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Abstract 

 Building Information Modeling (BIM) and its open 

standard Industry Foundation Classes (IFC) are becoming 

popular in the design phase in the Architecture and 

Construction industry. Here, we focus on integrating BIM 

and RISE (RESTful Interoperability Simulation 

Environment) remote simulation with DEVS (Discrete 

Event systems Specification) simulation of occupancy 

analysis. We present a case study for Copenhagen’s New 

Elephant House, where people can move with different 

direction probabilities and wait randomly when visiting in 

the two floors of this building. The idea is to automate to 

extraction of building information that can be subsequently 

used in a remote simulation. Our occupancy model is 

implemented in two simulators (original CD++ version and 

Lopez version for multi variables/ports). Then we use RISE 

remotely running different simulation scenarios. We also 

show how to obtain advanced 3D visualization within BIM 

authoring tools. This work brings designers to understand 

better among different building properties occupancy 

management and future improvement.  

 

1. INTRODUCTION 

 Building Information Modeling (BIM) plays an 

important role in the Architecture, Engineering and 

Construction (AEC) industry to create, document, manage 

and exchange information. BIM uses 3D object-oriented 

building modeling to realize accurate AEC projects with 

minimized costs, improving the way architects-contractors 

and fabricators work [1]. To improve the interoperability 

and standardization between different domains in AEC 

projects, buildingSMART International (former 

International Alliance for Interoperability, IAI) [2] 

proposed the Industry Foundation Classes (IFC), an 

international open standard for the data representation and 

exchange in the building industry.  

 Modeling and simulation (M&S) has been used in BIM 

to analyze the performance of building designs using an 

iterative process with several cycles through alternative 

simulations [3]. In order to evaluate the performance or find 

the optimal solution, the designers test and refine their 

solutions with different simulation scenarios. A variety of 

methods can be used to develop M&S applications. Here, 

we are interested in exploring the use of the Discrete Event 

System Specification (DEVS) [4] and Cell-DEVS [5] 

formalisms with this goal. 

 In this paper, we propose a uniform process for 

integrating BIM standard files (IFC) and DEVS/Cell-DEVS 

simulation. To do so, we would show how to extract 

information from the IFC file, run simulation and view 3D 

visualization. The current implementation uses CD++ [5] 

for Cell-DEVS toolkit, Lopez simulator for multi 

ports/variables, RISE [6] for a remote simulation 

middleware, Autodesk Revit Architecture [7] and Autodesk 

3ds Max [8] for BIM tools, and BimServer.org [9] for 

querying the IFC file.  

 Recently, occupancy analysis has become a hot topic in 

AEC industry [10] due to the concerns of sustainability and 

green building. People want to achieve high-energy 

efficiency through performance evaluation and feedback 

control by simulations. Our case study is based on 

Copenhagen’s New Elephant House [11] to simulate people 

moving behaviors for occupancy analysis. Visitors walk in 

from the main entrance on floor1, go downstairs to floor2 

and then leave the house through exit. Visitors may 

randomly move or wait at a place for a while. This kind of 

application can enable designers to extract information 

automatically from a standard IFC file into a specific 

simulation model, and run the simulation. Finally, the 

designers can visualize the 3D simulation results to 

understand better the occupancy level of the New Elephant 

House during different scenarios, (e.g., doors location, 

stairs number, rush/slash hours, different movement 

probabilities of directions, etc.).  

 This paper is organized as follows: Section 2 discusses 

the related work in the integrating efforts for the BIM and 

simulation. Section 3 introduces the integrated M&S 

process. Section 4 discusses using IFC to extract 

information. Section 5 introduces the occupancy model 

with Lopez simulator. Section 6 represents the model with 
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original CD++ version. Section 7 tells the 3D visualization. 

Section 8 illustrates simulation results of studied Elephant 

House. Finally, we conclude this paper in Section 9. 

 

2. RELATED WORK 

 Nowadays, BIM has been widely applied in the AEC 

industry for 3D-rendering, drawing extraction, estimation of 

cost, and emergency detection. At present, there are 

numerous BIM software applications, including Autodesk 

Revit Architecture, Autodesk 3Ds Max, Bentley 

Architecture, Graphisoft ArchiCAD, VectorWorks 

Architect and others. These BIM authoring tools facilities 

the workload of building design and improve performance 

analysis [12]. Aiming at the interoperability and 

standardization, Industry Foundation Classes (IFC) [4] is an 

open standard for exchanging BIM data in the building 

industry. The IFC is proposed by buildingSMART 

International [2]. IFC is an open standard of BIM which 

enables different users (such as architects, engineers, 

contractors, suppliers, fabricators, etc.) to build models 

together.  

 Modeling and simulation can be used in construction 

projects for analyzing the building design and evaluating 

performance. Some of the popular tools in this domain are 

Simphony [13] and Stroboscope [14], which simulate 

logical relationships between different resource locations. 

Cell-based analysis has been used in the construction site 

analysis and emergency simulation, such as [15, 16]. There 

is also many recent work in occupancy simulation. In [10] 

the authors proposed a stochastic agent-based model of 

occupancy dynamics in a building; the authors in [17] 

analyze occupancy information for energy efficiency by 

studying zone-level control.   

