

Occupancy Analysis Using BIM and Cell-DEVS Simulation with RISE Remote

Simulation (CD++ and Lopez models)

Sixuan Wang

Gabriel Wainer

Dept. of Systems and Computer Engineering

Carleton University

1125 Colonel By Dr. Ottawa

ON K1S5B6, CANADA

{swang, gwainer}@sce.carleton.ca

Keywords: BIM, IFC, Cell-DEVS, Occupancy Analysis,

Copenhagen’s New Elephant House

Abstract

 Building Information Modeling (BIM) and its open

standard Industry Foundation Classes (IFC) are becoming

popular in the design phase in the Architecture and

Construction industry. Here, we focus on integrating BIM

and RISE (RESTful Interoperability Simulation

Environment) remote simulation with DEVS (Discrete

Event systems Specification) simulation of occupancy

analysis. We present a case study for Copenhagen’s New

Elephant House, where people can move with different

direction probabilities and wait randomly when visiting in

the two floors of this building. The idea is to automate to

extraction of building information that can be subsequently

used in a remote simulation. Our occupancy model is

implemented in two simulators (original CD++ version and

Lopez version for multi variables/ports). Then we use RISE

remotely running different simulation scenarios. We also

show how to obtain advanced 3D visualization within BIM

authoring tools. This work brings designers to understand

better among different building properties occupancy

management and future improvement.

1. INTRODUCTION

 Building Information Modeling (BIM) plays an

important role in the Architecture, Engineering and

Construction (AEC) industry to create, document, manage

and exchange information. BIM uses 3D object-oriented

building modeling to realize accurate AEC projects with

minimized costs, improving the way architects-contractors

and fabricators work [1]. To improve the interoperability

and standardization between different domains in AEC

projects, buildingSMART International (former

International Alliance for Interoperability, IAI) [2]

proposed the Industry Foundation Classes (IFC), an

international open standard for the data representation and

exchange in the building industry.

 Modeling and simulation (M&S) has been used in BIM

to analyze the performance of building designs using an

iterative process with several cycles through alternative

simulations [3]. In order to evaluate the performance or find

the optimal solution, the designers test and refine their

solutions with different simulation scenarios. A variety of

methods can be used to develop M&S applications. Here,

we are interested in exploring the use of the Discrete Event

System Specification (DEVS) [4] and Cell-DEVS [5]

formalisms with this goal.

 In this paper, we propose a uniform process for

integrating BIM standard files (IFC) and DEVS/Cell-DEVS

simulation. To do so, we would show how to extract

information from the IFC file, run simulation and view 3D

visualization. The current implementation uses CD++ [5]

for Cell-DEVS toolkit, Lopez simulator for multi

ports/variables, RISE [6] for a remote simulation

middleware, Autodesk Revit Architecture [7] and Autodesk

3ds Max [8] for BIM tools, and BimServer.org [9] for

querying the IFC file.

 Recently, occupancy analysis has become a hot topic in

AEC industry [10] due to the concerns of sustainability and

green building. People want to achieve high-energy

efficiency through performance evaluation and feedback

control by simulations. Our case study is based on

Copenhagen’s New Elephant House [11] to simulate people

moving behaviors for occupancy analysis. Visitors walk in

from the main entrance on floor1, go downstairs to floor2

and then leave the house through exit. Visitors may

randomly move or wait at a place for a while. This kind of

application can enable designers to extract information

automatically from a standard IFC file into a specific

simulation model, and run the simulation. Finally, the

designers can visualize the 3D simulation results to

understand better the occupancy level of the New Elephant

House during different scenarios, (e.g., doors location,

stairs number, rush/slash hours, different movement

probabilities of directions, etc.).

 This paper is organized as follows: Section 2 discusses

the related work in the integrating efforts for the BIM and

simulation. Section 3 introduces the integrated M&S

process. Section 4 discusses using IFC to extract

information. Section 5 introduces the occupancy model

with Lopez simulator. Section 6 represents the model with

mailto:gwainer%7D@sce.carleton.ca

original CD++ version. Section 7 tells the 3D visualization.

Section 8 illustrates simulation results of studied Elephant

House. Finally, we conclude this paper in Section 9.

2. RELATED WORK

 Nowadays, BIM has been widely applied in the AEC

industry for 3D-rendering, drawing extraction, estimation of

cost, and emergency detection. At present, there are

numerous BIM software applications, including Autodesk

Revit Architecture, Autodesk 3Ds Max, Bentley

Architecture, Graphisoft ArchiCAD, VectorWorks

Architect and others. These BIM authoring tools facilities

the workload of building design and improve performance

analysis [12]. Aiming at the interoperability and

standardization, Industry Foundation Classes (IFC) [4] is an

open standard for exchanging BIM data in the building

industry. The IFC is proposed by buildingSMART

International [2]. IFC is an open standard of BIM which

enables different users (such as architects, engineers,

contractors, suppliers, fabricators, etc.) to build models

together.

 Modeling and simulation can be used in construction

projects for analyzing the building design and evaluating

performance. Some of the popular tools in this domain are

Simphony [13] and Stroboscope [14], which simulate

logical relationships between different resource locations.

Cell-based analysis has been used in the construction site

analysis and emergency simulation, such as [15, 16]. There

is also many recent work in occupancy simulation. In [10]

the authors proposed a stochastic agent-based model of

occupancy dynamics in a building; the authors in [17]

analyze occupancy information for energy efficiency by

studying zone-level control.

