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Parallel Image Processing by Memory-Augmented
Cellular Automata

CHARLES R. DYER, MEMBER, IEEE, AND AZRIEL ROSENFELD, FELLOW, IEEE

Abstract-This paper introduces a generalization of celiular automata
in which each celi is a tape-bounded Turing machine rather than a finite-
state machine. Fast algorithms are given for performing various basic
image processing tasks by such automata. It is suggested that this
model of parallel computation is a very suitable one for studying the
advantages of parallelism in this domain.

Index Tenns-Celular automata, image processing, parallel process-
ing, pattern recognition.

I. INTRODUCTION
MsANY basic image operations are local, and therefore can

be implemented very efficiently on a parallel computer.
These algorithms operate independently on each point of the
image and its neighbors and do not make use of any results
that may already have been obtained at previously processed
points. For this reason, a "cellular" parallel processor array, in
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which each point of the image has a processor associated with
it, can perform many image analysis tasks much faster than a
conventional sequential processor which examines the picture
points one at a time. See [1] for a review of the development
of this type of parallel image processing hardware.
A bounded cellular array automaton (CA) is a convenient

theoretical tool for analyzing parallel algorithms for image pro-
cessing tasks that do not require more than a fiLxed amount
of memory per processor. For many tasks, however, this is
an unreasonable restriction. For example, in computing the
medial axis of a region it would be most natural if each cell
in this skeleton could store its associated distance from the
background.
The bounded memory requirement of cellular automata is

also too severe a restriction from a realistic point of view since
real machines have bounded size. In particular, giving each cell
an. amount of storage sufficient to hold the address of an arbi-
trary cell in the array seems reasonable. Indeed, prototype
parallel image processing computers such as ILLIAC III [21
(32 X 32 with 10 bits/cell), CLIP4 [3] (96 X 96 with 32
bits/cell), and MPP [41 (128 X 128 with 256 bits/cell) all con-
tain much more memory per cell than the logarithm of the
number of processors in the array. Furthermore, memory
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costs continue to drop, making larger memories in future com-

puters more and more practical.
Lastly, the finite memory requirement associated with cellu-

lar automata was originally specified in part because the au-

tomaton was defined over an infinite space and also because
the objective was to design a "minimal" structure which could
reproduce itself [5]. In early work investigating the language
recognition capabilities of cellular automata, e.g., [6], it was
realized that an inflnite cellular space is inappropriate; hence,
the concept of a "bounded" cellular space was introduced to
force the automaton to act finitely for any fixed size input.
In view of the fact that memory bounds have been extensively
used as a measure of sequential automaton computations and
that there is a practical limit on the sizes of strings or arrays to
be recognized, the historical precedent for a fixed amount of
memory per cell is perhaps also too restrictive.
For these reasons, we introduce in this paper memory-

augmented bounded cellular automata, in which each cell is
now a tape-bounded Turing machine instead of a finite-state
machine. In particular, we focus on the case where each cell
has memory size proportional to the logarithm of the input
size. The capabilities of log-space cellular automata for per-

forming a variety of basic one- and two-dimensional image
analysis tasks are described. Unlike ordinary CA's, each cell
now has sufficient memory to store its own coordinates and to
compute various arithmetic functions whose range is limited
by the array size.
Section II defines mnemory-augmented bounded cellular ac-

ceptors and compares their language-accepting power to that
of tape-bounded Turing acceptors. Section III presents algo-
rithms for computing various gray level properties of a picture
by log-space bounded cellular automata (i.e., each cell has
memory size proportional to the logarithm of the picture size).
In Sections IV and V we describe algorithms for converting
between various representations of a picture subset and mea-

suring geometrical properties of a picture subset by log-space
bounded cellular automata.

II. MEMORY-AUGMENTED BOUNDED
CELLULAR AUTOMATA

This section generalizes the standard definition of a bounded
cellular automaton, which specifies that each cell has a flnite
state set, to allow the memory size associated with each cell to
be a function of the input size. That is, we define a cellular
analog to the tape-bounded Turing machine.
A memory-augmented cell is a Turing machine without input

tape, i.e., a 3-tuple C = (Q, r, 6), where Q is the finite, non-

empty state set, r is the finite, nonempty storage tape alpha-
bet, and 6: (Q X r)3 2(QX x {-1, 0,1}) is the transition func-
tion if C is nondeterministic, 6: (Q X r)3 Q X rx {-1,0, 1}
if C is deterministic.
A memory-augmented bounded cellular automaton is a 4-

tuple Z = (C, Qi, #, b), where C= (Q, 17, 6) is a memory-

augmented cell, one copy of which is assigned to each integer
point on the real line; the copy at coordinate i is called cell i.
Qi C Q is the set of input states, #E QI is a special boundary
state, and b E r is the blank storage tape symbol initially writ-

ten on every square of the storage tapes. IfZ is nondetermin-
istic, the transition function for cell i maps the current states
of cells i - 1, i, and i + 1, respectively, with their correspond-
ing storage tape symbols currently being scanned, into a set of
triples of possible new states of cell i's finite control, new sym-
bols written at the storage tape square where i's head is cur-
rently positioned, and directions of movement of cell i's head.
If Z is deterministic, then the mapping is into a single (state,
symbol, direction of movement) triple. A step of computation
consists of the simultaneous application of the transition func-
tion at each cell. A configuration of Z is a mapping from the
integers into (Q, +,j) triples specifying the current state, tape
contents, and head position of each cell in Z. For conve-
nience, only those tape positions which the head has visited
will be included in that tape's description since the remainder
of the tape is known to be blank. The configuration prior to
the first time step is called the initial configuration.
The boundary state # is used in the usual way to restrict a

computation to a bounded number of contiguous cells. That
is, an initial configuration ofZ is of the form (#, b, 1)' (q1 , b,
1) (q2, b, 1) . (qn, b, 1) (#, b, 1)°°, where q1q2 * * qn is a

finite, nonnull string in (Q - { #})+, called the input string.
Boundedness is now enforced by restricting the transition
function 6 to be both #-preserving and write-inhibited on
storage tapes of cells in the boundary state. That is, 6 (p, x, q,
y, r, z) = (#, w, d) implies q = #, w y, and d=0, and 6 (p, x,
#, y, r, z) = (#, y, 0) for all p, r in Q and x,y, z in r. Because
of these conditions we will assume without loss of generality
that the string of cells is finite, and initially has the form (#, b,
1) (ql, b, 1)*.. (qn ,b, 1) (#, b, 1).
Z is called an L (n)-space bounded cellular automaton if

L(n) is an upper bound on the number of storage tape squares
visited by any cell in Z given any input string of length n and
any valid sequence of steps of Z. In particular, ifL (n) = log n,
then Z is called a log-space bounded cellular automaton.
An L (n)-space bounded cellular acceptor (L (n)-space CA) is

a pair M = (Z, QA ), where Z is an L (n)-space bounded cellular
automaton atid QA C Q is the set of accepting states. M's left-
most non-# cell is called the accept cell or cell 1. An input
string q 1 q2 ... qn is said to be accepted byM if given the ini-
tial configuration (#, b, ), (q I , b, l), - - - (qn, b, 1), (#, b, 1),
M's accept cell eventually enters an accepting state after some
number of time steps. The set of strings accepted by M de-
fines its language. Unless otherwise specified, we assume in
the remainder of this paper thatM is deterministic.
In two dimensions, an L (n)-space bounded cellular array au-

tomaton is defined by a straightforward extension of the one-
dimensional definition. A memory-augmented cell is defined
in the same way, except the transition function is now a func-
tion of a 5-tuple of (state, storage symbol) pairs. A copy of
the cell is assigned to each point in J2, where I is the set of
integers. Cell (inj)'s next state depends on the local configura-
tions, i.e., (state, symbol) pairs, of itself and its four nearest
neighbors, cells (i- 1,j), (i+ I,j),(i, j- l),and(i,j+ 1). An
)X m input array, n = lm, defines the initial states of a rectan-
gular block of cells which are surrounded by a border of #-
cells. The accept cell in an L (n)-space bounded cellular accep-
tor is the upper-left corner non-# cell.
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A language £ is said to be accepted by a (one- or two-dimen-
sional) L(n)-space CA M in O(f(l, m)) time if there exists a
constant c such that every I X m array, n = Im, in £ is accepted
by M within c f(l, m) time steps. In particular, if f(l, m) =
1 + m, then we say M accepts £ in diameter time. If f(l, m) =

