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Abstract 

 Induced hydraulic fracturing is a system employed 

by the energy industry to extract natural gas or 

petroleum from reservoir rocks. This process involves 

the insertion of a wellbore into the ground which 

injects high pressure fluid into the ground, causing 

fractures in the rock to create a conduit for natural gas 

and petroleum. Numerical simulations of induced 

hydraulic fracturing have existed for some time. This 

research explores the implementation of a 3D 

visualization of simulation results from a cell DEVS 

model of induced Hydraulic fracturing. This 

visualization uses Autodesk Maya 2011 and MEL 

script to accomplish this task. Further visualization 

designs and possibilities are also explored. 

 

1. INTRODUCTION 

 This project has been undertaken as part of a 

collaborative effort with Sergio Zlotnik, a fractures 

expert from the Polytechnic University of Catalonia in 

Barcelona. Under the tutelage of Prof Gabriel A. 

Wainer, Professor of Systems and Computer 

Engineering at Carleton University, Christopher Burt 

and Meagan Leflar worked together to implement and 

visualize Zlotnik’s theoretical cell DEVS (Discrete 

Event System Simulation) model representing the 

behaviour occurring when one practices hydraulic 

fracturing. Christopher Burt was responsible for the 

implementation in CD++ (software which enables the 

development of DEVS simulations with C++). The 

output of Mr. Burt’s work became the input to the 

visualization using Autodesk Maya 2011 which is 

described in this paper.  

 

 This visualization in Autodesk Maya uses MEL 

script to read the simulation output from CD++ (a log 

file), and uses this information to generate 

appropriately coloured polygons to represent the cell 

DEVS simulation in 3D space.  

 

 However, before we discuss the exact nature of 

this simulation further, let us explore the background 

of hydraulic fracturing, the simulation model that 

Sergio Zlotnik designed and that Christopher Burt 

developed.  

 

2. BACKGROUND 

 

2.1. Hydraulic Fracturing 

 Simply put, hydraulic fracturing is the production 

of fractures in rock layers propagated by the 

movement of a pressured fluid. This is a phenomenon 

that can occur naturally in the environment, and has 

been observed to at possibly result in the congregation 

of gas or petroleum to reservoir rocks by using the 

newly created fractures as a conduit [1]. Induced 

hydraulic fracturing (also known as hydrofracturing or 

less-formally as simply fracking) is a system that was 

developed to create hydraulic fracturing manually in 

order to collect petroleum or natural gasses such as 

shale gas.  

 

 Induced hydraulic fracturing is accomplished by 

drilling a wellbore into reservoir rock formation, and 

pumping fluids out of the wellbore at high enough 

pressures to create fractures. The simulation model 

that will be explored in this paper uses the scenario of 

induced hydraulic fracturing. 
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Figure 1: Illustration of the induced hydraulic 

fracturing process, provided by Sergio Zlotnik. The 

dotted line here is to represent the domain of the 

model. 

 

 Induced Hydraulic fracturing is widely used, and 

has been used for many years now [2], and thus it is 

important to understand the hydraulic fracturing 

process in order to better judge where and how 

fractures will occur. 

 

2.2. Modeling Hydraulic Fracturing 

As recently as 2010, it has been discussed that 

the petroleum industry's lack of understanding of 

physical properties and the physics controlling 

production from many important resources plays limits 

its ability to model and forecast with confidence 

production and reserves from these resources in many 

cases [3]. While measurement technology and 

modeling accuracy is improving, the industry is often 

forced to resort to empirical methods that lack the 

usual validation required for high confidence in 

results.  

 

Dr. Zlotnik also understands that many numerical 

simulations of hydraulic fracturing have been done 

pertaining to plane stress [5], plane strain [6], or radial 

crack [7]. However, the wealth of complex models 

does not appear to be filling field-work and industry 

needs. “Petroleum engineers, at a loss to determine 

which model might best describe their application, 

typically pick the simplest they can find to give them 

some kind of number.” [4] 

 

 The model proposed by Sergio Zlotnik is a simple 

framework for simulating induced hydraulic fracturing 

using cell DEVS which could be extended to include 

more complex calculations and more advanced 

consideration could be integrated at a later time. 

 

2.3. Cell DEVS 

 The approach that was taken to the development of 

this hydraulic fracturing simulation was that of a 

simple cell DEVS model. DEVS stands for Discrete 

Event Systems Specifications. DEVS models work as 

a hierarchy of links connecting atomic models (the 

smallest component of a DEVS simulation) via inputs 

and outputs. 

