
Visualization in Autodesk Maya 2012

Representing a Cell DEVS Simulation of a

Hydraulic Fracturing Model

Meagan Leflar

Carleton University

meagan_leflar@carleton.ca

Keywords: Discrete event simulation, DEVS,

environmental science, hydraulic fracturing, Cell

DEVS, simulation, model, Autodesk Maya 2012,

visualization, animated materials, polygons, polygonal

generation, mesh generation.

Abstract

 Induced hydraulic fracturing is a system employed

by the energy industry to extract natural gas or

petroleum from reservoir rocks. This process involves

the insertion of a wellbore into the ground which

injects high pressure fluid into the ground, causing

fractures in the rock to create a conduit for natural gas

and petroleum. Numerical simulations of induced

hydraulic fracturing have existed for some time. This

research explores the implementation of a 3D

visualization of simulation results from a cell DEVS

model of induced Hydraulic fracturing. This

visualization uses Autodesk Maya 2011 and MEL

script to accomplish this task. Further visualization

designs and possibilities are also explored.

1. INTRODUCTION

 This project has been undertaken as part of a

collaborative effort with Sergio Zlotnik, a fractures

expert from the Polytechnic University of Catalonia in

Barcelona. Under the tutelage of Prof Gabriel A.

Wainer, Professor of Systems and Computer

Engineering at Carleton University, Christopher Burt

and Meagan Leflar worked together to implement and

visualize Zlotnik’s theoretical cell DEVS (Discrete

Event System Simulation) model representing the

behaviour occurring when one practices hydraulic

fracturing. Christopher Burt was responsible for the

implementation in CD++ (software which enables the

development of DEVS simulations with C++). The

output of Mr. Burt’s work became the input to the

visualization using Autodesk Maya 2011 which is

described in this paper.

 This visualization in Autodesk Maya uses MEL

script to read the simulation output from CD++ (a log

file), and uses this information to generate

appropriately coloured polygons to represent the cell

DEVS simulation in 3D space.

 However, before we discuss the exact nature of

this simulation further, let us explore the background

of hydraulic fracturing, the simulation model that

Sergio Zlotnik designed and that Christopher Burt

developed.

2. BACKGROUND

2.1. Hydraulic Fracturing

 Simply put, hydraulic fracturing is the production

of fractures in rock layers propagated by the

movement of a pressured fluid. This is a phenomenon

that can occur naturally in the environment, and has

been observed to at possibly result in the congregation

of gas or petroleum to reservoir rocks by using the

newly created fractures as a conduit [1]. Induced

hydraulic fracturing (also known as hydrofracturing or

less-formally as simply fracking) is a system that was

developed to create hydraulic fracturing manually in

order to collect petroleum or natural gasses such as

shale gas.

 Induced hydraulic fracturing is accomplished by

drilling a wellbore into reservoir rock formation, and

pumping fluids out of the wellbore at high enough

pressures to create fractures. The simulation model

that will be explored in this paper uses the scenario of

induced hydraulic fracturing.

mailto:meagan_leflar@carleton.ca

Figure 1: Illustration of the induced hydraulic

fracturing process, provided by Sergio Zlotnik. The

dotted line here is to represent the domain of the

model.

 Induced Hydraulic fracturing is widely used, and

has been used for many years now [2], and thus it is

important to understand the hydraulic fracturing

process in order to better judge where and how

fractures will occur.

2.2. Modeling Hydraulic Fracturing

As recently as 2010, it has been discussed that

the petroleum industry's lack of understanding of

physical properties and the physics controlling

production from many important resources plays limits

its ability to model and forecast with confidence

production and reserves from these resources in many

cases [3]. While measurement technology and

modeling accuracy is improving, the industry is often

forced to resort to empirical methods that lack the

usual validation required for high confidence in

results.