 Discrete Event Systems Specification (DEVS) 

formalism [4] has gained popularity to model a variety of 

problems. DEVS is a framework for constructing the 

discrete-event hierarchical modular systems, composed by 

behavioral (atomic) and structural (coupled) components. 

The Cell-DEVS formalism [5] extended the DEVS 

formalism allowing the simulation of discrete-event cellular 

models. CD++ [5] is a DEVS/Cell-DEVS modeling and 

simulation toolkit. It is a standalone version running on a 

local PC, which simulation results can be seen in 2D scenes 

using CD++. RISE (RESTful Interoperability Simulation 

Environment) [6] is a simulation middleware to support 

RESTful-CD++ web services for the remote simulation, 

which aims to support  interoperability and mash-ups  of  

distributed  simulations regardless of the model formalisms,  

model languages or simulation engines. 

 In recent years, we have developed different 

construction and architecture projects with DEVS and Cell-

DEVS. In [18] we proposed a preliminary way to combine 

BIM and DEVS simulation, with the case of emergency 

evacuation, which can help analyzing bottlenecks of 

building design for determining an optical evacuation plan. 

In [19] the authors introduced Cell-DEVS models for 

construction sites, trying to deal with the construction 

performance and the crane behavior for conflict analysis. In 

[20], an Interactive Environment System (IES) was 

introduced for a basic integration between BIM and Cell-

DEVS, in which a simulation of Diffusion Limited 

Aggregation (DLA) was used to model the growth of mold 

in building walls. However, most of these efforts required 

ad-hoc tailoring and test scenarios. 

 

3. BIM & CELL-DEVS SIMULATION PROCESS 

 Performance analysis has several iterative cycles 

through alternative simulations. During each cycle, various 

management teams collaborate and share multidisciplinary 

design information using a number of BIM authoring tools. 

Figure 1 illustrates the uniform BIM and simulation process, 

adapted from our previous architecture mentioned in [18]. 

The overall architecture includes three subsystems: BIM 

Data Collection, DEVS Simulation and BIM 3D 

Visualization. This process emphasizes the significance of 

using the IFC standard to facilitate the collaborative 

development and interoperability, since most BIM 

authoring tools currently support the use of IFC standard 

files as a core information repository for sharing, 

collaborating and communicating.  

 
Figure 1. Uniform BIM & DEVS Simulation Process 

(adapted from [18]) 

  

 1) BIM Data Collection: it is done automatically 

using the IFC standard, generating initial data files for the 

DEVS simulator. This includes an Element Filter for 

selective properties, and a Coordinate Extractor for getting 

(x, y, z) coordinates of filtered BIM element. The generated 

files are used for simulation inputs. This step will be 

explained in Section 3.1. 

 2) DEVS Simulation: it builds a simulation model 

based on the collected data, and then executes simulation 

either in standalone version CD++ or via RISE middleware 

remotely. Model details are discussed in Section 3.2. In 

RISE, there are various CD++ versions available, including  

DCDpp for normal and distributed simulation and  Lopez  

with different port/variable values.  

 3) BIM 3D Visualization: it visualizes the simulation 

results in 3D, based on IFC standard file, providing an 



intuitive mean for analysis. It parses the simulation log files, 

and loads it and BIM file using GUI Script. The results are 

generated by the Models Animation. Section 3.4 would 

explain this step. 

 As a case study, we will employ this method analyzing 

occupancy levels of the Copenhagen’s New Elephant House, 

using Autodesk Revit Architecture [7] for the BIM Data 

Collection, and Autodesk 3Ds Max [8] for BIM 3D 

Visualization. The Copenhagen’s New Elephant House 

(corresponding IFC building can be seen in Figure 2) 

opened in June 2008 replacing a structure dating from 1914. 

It is located in The Copenhagen Zoo, the largest cultural 

institution in Denmark, attracting over 1.2 million visitors a 

year. The New Elephant House seeks to create a close 

visual relationship between the zoo and the park, which has 

two floors. Floor 1 exhibits related scientific knowledge or 

artwork; while on floor 2, visitors can see elephants close 

on both sides. Visitors walk in from the main entrance on 

floor1, go downstairs to floor2 and then leave the house 

through exit. Visitors randomly move following the 

pathway or wait for a while by random time within hot 

zones. 

 
Figure 2. Copenhagen’s New Elephant House in BIM 

 

 For the random movement, each floor has guideline 

routes or visiting pathway for the visitors moving forward 

orderly. However, it is not mandatory that people follow 

this guide. Normally, they can move to the surrounding 

eight directions with different probabilities. Figure 3 

illustrates the relationship of potential probabilities in the 

eight directions, the darker the neighbor is, the more likely 

a visitor would move. In our case, assume there is visitors 

standing on a pathway to move right, they would move by a 

chance of 70% forward (%F), 8% left-forward (%LF), 8% 

right-forward (%RF), 4% left (%L), 4% right (%R), 2% 

left-back (%LR), 2% right-back(%RB), and 2% back (%B). 

These probabilities can be evaluated from statistic and set 

as macro variables before the simulation running. 

 
Figure 3. People moving with different probabilities 

 For random wait, the moving speed of each visitor is 

also not a constant. It takes different time for each visitor to 

move to the next place. Especially at some spots where they 

are interesting, they would stop or even sit down there. 