 

 Cell DEVS are slightly more specialized in that 

the simulation exists as a grid of cells each with a state 

denoting an identifying float value that the cell has 

which is relevant to the simulation. In these 

simulations, the cell’s state is often expressed as a 

color using a pallet file which the developer writes to 

dictate which float values pertain to which colours. 

 

 Each cell has a specific set of relevant 

neighbouring cells. The cell’s state is then determined 

at specific times using a set of rules that govern the 

cell’s behaviour. These rules are often written based 

off of the states of the cell’s neighbouring cells.  

 

 Other relevant information about cell DEVS 

models include the dimensions, described always as 

rows by columns, and that cell DEVS systems can be 

layered as well as connected with standard DEVS 

models. In the case of this induced hydraulic fracturing 

simulation, however, the cell DEVS model is only one 

layer.  

 

3. THE MODEL 

 Both Dr. Zlotnik’s conceptual model and 

Christopher Burt’s implemented model will be 

discussed in this section. 

 

3.1. Dr. Zlotnik’s Model 

 In his exploration of the fracturing process, Dr. 

Zlotnik suggests that permeability and porosity of the 

rock play an important role in how the fluids will 



move within the rock layers, and how the rock layers 

will fracture. This would also, therefore, be relevant to 

the extraction of natural resources using hydraulic 

fracturing.  

 

 The permeability of a rock describes how easily a 

fluid can flow through it. The porosity of the rock 

represents how much fluid a particular section of rock 

can contain, meaning there would be holes in the rock 

to be filled by the fluid. However, if these holes or 

openings are not interconnected within the rock, 

though it may be porous, it would not be permeable. 

Hydraulic fracturing can then be used to create 

conduits between pores and can therefore increase 

permeability and lead to better results. 

 

 Dr. Zlotnik’s model aims to remain simple in its 

design and implementation, and thus will assume 

certain idealized parameters: 

 

 The rock is uniform in all orientations.  

 

 The rock is homogenous. 

 

 The rock obeys Hooke’s law of linear elastic 

behaviour.  

 

 There is an impermeable borehole wall that is 

unaffected by the wellbore pressure on the left 

side of the simulation grid. 

 

  

In this model, each cell represents a portion of space 

that can be rock, fracture, or fluid. This simulation will 

begin with the injection of fluid through a cell midway 

up the left side of the cell DEVS grid. This cell will 

represent the wellbore in induced hydraulic fracturing, 

and the spread of pressure will begin there. 

 

 The first part of this model describes the 

movement of fluid along the fractures that are created 

or that exist in the rock. To calculate this, only the 

distribution of pressure will be used. The nature of 

each cell is calculated based on the averaging of the 

pressure of neighbouring cells. This model enables the 

increase of pressure injection (fluid from the wellbore) 

to spread along neighbours that are fractures.   

 

 The second part of this model deals with when the 

fractures are created. Fractures occur when the fluid 

pressure within the rock exceeds the smallest principal 

stress plus the strength of the rock. This is expressed in 

the following equation, supplied by Dr. Zlotnik: 

 

pmax = 2θ – pf + T0 
 

In this equation, θ is the smallest principle stress, pf is 

the fluid pressure, and T0 is the tensile strength of the 

rock. If the pressure of one of the rock cell’s 

neighbours reaches the maximum pressure, the rock 

will become a crack. The new crack is then filled by 

the fluid from its neighbour. 

 

 Rock cells should have their own pore fluid 

pressure and tensile strength properties. These 

properties will be distributed according to the table 

below. Please note, pore fluid pressure and stress are 

dependent on the depth of the cell in question. 

 

Table 1: Table supplied by Sergio Zlotnik describing the properties of each cell. 



3.2. Mr. Burt’s Implementation 

 Using the description supplied by Sergio Zlotnik, 

Christopher Burt developed a cell DEVS simulation 

implementation using CD++, an Eclipse plugin that 

uses C++ to implement DEVS models.  

 

 Though the design of a 3D simulation was briefly 

discussed, it was decided that simply refining a more 

effective 2D simulation would be more beneficial at 

this time. However, by developing a pipeline for 

visualizing the simulation in 3D opens the door for 

future development and visualization in 3D. 

 

 Screen captures of the simulation that Christopher 

Burt implemented can be seen in figure 2. 