Imr, then we say M accepts £ in area time. In the one-dimen-
sional case 1 = 1, so diameter equals area time.
While this definition specifies the desired formal extension

of bounded cellular acceptors to include augmented memory
computations, it restricts storage access to only a single square
of the storage tape at each time step. In order to simplify al-
gorithm description and emphasize arithmetic rather than logi-
cal operations as primitive, we would like the transition func-
tion to "depend" on the entire contents of a cell's storage
tape. We will limit this dependence by invoking a unit time
cost for certain elementary operations that can be executed by
an L(n)-space CA in time proportional to L (n). In addition,
multiplication will be considered a unit time step operation.
We will consider the storage tape to be divided into a finite

number of tracks, called registers, each of length L (n). The
unit time criterion will be used for executing instructions such
as: set the contents of register i to zero, increment the con-
tents of register j, or copy the contents of register i into regis-
terj.

A. Relation to Tape-Bounded Turing Acceptors
In this section we establish the relationship between memory-

augmented CA's and tape-bounded Turing acceptors. The fol-
lowing theorems are for the one-dimensional case; the gener-
alization to two dimensions, where n is the array area, is
straightforward.
Theorem 1: If a set is accepted by an L(n)-tape bounded

Turing acceptor, then it is also accepted by an [L (n)Inl -space
CA.

Proof: Given an L(n)-tape bounded Turing acceptor T,
with state set Q, input tape alphabet E, and storage tape alpha-
bet r, construct an [L (n)InI -space CAM which simulates T as
follows. M's input state set is f U {#} and tape alphabet is
r U {b}, where # and b are two new symbols. Assume that
the input string to T defines the initial states of M's cells.
ThenM passes a marker from cell to cell to keep track of the
current position of T's input head and T's current state. Each
cell's finite control permanently maintains the input symbol
written at that position of T's input tape. The contents of
T's storage tape are distributed evenly on M's n storage tapes
using the following mapping. The symbol written on the
kth tape square of T's storage tape is stored on M's ((k - 1
mod n) +1)th cell's storage tape at the ([k/nl)th position.
This correspondence is shown in Fig. 1. All of M's storage
heads stay in lock step at position [k/nl and M's cells' finite
controls pass another marker to indicate the ((k - 1 mod
n) +l)th cell.
To simulate one transition of T, the two cells inM marking

the positions of the input and storage heads initiate bidirec-
tional signals containing the (state, input symbol) pair and
storage symbol, respectively, located at these positions. After
no more than n/2 time steps, the cell halfway between these
cells receives all the information it needs to determine T's
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storage tape storage tape storage tape

Fig. 1. Mapping from Turing acceptor's tape to CA's tape for n = 3.

transition. This cell then returns (new state, direction of input
head movement) and (new tape symbol, direction of storage
head movement) pairs to the originating cells, and a direction
of storage head movement to all cells in M.
At the next step the input head marker is moved left, right,

or not at all according to the specified direction of movement
for T's input head, and this cell enters a new state correspond-
ing to the new state entered by T. Similarly, the cell contain-
ing the storage head marker writes a new symbol at the current
position and the storage marker is passed to the appropriate
cell (i.e., a move left implies the cell's left neighbor copies the
mark; a move right implies the cell's right neighbor copies the
mark; no move implies the mark remains at the current cell).
The direction of storage head movement signal propagates to
all cells in M; when a cell receives this signal it moves its stor-
age head in the given direction.

Clearly, this algorithm simulates the action of T except when
M's storage head marker attempts to move right from the
rightmost cell or left from the leftmost cell. It is readily seen
from the definition of the storage mapping function that in
either case the marker should be placed at the cell at the oppo-
site end of M. Thus, under these conditions, the rightmost
(leftmost) cell sends the marker the length of the string to the
leftmost (rightmost) cell. Notice that no special conditions are
required for maintaining the proper storage head position,
since all ofM's cells' storage heads stay in lock step.
The mapping from T's storage tape to M's n storage tapes

guarantees that if T scans no more than L (n) storage tape
squares, then each of M's cells scan no more than [L(n)/nl
storage tape squares. Thus, to simulate a single transition
of T, M requires at most n/2 time steps to compute the transi-
tion, at most n steps to return this information to all of M's
cells, and at most n more steps to record the new configura-
tion of T. //
Theorem 2: If a set is accepted by an L (n)-space CA,

L (n) > 1, then it is also accepted by an (n - L (n))-tape bounded
Turing acceptor.

Proof: Construct an (n - L (n))-tape bounded Turing ac-
ceptor T to simulate an L (n)-space CAM as follows. Initially,
T copies the input string containing M's cells' initial states,
from its input tape to its storage tape. This block of n squares
will keep track of the current states of M's cells. On each
square of a second track of this length n block, a special tape
symbol b and a storage head marker are written.
T will store M's storage tape contents in blocks of size n, so

that the ith cell's storage tape contents are distributed on T's
storage tape at positions i, n + i, 2n + i, etc. On one of these
squares a marker is placed to keep track of cell i's storage
head. Initially, then, T recorded the fact that each ofM's stor-
age heads is on square 1 scanning the blank symbol.
To simulate one step of M, T systematically scans the first

track on the first n squares of its storage tape from left to
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right. At each position, T leaves a place holder at the current
square i, moves its input head to the left end, and then moves
its input and storage heads rightward at unit speed until the in-
put head reaches the right end of the input string. T's storage
head is now scanning the square storing the second tape sym-
bol of M's ith cell's storage tape. If this cell contains the stor-
age head marker, then T stores the symbol written on the
square in its finite control and moves back to square i. Other-
wise, T continues moving rightward in jumps of size n using
the input tape as a yardstick until it eventually finds the head
marker and returns.
T repeats this process from each of positions 1 to n. Say T's

storage head has just returned to square i after finding the
symbol currently scanned by cell i's storage head. T remem-
bers the symbols printed at each of the last three storage head
positions, so that with the three states stored at positions i - 2,
i - 1, and i, T can compute the (new state, new storage sym-
bol, direction of storage head movement) triple for cell i - 1.
T then moves left one square and prints the new state on track
1 (while still remembering the previous state of this cell in its
finite control). Next, T searches for the storage marker for
cell i- I using the same technique given above. Once found,
T prints the new storage symbol, erases the marker, and moves
left or right n squares, or not all, corresponding to the speci-
fied direction of head movement. The marker is then placed
on this square to complete the recording of the transition of
M's cell i- 1.