 Discrete Event Systems Specification (DEVS)

formalism [4] has gained popularity to model a variety of

problems. DEVS is a framework for constructing the

discrete-event hierarchical modular systems, composed by

behavioral (atomic) and structural (coupled) components.

The Cell-DEVS formalism [5] extended the DEVS

formalism allowing the simulation of discrete-event cellular

models. CD++ [5] is a DEVS/Cell-DEVS modeling and

simulation toolkit. It is a standalone version running on a

local PC, which simulation results can be seen in 2D scenes

using CD++. RISE (RESTful Interoperability Simulation

Environment) [6] is a simulation middleware to support

RESTful-CD++ web services for the remote simulation,

which aims to support interoperability and mash-ups of

distributed simulations regardless of the model formalisms,

model languages or simulation engines.

 In recent years, we have developed different

construction and architecture projects with DEVS and Cell-

DEVS. In [18] we proposed a preliminary way to combine

BIM and DEVS simulation, with the case of emergency

evacuation, which can help analyzing bottlenecks of

building design for determining an optical evacuation plan.

In [19] the authors introduced Cell-DEVS models for

construction sites, trying to deal with the construction

performance and the crane behavior for conflict analysis. In

[20], an Interactive Environment System (IES) was

introduced for a basic integration between BIM and Cell-

DEVS, in which a simulation of Diffusion Limited

Aggregation (DLA) was used to model the growth of mold

in building walls. However, most of these efforts required

ad-hoc tailoring and test scenarios.

3. BIM & CELL-DEVS SIMULATION PROCESS

 Performance analysis has several iterative cycles

through alternative simulations. During each cycle, various

management teams collaborate and share multidisciplinary

design information using a number of BIM authoring tools.

Figure 1 illustrates the uniform BIM and simulation process,

adapted from our previous architecture mentioned in [18].

The overall architecture includes three subsystems: BIM

Data Collection, DEVS Simulation and BIM 3D

Visualization. This process emphasizes the significance of

using the IFC standard to facilitate the collaborative

development and interoperability, since most BIM

authoring tools currently support the use of IFC standard

files as a core information repository for sharing,

collaborating and communicating.

Figure 1. Uniform BIM & DEVS Simulation Process

(adapted from [18])

 1) BIM Data Collection: it is done automatically

using the IFC standard, generating initial data files for the

DEVS simulator. This includes an Element Filter for

selective properties, and a Coordinate Extractor for getting

(x, y, z) coordinates of filtered BIM element. The generated

files are used for simulation inputs. This step will be

explained in Section 3.1.

 2) DEVS Simulation: it builds a simulation model

based on the collected data, and then executes simulation

either in standalone version CD++ or via RISE middleware

remotely. Model details are discussed in Section 3.2. In

RISE, there are various CD++ versions available, including

DCDpp for normal and distributed simulation and Lopez

with different port/variable values.

 3) BIM 3D Visualization: it visualizes the simulation

results in 3D, based on IFC standard file, providing an

intuitive mean for analysis. It parses the simulation log files,

and loads it and BIM file using GUI Script. The results are

generated by the Models Animation. Section 3.4 would

explain this step.

 As a case study, we will employ this method analyzing

occupancy levels of the Copenhagen’s New Elephant House,

using Autodesk Revit Architecture [7] for the BIM Data

Collection, and Autodesk 3Ds Max [8] for BIM 3D

Visualization. The Copenhagen’s New Elephant House

(corresponding IFC building can be seen in Figure 2)

opened in June 2008 replacing a structure dating from 1914.

It is located in The Copenhagen Zoo, the largest cultural

institution in Denmark, attracting over 1.2 million visitors a

year. The New Elephant House seeks to create a close

visual relationship between the zoo and the park, which has

two floors. Floor 1 exhibits related scientific knowledge or

artwork; while on floor 2, visitors can see elephants close

on both sides. Visitors walk in from the main entrance on

floor1, go downstairs to floor2 and then leave the house

through exit. Visitors randomly move following the

pathway or wait for a while by random time within hot

zones.

Figure 2. Copenhagen’s New Elephant House in BIM

 For the random movement, each floor has guideline

routes or visiting pathway for the visitors moving forward

orderly. However, it is not mandatory that people follow

this guide. Normally, they can move to the surrounding

eight directions with different probabilities. Figure 3

illustrates the relationship of potential probabilities in the

eight directions, the darker the neighbor is, the more likely

a visitor would move. In our case, assume there is visitors

standing on a pathway to move right, they would move by a

chance of 70% forward (%F), 8% left-forward (%LF), 8%

right-forward (%RF), 4% left (%L), 4% right (%R), 2%

left-back (%LR), 2% right-back(%RB), and 2% back (%B).

These probabilities can be evaluated from statistic and set

as macro variables before the simulation running.

Figure 3. People moving with different probabilities

 For random wait, the moving speed of each visitor is

also not a constant. It takes different time for each visitor to

move to the next place. Especially at some spots where they

are interesting, they would stop or even sit down there.

4. Data Collection

 In order to get the needed initial data for simulation,

we need to extract information from BIM files. Most BIM

tools support the IFC standard files for the interoperability.

The most abstract entity in the IFC model is IfcRoot, which

is in the kernel and provides attributes of identification,

ownership and self-description for all sub-entities. Figure 4,

summarized from [21], is a hierarchical diagram of a part of

the EXPRESS standard under IfcRoot. For the case of the

Elephant’s House, the initial information for simulation

purpose is stored in IfcWall and IfcDoor. Both of them are

subclasses of IfcElement and contain coordinates

information either in IfcLocalPlacement or in

IfcProductDefinationShape. IfcLocalPlacement has the

attribute of IfcAxis2Placement3D with IfcCartesionPoint

(coordinates) and IfcDirection (the trend of spreading).