 

 His final simulation results were then handed off 

to us as .log file which contains a record of everything 

that occurred during the simulation.  

 

4. METHOD 

 

4.1. Methodology 

 The approach that we decided to take to visualize 

this simulation involves the use of polygonal cubes 

and the manipulation of their materials. This was 

decided because the cubic nature of the polygonal 

meshes implemented most directly reflected the nature 

of the simulation data, which is a grid using four edges 

to determine the neighbouring cells. Polygons were 

selected because they are the most intuitive and visual 

representation in 3D space to symbolize solid rocks. 

 

 Different approaches were considered initially, 

however. The first option that was explored was fluid 

dynamics. Fluids in Maya came to mind because of the 

fluid that is injected into the rocks as part of hydraulic 

fracturing. Unfortunately, simulating the desired fluid 

behaviour is already covered as part of the cell DEVS 

model, and we felt it was important to retain the 

cellular nature of the simulation to be visualized. 

Particles were considered, and dismissed for similar 

reasons.  

 

 Locators (point information) were also considered 

as an option for an ever simpler visualization, however 

they are visually uninteresting and discovering a way 

to communicate states using simply point information 

was unintuitive.  

 

Figure 2: 2D simulation results from Chris Burt. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The focus of this visualization was to acquire the 

information from the CD++ simulation and translate it 

into Autodesk Maya 2012. Once this information has 

been properly interpreted, changing details of the 

visualization is fairly simple. 

 

4.2. Visualization Pipeline 

 This visualization takes the output from the 2D 

simulation created in CD++, extracts the relevant 

information, and uses it to create a visualization in 

Autodesk Maya 2010 using MEL script. The figure 

below illustrates this simple pipeline.   

 

Figure 3: Visualization Pipeline 

 

  
 

 The output from the CD++ simulation that 

Christopher Burt ran is parsed into a log file, with the 

extension .log. This file contains all of the events that 

occur during the DEVS simulation. This file will be 

read and analyzed using MEL Script in a .mel file. The 

pseudo code for this process will be discussed in more 

depth.  

 

 The visualization, though generated with the MEL 

Script file, will be outputted into a Maya Binary file 

(.mb). This Maya Binary file can then be saved by the 

user, or rendered manually. This simulation includes 

generation of a Maya scene (including animation and 

polygonal mesh generation) but it does not include 

rendering the animated scene. The animation can 

however be viewed by the user immediately after the 

MEL Script completes running. This can be done in 

the Maya window using the timeline to toggle the 

frames.  

 

4.3. Script Overview 

 The pseudo-code for this visualization can be 

summarized nicely using the flow chart in figure 4.  

 

 The first step is to create the graphical user 

interface (GUI), which will give the user the ability to 

control the dimensions of the simulation and to select 

the log file of the simulation that they wish to 

visualize. 

 

 Selecting the “Run Simulation” button the 

graphical user interface will then prompt the script to 

check if the user has selected a log file. If no log file 

has been selected, then the user is prompted to enter a 

log file and the simulation is aborted. If the user has in 

fact selected a log file, then the simulation will 

continue. 

 

 The next step is to set up the scene based on the 

dimension parameters that the user has inputted, in this 

case drawing cubes to the screen.  

 

 Once the scene has been set up, the information 

for each step of the simulation is then extracted from 

the user-selected log file. This information is then used 

to update the scene. For each update, a key-frame is 

added to create the animation with the appropriate 

timing. Key-frames will be discussed in more depth in 

section 4.7. 

 

 

Figure 4: Pseudo code flow chart 

 



4.4. Graphical User Interface 

 When the user first runs the visualization, they 

will be greeted with this graphical user interface 

window.  

 

Figure 5: Graphical User Interface 

 

 
 

 This window was fairly simple to implement using 

MEL Scripts GUI commands. The data from the input 

parameters (dimension and log file) are acquired in the 

simulation function, which is called when the user 

presses the “Run Simulation” button. 

 

 The user selects the “Browse” button to select a 

file. The pseudo code for this is that a browse file 

function is called, which opens a separate window (see 

Figure 6) which enables users to browse for files. The 

code also filters the available files to .log files only.  

 

Figure 6: File browser window 

 

 
 

The style of window that was implemented using the 

MEL script is Maya specific and independent of 

different Operating Systems (OS) such as Mac, 

Windows or Linux.  