Readily, the interleaving of M's cells' storage tapes guarantees
that T uses no more than n - L (n) tape squares. The time re-
quired to simulate a single step ofM depends on the positions
of the storage heads. If cells i - 1, i, and i + 1 have their storage
heads at squares r, s, and t, respectively, then T's markers are
at positions ((r- 1) n + i - 1), ((s - 1) n + i), and ((t - 1) n +
i + 1). To compute cell i's transition takes 2n(r + s + t - 3)
steps and at most another 2sn steps to update T's configura-
tion to reflect this single transition of a single cell in M. /
From these two theorems we immediately have the follow-

ing.
Theorem 3: The class of L (n)-space CA languages is equiva-

lent to the class of (n - L (n))-tape bounded Turing acceptor
languages.
A deterministic, nonerasing stack automaton, introduced in

[71, has a two-way input tape, a finite control, and a stack.
The stack may be modified only by adding symbols at the top,
i.e., no erasing of symbols is allowed. In addition, the stack
head may move up or down the stack in a read-only mode.
Corollary 1: The class of languages accepted by log-space

CA's is the same as the class of languages accepted by deter-
ministic, nonerasing stack automata.

Proof: Hopcroft and Ullman [7] proved the equivalence
of deterministic, nonerasing stack automata and deterministic
(n log n)-tape bounded Turing machines. The corollary now
follows from the equivalence of (n log n)-tape bounded Tur-
ing machines and log-space CA's shown in Theorem 3. /
Corollary 2: There exists a language accepted by a log-space

CA, but not by any (constant-space) CA.
Proof- It is well known [81 that there exists a language

accepted by an (n log n)-tape bounded Turing acceptor, but

not by any n-tape bounded Turing acceptor. The corollary
now follows from Theorem 3. /1

III. LOG-SPACE CA'S FOR PICTURE DESCRIPTION
In this section we describe log-space CA algorithms for mea-

suring various gray level properties of pictures. To ease the ex-
position, the algorithms are described for the one-dimensional
case; all of the results generalize immediately to two dimen-
sions. The presentation is informal, at the expense of some
precision.

A. Local Property Counting
Smith [9] gives a diameter time procedure due to Meyer

for recognizing the majority predicate, i.e., the set of all arrays
over input state set {0, 1} in which there are more 1's than 0's.
That procedure uses a unary to binary conversion technique in
order to count the occurrences of each type of input state. A
log-space CA can use this same technique to count local prop-
erties, except that now only a single cell is needed as the
accumulator.
A class of properties which are commonly used for picture

description depend on the gray level distribution of the points.
For example, statistical features based on the relative fre-
quency with which various local gray level properties occur in
a picture are often useful.
In order to compute these features, a picture must first be

mapped into a "property space" of measurements taken at
each picture point and which depend only on the gray levels of
the point and its neighbors, not on the (global) spatial arrange-
ment of gray levels. Since this class of gray level property den-
sity functions depend on a fiLxed number of neighbors and a
quantized gray level range, we can assume that a finite range of
property values is sufficient. Hence, the domain of the prop-
erty space is bounded and the range grows with the picture
size. The advantage of log-space CA's is obvious here where a
fixed set of registers can accumulate the measured values from
every point. Examples of such property spaces include histo-
grams and cooccurrence matrices.
The general procedure for computing such features on a log-

space CA is as follows. First, each cell computes in parallel its
local property value in a bounded number of time steps. Af-
terwards, each cell routes its value to a designated cell which
counts the number of occurrences of each property value.
This requires diameter time steps. Finally, the designated cell
computes a specified feature based on the distribution of prop-
erty values in the property space.
The gray level histogram of a digital picture quantized to k

levels is a vector H, where H(z1) is the number of points in the
picture with gray level zi. This gray level frequency vector is
computed by the leftmost cell in a log-space CA as follows.
At time step 1 cell 1 initializes k registers, H1, . . , Hk, to 0.
Beginning at time step 2 the entire picture shifts left at unit
speed. If cell 1 receives gray level zi, then it increments regis-
ter Hi. After diameter time steps cell 1 contains the histo-
gram of the picture.

Statistical properties of a picture's histogram are easily com-
puted by a log-space CA. We will assume that the precision of
these feature values grows at most linearly with the input size
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so that they can be stored at a single cell. For example, tech-
niques for finding valley bottoms (which are often reasonable
points at which to threshold a picture) or p-tiles can be di-
rectly implemented by the cell storing the histogram. Details
will not be given. The mean and variance of a picture's gray
levels can also be computed directly from the histogram since
the arithmetic operations involved require storing intermediate
quantities which are bounded by a flxed multiple of the pic-
ture size.

Similarly, the gray level cooccurrence matrix of a picture,
which measures how often each pair of gray levels occur at a

specified relative displacement, can be computed. Cell 1 must
now store k2 registers, where again k is the number of gray

levels. The algorithm only differs from the previous one in the
initial property measurement, which requires a copy of the
picture to be shifted the specified distance, but in the opposite
direction, given by the relative displacement of pixels to be
compared. Afterwards, these gray level pairs commence shift-
ing leftward and are counted by the leftmost cell.

B. Moments

Another class of gray level properties do depend on the spa-

tial arrangement of gray levels in a region or picture. Moments
are examples of such properties. They are often useful as mea-

sures of location, shape, and for geometrical normalization.
The ith moment of a one-dimensional picture f is defined to
be mi = Ex xif(x).
The coordinate of a picture's centroid is given by m I/mo.

The pixel closest to a picture's centroid can be marked by a

log-space CA in diameter time as follows. In diameter steps
the leftmost cell computes the sum of the gray levels in the
picture using a modification of the histogramming procedure
described earlier. After dividing this count by two, this value
begins propagation rightward, each cell subtracting its input
gray level from the current value as it passes by. The cell in
which this value first becomes nonpositive is the centroid since
half of the picture's sum of gray levels is on either side of this
point.

If we use the centroid as the origin, the second central mo-

ment m2 can be computed by a log-space CA in diameter time
as follows. First, the picture's centroid is marked in diameter
time. The centroid cell then initiates a signal sent to its left
and right, along with an incrementing counter so that each cell
can determine its coordinate with respect to the centroid.
When a cell's coordinate is determined, it then computes
x2f(x) in two more steps, since multiplication takes unit time.
This value next shifts back to the origin, where it is summed
with the other cells' values.

C. Autoconrelation
The autocorrelation of a one- dimensional picture f is defined

as Rf(x') = Yx f(x) f(x - x'). We now describe how a log-
space CA can compute Rf in O(diameter2) time by shifting a

copy of the picture with respect to the original, and summing
the pairwise products of coincident gray levels at each relative
displacement.
At step 1 each cell squares its input gray level. For the next

diameter-I steps these values shift leftward, and are summed

by cell 1. (Since this sum is no larger than diameter k2,
where k is the number of gray levels, there is no problem stor-
ing it in a single register.) When cell 1 adds the value sent from
the rightmost cell, its count contains the value of Rf(O), so it
initiates a firing squad which starts the computation ofRf (l).
At the next step, a copy of the entire picture shifts right one

position. We will assume that the picture is zero outside of its
given domain, so at the next step cells 2 through n, where n is
the length of the picture, multiply pointwise the input and
shifted gray levels stored in each cell. For the next diameter-2
steps these values shift leftward and are summed by cell 2.
This process continues until Rf(n - 1) is computed by cell n.
The computation of Rf(i) requires one step to shift the pic-

ture to the new position, one step to pairwise multiply the
cooccurring gray levels, and n - i steps to shift and sum these
values. We have not included the timing for the firing squad
synchronization since in fact each cell has enough memory to
store a clock which counts to n - i + 2 and therefore no firing
squad is necessary. Thus, the algorithm takes En -o n - i + 2 =
(n(n + 1))/2 steps, i.e., O(diameter2) time steps, to com-
pute Rf.
In two dimensions, Rf can be computed similarly; the com-

putation of Rf (i, i) takes one step to shift the picture to the
new position, one step to pairwise multiply the cooccurring
gray levels, and 1 + m - i - i steps to accumulate these values in
an I X m picture. Thus, a two-dimensional log-space CA can
compute Rf in O(diameter * area) time steps.