 

4. Data Collection 

 In order to get the needed initial data for simulation, 

we need to extract information from BIM files. Most BIM 

tools support the IFC standard files for the interoperability. 

The most abstract entity in the IFC model is IfcRoot, which 

is in the kernel and provides attributes of identification, 

ownership and self-description for all sub-entities. Figure 4, 

summarized from [21], is a hierarchical diagram of a part of 

the EXPRESS standard under IfcRoot. For the case of the 

Elephant’s House, the initial information for simulation 

purpose is stored in IfcWall and IfcDoor. Both of them are 

subclasses of IfcElement and contain coordinates 

information either in IfcLocalPlacement or in 

IfcProductDefinationShape. IfcLocalPlacement has the 

attribute of IfcAxis2Placement3D with IfcCartesionPoint 

(coordinates) and IfcDirection (the trend of spreading). 

IfcProductDefinationShape could contain IfcPolyline with 

the explicit geometric boundary points of its surfaces.  

 
Figure 4. IfcWall and IfcDoor in IFC hierarchy 

 

 As mentioned in [18], we need two main steps: 1) 

collecting the necessary data from IFC by Element Filter 

and Coordinate Extractor; 2) generating initial data files for 

Cell-DEVS by Data Analyze.  

 For the first step, we use open APIs from 

BIMServer.org [9] for querying and filtering the needed 

IFC elements. BIMserver.org is a model-driven open-

source tool that adopts EMF to represent the IFC data. We 

query all IfcWall and IfcDoor in the two Floors, obtaining 

the corresponding (x, y, z) coordinates of the filtered BIM 

elements. Note that IfcDoor can be classified into entrance, 

stairs and exits; and we could query other useful element 

type for future extensions (e.g, furniture, windows, etc.). 

For the second step, based on the filtered information, we 

can build the layout of each floor and generate specific 

initialization data files for the CD++ simulation. For 

instance, in this occupancy models, we first calculate the 

scale of each floor, converting it to a unified size: XMIN is 

the horizontal ordinate of the left-most point, while XMAX 



represents the horizontal ordinate of the right-most point. 

Similarly, we get YMIN and YMAX for the vertical 

ordinates. Then, knowing the size of each cell, we can 

compute the number of cells in each of the three dimensions, 

and generate the simulation rules for the CD++simulator. 

Finally, we calculate the Elephant House size (10x22 cells 

per floor) and the layout information (wall, entrance, exit, 

stairs). 

 

5. Occupancy Model (Lopez on RISE with multi 

variables/ports) 

 We use Cell-DEVS to simulate the behavior of a three-

dimensional object representing the studied building. For 

the simulator of Cell-DEVS, we choose Lopez simulator on 

RISE Web Services. As seen in Figure 5, from the top view, 

each floor has 10x22 cells, and each cell represents a square 

place associated with physical horizontal coordinates. There 

are 2 floors, connecting with stairs. For example, Cell (3, 0, 

0) represents the entrance, Cell (8, 21, 1) represents the 

stair going downstairs, etc. Each cell has five state variables: 

Movement, Phase, Pathway, Layout, and Hotzone.  

 
Figure 5. Four-dimensional cells 

 

 Table 1 lists all cell states, categorized by the five state 

variables. 

Table 1. Cell States 

 

 Movement: 0 means a cell that is not occupied by 

anyone, 1 means the cell is currently occupied, it also 

records other states related to the four phases, 

reflecting the relationship with the neighbors. 

 Phase: each movement cycle has four phases (Intent, 

Grant, Wait, Move), details are discussed in Section 

5.1 

 Pathway: shows the visiting routes. Visitors tend to 

move following the pathway with certain probabilities. 

5 means Right direction, 6 means Up direction, 7 

means Left direction and 8 means Down direction. 

 Layout: consists of space (0), wall (2), entrance (3), 

stairs (3.1 for upstairs and 3.2 for down stairs), exit (4), 

etc. 

 Hot Zone: reflects popularity levels of the spots 

influencing different potential waiting time. The 

higher value the hot zone is, the higher the probability 

that a visitor in the hot zone would stay.  

 

 In this model, people moving is based on an expended 

Moore and Von Neumann neighborhood (see Figure 6), 

with allowance for larger neighborhoods. The basic 

neighborhoods are nine Moore neighbors ((-1,-

1,0)…(1,1,0)), each neighbor indicates one direction from 

E, NE, N, NW, W, SW, S, SE or central. To determine the 

movement from stairs, we add two other neighbors (0,0,-1) 

for going downstairs and (0,0,1) for receiving people from 

upstairs.  

 
Figure 6. Neighborhood 

 

 Layout layer contains the building information from the 

studied building, which is extracted from BIM Data 

Collection process through the standard IFC files. The 

reason to separate this layout layer from other layers is for 

better abstraction and modularity, which enable the 

designer operate and extend this lever easier in the future 

design. In the Elephant House, it has two floors, and we are 

only interested in outside walls, inside pillar walls, 

entrances, exits and stairs toward up/down. 

 The pathway is the guideline routes for visitors moving. 