 

4.5. Simulation (Main) Function 

 When the user selects the “Run Simulation” button 

the simulation function is called. This is essentially the 

main function of the simulation. This function creates 

a new scene, to ensure a clean slate for the rest of the 

simulation. It then extracts the file path to the user-

selected log file (as a string).  

 

 The other essential function of this main 

simulation function is to check if the user has in fact 

selected a valid log file. If no valid log file has been 

selected, then a confirmation dialogue box is created, 

prompting the user to select a log file before 

continuing. On the other hand, if a valid log file has in 

fact been selected, then the set up function is then 

called, followed by the function which reads the 

relevant file and uses the information extracted from 

this file to implement the simulation visualization. 

These functions will be described in more depth in the 

following sections.   

 

4.6. Set Up 

 The set up function uses the user-specified 

dimensions of the cell space to create a 3D grid of 

polygonal cubes.  

 

 The two important factors of the implementation 

of this function are the materials applied to each cube 

and the naming convention used. 

 

4.6.1. The Materials 

 In Autodesk Maya 2011, materials are nodes that 

are applied to Maya meshes (such as the cubes used in 

this simulation) to make them appear to be made out 

of a certain material. For example, materials can be 

different colours, and have different specular levels. 

 

 In this visualization, each cube represents a cell in 

the induced hydraulic fracturing simulation model. 

Cells in the simulation model (and therefore cubes in 

the visualization) will not share the same state at the 

same time. Some cells will have states pertaining to 

being a rock, others will have states pertaining to 

being a fracture, and others even will have a state 

value pertaining to being filled with the fracturing 

fluid.  

 

 Because of the way Maya materials are designed, 

a different material must be applied to each cube in 



order to be manipulated independently. Otherwise, as 

soon as one instance of the material on one cube is 

changed, that same material on every other cell would 

also change.  

 

4.6.1. The Naming Convention 

 In order to be able to access the material of each 

cube in a logical manner, a specific naming convention 

was designed and implemented. This naming 

convention mirrors the row by column layout of the 

cell DEVS model.  This naming convention is 

illustrated in a small five by five matrix in figure 6. 

Aligning the names of the meshes and the materials 

with the naming convention in the cell DEVS model 

allows for a smoother transition between simulation 

and visualization. 

 

 Materials are therefore called “mat5_0” where 

“mat” designates that this object is a material, 5 

designates that it has been applied to a cell in row 5 

(the sixth row) and column 0 (the first column). 

 

 The associated polygonal mesh of the cube is 

therefore called “c5_0”. The “c” designates that this 

objects is a cube, and the “5” and “0” tell the script 

that it is in row 5 and column 0. 

 

This naming convention is essential to the pseudo code 

described in section 4.8. 

 

Figure 6: Illustration of naming convention used for 

the induced hydraulic fracturing visualization in Maya, 

based on the row/column naming convention in CD++. 

 

 

Figure 7: Illustration of the grid of cubes that are generated programmatically 

 using MEL script in the set up function. 

 



Figure 8: Visual break down of information extracted from log file. 

 

4.7. Extracting Relevant Information 

 In this function, the log file will be opened and 

read. The first step to understanding this section is to 

understand the anatomy of the log file produced by 

CD++.  

 

 Although there is much more information present 

in the log file than simply the out messages, the out 

messages are the only messages relevant to visualizing 

a simulation in this case. These output messages are 

sent when the cell changes states and they are 

preceded with “Mensaje Y”. Therefore, the first step is 

to filter out all of the messages that do not start with 

“Mensaje Y”.  

 

 The pseudo code for this is as follows: 

 

 Acquire the first line from the file 

 

 Use regular expressions (a means of matching 

strings of text) to check if the message type is 

“Y”. 

 

 If so strip relevant information from this line. 

 

 Move to next line, until the end of the file has 

been reached. 

 

 An example of a standard output message, and the 

relevant material that it contains, is illustrated above in 

figure 8. The relevant information here is time, cell ID, 

and state. 

 

4.7.1. Time 

 Time is parsed from the output message string 

using tokenization (dividing a string by a certain 

character, in this case slash and colon characters). 

Hour, minute, second, and millisecond values where 

acquired and converted to floats.  

 

 However, the time in hours, minutes, seconds, or 

milliseconds are not relevant. The relevant value here 

is the frame number at which the change occurs.  