IfcProductDefinationShape could contain IfcPolyline with

the explicit geometric boundary points of its surfaces.

Figure 4. IfcWall and IfcDoor in IFC hierarchy

 As mentioned in [18], we need two main steps: 1)

collecting the necessary data from IFC by Element Filter

and Coordinate Extractor; 2) generating initial data files for

Cell-DEVS by Data Analyze.

 For the first step, we use open APIs from

BIMServer.org [9] for querying and filtering the needed

IFC elements. BIMserver.org is a model-driven open-

source tool that adopts EMF to represent the IFC data. We

query all IfcWall and IfcDoor in the two Floors, obtaining

the corresponding (x, y, z) coordinates of the filtered BIM

elements. Note that IfcDoor can be classified into entrance,

stairs and exits; and we could query other useful element

type for future extensions (e.g, furniture, windows, etc.).

For the second step, based on the filtered information, we

can build the layout of each floor and generate specific

initialization data files for the CD++ simulation. For

instance, in this occupancy models, we first calculate the

scale of each floor, converting it to a unified size: XMIN is

the horizontal ordinate of the left-most point, while XMAX

represents the horizontal ordinate of the right-most point.

Similarly, we get YMIN and YMAX for the vertical

ordinates. Then, knowing the size of each cell, we can

compute the number of cells in each of the three dimensions,

and generate the simulation rules for the CD++simulator.

Finally, we calculate the Elephant House size (10x22 cells

per floor) and the layout information (wall, entrance, exit,

stairs).

5. Occupancy Model (Lopez on RISE with multi

variables/ports)

 We use Cell-DEVS to simulate the behavior of a three-

dimensional object representing the studied building. For

the simulator of Cell-DEVS, we choose Lopez simulator on

RISE Web Services. As seen in Figure 5, from the top view,

each floor has 10x22 cells, and each cell represents a square

place associated with physical horizontal coordinates. There

are 2 floors, connecting with stairs. For example, Cell (3, 0,

0) represents the entrance, Cell (8, 21, 1) represents the

stair going downstairs, etc. Each cell has five state variables:

Movement, Phase, Pathway, Layout, and Hotzone.

Figure 5. Four-dimensional cells

 Table 1 lists all cell states, categorized by the five state

variables.

Table 1. Cell States

 Movement: 0 means a cell that is not occupied by

anyone, 1 means the cell is currently occupied, it also

records other states related to the four phases,

reflecting the relationship with the neighbors.

 Phase: each movement cycle has four phases (Intent,

Grant, Wait, Move), details are discussed in Section

5.1

 Pathway: shows the visiting routes. Visitors tend to

move following the pathway with certain probabilities.

5 means Right direction, 6 means Up direction, 7

means Left direction and 8 means Down direction.

 Layout: consists of space (0), wall (2), entrance (3),

stairs (3.1 for upstairs and 3.2 for down stairs), exit (4),

etc.

 Hot Zone: reflects popularity levels of the spots

influencing different potential waiting time. The

higher value the hot zone is, the higher the probability

that a visitor in the hot zone would stay.

 In this model, people moving is based on an expended

Moore and Von Neumann neighborhood (see Figure 6),

with allowance for larger neighborhoods. The basic

neighborhoods are nine Moore neighbors ((-1,-

1,0)…(1,1,0)), each neighbor indicates one direction from

E, NE, N, NW, W, SW, S, SE or central. To determine the

movement from stairs, we add two other neighbors (0,0,-1)

for going downstairs and (0,0,1) for receiving people from

upstairs.

Figure 6. Neighborhood

 Layout layer contains the building information from the

studied building, which is extracted from BIM Data

Collection process through the standard IFC files. The

reason to separate this layout layer from other layers is for

better abstraction and modularity, which enable the

designer operate and extend this lever easier in the future

design. In the Elephant House, it has two floors, and we are

only interested in outside walls, inside pillar walls,

entrances, exits and stairs toward up/down.

 The pathway is the guideline routes for visitors moving.

The exhibition rooms may have specific pathway to control

the people moving flow. Normally, the pathway points to

the shortest path towards the exit. In our case, we overlay a

Voronoi diagram of the route to an exit or stair. Figure 7

demonstrates how the pathway would like. This pathway

can be initialized iteratively by waving from the cells

nearby exit/stairs to the distant cells. The implemented rules

would run at first when simulation running.

Figure 7. Pathway initialization

 Hot zones affect potential staying/waiting time. As

shown in Figure 8, assume there are elephant herds closely

outsides the bottom area, people near the middle of bottom

would more likely to stay watching than the people far away

do. Therefore, there are different hot zone values that

indicate the distance to some hot spots. The higher value

the hot zone is, the more likely visitors would stay. For

example, the people in a dark red cell would randomly wait

there from 0 to 4s; while the people in a light red cell would

just stay there no more than 1s.

Figure 8. Hot zones

5.1. Movement Phases Implementation (Lopez with

multi variables/ports)

 In the lopez simulator for Cell-DEVS, a state variable

can be implemented by either variable or port. The

difference is that variables can only be used by its owned

cell, never notify to neighbors; while port values can be

known to neighbors. In our implementation, ports are

Movement, Phase and Pathway; while variables are Layout

and Hotzone.

 In order to realize random movement and random

waiting, the movement behavior is divided into four phases

(Intent, Grant, Wait, and Move), which state diagram is

shown in Figure 9.