Dr. Zlotnik also understands that many numerical

simulations of hydraulic fracturing have been done

pertaining to plane stress [5], plane strain [6], or radial

crack [7]. However, the wealth of complex models

does not appear to be filling field-work and industry

needs. “Petroleum engineers, at a loss to determine

which model might best describe their application,

typically pick the simplest they can find to give them

some kind of number.” [4]

 The model proposed by Sergio Zlotnik is a simple

framework for simulating induced hydraulic fracturing

using cell DEVS which could be extended to include

more complex calculations and more advanced

consideration could be integrated at a later time.

2.3. Cell DEVS

 The approach that was taken to the development of

this hydraulic fracturing simulation was that of a

simple cell DEVS model. DEVS stands for Discrete

Event Systems Specifications. DEVS models work as

a hierarchy of links connecting atomic models (the

smallest component of a DEVS simulation) via inputs

and outputs.

 Cell DEVS are slightly more specialized in that

the simulation exists as a grid of cells each with a state

denoting an identifying float value that the cell has

which is relevant to the simulation. In these

simulations, the cell’s state is often expressed as a

color using a pallet file which the developer writes to

dictate which float values pertain to which colours.

 Each cell has a specific set of relevant

neighbouring cells. The cell’s state is then determined

at specific times using a set of rules that govern the

cell’s behaviour. These rules are often written based

off of the states of the cell’s neighbouring cells.

 Other relevant information about cell DEVS

models include the dimensions, described always as

rows by columns, and that cell DEVS systems can be

layered as well as connected with standard DEVS

models. In the case of this induced hydraulic fracturing

simulation, however, the cell DEVS model is only one

layer.

3. THE MODEL

 Both Dr. Zlotnik’s conceptual model and

Christopher Burt’s implemented model will be

discussed in this section.

3.1. Dr. Zlotnik’s Model

 In his exploration of the fracturing process, Dr.

Zlotnik suggests that permeability and porosity of the

rock play an important role in how the fluids will

move within the rock layers, and how the rock layers

will fracture. This would also, therefore, be relevant to

the extraction of natural resources using hydraulic

fracturing.

 The permeability of a rock describes how easily a

fluid can flow through it. The porosity of the rock

represents how much fluid a particular section of rock

can contain, meaning there would be holes in the rock

to be filled by the fluid. However, if these holes or

openings are not interconnected within the rock,

though it may be porous, it would not be permeable.

Hydraulic fracturing can then be used to create

conduits between pores and can therefore increase

permeability and lead to better results.

 Dr. Zlotnik’s model aims to remain simple in its

design and implementation, and thus will assume

certain idealized parameters:

 The rock is uniform in all orientations.

 The rock is homogenous.

 The rock obeys Hooke’s law of linear elastic

behaviour.

 There is an impermeable borehole wall that is

unaffected by the wellbore pressure on the left

side of the simulation grid.

In this model, each cell represents a portion of space

that can be rock, fracture, or fluid. This simulation will

begin with the injection of fluid through a cell midway

up the left side of the cell DEVS grid. This cell will

represent the wellbore in induced hydraulic fracturing,

and the spread of pressure will begin there.

 The first part of this model describes the

movement of fluid along the fractures that are created

or that exist in the rock. To calculate this, only the

distribution of pressure will be used. The nature of

each cell is calculated based on the averaging of the

pressure of neighbouring cells. This model enables the

increase of pressure injection (fluid from the wellbore)

to spread along neighbours that are fractures.

 The second part of this model deals with when the

fractures are created. Fractures occur when the fluid

pressure within the rock exceeds the smallest principal

stress plus the strength of the rock. This is expressed in

the following equation, supplied by Dr. Zlotnik:

pmax = 2θ – pf + T0

In this equation, θ is the smallest principle stress, pf is

the fluid pressure, and T0 is the tensile strength of the

rock. If the pressure of one of the rock cell’s

neighbours reaches the maximum pressure, the rock

will become a crack. The new crack is then filled by

the fluid from its neighbour.