 

 Despite recent theaters upgrading to 48 frames per 

second for a larger-than-life immersive animation 

experience (due to the theatrical release of The Hobbit: 

The Unexpected Journey in December of 2012) the 

standard video frame rate is 24 frames per second [8]. 

Autodesk Maya’s default frame rate is also 24 frames 

per second, but is customizable. For the purpose of this 

visualization, the assumption was made that this 

visualization would run at 24 frames per second, and 

care was taken during the exporting process that this 

remained accurate.  

 

 Taking this into consideration, the hour, minute, 

second, and millisecond values were then converted 

into frames by first converting hours, minutes and 

milliseconds into seconds, and then multiplying the 

total number of seconds by the frame rate (24 fps). 

 

seconds = 24 / frame 
 

 This frame number will later be used to set key-

frames for when the state of a cell changed. 

 

4.7.2. Cell ID 

 The identification of each cell is formatted row by 

column, as described previously in section 4.6.1. This 

information is extracted from the log file output lines 

using a combination of tokenization techniques and 

regular expressions. This script returns two values, the 

row identification and the column identification. These 



parameters will be used to locate the correct cube or 

material to edit based on the change of state.  

 

4.7.3. The State 

 Similar to the time and cell ID parameters, the cell 

state was acquired from the output messages in the log 

file by using a tokenization method. 

 

 When it comes down to it, the state of the cell is 

the most important parameter of this entire 

visualization. The value that the state represents here is 

the pressure of the cell in question. This value was 

used in the initial simulation to calculate whether or 

not neighbouring cells would cause the current cell to 

“fail” and become a fracture, or become filled with 

fluid.  

 

 In the case of this visualization, the cell state is a 

value which will determine in what way that cube 

(pertaining to the same cell ID) will be visualized. 

This will be discussed in more depth in the following 

section.  

 

4.8. Update Scene 

 This section is likely the aspect with the most 

options. This is when the real visualization occurs. In 

what way should we visualize the information that has 

been extracted from the simulation log file? In this 

case, we are manipulating the materials places upon 

the polygonal cubes that were generated 

programmatically in the set up function.  

 

4.8.1. Selecting the colour 

 Although it might have been interesting to also 

play with the opacity of each cell based on the 

pressure (and this would not be very hard to 

implement in the future) to create a tree-like structure, 

this visualization functions predominantly by changing 

the colour of the material applied to the relevant 

meshes. Figure 9 below illustrates the colours of 

different states. 

 

 The colour of cube 1 represents state values 

between zero and one. Cubes with low fluid pressure 

values such as these symbolize rocks, and are therefore 

the dark, solid brown colour illustrated in figure 9. 

 

 The slightly lighter brown of cube 2 in figure 9 

represents fluid pressures between one and ten 

thousand Pascals. This symbolizes rock that is under a 

little bit of pressure. 

 

 The grey cube illustrated as cube 3 in figure 9 is 

the colour that cells take when their fluid pressure rises 

between ten thousand and one million Pascals. This 

symbolizes a fracture, but is not strong enough to 

break neighbouring rock.  

 

 The dark grey cube, cube 4, in figure 9 symbolizes 

a full-fledged fracture. The pressure in this cell is 

between one million and one hundred million Pascals.  

 

 

 

 

Figure 9: Illustration of different states in the induced hydraulic fracturing visualization. 

 

 



 Finally, the fifth cube that is blue in figure 9 

represents cells with a pressure of one hundred million 

and higher. This is illustrated as a fracture filled with 

water, and at a base depth of three hundred meters that 

is nearly strong enough to break neighbouring rock. 

 

 The colours here were changed slightly from the 

original colours in Christopher Burt’s simulation, 

because the earthy colours appeared more appropriate 

to represent the ground in the context of this 

visualization. 

 

 The colour to use was determined 

programmatically using an if statement and separating 

the states into relevant intervals. The colours 

themselves are hardcoded in to the visualization at this 

time. A possible future solution to this would be to 

create a similar reader for pallet files, which could 

then be manipulated to create a wider variety of 

results. However, though Maya materials do use RGB 

(red, blue green) values as their colour input, they are 

out of 1 instead of 255, so this conversion would also 

have to occur. This, and other possibilities, will be 

discussed in section 6. 

 

4.8.2. Key framing 

 In order to create an animation in practically any 

animation software, including Autodesk Maya 2011, 

one must use key-frames. Key-frames are frames the 

define movement or change in an animation. Usually 

they mark the beginning or end of a smooth transition. 