Figure 9. State diagram of Movement

 Generally, for an occupied cell, a visitor chooses a

direction randomly at the intent phase. If the target cell

accepts it, it changes to get grant; otherwise, it turns to get

rejected. If granted, the visitor would wait for some time

randomly according to the hot zone where the visitor is

standing at, and then empty the cell at the move phase. If

rejected, the visitor only needs to wait one phase time to

turn to the move phase and keeps occupied. For an empty

cell, the logic is much simpler. It would choose a

surrounding intended cell at the grant phase and would

change to occupied at the move phase.

 At the beginning of the simulation, visitors would be

initialized at the main entrances with certain probability

(VisitorRate), in order to mimic different input flow rates

with rush/slash hour during the opening time. In the current

implementation, each cycle has 4s (each phase has 1s). We

firstly check whether it is the beginning of the cycle

(remainder(time, 4)=0), then generate a person at each

entrance of Floor 1.
rule : {~movement := 2; ~phase := 1;} 0

{uniform(0,1)<#Macro(VisitorRate) and

remainder(time, 4)=1 and (0,0,0)~phase =

0 and (0,0,0)~movement=0 and $layout=3}

Phase 1: Intent

 During this phase, the intent direction is determined by

two factors: the pathway direction and the direction

probability. We first check if it is in the intent phase, and if

the cell is a stair and the cell below is empty, it gets the

intent direction of 10. If the cell is not a stair, according to

the pathway value, we find the probability distribution of

directions (see Figure 10, which splits 100 into 8 pies). For

example, if the pathway is 6 (up), we would use the first

chart of Figure 10. Then we generate a random number

between 0 and 100, and check which direction that the

random number is located. For example, if the random

number is 58, it is in %F (0-69), so we get the intent

direction to go up.

Figure 10. Intent probability distribution with the pathway

 At last, the cell changes to 10-18, which unit value

corresponds with the intent direction: D(0), E(1), NE(2),

N(3), NW(4), W(5), SW(6), S(7), SE(8) (see left part of

Figure 11). E.g., for going up, it should be 13. Note here we

do not care whether the target cell is available, it will be

checked in the following phases.

Figure 11. Intent & reverse Grant direction values

 To implement the Intent phase, we use following rules:
rule : {~movement := 10; ~phase := 2;} 1

{ (0,0,0)~phase = 1 and (0,0,0)~movement

= 1 and $layout = 5}

rule : {~movement := uniform(0,1);

~phase := 1.1;} 0 (0,0,0)~phase = 1 and

(0,0,0)~movement=1 and

(0,0,0)~pathway>=5} ...

rule : {~movement := 11; ~phase := 2;} 0

(0,0,0)~phase = 1.1 and (0,0,0)~pathway

= 5 and (0,0,0)~movement > 0.0 and

(0,0,0)~movement <= #Macro(Front) } ...

rule : {~movement := 18; ~phase := 2;} 0

(0,0,0)~phase = 1.1 and (0,0,0)~pathway

=8 and (0,0,0)~movement > #Macro(Front)

+#Macro(Left-Front) and (0,0,0)~movement

<=#Macro(Front)+...+#Macro(Right-Front)}

Phase 2: Grant

 After the occupied cell chose its intended direction,

more than one person may want to enter into a same cell

(collision). To handle this problem, each empty cell will

choose only one neighbor, and change its state. In detail, we

should make sure it is the grant phase, and if the cell is stair

and the cell above wants to come down (10), so it changes

to 40 and phase 4 to move. Otherwise, it chooses an intent

surrounding cell in order, and changes to 41-48, which unit

value corresponds with one of the reverse eight directions

shown in the right part of Figure 11). E.g., 41 means the

current cell accepts the left neighbor to come in. To keep

coherence, the cells with intent direction (10-18) change to

20-28 and phase 3 for waiting.

 The rules for the Grant phase are like as follows:
rule : {~movement := 40; ~phase := 4;} 1

{ (0,0,0)~movement = 0 and (0,0,-

1)~movement = 10 }

rule : {~movement := 41; ~phase := 4;} 1

{ (0,0,0)~movement = 0 and (0,-

1,0)~movement = 11 and $layout != 2} ...

rule : {~movement := 48; ~phase := 4;} 1

{ (0,0,0)~movement = 0 and (-1,-

1,0)~movement = 18 and $layout != 2}

rule:{~movement := ((0,0,0)~movement+10);

~phase := 3;} 1 { (0,0,0)~movement >= 10

and (0,0,0)~movement <= 18 }

Phase 3: Wait

 We use this phase to mimic the behavior of random

wait. If a person is granted by the target cell (he has an

intent direction and the target cell chose him), he will stay

there for a random amount of time according to the hotzone

where he is standing. We implement this by adding

different delays in the associated rules. We first get a

random number from 0 to the corresponding hotzone value

(e.g., 2 means waiting for 2 cycles); because each cycle has

4s, plus 1s for the forth Move phase, it actually would wait

4*N+1 (9s) from 20-28 to change to 30-38, which unit

value corresponds with the intent direction. Note that the

stair (20) has the same rule about waiting as the normal

cells. Otherwise, if not granted, the person cannot move

anywhere and he should try again for a next moving cycle;

so it changes to 39 and will only delay 1s for the forth Move

phase. Take the above as an example, if the cell is 21 (want

to go right) and its right cell is 41, it will wait there for 9s to

change to 31.