The exhibition rooms may have specific pathway to control 

the people moving flow. Normally, the pathway points to 

the shortest path towards the exit. In our case, we overlay a 

Voronoi diagram of the route to an exit or stair. Figure 7 

demonstrates how the pathway would like. This pathway 

can be initialized iteratively by waving from the cells 

nearby exit/stairs to the distant cells. The implemented rules 

would run at first when simulation running. 



 
Figure 7. Pathway initialization 

 

 Hot zones affect potential staying/waiting time. As 

shown in Figure 8, assume there are elephant herds closely 

outsides the bottom area, people near the middle of bottom 

would more likely to stay watching than the people far away 

do. Therefore, there are different hot zone values that 

indicate the distance to some hot spots. The higher value 

the hot zone is, the more likely visitors would stay. For 

example, the people in a dark red cell would randomly wait 

there from 0 to 4s; while the people in a light red cell would 

just stay there no more than 1s.  

  
Figure 8. Hot zones 

 

5.1. Movement Phases Implementation (Lopez with 

multi variables/ports) 

 In the lopez simulator for Cell-DEVS, a state variable 

can be implemented by either variable or port. The 

difference is that variables can only be used by its owned 

cell, never notify to neighbors; while port values can be 

known to neighbors. In our implementation, ports are 

Movement, Phase and Pathway; while variables are Layout 

and Hotzone.   

 In order to realize random movement and random 

waiting, the movement behavior is divided into four phases 

(Intent, Grant, Wait, and Move), which state diagram is 

shown in Figure 9.  

 
Figure 9. State diagram of Movement 

 Generally, for an occupied cell, a visitor chooses a 

direction randomly at the intent phase. If the target cell 

accepts it, it changes to get grant; otherwise, it turns to get 

rejected. If granted, the visitor would wait for some time 

randomly according to the hot zone where the visitor is 

standing at, and then empty the cell at the move phase. If 

rejected, the visitor only needs to wait one phase time to 

turn to the move phase and keeps occupied. For an empty 

cell, the logic is much simpler. It would choose a 

surrounding intended cell at the grant phase and would 

change to occupied at the move phase.  

 

 At the beginning of the simulation, visitors would be 

initialized at the main entrances with certain probability 

(VisitorRate), in order to mimic different input flow rates 

with rush/slash hour during the opening time. In the current 

implementation, each cycle has 4s (each phase has 1s). We 

firstly check whether it is the beginning of the cycle 

(remainder(time, 4)=0), then generate a person at each 

entrance of Floor 1. 
rule : {~movement := 2; ~phase := 1;} 0 

{uniform(0,1)<#Macro(VisitorRate) and 

remainder(time, 4)=1 and (0,0,0)~phase = 

0 and (0,0,0)~movement=0 and $layout=3} 

 

Phase 1: Intent  

 During this phase, the intent direction is determined by 

two factors: the pathway direction and the direction 

probability. We first check if it is in the intent phase, and if 

the cell is a stair and the cell below is empty, it gets the 

intent direction of 10. If the cell is not a stair, according to 

the pathway value, we find the probability distribution of 

directions (see Figure 10, which splits 100 into 8 pies). For 

example, if the pathway is 6 (up), we would use the first 

chart of Figure 10. Then we generate a random number 

between 0 and 100, and check which direction that the 

random number is located. For example, if the random 

number is 58, it is in %F (0-69), so we get the intent 

direction to go up. 

 
Figure 10. Intent probability distribution with the pathway 

 

 At last, the cell changes to 10-18, which unit value 

corresponds with the intent direction:  D(0), E(1), NE(2), 

N(3), NW(4), W(5), SW(6), S(7), SE(8) (see left part of 

Figure 11). E.g., for going up, it should be 13. Note here we 

do not care whether the target cell is available, it will be 

checked in the following phases.  

 
Figure 11. Intent & reverse Grant direction values 



 

 To implement the Intent phase, we use following rules:  
rule : {~movement := 10; ~phase := 2;} 1 

{ (0,0,0)~phase = 1 and (0,0,0)~movement 

= 1 and $layout = 5} 

rule : {~movement := uniform(0,1); 

~phase := 1.1;} 0  (0,0,0)~phase = 1 and 

(0,0,0)~movement=1 and 

(0,0,0)~pathway>=5} ... 

rule : {~movement := 11; ~phase := 2;} 0 

(0,0,0)~phase = 1.1 and (0,0,0)~pathway 

= 5 and (0,0,0)~movement > 0.0 and 

(0,0,0)~movement <= #Macro(Front) } ... 

rule : {~movement := 18; ~phase := 2;} 0 

(0,0,0)~phase = 1.1 and (0,0,0)~pathway 

=8 and (0,0,0)~movement > #Macro(Front) 

+#Macro(Left-Front) and (0,0,0)~movement 

<=#Macro(Front)+...+#Macro(Right-Front)} 

  

Phase 2: Grant 

 After the occupied cell chose its intended direction, 

more than one person may want to enter into a same cell 

(collision). To handle this problem, each empty cell will 

choose only one neighbor, and change its state. In detail, we 

should make sure it is the grant phase, and if the cell is stair 

and the cell above wants to come down (10), so it changes 

to 40 and phase 4 to move. Otherwise, it chooses an intent 

surrounding cell in order, and changes to 41-48, which unit 

value corresponds with one of the reverse eight directions 

shown in the right part of Figure 11). E.g., 41 means the 

current cell accepts the left neighbor to come in. To keep 

coherence, the cells with intent direction (10-18) change to 

20-28 and phase 3 for waiting. 