IV. LOG-SPACE CA's FOR REGION REPRESENTATION

There are a variety of approaches to representing connected
components, or regions, since each type of representation has
its own advantages. For example, chain codes are very compact
and make it easy to detect region boundary features, but are
not useful for determining properties such as elongatedness.
Thus, it becomes desirable to develop efficient methods of con-
verting from one representation to another.
This section first considers methods of labeling and counting

regions, and then presents two-dimensional log-space CA algo-
rithms for transforming an array representation to several alter-
natives, and vice versa. In particular, we consider region repre-
sentations using run length codes, chain codes, medial axis
transforms, and quadtrees. First, we present some definitions
and terminology concerning digital topology.
Given a point p in a digital picture, its four horizontal and

vertical neighbors are called its 4-neighbors, and are said to be
4-adjacent to p. These four neighbors together with p's four
diagonal neighbors are called p's 8-neighbors, which are each
8-adjacent to p. A 4-path (8-path) from p to q is a sequence of
picture points p = Po, P1, * * *, Pn = q such that pi is 4-adjacent
(8-adjacent) to pi-, for all 1 < i < n. A (4- or 8-) path is called
a (4- or 8-) geodesic if no shorter path with the same endpoints
exists. Given a picture subset S, we say that p is (4- or 8-) con-
nected in S to q if there is a (4- or 8-) path from p to q consist-
ing entirely of points in S. The equivalence classes under the
equivalence relation "connected in S" are called the connected
components, or regions, of S.
The subset of picture points not contained in a specified sub-
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set S is denoted by S. S can also be decomposed into connected
components. If we assume that the picture is embedded in a
larger picture consisting only of points in S, then exactly one
of S's components contains this set of "boundary points." This
region is called the background of S and all other components
of S are called holes in S. If S has no holes, it is called simply
connected. The border of S is the set of points of S that have
at least one neighbor in S. If p is in the border of S, then we
call p a border point of S. More specifically, those border
points which are adjacent to the background are on the outer
border of S, the other points are on hole borders of S. The set
of points of S which are not on the border of S are called in-
terior points of S.

A. Connected Component Counting and Labeling
Given a binary image, it is known [6], [10] that a CA can de-

termine in diameter time if the 1's comprise a single connected
component. The method shrinks each connected component
of 0's or l's in parallel to a single point, the upper-left corner
of the component's upright framing rectangle, without discon-
necting or merging components in the process. Readily, that
algorithm can be converted to a log-space CA algorithm which
counts connected components as follows. At the same time
that a component disappears, the cell at that position detects
this occurrence and creates a special marker which continues
propagating to the upper-left corner cell in the array. Markers
which meet during propagation continue as a single marker with
an associated count indicating the sum of the number of com-
ponents associated with each of the two merged markers.
We now consider the problem of assigning distinct labels to

the connected components of a picture subset S, i.e., all pixels
in the same component are given the same label, but no two
pixels in different components may have the same label. Since
there may be an unbounded number of components in a picture,
a CA does not have enough states to distinctly label all of the
components. (Consider the checkerboard picture which has 0
(area) 4-components of one pixel each. Each cell has a bounded
number of states to store its label, but an unbounded number
of labels are needed.) Thus, this problem is only meaningful
on a log-space CA where enough storage is available for label
names.
To solve the problem, we divide it into the following subtasks.

First, a distinguished cell in each component is located. This
cell generates a unique label for the component it represents,
and then broadcasts the label back to the other cells in the com-
ponent. We assume the input state set is {0, 1 } and we wish to
label all 4-connected components of l's in the picture.
Kosaraju has shown [11] that a CA can mark in diameter

time a distinguished cell in each connected component using an
algorithm based on fast multiplication of Boolean matrices.
Each of these distinguished cells must now generate a unique
label for the component it represents. One simple way is for
each cell to use its matrix coordinates in the array as the label.
This computation can be performed in parallel with the first
phase as follows. The upper-left corner cell computes at step 1
its coordinates (0, 0) in the array and then enters state p; all
other cells are in state q. Beginning at the next step, if a cell c
is in state q and either its left or upper neighbor is in state p,

then c copies that neighbor's coordinates, increments the ap-
propriate coordinate so that c's pair is now its matrix coordi-
nates, and enters state p. Clearly, after twice diameter steps
every cell (in particular, every distinguished cell) has computed
its coordinates.
Each distinguished cell must now broadcast its label to all

cells in the component. Kosaraju has also shown [11] that
components can be labeled sequentially in diameter time each,
but his method does not allow simultaneous labeling of all
components. Alternatively, we now describe an algorithm
which can be applied in parallel at every component.
The pixel labeling technique is similar to the coordinate

computation algorithm, except that a label is passed only to
neighbors which are part of the component. The ordered pairs
of neighboring cells in which labels are passed defines a set of
directed arcs from the distinguished cell to every cell in the
component. Furthermore, these arcs define minimum length
paths from the given cell to every other. Thus, in addition to
the labeling process, subsequent procedures may have use for
these minimum length intrinsic paths. We now formalize the
defimition and construction of this rooted minimum spanning
tree (MST). This structure makes no demand on the augmented
memory, and so can also be constructed by a CA.
Given a specified point co in a 4-connected component S,

define the minimum spanning tree of S rooted at co to be a
rooted directed acyclic graph in which the vertices are the points
of S and arcs exist between horizontally or vertically adjacent
vertices such that the following properties are satisfied.

1) Vertex co is the root, i.e., there are no arcs directed from
co to any of its neighbors.
2) Every vertex except the root has exactly one arc which is

directed from it.
3) Every vertex u is connected to the root co by a unique

path(V1,v2), (V2,V2,u4 * , (vn_-,v), where u=vl, co= vn,
and (vi, viu I) is the arc directed from vi, for all 1 <i . n - 1.
4) The path associated with each vertex u to the root is of

minimum length, i.e., there does not exist another choice of
arcs between horizontally or vertically adjacent vertices (of S)
which satisfies properties I)-3) and results in a shorter sequence
of arcs from u to co.

Fig. 2 shows an example of a component and a rooted mini-
mum spanning tree for one of its points.
We now show how a CA with a distinguished cell co in a com-

ponent S can construct its MST. The algorithm, based on a sim-
ilar one by Beyer [6], takes 0 (intrinsic diameter of S) steps.1
Initially, we assume each cell in S is in state 1 and its A register
is set to zero, and all other cells are in state 0. The result of
this algorithm will be to set each cell's A register to 0, 1, 2, 3,
4 according to whether there is no arc directed from this ver-
tex, or an arc is directed to the vertex's upper, left, lower, or
right neighbor, respectively.
At time step 1 cell co enters state p for one time step and

then enters state q. Every other cell in state 1 remains in state
1 until at least one of its neighbors enters state p. At the next
time step this cell enters state p for one step before entering

1For the definition of intrinsic diameter, see Section V.
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Fig. 2. A region and its rooted MST for point 13.

state q, setting its A register to either 1, 2, 3, or 4 depending
on which neighbor was in state p (in case of multiple p-neigh-
bors, choose one according to the precedence, say, upper, left,
lower, right). In this way a signal p propagates from cell to cell
through S, each cell in S entering state p after a number of
time steps equal to its distance through cells in S from co.
Thus, the chain of direction links, stored in each cell's A regis-
ter, from a cell back to co is a minimum length path.