 The rules of this phase are like this:
rule : {~movement := 30; ~phase := 4;} 1

{ (0,0,0)~phase = 3 and (0,0,0)~movement

= 20 and (0,0,1)~movement = 40 }

rule : {~movement := 31; ~phase := 4;}

{ 1 + 4*randInt($hotzone) }

{ (0,0,0)~phase = 3 and (0,0,0)~movement

= 21 and (0,1,0)~movement = 41 }

rule : {~movement := 38; ~phase := 4;}

{ 1 + 4*randInt($hotzone) }

{ (0,0,0)~phase = 3 and (0,0,0)~movement

= 28 and (1,1,0)~movement = 48 }

rule : {~movement := 39; ~phase := 4;} 1

{ (0,0,0)~phase = 3 and

(0,0,0)~movement >=20 and

(0,0,0)~movement <= 28 }

Phase 4: Move

 Now, every intended cell is 30-38 (granted) or 39

(rejected), so the granted visitor can move to the target cell.

To finish the moving for next cycle, we empty the intended

cells that are granted to 0, and the rejected ones to 1. For

the target cell, it changes from 40-48 to 1 after checking its

corresponding intended cell is still existing.

 Here are the rules for this part:
rule : {~movement := 0; ~phase := 1;}

100 { (0,0,0)~phase = 4 and

(0,0,0)~movement = 30 and

(0,0,1)~movement = 40 } ...

rule : {~movement := 1; ~phase := 1;}

100 { (0,0,0)~phase = 4 and

(0,0,0)~movement = 48 and (-1,-

1,0)~movement = 38}

 So far, we have discussed entrances, stairs and normal

cells. The last thing is to consider the exit, we just need to

empty it if it is occupied, the rule of exit is:
rule : {~movement := 0;} 100 { (0,0,0) =

1 and $layout = 4 and (0,0,0)~movement=1}

 Here is an example to show the movement cycle (see

Figure 12). Initially, there were two cells occupied. After

phase1 at 1s, two persons randomly intended to move to a

same cell (one with 11 and the other with 12). After the

phase at 2s, the target cell chose the cell left (it changed to

41). In phase 3, the granted cell waited for 1 more cycle

(1+4=5s). After this wait expired, the time reached at 7s. At

last, the granted cell moved to its target, while the other cell

kept staying there.

Figure 12. Movement Phases example

6. Occupancy Model (original CD++ version)

 This model originally is implemented in CD++ version,

which is run as standalone. The implementation is very

similar as Lopez version mentioned in Section 5. In order to

represent different state variables of each cell, we add a

fourth dimension to each cell to represent: Movement,

Pathway, Layout, and Hot zone.

Figure 13. Four-dimensional cells

 Table 2 lists all cell states. The four variables are

stored in different layers in the fourth dimension of our cell

space.

Table 1. Cell States

 Movement: 0 means a cell that is not occupied by

anyone, 1 means the cell is currently occupied, it also

records four phases during each movement cycle

(Intent, Grant, Wait, Move), reflecting the relationship

with the neighbors.

 Pathway: shows the visiting routes. Visitors tend to

move following the pathway with certain probabilities.

5 means Right direction, 6 means Up direction, 7

means Left direction and 8 means Down direction.

 Layout: consists of space (0), wall (2), entrance (3),

stairs (3.1 for upstairs and 3.2 for down stairs), exit (4),

etc.

 Hot Zone: reflects popularity levels of the spots

influencing different potential waiting time. The

higher value the hot zone is, the higher the probability

that a visitor in the hot zone would stay.

 In this model, people moving is based on an expended

Moore and Von Neumann neighborhood (see Figure 14),

with allowance for larger neighborhoods. The basic

neighborhoods are nine Moore neighbors ((-1,-

1,0,0)…(1,1,0,0)), each neighbor indicates one direction

from E, NE, N, NW, W, SW, S, SE or central. To

determine the movement from stairs, we add two other

neighbors (0,0,-1,0) for going downstairs and (0,0,1,0) for

receiving people from upstairs. In order to know the

variable information of current considering cell, we should

know pathway (0,0,0,1), layout (0,0,0,2), and hotzone

(0,0,0,3). For using rules to determine the initial pathway

automatically, we add other four Von Neumann neighbors

for pathway layer ((0,1,0,1)…(-1,0,0,1)) to present the

direction from E, N, W, S.

Figure 14. Neighborhood

6.1. Movement Phases Implementation (original CD++

version)

 Same as mentioned in Section 5.1, the implementation

is similar to lopez version. The movement behavior is

divided into four phases (Intent, Grant, Wait, and Move).

 At the beginning of the simulation, visitors would be

initialized at the main entrances with certain probability, in

order to mimic different input flow rates with rush/slash

hour during the opening time. In the current implementation,

each cycle has 4s (each phase has 1s). We firstly check

whether it is the beginning of the cycle (remainder(time,

4)=0), then generate a person at each entrance of Floor 1.
rule : {1} 4 { remainder(time, 4)=0 and

(0,0,0,0)=0 and (0,0,0,2)=3 and

(0,0,0,1)>=5 }

Phase 1: Intent

 During this phase, the intent direction is determined by

two factors: the pathway direction and the direction

probability. We first check if it is in the intent phase, and if

the cell is a stair and the cell below is empty, it gets the

intent direction of 10. If the cell is not a stair, according to

the pathway value, we find the probability distribution of

directions (see Figure 10, which splits 100 into 8 pies). For

example, if the pathway is 6 (up), we would use the first

chart of Figure 10. Then we generate a random number

between 0 and 100, and check which direction that the

random number is located. For example, if the random

number is 58, it is in %F (0-69), so we get the intent

direction to go up. At last, the cell changes to 10-18, which

unit value corresponds with the intent direction: D(0), E(1),

NE(2), N(3), NW(4), W(5), SW(6), S(7), SE(8) (see left

part of Figure 11). E.g., for going up, it should be 13. Note

here we do not care whether the target cell is available, it

will be checked in the following phases.