 The rules for the Grant phase are like as follows:  
rule : {~movement := 40; ~phase := 4;} 1 

{ (0,0,0)~movement = 0 and (0,0,-

1)~movement = 10 }  

rule : {~movement := 41; ~phase := 4;} 1 

{ (0,0,0)~movement = 0 and (0,-

1,0)~movement = 11 and $layout != 2} ... 

rule : {~movement := 48; ~phase := 4;} 1 

{ (0,0,0)~movement = 0 and (-1,-

1,0)~movement = 18 and $layout != 2} 

rule:{~movement := ((0,0,0)~movement+10); 

~phase := 3;} 1 { (0,0,0)~movement >= 10 

and (0,0,0)~movement <= 18 } 

  

Phase 3: Wait 

 We use this phase to mimic the behavior of random 

wait. If a person is granted by the target cell (he has an 

intent direction and the target cell chose him), he will stay 

there for a random amount of time according to the hotzone 

where he is standing. We implement this by adding 

different delays in the associated rules. We first get a 

random number from 0 to the corresponding hotzone value 

(e.g., 2 means waiting for 2 cycles); because each cycle has 

4s, plus 1s for the forth Move phase, it actually would wait 

4*N+1 (9s) from 20-28 to change to 30-38, which unit 

value corresponds with the intent direction. Note that the 

stair (20) has the same rule about waiting as the normal 

cells. Otherwise, if not granted, the person cannot move 

anywhere and he should try again for a next moving cycle; 

so it changes to 39 and will only delay 1s for the forth Move 

phase. Take the above as an example, if the cell is 21 (want 

to go right) and its right cell is 41, it will wait there for 9s to 

change to 31. 

 The rules of this phase are like this:   
rule : {~movement := 30; ~phase := 4;} 1 

{ (0,0,0)~phase = 3 and (0,0,0)~movement 

= 20 and (0,0,1)~movement = 40 }   

rule : {~movement := 31; ~phase := 4;} 

{ 1 + 4*randInt($hotzone) } 

{ (0,0,0)~phase = 3 and (0,0,0)~movement 

= 21 and (0,1,0)~movement = 41 } 

rule : {~movement := 38; ~phase := 4;} 

{ 1 + 4*randInt($hotzone) } 

{ (0,0,0)~phase = 3 and (0,0,0)~movement 

= 28 and (1,1,0)~movement = 48 } 

rule : {~movement := 39; ~phase := 4;} 1 

{ (0,0,0)~phase = 3 and 

(0,0,0)~movement >=20 and 

(0,0,0)~movement <= 28 } 

  

Phase 4: Move 

 Now, every intended cell is 30-38 (granted) or 39 

(rejected), so the granted visitor can move to the target cell. 

To finish the moving for next cycle, we empty the intended 

cells that are granted to 0, and the rejected ones to 1. For 

the target cell, it changes from 40-48 to 1 after checking its 

corresponding intended cell is still existing.  

 Here are the rules for this part:  
rule : {~movement := 0; ~phase := 1;} 

100 { (0,0,0)~phase = 4 and 

(0,0,0)~movement = 30 and 

(0,0,1)~movement = 40 }  ... 

rule : {~movement := 1; ~phase := 1;} 

100 { (0,0,0)~phase = 4 and 

(0,0,0)~movement = 48 and (-1,-

1,0)~movement = 38} 

 So far, we have discussed entrances, stairs and normal 

cells. The last thing is to consider the exit, we just need to 

empty it if it is occupied, the rule of exit is:  
rule : {~movement := 0;} 100 { (0,0,0) = 

1 and $layout = 4 and (0,0,0)~movement=1}   

 Here is an example to show the movement cycle (see 

Figure 12). Initially, there were two cells occupied. After 

phase1 at 1s, two persons randomly intended to move to a 

same cell (one with 11 and the other with 12). After the 

phase at 2s, the target cell chose the cell left (it changed to 

41). In phase 3, the granted cell waited for 1 more cycle 

(1+4=5s). After this wait expired, the time reached at 7s. At 

last, the granted cell moved to its target, while the other cell 

kept staying there. 

 
Figure 12. Movement Phases example 



6. Occupancy Model (original CD++ version) 

 This model originally is implemented in CD++ version, 

which is run as standalone.  The implementation is very 

similar as Lopez version mentioned in Section 5. In order to 

represent different state variables of each cell, we add a 

fourth dimension to each cell to represent: Movement, 

Pathway, Layout, and Hot zone.  

 
Figure 13. Four-dimensional cells 

 

 Table 2 lists all cell states. The four variables are 

stored in different layers in the fourth dimension of our cell 

space. 

Table 1. Cell States 

 

 Movement: 0 means a cell that is not occupied by 

anyone, 1 means the cell is currently occupied, it also 

records four phases during each movement cycle 

(Intent, Grant, Wait, Move), reflecting the relationship 

with the neighbors. 

 Pathway: shows the visiting routes. Visitors tend to 

move following the pathway with certain probabilities. 

5 means Right direction, 6 means Up direction, 7 

means Left direction and 8 means Down direction. 