If when a cell enters state q all of its four neighbors are either
in state 0 or q, then the current cell entered state p at the same

time as or later than all of its neighbors in S. Designate these
cells which are a local maximum distance from co as the leaf
vertices in co's MST. At the time step after a leaf cell enters
state p it enters state r. Each cell in state q remains in that
state until all of its sons (i.e., neighbors with links directed
back to it) enter state r; then it enters state r. Thus, the r

signals are initiated by the leaf cells and propagate back up the
tree signaling the completion of the algorithm.
In the remainder of this section we consider alternative repre-

sentations for a given labeled connected component, determin-
ing how fast a log-space CA can transform an array representa-
tion to each alternative, and vice versa.

B. Run Length Codes
Given a component S, each row of the picture consists, in

general, of runs of pixels in S separated by runs of pixels in S.

Thus, we can represent S by a list of run (starting position,
length) pairs. If the runs, on the average, are sufficiently long,
then this representation is more compact than, and yet an exact
coding of, the original array representation of S. Since S is
connected it cannot skip rows, and therefore we can shorten
the code further as follows. The run length code of S consists
of a starting row "header message," followed by run (starting
column, length) pairs, with a punctuation bit separating runs

on adjacent rows.

A log-space CA can output the run length code of a connected
component S at a designated cell, say the accept cell, as follows.
Assume cells in S are initially in state 1, all others are in state
0. At time step 1 cells at the left and right ends mark them-
selves. Beginning at time step 2 each right end cel initiates a

signal which is sent to the left end of the run. In conjunction
with this each left end cell increments a counter, initially set
to zero, at each step until the signal arrives at the cell. Thus,
when the signal arrives each run's length (minus one) is stored
at the left end cell of the run.
Next, each row's runs are packed in order at the left end of

the row. That is, if a row has k runs, then the ith run's length-
count shifts left as far as it can, stopping at the ith cell from the
far end. With each shift left, a coordinate counter is also in-
cremented, so that when the shifting stops this counter is equal
to x - i, where x is the column containing the leftmost point
in the ith run.
This set of runs is now output in row-major order as follows.

The leftmost run in the top row of S marks itself as the first
run after detecting that the cell above it contains no run de-
scription. At the next step this run description begins shifting
up the left column to the accept cell while incrementing a row-
coordinate counter. Thus, when the first run is output, it also
outputs the header message containing the starting row of S.
The other runs in the top row shift left to the first column and
then up to the output cell, following immediately behind the
run descriptions ahead of them. Whenever a run description
shifts left, its associated coordinate counter is incremented;
thus when each run turns up the first column this counter con-
tains the run's starting column.
The first run in every other row waits until the cell above it

has shifted out all of its row's run descriptions. Then this run
inserts a new row punctuation mark between it and the last run
of the previous row before it commences to move up the left
column to the output cell. In the worst case there can be 0
(area) runs in S, requiring area time to output this represen-
tation. (In such situations, however, run length coding would
not be the appropriate representation anyway.)
Reconstruction of S from its run length code is straightfor-

ward. The first run of S, containing the starting row of S, shifts
down the first column, the header-message counter being dec-
remented and tested for zero by each cell that receives it. When
this row counter is zero, the current cell marks itself as the
starting row. The (starting column, length) pairs shift down
the first column to the marked cell, then across the row to
the run's starting column. The length counter continues shift-
ing right from this cell; each cell that receives a nonzero
counter marks itself in S, decrements the count, and sends it
on to its right. When a punctuation bit travels down the left
column and arrives at the marked current row, that cell's
mark is erased and the mark rewritten at the cell below it.

C. Chain Codes
If a component is relatively compact, then its perimeter is

proportional to the square root of its area. This implies that
such regions can be efficiently stored by saving a description
of their border points only. Trivially, a CA can mark a 4- (8-)
component's border points in one (two) step(s).
Given a starting border point and an adjacent background

point, we can traverse these border points by following the
border while always "keeping our right hand" on S [121. In
fact, the direction of traversal of a given border through a given
border point by this sequential border following rule is locally
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computable in a 3 X 3 neighborhood of the point. Thus, each
border point can determine, for each border passing through
it, its predecessor and successor border points. If we represent
each successor point of a border point by an octal code, where
the correspondence between digits and neighbors is

321
4*0
567

then the border of S can be described exactly by specifying the
coordinates of a starting point and an ordered sequence of
octal digits. Furthermore, the "right-hand rule" implies that
the inside of S's border is always determined by the link direc-
tion, so no other information is needed to represent S.
To output the chain code of a component S at a designated

cell it is first necessary to find a distinguished starting point
for each border of S. S and each connected component in S

can locate such a point in diameter time using the method in
[11]. Given a component in S with designated cell c on its
border, specify one of c's 8-neighbors in S (if any exist), as the
designated starting cell of this hole border of S.
Assume that each cell has previously computed its coordi-

nates, and that associated with each starting border point's link
are its coordinates. To output the chain code of S at the accept
cell co, the starting cell of the outer border d first establishes
an output path to c0. Each cell along this directed path and
the directed path of outer border cells now acts in "bucket-
brigade" fashion, passing the chain code link by link clockwise
around the border to d and then along the output path to c0.

A hole border's chain code is passed counterclockwise around
its border to its start cell. From this cell the links are passed
up its column until they hit another border of S. Here the
procession of links waits until that border's code has passed,
and then follows it in the same direction around its border and
eventually to the output cell co. Thus, hole border codes
"bubble up" around other holes above them until they reach
the outer border. Consequently, to output S's chain code re-

quires 0 (perimeter of S) time steps, where perimeter is the
number of border points in S. Notice that log-space is used
only to store the border's starting coordinates, not the chain
codes themselves.
To reconstruct S, the first link, containing the coordinates of

S's outer border's starting point, establishes a path back to the
starting cell. The remaining links of the chain code follow im-
mediately behind and reidentify border cells from their link
types after a counterclockwise traversal of the partially recon-

structed border of S back to the link's successor cell. The di-
rection of the link also defines which side is the interior of S.
A link which starts a new hole border departs from the outer
border at cell d and heads directly for its starting location.
From there, the border is reconstructed in a clockwise order
around the hole.
We can relabel the interior points ofS since each border point

knows which direction is the inside of S, and every run of S is
bounded by a pair of border points. Hence, each border cell
can initiate a signal to cells in the proper direction in its row,
marking them as part of S until it meets another border point
or an opposing relabeling signal. Since these signals are stopped

by the opposing border point in its run, it is necessary to wait
until the border has been completely reconstructed before
commencing this process. If S has no holes, then the starting
cell d sends a signal around to every border point of S after the
final link has been reconstructed. Otherwise, each hole border's
starting cell waits until its border has been completed, and then
sends a completion message to the outer border's starting cell.
When the outer border's starting cell has received completion
messages from all of its hole borders, it commences the relabel-
ing process as follows. The outer border points are signaled
directly from the starting cell, which sends a message through
this border. These cells then relabel points until they hit the
opposing border. If the relabeling signal hits a hole border,
then this initiates a signal through all cells of this border to
begin the relabeling process. In this way runs of S which are
bounded on both sides by hole borders are eventually filled
in as desired.