 To implement the Intent phase, we use following rules:
rule : {10} 1 { remainder(time, 4)=0 and

(0,0,0,0)=1 and (0,0,0,2)=3.1}

rule : {uniform(0,1)} 1 { remainder(time,

4)=0 and (0,0,0,0)=1 and (0,0,0,1)>=5}

rule : {11} 0 { (0,0,0,1)=5 and

(0,0,0,0)>0.0 and (0,0,0,0) <=

#Macro(Front)...

rule : {14} 0 { (0,0,0,1)=6 and

(0,0,0,0) > #Macro(Front) and (0,0,0,0)

<= #Macro(Front) + #Macro(Left-Front) ...

rule : {16} 0 { (0,0,0,1)=7 and

(0,0,0,0) > #Macro(Front) + ... +

#Macro(Right-Front) ...

rule : {18} 0 { (0,0,0,1)=8 and

(0,0,0,0) > #Macro(Front) + ...

+#Macro(Right-Front) }

Phase 2: Grant

 After the occupied cell chose its intended direction,

more than one person may want to enter into a same cell

(collision). To handle this problem, each empty cell will

choose only one neighbor, and change its state. In detail, we

should make sure it is the grant phase, and if the cell is stair

and the cell above wants to come down (10), so it changes

to 40. Otherwise, it chooses an intent surrounding cell in

order, and changes to 41-48, which unit value corresponds

with one of the reverse eight directions shown in the right

part of Figure 11). E.g., 41 means the current cell accepts

the left neighbor to come in. To keep coherence, the cells

with intent direction (10-18) change to 20-28.

 The rules for the Grant phase are like as follows:
rule : {40} 1 { remainder(time, 4)=1 and

(0,0,0,0)=0 and (0,0,-1,0)=10 }

rule : {41} 1 { remainder(time, 4)=1 and

(0,0,0,0)=0 and (0,-1,0,0)=11 and

(0,0,0,2)!=2}...

rule : {48} 1 { remainder(time, 4)=1 and

(0,0,0,0)=0 and (-1,-1,0,0)=18 and

(0,0,0,2)!=2}

rule : {(0,0,0,0)+10} 1 { remainder(time,

4)=1 and (0,0,0,0)>=10 and

(0,0,0,0)<=18 }

Phase 3: Wait

 We use this phase to mimic the behavior of random

wait. If a person is granted by the target cell (he has an

intent direction and the target cell chose him), he will stay

there for a random amount of time according to the hotzone

where he is standing. We implement this by adding

different delays in the associated rules. We first get a

random number from 0 to the corresponding hotzone value

(e.g., 2 means waiting for 2 cycles); because each cycle has

4s, plus 1s for the forth Move phase, it actually would wait

4*N+1 (9s) from 20-28 to change to 30-38, which unit

value corresponds with the intent direction. Note that the

stair (20) has the same rule about waiting as the normal

cells. Otherwise, if not granted, the person cannot move

anywhere and he should try again for a next moving cycle;

so it changes to 39 and will only delay 1s for the forth Move

phase. Take the above as an example, if the cell is 21 (want

to go right) and its right cell is 41, it will wait there for 9s to

change to 31.

 The rules of this phase are like this:
rule : {30} 1 { remainder(time, 4)=2 and

(0,0,0,0)=20 and (0,0,1,0)=40 }

rule : {31} { 1 + 4*randInt((0,0,0,3)

+1) } {remainder(time, 4)=2 and (0,0,0,0)

= 21 and (0,1,0,0) = 41 } ...

rule : {38} { 1 + 4*randInt((0,0,0,3)

+1) } {remainder(time, 4)=2 and (0,0,0,0)

= 28 and (1,1,0,0)=48 }

rule : {39} 1 { remainder(time, 4)=2 and

(0,0,0,0)>=20 and (0,0,0,0)<=28 }

Phase 4: Move

 Now, every intended cell is 30-38 (granted) or 39

(rejected), so the granted visitor can move to the target cell.

To finish the moving for next cycle, we empty the intended

cells that are granted to 0, and the rejected ones to 1. For

the target cell, it changes from 40-48 to 1 after checking its

corresponding intended cell is still existing.

 Here are the rules for this part:
rule : {0} 1 { remainder(time, 4)=3 and

(0,0,0,0)>=30 and (0,0,0,0)<=38 }

rule : {1} 1 { remainder(time, 4)=3 and

(0,0,0,0)=39 }

rule : {1} 1 { remainder(time, 4)=3 and

(0,0,0,0)>=40 and (0,0,0,0)<=48}

 So far, we have discussed entrances, stairs and normal

cells. The last thing is to consider the exit, we just need to

empty it if it is occupied, the rule of exit is:
rule : {0} 1 { (0,0,0,2)=4 and

(0,0,0,0)=1}

7. 3D Visualization

 3D visualization provides a more intuitive and

attractive way to obtain visual simulation results in BIM

authoring tools, enabling the designers to check the

building performance and people behaviors under different

properties. Most BIM authoring tools support full-featured

3D visualization of building. Among them, Autodesk 3ds

Max is a powerful BIM tool for its animation and rendering

ability for 3D visualization. The IFC file can easily

imported into 3ds Max, what we want is to view the

simulation results into the model that can be visualized in

3ds Max. To do this, we have developed an advanced

visualization tool in 3ds MAX, which is upgraded based on

our existing version. This new tool expanded new

functionalities for reusability and scalability, including a

parser program using Python script (to parse simulation

results log file), expended GUI in 3ds Max with extendable

script. The GUI (see Figure 13) provides several options of

hiding different building floors for visibility and filtering

models in a small area for the optimization purpose. We

then added new animation features of models: 1) arrow

models with key framing ability and 2) realistic models to

animate real body movement using Motion Mixer. This

work brings better visualization of simulation results,

enabling the designers to check the simulation results of

BIM, find the flaws and plan for improvement.