 Layout: consists of space (0), wall (2), entrance (3), 

stairs (3.1 for upstairs and 3.2 for down stairs), exit (4), 

etc. 

 Hot Zone: reflects popularity levels of the spots 

influencing different potential waiting time. The 

higher value the hot zone is, the higher the probability 

that a visitor in the hot zone would stay.  

 In this model, people moving is based on an expended 

Moore and Von Neumann neighborhood (see Figure 14), 

with allowance for larger neighborhoods. The basic 

neighborhoods are nine Moore neighbors ((-1,-

1,0,0)…(1,1,0,0)), each neighbor indicates one direction 

from E, NE, N, NW, W, SW, S, SE or central. To 

determine the movement from stairs, we add two other 

neighbors (0,0,-1,0) for going downstairs and (0,0,1,0) for 

receiving people from upstairs. In order to know the 

variable information of current considering cell, we should 

know pathway (0,0,0,1), layout (0,0,0,2), and hotzone 

(0,0,0,3). For using rules to determine the initial pathway 

automatically, we add other four Von Neumann neighbors 

for pathway layer ((0,1,0,1)…(-1,0,0,1)) to present the 

direction from E, N, W, S.  

 
Figure 14. Neighborhood 

 

6.1. Movement Phases Implementation (original CD++ 

version) 

 

 Same as mentioned in Section 5.1, the implementation 

is similar to lopez version. The movement behavior is 

divided into four phases (Intent, Grant, Wait, and Move). 

 At the beginning of the simulation, visitors would be 

initialized at the main entrances with certain probability, in 

order to mimic different input flow rates with rush/slash 

hour during the opening time. In the current implementation, 

each cycle has 4s (each phase has 1s). We firstly check 

whether it is the beginning of the cycle (remainder(time, 

4)=0), then generate a person at each entrance of Floor 1. 
rule : {1} 4 { remainder(time, 4)=0 and 

(0,0,0,0)=0 and (0,0,0,2)=3 and 

(0,0,0,1)>=5 } 

 

Phase 1: Intent  

 During this phase, the intent direction is determined by 

two factors: the pathway direction and the direction 

probability. We first check if it is in the intent phase, and if 

the cell is a stair and the cell below is empty, it gets the 

intent direction of 10. If the cell is not a stair, according to 

the pathway value, we find the probability distribution of 

directions (see Figure 10, which splits 100 into 8 pies). For 

example, if the pathway is 6 (up), we would use the first 

chart of Figure 10. Then we generate a random number 

between 0 and 100, and check which direction that the 

random number is located. For example, if the random 

number is 58, it is in %F (0-69), so we get the intent 

direction to go up. At last, the cell changes to 10-18, which 

unit value corresponds with the intent direction:  D(0), E(1), 

NE(2), N(3), NW(4), W(5), SW(6), S(7), SE(8) (see left 

part of Figure 11). E.g., for going up, it should be 13. Note 



here we do not care whether the target cell is available, it 

will be checked in the following phases.  

 To implement the Intent phase, we use following rules:  
rule : {10} 1 { remainder(time, 4)=0 and 

(0,0,0,0)=1 and (0,0,0,2)=3.1}   

rule : {uniform(0,1)} 1 { remainder(time, 

4)=0 and (0,0,0,0)=1 and (0,0,0,1)>=5}    

rule : {11} 0 { (0,0,0,1)=5 and 

(0,0,0,0)>0.0 and (0,0,0,0) <= 

#Macro(Front)... 

rule : {14} 0 { (0,0,0,1)=6 and 

(0,0,0,0) > #Macro(Front) and (0,0,0,0) 

<= #Macro(Front) + #Macro(Left-Front) ... 

rule : {16} 0 { (0,0,0,1)=7 and 

(0,0,0,0) > #Macro(Front) + ... + 

#Macro(Right-Front)  ... 

rule : {18} 0 { (0,0,0,1)=8 and 

(0,0,0,0) > #Macro(Front) + ... 

+#Macro(Right-Front) } 

  

Phase 2: Grant 

 After the occupied cell chose its intended direction, 

more than one person may want to enter into a same cell 

(collision). To handle this problem, each empty cell will 

choose only one neighbor, and change its state. In detail, we 

should make sure it is the grant phase, and if the cell is stair 

and the cell above wants to come down (10), so it changes 

to 40. Otherwise, it chooses an intent surrounding cell in 

order, and changes to 41-48, which unit value corresponds 

with one of the reverse eight directions shown in the right 

part of Figure 11). E.g., 41 means the current cell accepts 

the left neighbor to come in. To keep coherence, the cells 

with intent direction (10-18) change to 20-28. 