D. Medial Axis Transformation
Given a connected component S of cells in state 1 and all

other cells in state 0, we can associate with each point in S its
distance to the closest point of S. This distance tranformation
of S is readily computed by a log-space CA as follows. Begin-
ning at step 1 each cell increments a counter at each step as
long as the cell is in state 1. At step 1 each cell in state 1 which
has at least one of its neighbors in state 0, enters state 2. Sub-
sequently, any cell in state 1 with at least one of its neighbors
in state 2 enters state 2. Thus, at each step all border points of
S are changed to 2's, so that S is successively "thinned" until it
disappears. Each cell's counter records how long it takes for
the point to be deleted from S, and thus contains its distance
from S.
The set of points in S whose distances from S are local max-

ima (i.e., no neighboring point has greater distance from S) de-
fines the medial axis of S. This set is easily computed from the
distance transform in four times steps by comparing each cell's
counter with its four neighbors' counters.

If we associate with each medial axis point its distance from
S, we obtain an exact representation of S called its medial axis
transformation. Thus, diameter + 4 steps are required in the
worst case to compute the medial axis transformation for all
components in a picture.
Reconstruction of the array representation of S from its me-

dial axis transformation is accomplished by reversing the skel-
etonization procedure so that border points are added at each
step and S grows back to its original size.

E. Quadtrees
Quadtrees are an approach to region representation based on

successive subdivision of a 2n X 2n array containing a region
into quadrants. If the component does not cover the entire
array, we subdivide the array, and repeat this process for each
quadrant, each subquadrant, etc. until we obtain blocks (pos-
sibly single pixels) that are either entirely contained in the
component or entirely disjoint from it. This process is repre-
sented by a tree of out-degree four in which the root node
corresponds to the entire array, the four sons of a node are
its quadrants, and the leaf nodes correspond to those blocks
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for which no further subdivision is necessary. The root node
is said to be on level n; the level of an arbitrary node is one
less than the level of its father node.
A log-space CA can compute the quadtree representation of

a region S, storing each node at the center of its 2k X 2k grid
square, as follows. The construction of the quadtree will be
bottom up, the center cell of each grid square on level k rout-
ing information about its base's contents diagonally across the
array to the center of the 2k+k1 X 2k+ square of which it is
a quadrant. A node on level k + 1 then computes whether or

not it is in S's quadtree from the information passed from its
four sons. If all four sons are leaf nodes of the same type, then
the current node must delete its sons from the tree and insert
itself as a leaf since its entire base is either in S or S. Otherwise,
the current node inserts itself as a nonleaf node in the tree since
points in both S and S are in its base. This process continues
until the root of the quadtree is determined after at most di-
ameter steps.
More specifically, assume that the input picture is size

2' X 2' and each cell has stored its matrix coordinates in the
array. Since a cell must represent at most n nodes in the quad-
tree, this is easily stored as a bit vector at each cell. That is,
bit i is equal to I iff this cell is representing a node on level i.
Another vector of length n keeps track of the node type (i.e.,
leaf node in S, leaf node in S, or nonleaf node). At step 1 each
cell detects whether it is in S or S and creates a leaf node for
this pixel. Next, each cell determines the direction of its father
node from the least significant bits of its coordinates. That is,
a cell's least significant column bit cl equals zero if it is in an

even numbered column [remember, the upper-left cell is at
position (0, 0)] so cl = 0 implies that the cell's father is in a

column to its right. Similarly, testing the value of a cell's least
significant row bit indicates whether its father is in a row above
or below its own row. Thus) combining the information from
these two bits indicates which of four possible diagonal direc-
tions to move in order to find one's father in the quadtree.
Beginning at the next time step, each cell sends in the indi-

cated direction a signal specifying whether or not its node is in
S. We define the center of a 2k X 2k block of cells to be the
upper-left corner cell in the 2 X 2 block of cells which surround
the center point. Thus, at the end of two steps, the upper-left
corner cell of each 2 X 2 block has received the signals from its
sons.

If all four sons are either in S or S, then the current cell be-
comes a leaf node on level 1 of the quadtree and returns a mes-

sage to its four sons to delete themselves. Otherwise, only some
of the current node's sons are in S, so the cell makes this node
a nonleaf node in the quadtree.
Nodes on level k + 1 are computed after each cell representing

a node on level k routes a message about its node type to its
father. Sons do not need to know the coordinates of their
fathers, but only the proper direction, as determined by the
kth bits of their own coordinates. 2k times steps after the sons'
signals have been sent, quadruples of signals collide at the cell
which is their father node (Fig. 3). Each cell representing a

node on level k + 1 then computes its node type, and routes
a copy of this information on towards its father. If this node
is a leaf, then a delete message is returned to each son. In the

* * :

Fig. 3. Nodes routing signals to their fathers during computation of the
quadtree representation of a region.

worst case, the root of S's quadtree is on level n at cell
(2n-1 - 1, 2nf1 - 1). This node is computed 2n steps after
level 0 nodes are determined. Thus the quadtree representa-
tion of a region is computable in diameter time.
To reconstruct a region from its quadtree, traverse the tree

top-down in parallel until a leaf node is reached. This node
then relabels all of the cells in its base. The traversal and re-
labeling are most easily implemented if a cell first computes
the coordinates of its sons and of the four corner cells in its
base, respectively.

V. LOG-SPACE CA'S FOR REGION DESCRIPTION
Section III described methods by which log-space CA's can

measure certain gray level properties of one-dimensional pic-
tures. Those techniques can be generalized to two dimensions
and so will not be discussed further. In this section we investi-
gate the ability of log-space CA's to measure geometrical prop-
erties of a region in a two-dimensional picture. Geometrical
properties, unlike gray level properties, depend only on which
points of the picture belong to the region, not on the gray lev-
els of these points. In particular, we describe how log-space
CA's can measure the geometrical properties area, perimeter,
compactness, elongatedness, width, height, diameter, and con-
vexity. We begin by reviewing some basic concepts of distance
and diameter in digital pictures.
Given two points p = (x, y) and q = (u, v), define their city-

block distance as d4(p, q) = |x - u| + ly - vi, and their chess-
board distance as d8(p, q)= max (|x - ul, y- vi). For sim-
plicity, from now on we only present definitions which result
from using city-block distance and 4-connectedness. An anal-
ogous set of definitions also exist using chessboard distance.
Given a 4-connected component S and p, q in S, it can be
shown [12] that d4(p, q) is just the length of a shortest 4-
path from p to q through points in the picture. If we restrict
the path of points to be entirely contained in S, then the
length of a shortest such path is called the intrinsic distance
between p and q.
The 4-diameter of S is defined as the greatest city-block

distance between any pair of points of S. By the intrinsic 4-
diameter ofS we mean the greatest intrinsic distance between
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any pair of points of S. The area ofS is the number of points
in S; the perimeter of S is the number of border points of S,
i.e., the number of points in S which have at least one neigh-
bor in S.
The time required to measure connected component proper-

ties will be specified in terms of the diameter, intrinsic diame-
ter, and perimeter of a component. That is, if a log-space CA
is shown to compute a given property of an arbitrary compo-
nent S within k * (diameter of S) steps, for constant k, then we
say that the property is computable in region-diameter time.
Similarly, we say an algorithm takes intrinsic-diameter time if
the property is computed in a number of steps proportional to
the intrinsic diameter of the component. Perimeter time im-
plies the number of steps is proportional to the component's
perimeter.