For example, to animate a circle moving from point A 

to point B in 10 seconds, one would set a key-frame at 

0 seconds with the circle at point A and a key-frame at 

10 seconds with the circle at point B. 

 

 It then follows that anything that one might use to 

visualize a simulation in Autodesk Maya 2011 would 

have to possible to key-frame. Fortunately, most 

attributes in Maya can be key-framed. Unfortunately, 

the opacity of the textures in Maya cannot be directly 

key-framed, they must instead use Set Driven Keys. 

Essentially, this means that the value can be controlled 

by another object’s parameter, but it cannot be keyed 

(meaning a key frame cannot be set on it) directly. 

Because creating a Set Driven Key for each of many 

cubes would be unnecessarily messy and complex, we 

decided to work directly with the colours of materials 

instead. 

 Controlling the opacity of textures could have 

been appealing as an option because, if one used a 

layered texture in Maya (a material with several 

textures applied upon it), one could use customized 

textures of water and ground as part of the 

visualization instead of a flat colour to represent the 

state. This option could still be explored further at a 

later date, but would also involve programmatic UV 

mapping of the polygonal meshes to which the 

textures will be applied. In simple terms, UV mapping 

determines the orientation and scale of the texture 

being applied to each face of the polygon.   

 

 Materials and textures sound like similar objects, 

but there are slight differences. Textures are applied to 

materials (specifically linking to and overriding the 

colour of materials) and materials are applied directly 

to the meshes in the scene. The attribute that we 

control in the induced hydraulic fracturing 

visualization MEL script is the colour attribute of a 

carefully labeled material. 

 

 The pseudo code for each state update is as 

follows: 

 

 Go to frame (calculated in section 4.7.1) 

 

 Set colour attribute of the material with the 

appropriate row and column identification to 

the colour specified by the state value. 

 

 Set a key-frame on that material’s colour 

attribute. 

 

Once all the key-frames are in place, the visualization 

has completed and the user can view the visualization 

by clicking and dragging their cursor along the 

timeline at the bottom of the Autodesk Maya 2011 

window. To control the length of the timeline 

displayed, simply change the first value below and to 

the right of the timeline from 24.00 to a higher number 

(five thousand for example). 

 

5. VISUALIZATION RESULTS 

 This visualization was implemented in MEL 

script, and for that reason is perhaps not the most 

efficient implementation method with respect to time. 

The log files that were produced during the induced 

hydraulic fracturing simulation were over two million  



Figure 10: Comparison between the CD++ results and the 3D visualization in Autodesk Maya 2011.  

The results on the left are the CD++ results, and the results on the right are screen-captures (not full renders) of 

the 3D visualization. This small resolution 10 x 10 grid was used to test the visualization script. 

 



Figure 11: Comparison between the CD++ results (left) and the 3D visualization in Autodesk Maya 2011 (right) 

of a higher resolution 30 x 30 model. In this case, the visualization images were rendered. 

 



lines long for a simulation space that is thirty cells by 

30 cells. Unsurprisingly, it took quite some time for 

the visualization script to go through each line of the 

log file and extract the relevant information. The final 

visualization takes approximately 20 minutes to run 

with that resolution of simulation. 

 

 For this reason, initial testing, debugging and 

development were done using a smaller 10 by 10 grid 

of cells and a shorter simulation time of only 10 

seconds. This simulation can be run in seconds.  

 

 The results of both visualizations are included in 

this paper. Figure 10 and 11 compare the 2D output of 

the CD++ plugin to the 3D output of the Autodesk 

Maya 2012 visualization. The higher resolution 

visualization looks slightly different because it was 

fully rendered. The lower resolution visualization was 

not rendered because it is simply being use to illustrate 

a smaller resolution test, and to demonstrate that 

different log files (from this hydraulic fracturing 

simulation) can be used to produce an equally accurate 

visualization in Autodesk Maya 2011. 

 

 As figures 10 and 11 demonstrate, the MEL script 

effectively and accurately takes the values from the 

log file and visualizes this data in a new way. Second 

by second, our visualization matches the CD++ 

results. 