 The rules for the Grant phase are like as follows:  
rule : {40} 1 { remainder(time, 4)=1 and 

(0,0,0,0)=0 and (0,0,-1,0)=10 }    

rule : {41} 1 { remainder(time, 4)=1 and 

(0,0,0,0)=0 and (0,-1,0,0)=11 and 

(0,0,0,2)!=2}... 

rule : {48} 1 { remainder(time, 4)=1 and 

(0,0,0,0)=0 and (-1,-1,0,0)=18 and 

(0,0,0,2)!=2} 

rule : {(0,0,0,0)+10} 1 { remainder(time, 

4)=1 and (0,0,0,0)>=10 and 

(0,0,0,0)<=18 } 

  

Phase 3: Wait 

 We use this phase to mimic the behavior of random 

wait. If a person is granted by the target cell (he has an 

intent direction and the target cell chose him), he will stay 

there for a random amount of time according to the hotzone 

where he is standing. We implement this by adding 

different delays in the associated rules. We first get a 

random number from 0 to the corresponding hotzone value 

(e.g., 2 means waiting for 2 cycles); because each cycle has 

4s, plus 1s for the forth Move phase, it actually would wait 

4*N+1 (9s) from 20-28 to change to 30-38, which unit 

value corresponds with the intent direction. Note that the 

stair (20) has the same rule about waiting as the normal 

cells. Otherwise, if not granted, the person cannot move 

anywhere and he should try again for a next moving cycle; 

so it changes to 39 and will only delay 1s for the forth Move 

phase. Take the above as an example, if the cell is 21 (want 

to go right) and its right cell is 41, it will wait there for 9s to 

change to 31. 

 The rules of this phase are like this:   
rule : {30} 1 { remainder(time, 4)=2 and 

(0,0,0,0)=20 and (0,0,1,0)=40 }  

rule : {31} { 1 + 4*randInt((0,0,0,3) 

+1) } {remainder(time, 4)=2 and (0,0,0,0) 

= 21 and (0,1,0,0) = 41 } ... 

rule : {38} { 1 + 4*randInt((0,0,0,3) 

+1) } {remainder(time, 4)=2 and (0,0,0,0) 

= 28 and (1,1,0,0)=48 } 

rule : {39} 1 { remainder(time, 4)=2 and 

(0,0,0,0)>=20 and (0,0,0,0)<=28 } 

  

Phase 4: Move 

 Now, every intended cell is 30-38 (granted) or 39 

(rejected), so the granted visitor can move to the target cell. 

To finish the moving for next cycle, we empty the intended 

cells that are granted to 0, and the rejected ones to 1. For 

the target cell, it changes from 40-48 to 1 after checking its 

corresponding intended cell is still existing.  

 Here are the rules for this part:  
rule : {0} 1 { remainder(time, 4)=3 and 

(0,0,0,0)>=30 and (0,0,0,0)<=38 }  

rule : {1} 1 { remainder(time, 4)=3 and 

(0,0,0,0)=39 }                     

rule : {1} 1 { remainder(time, 4)=3 and 

(0,0,0,0)>=40 and (0,0,0,0)<=48}  

 So far, we have discussed entrances, stairs and normal 

cells. The last thing is to consider the exit, we just need to 

empty it if it is occupied, the rule of exit is:  
rule : {0} 1 { (0,0,0,2)=4 and 

(0,0,0,0)=1}  

 

7. 3D Visualization 

 3D visualization provides a more intuitive and 

attractive way to obtain visual simulation results in BIM 

authoring tools, enabling the designers to check the 

building performance and people behaviors under different 

properties. Most BIM authoring tools support full-featured 

3D visualization of building. Among them, Autodesk 3ds 

Max is a powerful BIM tool for its animation and rendering 

ability for 3D visualization. The IFC file can easily 

imported into 3ds Max, what we want is to view the 

simulation results into the model that can be visualized in 

3ds Max. To do this, we have developed an advanced 

visualization tool in 3ds MAX, which is upgraded based on 

our existing version. This new tool expanded new 

functionalities for reusability and scalability, including a 

parser program using Python script (to parse simulation 

results log file), expended GUI in 3ds Max with extendable 

script. The GUI (see Figure 13) provides several options of 

hiding different building floors for visibility and filtering 

models in a small area for the optimization purpose. We 



then added new animation features of models: 1) arrow 

models with key framing ability and 2) realistic models to 

animate real body movement using Motion Mixer. This 

work brings better visualization of simulation results, 

enabling the designers to check the simulation results of 

BIM, find the flaws and plan for improvement. 

 

Figure 13. 3ds Max visualization user interface. 

 

8. SIMULATION RESULTS 

 In this section, we discuss some simulation results, in 

order to analyze occupancy levels or find out bottlenecks. 

They are generated from the occupancy model defined in 

Section 3, using different building designs properties (doors 

location, stairs number, incoming rate, hot zones, moving 

probabilities, etc.). All the tests are running under 10 mins 

duration of the visiting hours of the elephant house, which 

has 150 cycles of movements (each cycle costs 4s).  

 Our initial test (see Figure 14) shows the basic 

behavior of visitors under normal properties during the rush 

hours. The house has two floors, people (blue) coming and 

getting out the house by the doors (dark marks), and going 

downstairs (write marks) from Floor 1(left part of each 

graph) to Floor2 (left part of each graph). Each cycle, 

according to the different phases, each person tends to wait 

or move randomly. During rush hours, the house opens four 

entrances, and each entrance generates one visitor during 

each cycle. In Figure 14, the blue cells represent visitors 

(light blue cells are waiting visitors, and each green cell 

represents which cell a waiting visitor wants to go). At 10 

min, there are 35 visitors over 90 spaces in Floor1 and 24 

visitors over 152 spaces in Floor2. Therefore, the 

occupancy levels are 38.9% for Floor1 and 15.8% for 

Floor2 respectively.  