A. Area
The area of a component in a digital picture is defined to be

the number of pixels in the component. Smith [9] gives a di-
ameter time CA algorithm for determining whether or not
there are more 1's than O's in a binary picture, in which 1's are
counted in each row and then these row counts are summed.
That algorithm is easily modified to compute the area of a
component in region-diameter time.

In contrast, a log-space CA can compute the area of a com-
ponent S in region-diameter time by modification of the
Beyer/Levialdi CA algorithm [51, [1 1]. Briefly, each cell in
S initializes a counter to 1 at time step 1, and each cell in S
initializes a counter to 0. The shrinking algorithm starts at
step 2. Whenever a point in S is deleted, one of its upper or
left neighbors which is in S (and will not be removed by the
connectedness criterion) adds the contents of the deleted cell's
counter to its own counter. Clearly, when S is reduced to a
single point, that cell's counter contains the number of pixels
in S.
Both of the above algorithms make use of cells outside of

S. However, this may cause problems if we want to simulta-
neously compute the areas of all components in a picture.
Therefore, we now present an alternative, based on the mini-
mum spanning tree of a component, which is restricted to those
cells in S and hence can be used to compute in parallel all com-
ponents' areas. Under this restriction, however, intrinsic-
diameter time is required.
A log-space CA can compute the area of a component S and

store it at a designated cell in intrinsic-diameter time as fol-
lows. Assuming a unique cell co has been marked previously,
the minimum spanning tree rooted at co is constructed using
the method described in Section IV-A. During this procedure
each cell in S also initializes a counter to 1. Each leaf cell in
the MST initiates a reply signal r which propagates back to co
along the path indicated by the direction links stored in the
cells. Each nonleaf cell enters state r after adding the contents
of all of its sons' counters to its own counter. Thus, its coun-
ter contains the number of cells in its subtree. In particular,
after a number of time steps at most equal to the intrinsic di-
ameter of S, co enters state r and its counter contains the num-

B. Perimeter
The perimeter of a component S can be defined as the num-

ber of its border points, or as the total length of its borders'
chain codes. In either case, Section IV-C showed how a CA
can detect these points and compute the chain links in two
time steps by looking in a 3 X 3 neighborhood around each
point. The log-space CA algorithm which output the chain
code at a designated cell can also be readily adapted to count
the number of links or border points as they are output.
(Note: if desired we can add X/2 for diagonal links.) Since this
process sequentially propagates the links around the border, it
requires perimeter time to compute S's perimeter.
Alternatively, a modification of the Beyer/Levialdi CA algo-

rithm similar to the one described for computing a compo-
nent's area could be used. In this case, each cell initializes its
counter to 1 if it is a border point of S; otherwise, the counter
is set to 0. After region-diameter time, the component is re-
duced to a single cell whose counter contains the number of
border points of S.

C. Compactness and Elongatedness
Various measures are used for quantifying the shape of a

component. The compactness of a component is usually mea-
sured by A/P2, where P is perimeter and A is area. We have
just shown how a log-space CA can compute and store P andA
in region-diameter time. If we assume multiplication and divi-
sion take unit time, then two more steps are required to com-
plete the computation.
The elongatedness of a component is measured by A/W2,

where W is the number of "shrinking" steps required to delete
the component. A shrinking step consists of the deletion of
all border points of the component. Thus, W is the maximum
value in the distance transformation of the component. A log-
space CA can compute W and store it at a designated cell of a
component S as follows. First, the designated cell is located
and the minimum spanning tree rooted at that cell is con-
structed. Simultaneously, the distance transformation of S is
computed. Next, the leaf cells initiate reply signals which
move back to the designated cell. When a cell receives the
reply signal it compares its distance from S with the distances
of all its sons, and stores the largest value as its new distance.
Thus after a cell receives the reply signal, it stores the maxi-
mum distance of any cell in its subtree from S. In particular,
the designated cell receives the reply signal after intrinsic-
diameter time. Again, if we assume multiplication and division
are unit time operations, then elongatedness can be computed
in two more time steps. Alternatively, we could again use the
Beyer/Levialdi shrinking algorithm to find the maximum value
in time proportional to the diameter of S.

D. Height and Width
The height and width of a component S are the distances

between the highest and lowest rows, and the leftmnost and
rightmost columns, of the picture that contain S, respec-
tively. Again, either the MST or Beyer/Levialdi method can
be used to propagate and coalesce local information (in this
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case four extremum coordinates) into a global region property
measurement.

E. Diameter
The diameter of a component S with respect to a point co is

defined as the maximum distance between co and any point of
S. A log-space CA can compute the 4-diameter of a compo-
nent S with respect to a point c0 of S by using the minimum
spanning tree of the picture rooted at co. At time step 1 cell
c0 initializes a counter to zero, begins counting at half speed
and initiates the construction of its minimum spanning tree.
Each border point of S initiates a signal which propagates back
to the root at unit speed. If two signals arrive simultaneously
at a node, then they both must have originated at an equal dis-
tance from this cell, so only a single signal continues. Since
the tree grows at unit speed and a signal returns at unit speed,
when c0 receives the signal its counter contains the distance
to the cell that originated the signal.
One of the four corners in the picture must be a maximum

distance from co. Therefore, when each of these corner cells
becomes part of the tree, it initiates a nondestructable signal
back to co. By the time co receives all four corner signals,
after at most twice diameter steps, it must have received all of
the signals sent by the border points of S. So the number
stored in c0's counter is the 4-diameter of S with respect
to cO.
Computing the diameter of S with a log-space CA appears

more difficult because running the above minimum spanning
tree algorithm simultaneously from every point ofS would re-
quire each cell to store O(area of S) arcs, one for each tree
rooted at a point of S. We now show that an alternative
method can be used to obtain a region-diameter time solution
to this problem. First, we derive some properties of the chess-
board and city-block metrics which will be exploited to yield
fast algorithms.
Theorem 4: The 8-diameter of a component is equal to the

length of the longest side of the component's upright framing
rectangle.

Proof: It is easily seen by the definition of chessboard
distance that the maximum distance between any two points
in an m X n upright rectangle is equal to max (m - 1, n - 1),
i.e., the distance from the upper-left to the lower-right corner.
In fact, this is the distance between any pair of points which
are on opposite short sides of the rectangle. To see this, con-
sider a rectangle m rows high and n columns wide, where
m > n. The distance from an arbitrary point u in the top row
to an arbitrary point v in the bottom row is equal to d8(u, v) =

max (m - 1, j - if), where u is at coordinate (1, i) and v is at
(mn,j). For all 1 < i, j < n, I i- < n < m; hence d8(u, v)=
m - 1.
Given a component S, its upright framing rectangle S just

contains S so there must be points of S in the top and bottom
rows and the left and right columns of S'. Since S C S', the
8-diameter of S must be no greater than the 8-diameter of S'.
But the existence of points ofS on each side of S' implies that
the 8-diameter of S equals the 8-diameter of S', which is just
the length of the longest side of S'. //

x+y=b

a

x+y-a

Fig. 4. d4((xI, Yi), (x2, Y2)) = b - a for all pairs of points on opposite
short sides of a 450 tilted rectangle.

It can be shown [131 that a component's upright framing
rectangle can be constructed by a CA in region-diameter time
by repeatedly filling concave corners. Thus, a log-space CA
can compute a component's 8-diameter from this rectangle
in diameter-of-S more steps.

Similarly, using the city-block metric we have the following.
Theorem 5: The 4-diameter of a component is equal to the

length of the longest side of the component's tilted framing
rectangle.