 

 For the final renders of the higher dimension 

simulation visualization, additional lights were added 

to the scene for a more pleasing visual effect. The full 

video is available for download here: 

http://ug.csit.carleton.ca/~mleflar/fullSim_1.mp4  

 

6. CONCLUSIONS 

 All considered, this visualization of an induced 

hydraulic fracturing cell DEVS simulation works 

accurately. To conclude this paper we will touch on 

the issue of efficiency, as well as approaches that 

could be taken in the future to improve this 

visualization. Such approaches include: reading from a 

pallet file, controlling opacity of cells, implementing a 

GUI which enables users to customize the simulation 

visuals, animating textures, output media for the 

simulation, and taking full advantage of the three 

dimensional nature of Autodesk Maya 2011. 

Additionally, we will explore the controversy behind 

induced hydraulic fracturing and reflect on the 

importance of simulation technologies in 

environmental awareness. 

 

6.1. Efficiency 

 The most significant issue that this visualization 

has encountered is that reading the log file with MEL 

script can be slow for very long log files. The files that 

were received from Christopher Burt were over two 

million lines of code; text files too big to be sent via 

email. While the log files for the 10 by 10 cell grids 

took no time at all, the visualizations using 30 by 20 

cell grids took up to twenty minutes to implement.  

 

 One has to wonder at the length of some of these 

log files. Could the CD++ simulation be designed in 

such a way to influence the length of the log file? Is 

every change in the pressure relevant to the state of the 

cell, or could the state be changed solely when the 

pressure reaches specific thresholds? This approach 

might serve to minimize the length of the log files 

because the state would only change when significant 

change in pressure levels have occurred. However, this 

approach would then influence the calculations of the 

average fluid pressure of the neighbouring cells, and 

may be less realistic in the end result. 

 

 A second approach that could be taken to 

minimize this efficiency dilemma would be to read 

and parse the file using C++ which could then port 

over the simplified file into MEL to implement the 3D 

visualization based on this information. Or, one could 

simply create the entire visualization in C++ using 

Maya API instead of MEL script. While MEL script is 

higher level, better documented, and much faster to 

develop, Maya API would likely read the file more 

quickly. Unfortunately, documentation for Maya API 

is fairly limited, which is why a combination of both 

C++ and MEL script might be ideal for future 

visualization projects involving mammoth log files. 

 

6.2. Pal File 

 One way that this visualization might be improved 

in the future would be to allow users to also select the 

pallet (.pal) file from their CD++ simulation and use it 

to specify the colour scheme for their 3D visualization 

as well.  

 

 

http://ug.csit.carleton.ca/~mleflar/fullSim_1.mp4


Figure 12: Updated pseudo code to include implementation of a pallet file as well as a log file. 

 

 
 

 

 Pallet files are files that contain information about 

the colour assigned to different ranges of state values. 

These files can be read and parsed in similar ways to 

the log files, except that the colour values in the pallet 

file are in RGB (red blue green) 255 format, while 

colours for Maya materials are out of 1, so this 

conversion would have to be taken into consideration 

when implementing this feature. The new MEL script 

pipeline would look something like the flow chart 

illustrated in figure 12. 

 

6.3. Opacity 

 Another interesting way that the induced hydraulic 

cell DEVS simulation could be visualized would be to 

link the opacity of the polygonal cube to the pressure 

value of the cell. This would create an interesting tree 

like structure that symbolizes the areas of high and low 

pressure instead of trying to use colours to represent 

the shift from rock to fracture. 

 

6.4. Customizability GUI 

 An alternative to using a pallet file to give users 

the ability to customize the visualization would be to 

extend the graphical user interface to enable users to 

control the colours, opacity, textures, etc., directly in 

the visualization interface.  

 

6.5. Animating textures 

 During the development of this visualization, the 

possibility of using layered textures instead of simply 

changing the colour of the material was explored. A 

layered texture is a material that can have more than 

one texture applied to it, and the opacity of each 

texture could then be toggled to control which one was 

most visible at a specific instant. However, the issue 

that was encountered was that opacity of each texture 

could not be key-framed in the typical way, which 

made it difficult to control quickly using MEL script.  

 

 With layered textures (and layered Shaders, which 

are a similar concept but slightly different 

implementation) one cannot key-frame the opacity of 

individual textures that make up the layers, however 

one can connect the opacity of that texture layer to the 

attribute of another object using Set Driven Keys. One 

can then key-frame the attribute that they opacity of 

the texture layer has been connected to. This was not 

pursued initially because the process became very 

roundabout, but in hindsight could perhaps be refined 

with time if an appropriate attribute is selected as the 

driven key. 