 To study the impact of door location/stairs number in 

terms of occupancy, we discuss two modifications to the 

original design (see Figure 14, showing at the time of 5min 

and 10min results for each modification). The first one 

considers changing the entrances location: we separate the 

four gates into two parts, (two move above, while the other 

two move below). In the end of 10 min, the occupancy 

levels are 36.7% for Floor 1 and 17.1% for Floor2, which 

are only slight different compared with the ones in the  

basic case analyzed above (occupancy of Floor1 is still as 

twice as large of the one of Floor 2). This similarity 

indicates that even though doors location has changed, 

doors still generated the people at similar rates and no 

significant confliction happens.  

a) at 2.5 min 

 
b) at 5 min 

 
c) at 7.5 min 

 
d) at 10 min 

 
 

 

Figure 14. Simulation results of basic properties at 

different simulation times. 

 

The second test in Figure 15 shows the impact of the 

number of stairs. We modified the model again, and added 

two additional staircases connecting the Floor1 and Floor2. 

In the end of 10 min, the occupancy levels are 25.6% for 

Floor 1 and 20% for Floor2, which has significant 

difference as before. The occupancy levels of the floors 

approach equal. The potential reason would be congestions 

happened at the stairs of Floor 1 in the above two cases, 

adding stairs eliminates the congestion on Floor1 and 

speeded up the people moving to Floor2.  

 

Changing 

entrance 

locations 
 

 

Adding 

more stairs 

 
Figure 15. Simulation results of two modified properties 

(exit location changed / more doors added). 

 

 Some other comparative trials have been tested based 

on this Elephant House (see Figure 16). Totally, we change 

one property among hot zones, entrances location, 

movement direction probabilities, coming rate, stairs 



number, keep other properties unchanged as the basic 

configuration. Main purpose is try to find which property is 

most significant in term of occupancy levels, so it would 

give the designer useful feedback to improve the 

maintenance and management of this house.  

 
Figure 16. Comparisons of different scenarios. 

 

 In a short, coming rate and stairs number affect the 

occupancy level more significantly than other properties do.  

 1) Hot zones: we decreased the probability of people 

waiting by 1 cycle to mimic fast movement speed. E.g., 

assume in basic test a cell waits for 3 cycles, then in the 

new test it just waits for 2 cycles. The result shows both 

occupancies increase relatively obviously, which indicates 

the influence of people movement speed to the occupancy. 

 2) Movement direction probabilities: In basic 

properties, visitors tend move forward at rate of 70%, while 

in this new test, we change the forward probability to 50% 

to give visitors more freedom moving other directions. The 

results shows only a slight difference compared to original 

setting, which indicates the direction probabilities do not 

affect occupancy a lot. The possible reason would because 

people still can reach the stairs/exit as a normal rate.  

 3) Coming rate: The basic test is under hot hours. In 

the new test, to mimic slack hours, we prolonged the 

interval between two incoming visitors (2 cycles generate 

one visitor). The results showed significant decrease of 

Floor 1 (from 38.9% to 26.7%). These results indicate the 

coming rate of different hours during visiting time affects 

the occupancy level a lot. The reason of only a small 

change of Floor 2 would be that the rate of people coming 

to Floor 2 still keeps at a steady full rate, even though we 

reduce the incoming rate (but congestion on Floor1 has 

eased compared to the basic model). 

 We now show the occupancy simulation results using 

our 3D developed visualization Tool (see Figure 17). To do 

so, we firstly parsed the log file that generated from 

simulation. Then we load the BIM Elephant house building 

(which is IFC standard) in our tool and start the GUI. 

Figure 17 shows some visualization results of different 

options. This work brings better visualization of simulation 

results, enabling the designers to check the simulation 

results of BIM, compare the performance under different 

configurations and find the flaws for future improvement. 

Figure 17 also illustrates the ability for the designers to see 

different perspectives and choose among different options 

when using our developed tool. The tool supports two 

different animation models: realistic models realistic 

models to animate real body movement using Motion Mixer 

(see part A and B), and arrow models with key framing 

ability (see part C and D). In addition, we can hide different 

building floors for visibility (see part B and C) and focus on 

only one person (see part A). 

 
Figure 17. Different options using developed Tool 

 

9. CONCLUSION 

 We propose a solution of a uniform Building 

Information Molding and Simulation process. We showed 

how to extract information from the IFC file, run simulation 

using Cell-DEVS and view advanced 3D visualization in 

3Ds Max. Our case study uses a novel model of occupancy 

analysis for Copenhagen’s New Elephant House. This 

model simulates people moving behaviors in Copenhagen’s 

New Elephant House. Visitors walk in from the main 

entrance on floor1, go downstairs to floor2 and then leave 

the house through exit. Visitors may randomly move or wait 

at a place for a while. This simulator can benefit designers 

to understand better occupancy levels of the New Elephant 

House during different scenarios, (e.g., doors location, 

stairs number, rush/slash hours, different movement 

probabilities of directions, etc.). This work brings designers 

to understand better the significances among different 

building properties in order to facility the occupancy 

management or design suggestions for the future 

improvement. Some further directions of this work are to 

improve occupancy model by using multiple state variables 

version of CD++ provided in RISE WSs; as well as to study 

more about IFC-based BIM and the Cell-DEVS simulation. 
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