Proof: A region's tilted framing rectangle is the smallest
enclosing rectangle with sides inclined at ±450 to the picture's
sides. The proof is analogous to the proof of Theorem 4, since
again it can be shown, this time from the definition of city-
block distance, that any pair of points on opposite short sides
of any tilted rectangle are at the same distance from one an-
other. To see this, consider Fig. 4 in which, without loss of
generality, the short sides have slope - 1. Let (xl , yi) be an
arbitrary point on the side having y-intercept a and (x2,Y2) an
arbitrary point on the opposite side having y-intercept b.
Since (xl, Yi) and (x2, Y2) are on the short sides of the tilted
rectangle, it is readily seen that x2 >x1 andy2 >Y1 . This im-
plies that d4((xI,yI), (x2,y2)) = (x2 -xI) + (Y2 - Y) = (x2 +
Y2) - (x + y 1 ). But the slopes of these sides imply that x1 +
Yi1 a and x2 +Y2 = b. Hence, d4((X1,Y1), (x2,Y2)) = b - a,
which is just the length of the longest side of the tilted rectan-
gle. The theorem now follows from the fact that a compo-
nent's tilted framing rectangle by definition contains points of
the component on each of its four sides. //
Using methods similar to those used for constructing a com-

ponent's upright framing rectangle, it can be shown that a
component's tilted framing rectangle can be constructed by a
CA in region-diameter time. Again, it is then a simple matter
for a log-space CA to measure the dimensions of this rectangle
to determine the 4-diameter of the component.

F. Convexity
A component S is called convex if every straight line that in-

tersects S, intersects it in exactly one run of points of S. In
digital pictures this definition requires some modification since
a straight line will not in general pass through digital points.
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Fig. 5. Detecting convexity by testing that angle L prq is not greater
than 1800 for all triples of border points.

Sklansky et al. [14] and Smith [9] have used the notion of a
minimum perimeter polygon to recognize convexity, but this
approach does not detect shallow concavities.
Another definition of convexity uses the notion of a line of

support. A line of support of a subset of points S through a
point p of S is a line through p such that S lies entirely in one
of the closed half-planes bounded by this line. Then, a subset
S is called convex if there exists a line of support through
every border point of S. If S is a component in a digital pic-
ture, then we must modify this definition to allow for the dis-
creteness of the data. Therefore, define a digital line of sup-
port of a component S through a point p of S to be a real line
through p such that every border point of S is in or near one
of the closed half planes bounded by this line. A digital point
(i,j) is near the real point (x, y) if max (Ix - i I, IY - i |) < 1.
We now describe how a log-space CAM can decide whether

or not a component S is convex in the above sense, in perim-
eter2 time. M can check in region-diameter time whether or
not S is simply-connected using the Beyer/Levialdi algorithm,
a necessary condition for S to be convex. Therefore, we will
assume that this process occurs in conjunction with, but does
not interfere with, the action ofM described below which as-
sumes S is simply connected. If S is not simply connected,
thenM sends a reject signal to the distinguished cell of S.
Assume each cell's coordinates have been previously com-

puted and a distinguished cell in S has been marked. During
the flrst two steps each border point marks itself and deter-
mines its successor and predecessor border points. Next, each
border point stores three copies of its coordinates in three sep-
arate "channels." Beginning at the next step the cyclic or-
dered list of coordinates in channel 1 shifts clockwise around
the border at unit speed. That is, at each step each border
point copies the coordinates stored in the first channel of its
predecessor. By comparing the contents of its first and third
channels at the end of each step, each cell can detect when its
coordinates pass by every perimeter-of-S steps. At such times
the coordinates in the second channel shift one position coun-
terclockwise around the border. That is, each border point
copies the coordinates stored in the second channel of its suc-
cessor. In this way the coordinates of S's border points shift
clockwise around the border at unit speed and simultaneously
counterclockwise at 1/perimeter speed. Thus, at each step
every point on the border stores the coordinates of three bor-
der points, one point p in channel 1, one point q in channel 2,
and itself, point r, in channel 3. At each time step, each
border point now determines the interior (i.e., counterclock-
wise) angle between rp and rq, as shown in Fig. 5. If this
angle is less than or equal to 1800 or the distance from r to the
line segment pq is less than one, then p and q lie on the inside
of the tangent line through r. After perimeter2 steps every
triple of border points has been checked. At this time (when
the distinguished cell's three points are all the same) the dis-

TABLE I
SUMMARY OF LOG-SPACE CA COMPUTATION TIMES FOR A VARIETY OF

IMAGE PROCESSING TASKS

Task Time

Region representation
Region labeling region-diameter
Run length code
construction region-diameter
output perimeter

Chain code
construction constant
output perimeter

Medial axis transformation region-diameter
Quadtree construction region-diameter

Gray level property measurements
Histogram construction diameter
Cooccurrence matrix construction diameter
Moments diameter
Autocorrelation diameter * area

Geometrical property measurements
Area of a region region-diameter
Perimeter region-diameter
Compactness region-diameter
Elongatedness region-diameter
Height and Width region-diameter
Diameter region-diameter
Convexity perimeter2

tinguished cell sends a signal around the border gathering the
results of the perimeter3 tests. If no concavities were detected
by any border point, then the distinguished cell enters an

accepting state.

VI. DiscussION
In this paper we have investigated how augmenting bounded

cellular automata with an amount of memory proportional to
the logarithm of the picture size enhances the capabilities of
this model and simplifies algorithm design. In addition, this
memory-augmented model of parallel computation provides a
more natural measure for evaluating the speed advantages of a
variety of image processing operations. This in turn leads to a
more realistic appraisal of the potential speedups with hard-
ware architectures of this type. Table I summarizes our re-

sults, showing that log-space CA's can efficiently perform a
variety of basic image processing tasks.
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Noah-A Bottom-Up Word Hypothesizer for Large-
Vocabulary Speech Understanding Systems

A. RICHARD SMITH AND LEE D. ERMAN

Abstrct-Current high-accuracy speech understanding systems achieve
their performance at the cost of highly constrained grammars over rela-
tively small vocabularies. Less-constrained systems will need to com-
pensate for their loss of top-down constraint by improving bottom-up
performance. To do this, they will need to eliminate from consideration
at each place in the utterance most words in their vocabularies solely on
the basis of acoustic information and expected pronunciations of the
words. Towards this goal, we present the design and performance of
Noah, a bottom-up word hypothesizer which is capable of handling
large vocabularies-more than 10 000 words. Noah takes (machine) seg-
mented and labeled speech as input and produces word hypotheses.
The primary concern of this work is the problem of word hypothesiz-

ing from large vocabularies. Particular attention has been paid to accu-
racy, knowledge representation, knowledge acquisition, and flexibility.
In this paper we discuss the problem of word hypothesizing, describe
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how the design of Noah faces these problems, and present the perfor-
mance of Noah as a function of the vocabulary size.

Index Tenns-Large vocabularies, speech understanding, and hypothe-
sizing.

I. THE PROBLEM
T HE nature of speech is such that there is no direct mapping

from acoustic information to a unique spoken word. The
acoustic pattern of a word is embedded within the total pat-
tern of the utterance and modified by it. This is called the co-
articulation problem. A listener interprets an acoustic event
not only by what actually occurs at the event, but also by the
surrounding context and even by what he expects to hear. En-
vironmental noise, differences among speakers, differences for
the same speaker at different times, and variations in pronunci-
ations also add to the difficulty of finding what words were
spoken in an utterance. Another problem is carelessness by the
speaker; it seems that a person often speaks just well enough
to be understood (most of the time) by another human [16] .
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