Figure 13. 3ds Max visualization user interface.

8. SIMULATION RESULTS

 In this section, we discuss some simulation results, in

order to analyze occupancy levels or find out bottlenecks.

They are generated from the occupancy model defined in

Section 3, using different building designs properties (doors

location, stairs number, incoming rate, hot zones, moving

probabilities, etc.). All the tests are running under 10 mins

duration of the visiting hours of the elephant house, which

has 150 cycles of movements (each cycle costs 4s).

 Our initial test (see Figure 14) shows the basic

behavior of visitors under normal properties during the rush

hours. The house has two floors, people (blue) coming and

getting out the house by the doors (dark marks), and going

downstairs (write marks) from Floor 1(left part of each

graph) to Floor2 (left part of each graph). Each cycle,

according to the different phases, each person tends to wait

or move randomly. During rush hours, the house opens four

entrances, and each entrance generates one visitor during

each cycle. In Figure 14, the blue cells represent visitors

(light blue cells are waiting visitors, and each green cell

represents which cell a waiting visitor wants to go). At 10

min, there are 35 visitors over 90 spaces in Floor1 and 24

visitors over 152 spaces in Floor2. Therefore, the

occupancy levels are 38.9% for Floor1 and 15.8% for

Floor2 respectively.

 To study the impact of door location/stairs number in

terms of occupancy, we discuss two modifications to the

original design (see Figure 14, showing at the time of 5min

and 10min results for each modification). The first one

considers changing the entrances location: we separate the

four gates into two parts, (two move above, while the other

two move below). In the end of 10 min, the occupancy

levels are 36.7% for Floor 1 and 17.1% for Floor2, which

are only slight different compared with the ones in the

basic case analyzed above (occupancy of Floor1 is still as

twice as large of the one of Floor 2). This similarity

indicates that even though doors location has changed,

doors still generated the people at similar rates and no

significant confliction happens.

a) at 2.5 min

b) at 5 min

c) at 7.5 min

d) at 10 min

Figure 14. Simulation results of basic properties at

different simulation times.

The second test in Figure 15 shows the impact of the

number of stairs. We modified the model again, and added

two additional staircases connecting the Floor1 and Floor2.

In the end of 10 min, the occupancy levels are 25.6% for

Floor 1 and 20% for Floor2, which has significant

difference as before. The occupancy levels of the floors

approach equal. The potential reason would be congestions

happened at the stairs of Floor 1 in the above two cases,

adding stairs eliminates the congestion on Floor1 and

speeded up the people moving to Floor2.

Changing

entrance

locations

Adding

more stairs

Figure 15. Simulation results of two modified properties

(exit location changed / more doors added).

 Some other comparative trials have been tested based

on this Elephant House (see Figure 16). Totally, we change

one property among hot zones, entrances location,

movement direction probabilities, coming rate, stairs

number, keep other properties unchanged as the basic

configuration. Main purpose is try to find which property is

most significant in term of occupancy levels, so it would

give the designer useful feedback to improve the

maintenance and management of this house.

Figure 16. Comparisons of different scenarios.

 In a short, coming rate and stairs number affect the

occupancy level more significantly than other properties do.

 1) Hot zones: we decreased the probability of people

waiting by 1 cycle to mimic fast movement speed. E.g.,

assume in basic test a cell waits for 3 cycles, then in the

new test it just waits for 2 cycles. The result shows both

occupancies increase relatively obviously, which indicates

the influence of people movement speed to the occupancy.

 2) Movement direction probabilities: In basic

properties, visitors tend move forward at rate of 70%, while

in this new test, we change the forward probability to 50%

to give visitors more freedom moving other directions. The

results shows only a slight difference compared to original

setting, which indicates the direction probabilities do not

affect occupancy a lot. The possible reason would because

people still can reach the stairs/exit as a normal rate.

 3) Coming rate: The basic test is under hot hours. In

the new test, to mimic slack hours, we prolonged the

interval between two incoming visitors (2 cycles generate

one visitor). The results showed significant decrease of

Floor 1 (from 38.9% to 26.7%). These results indicate the

coming rate of different hours during visiting time affects

the occupancy level a lot. The reason of only a small

change of Floor 2 would be that the rate of people coming

to Floor 2 still keeps at a steady full rate, even though we

reduce the incoming rate (but congestion on Floor1 has

eased compared to the basic model).

 We now show the occupancy simulation results using

our 3D developed visualization Tool (see Figure 17). To do

so, we firstly parsed the log file that generated from

simulation. Then we load the BIM Elephant house building

(which is IFC standard) in our tool and start the GUI.

Figure 17 shows some visualization results of different

options. This work brings better visualization of simulation

results, enabling the designers to check the simulation

results of BIM, compare the performance under different

configurations and find the flaws for future improvement.

Figure 17 also illustrates the ability for the designers to see

different perspectives and choose among different options

when using our developed tool. The tool supports two

different animation models: realistic models realistic

models to animate real body movement using Motion Mixer

(see part A and B), and arrow models with key framing

ability (see part C and D). In addition, we can hide different

building floors for visibility (see part B and C) and focus on

only one person (see part A).

