obtained.

The other roadblock was that complementary tools

provided with CD++ were not able to process some of the

large models that had up to several GB of logs.

Sometimes, it took days to get an error message because

of out of memory exceptions for example. We acted upon

these issues by reducing the size of our models and also

developing special parsing and visualization tools.

Overall, we were able to observe microstructures in

addition to the macroscopic features that were explore in

our last assignment. We also compared the simulation

time of our previous models when using RISE and the

difference was remarkable in general (minutes against

days). The refined model that required heavy computation

appears to run longer using the RISE server, supposedly

because it has multiple ports while it completes in a day

using the original CD++.

For future work, the defined models could be adapted to

3D and patterns studied. Other complex behaviors such as

metal alloys and crystallographic variation [14] should be

introduced and studied as well. For the tool aspect, the

visualization tool needs better support for larger files.

Plus, the CD++ simulation log tool should be improved to

improve a current design flaw that accumulates logs in

memory and only writes to the file once the simulation is

over. The Lopez version has a fix for the log but does not

generate the equivalent partial drawlog file.

6. REFERENCES

[1] A. S. Network, "ASN Aircraft Accident ATR-72-

212," Aviation Safety Network, [Online]. Available:

http://aviation-

safety.net/database/record.php?id=19941031-1. [Accessed

23 10 2014].

[2] (2012, Dec.) Lost - The Mystery Of Flight 447 [Air

France Flight 447]. [Online].

https://www.youtube.com/watch?v=peHo0ajeTec

[3] K. Monzen, T. Hosoda, D. Hayashi, Y. Imai, Y.

Okawa, T. Kohro, H. Uozaki, T. Nishiyama, M.

Fukayama and R. Nagai, "The use of a supercooling

refrigerator improves the preservation of organ grafts,"

Biochemical and biophysical research communications,

vol. 337, no. 2, pp. 534-539, 2005.

[4] I. C. London, "Supercooling explained," Imperial

College London, 12 3 2012. [Online]. Available:

http://wwwf.imperial.ac.uk/blog/reporter/2012/03/12/supe

rcooling-explained/. [Accessed 23 10 2014].

[5] A. L. Greer, "Materials science: A cloak of liquidity,"

Nature, vol. 464, pp. 1137-1138, 2010.

[6] S. Brown and N. Bruce, "A 3-dimensional cellular

automaton model of ‘free’dendritic growth," Scripta

metallurgica et materialia}, vol. 32, no. 2, pp. 241-246,

1995.

[7] S.-C. Huang and M. Glicksman, "Overview 12:

Fundamentals of dendritic solidification—I. Steady-state

tip growth," Acta Metallurgica, vol. 29, no. 5, pp. 701-

715, 1981.

[8] D. A. a. W. G. A. Rodriguez, "New Extensions to the

CD++ tool," in Society for Computer Simulation

International, 1998.

[9] S. Brown and J. Spittle, "Rule-based lattice computer

models for simulating dendritic growth," Scripta

metallurgica et materialia, vol. 27, no. 11, pp. 1599-1603,

1992.

[10] G. Weisbuch and S. Ryckebusch, Complex systems

dynamics: An introduction to automata networks,

Redwood City: Addison-Wesley, 1991.

[11] N. H. Packard, "Lattice models for solidification and

aggregation," First International Symosium for Science on

Form, pp. 95-101, 1986.

 [12] Y. Zhao, S. Billing and D. Coca, "A cellular

automata modelling of dendritic crystal growth based on

Moore and Von Neumann neighborhood," Automatic

Control and Systems Engineering, University of

Sheffield, Sheffield, 2008.

[13] M. Zhu and D. Stefanescu, "Virtual front

tracking model for the quantitative modeling of dendritic

growth in solidification of alloys," Acta Materialia, vol.

55, no. 5, pp. 1741-1755, 2007.

[14] L. Wei, X. Lin, M. Wang and W. Huang, "A

cellular automaton model for the solidification of a pure

substance," Applied Physics A, vol. 103, no. 1, pp. 123-

133, 2011.

[15] A. Lopez and G. Wainer, "Improved Cell-DEVS

model definition in CD++," Cellular Automata, pp. 803-

812, 2004