 

 Another issue that becomes present using textures 

instead of simply using materials is that the polygonal 

mesh would have to be UV mapped in order for the 

textures not to look stretched and distorted. UV 

mapping essentially defines the relationship between 

the 3D object and the 2D texture, usually by 

“unwrapping” the 3D object. It is a fairly simple 

process to UV map a shape using automatic mapping, 



but automatic mapping is not always flawless, so other 

approaches to programmatically UV mapping the 

meshes would also have to be explored. 

 

6.6. Output Media 

 This section of the conclusion is more abstract and 

contemplative, but with the growing popularity of 3D 

output devices (such as 3D TVs and the technology 

behind 3DSs which does not involve using 3D 

glasses), it might be very interesting pursue taking 

advantage of 3D output medial as well as 3D 

visualization software when it comes to moving 

simulations from 2D to 3D. 

 

6.7. Three Dimensions 

 It was briefly discussed with Christopher Burt and 

Sergio Zlotnik that the simulation be designed in 3D 

instead of simply in 2D. However, it was decided that 

the simulation rules should be refined and tested in 

more depth in 2D before a more extensive 3D 

simulation could be developed. Although the Autodesk 

Maya 2001 visualization is in 3D space, it is simply a 

3D representation of a 2D model. It would better 

harness Maya’s visualization capabilities if the 

simulation was in three dimensions instead of two as 

well.  

 

 In light of this, if a 3D model is developed in the 

future by Professor Zlotnik and his team, this 3D 

visualization could be modified to support a 3D 

simulation, and take the visualization of induced 

hydraulic fracturing to the next level. 

 

6.8. Controversy 

It is impossible to discuss induced hydraulic 

fracturing at length without briefly touching upon the 

controversy that “fracking” inspires. Although 

proponents of induced hydraulic fracturing argue for 

the benefits of natural gas over more conventional 

energy sources like coal and oil, and the economic 

advantages of this method of extraction, there are a 

few areas (as large as France) that have banned 

hydraulic fracturing [9].  

 

The controversy with fracking revolves primarily 

around four main issues: water contamination, leaked 

methane, a market influence that could have a negative 

effect on climate change, and earthquakes. 

 

When hydraulic fracturing is induced, not all of 

the fluid that is injected into the ground is always 

recovered. Sometimes the hydraulic fracturing fluid, 

which can contain unfriendly chemicals, leaches into 

the water table which can contaminate the local 

environment [10]. This would likely be the reason that 

hydraulic fracturing was banned from New York State 

in the Hudson watershed, on the logic that New York 

City’s drinking water supply is more important than 

natural gas they can import from elsewhere. 

 

Another concern expressed about induced 

hydraulic fracturing is that poor controls on operations 

can lead to the leaking of methane, a notorious 

greenhouse gas [11, 12]. Protections are being put into 

place to monitor this occurrence, but legislation only 

takes effect in the United States in 2015. 

 

Advocated against induced hydraulic fracturing 

are also concerned that a more cost-effective and 

accessible energy source (natural gas) may lead to a 

higher demand and consumption, minimizing the 

benefits of cleaner burning fuel over coal in the eyes 

of the economy. These advocates believe that induced 

hydraulic fracturing has the possibility of crowding out 

renewable energy sources on the market, leading to an 

overall negative influence on climate change [13]. 

 

In addition to this, there is also some evidence that 

induced hydraulic fracturing might cause small 

earthquakes, which can potentially trigger larger 

earthquakes [10, 14]. 

 

Despite these arguments against induced hydraulic 

fracturing, there is still a great deal of optimism in the 

industry. The IEA (International Energy Agency) has 

offered a report on how to make induced hydraulic 

fracturing more environmentally friendly and socially 

acceptable endeavor (available for download here: 

http://www.worldenergyoutlook.org/goldenrules/#d.en

.27023). In addition to this, many of the issues touched 

upon here could be mitigated by better monitoring and 

better understanding the process of induced hydraulic 

fracturing. If technicians could predict more accurately 

where the fluid will congregate, contamination and 

loss of fluid could be better controlled. This 

http://www.worldenergyoutlook.org/goldenrules/#d.en.27023
http://www.worldenergyoutlook.org/goldenrules/#d.en.27023


emphasizes the importance of simulating induced 

hydraulic fracturing for a more environmentally 

conscious and more effective hydraulic fracturing 

process. 
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