Figure 17. Different options using developed Tool

9. CONCLUSION

 We propose a solution of a uniform Building

Information Molding and Simulation process. We showed

how to extract information from the IFC file, run simulation

using Cell-DEVS and view advanced 3D visualization in

3Ds Max. Our case study uses a novel model of occupancy

analysis for Copenhagen’s New Elephant House. This

model simulates people moving behaviors in Copenhagen’s

New Elephant House. Visitors walk in from the main

entrance on floor1, go downstairs to floor2 and then leave

the house through exit. Visitors may randomly move or wait

at a place for a while. This simulator can benefit designers

to understand better occupancy levels of the New Elephant

House during different scenarios, (e.g., doors location,

stairs number, rush/slash hours, different movement

probabilities of directions, etc.). This work brings designers

to understand better the significances among different

building properties in order to facility the occupancy

management or design suggestions for the future

improvement. Some further directions of this work are to

improve occupancy model by using multiple state variables

version of CD++ provided in RISE WSs; as well as to study

more about IFC-based BIM and the Cell-DEVS simulation.

ACKNOWLEDGEMENT

 We would thank Victor Freire for his effort on

upgrading the 3D visualization tool for advanced realistic

models and several practical options.

 REFERENCES
[1] Hardin, B. 2009. BIM and Construction Management: Proven Tools,

Methods, and Workflows. Wiley.

[2] BuildingSmart. 2012. Accessed Nov 6. http://buildingsmart.com/

http://buildingsmart.com/

[3] Jiang , Y., J. Ming, D. Wu, J. Yen, P. Mitra, J. I. Messner and R.

Leicht. 2012. Bim Server Requirements to Support the Energy

Efficient Building Lifecycle. In Proc. 2012 ASCE international

conference on computing in civil engineering.

[4] Zeigler, B.P., H. Praehofer, and T.G. Kim. 2000. Theory of

Modeling and Simulation. Academic Press.

[5] Wainer , G.. 2009. Discrete-event Modeling and Simulation: a

Practitioner's Approach. CRC/Taylor & Francis.

[6] Al-Zoubi, K., and G. Wainer. 2009. Using REST Web Services

Architecture for Distributed Simulation. In: Proceedings of

Principles of Advanced and Distributed Simulation (PADS 2009).

pp. 114-121. Lake Placid, New York, USA.

[7] AutoDesk. 2012. “Autodesk Revit Architecture.” Accessed Nov 6.

http://usa.autodesk.com/revit-architecture/

[8] AutoDesk. 2012. “Autodesk 3ds Max.” Accessed Nov 6.

http://usa.autodesk.com/3ds-max/

[9] BimServer.org. 2012. Accessed Nov 6. http://bimserver.org/

[10] Liao, C., and P. Barooah. 2011. "A novel stochastic agent-based

model of building occupancy." American Control Conference (ACC),

2011. IEEE.

[11] Brady, P., 2008 “The Copenhagen Elephant House: A Case Study of

Digital Design Processes”, in Silicon and Skin, Proceedings of the

ACADIA 2008 Conference.

[12] Mihindu, S. and Y. Arayici. 2008. “Digital Construction through

BIM Systems will Drive the Re-engineering of Construction

Business Practices.” In International Conference on Visualization,

London, UK.

[13] Hajjar, D., and S.M. AbouRizk. 2002. “Unified Modeling

Methodology for Construction Simulation.” Journal of Construction

Engineering and Management- ASCE. 128(2):174-185.

[14] Martinez, J.C. 2001. “EZStrobe - General-Purpose Simulation

System Based on Activity Cycle Dia-grams.” In Proceedings of 2001

WSC. Piscataway, Washington, DC. 1556-1564. IEEE.

[15] Pelechano, N., and A. Malkawi. 2008. “Evacuation Simulation

Models: Challenges in Modeling High Rise Building Evacuation

with Cellular Automata Approaches.” Journal of Automation in

Construction. Elsevier. 17(4):377-385.

[16] Yang, L.Z., D.L. Zhao, J. Li, and T.Fang. 2005. “Simulation of Kin

Behavior in Building Occupant evacuation based on Cellular

Automaton.” Journal of Building and Environment. Elsevier.

40(3):411-415.

[17] Goyal, S., H. Ingley, and P. Barooah. 2012. "Zone-level control

algorithms based on occupancy information for energy efficient

buildings." American Control Conference.

[18] Wang, S., M.V. Schyndel, G. Wainer, V. Subashini, R. Woodbury.

2012. “DEVS-based Building Information Modeling AND

Simulation for Emergency Evacuation.” In Proceedings of the 2012

Winter Simulation Conference. Berlin, Germany. IEEE.

[19] Hammad, A., and C. Zhang. 2011. “Towards Real-time Simulation

of Construction Activities Considering Spatio-temporal Resolution

Requirements for Improving Safety and Productivity.” In

Proceedings of the 2011 WSC. Phoenix, AZ. 3533-3544. IEEE.

[20] Ahmed, A., G. Wainer, and S. Mahmoud. 2010. “Integrating

Building Information Modeling & Cell-DEVS Simulation.” In

Proceedings of SimAUD 2010. Orlando, FL.

[21] IFC2x3. BuildingSmart. 2012. Accessed Nov 6.

http://www.buildingsmart-tech.org/ifc/IFC2x3/

http://usa.autodesk.com/revit-architecture/
http://usa.autodesk.com/3ds-max/
http://bimserver.org/
http://www.buildingsmart-tech.org/ifc/IFC2x3/