 Rock cells should have their own pore fluid

pressure and tensile strength properties. These

properties will be distributed according to the table

below. Please note, pore fluid pressure and stress are

dependent on the depth of the cell in question.

Table 1: Table supplied by Sergio Zlotnik describing the properties of each cell.

3.2. Mr. Burt’s Implementation

 Using the description supplied by Sergio Zlotnik,

Christopher Burt developed a cell DEVS simulation

implementation using CD++, an Eclipse plugin that

uses C++ to implement DEVS models.

 Though the design of a 3D simulation was briefly

discussed, it was decided that simply refining a more

effective 2D simulation would be more beneficial at

this time. However, by developing a pipeline for

visualizing the simulation in 3D opens the door for

future development and visualization in 3D.

 Screen captures of the simulation that Christopher

Burt implemented can be seen in figure 2.

 His final simulation results were then handed off

to us as .log file which contains a record of everything

that occurred during the simulation.

4. METHOD

4.1. Methodology

 The approach that we decided to take to visualize

this simulation involves the use of polygonal cubes

and the manipulation of their materials. This was

decided because the cubic nature of the polygonal

meshes implemented most directly reflected the nature

of the simulation data, which is a grid using four edges

to determine the neighbouring cells. Polygons were

selected because they are the most intuitive and visual

representation in 3D space to symbolize solid rocks.

 Different approaches were considered initially,

however. The first option that was explored was fluid

dynamics. Fluids in Maya came to mind because of the

fluid that is injected into the rocks as part of hydraulic

fracturing. Unfortunately, simulating the desired fluid

behaviour is already covered as part of the cell DEVS

model, and we felt it was important to retain the

cellular nature of the simulation to be visualized.

Particles were considered, and dismissed for similar

reasons.

 Locators (point information) were also considered

as an option for an ever simpler visualization, however

they are visually uninteresting and discovering a way

to communicate states using simply point information

was unintuitive.

Figure 2: 2D simulation results from Chris Burt.

The focus of this visualization was to acquire the

information from the CD++ simulation and translate it

into Autodesk Maya 2012. Once this information has

been properly interpreted, changing details of the

visualization is fairly simple.

4.2. Visualization Pipeline

 This visualization takes the output from the 2D

simulation created in CD++, extracts the relevant

information, and uses it to create a visualization in

Autodesk Maya 2010 using MEL script. The figure

below illustrates this simple pipeline.

Figure 3: Visualization Pipeline

 The output from the CD++ simulation that

Christopher Burt ran is parsed into a log file, with the

extension .log. This file contains all of the events that

occur during the DEVS simulation. This file will be

read and analyzed using MEL Script in a .mel file. The

pseudo code for this process will be discussed in more

depth.

 The visualization, though generated with the MEL

Script file, will be outputted into a Maya Binary file

(.mb). This Maya Binary file can then be saved by the

user, or rendered manually. This simulation includes

generation of a Maya scene (including animation and

polygonal mesh generation) but it does not include

rendering the animated scene. The animation can

however be viewed by the user immediately after the

MEL Script completes running. This can be done in

the Maya window using the timeline to toggle the

frames.

4.3. Script Overview

 The pseudo-code for this visualization can be

summarized nicely using the flow chart in figure 4.

 The first step is to create the graphical user

interface (GUI), which will give the user the ability to

control the dimensions of the simulation and to select

the log file of the simulation that they wish to

visualize.

 Selecting the “Run Simulation” button the

graphical user interface will then prompt the script to

check if the user has selected a log file. If no log file

has been selected, then the user is prompted to enter a

log file and the simulation is aborted. If the user has in

fact selected a log file, then the simulation will

continue.

 The next step is to set up the scene based on the

dimension parameters that the user has inputted, in this

case drawing cubes to the screen.

 Once the scene has been set up, the information

for each step of the simulation is then extracted from

the user-selected log file. This information is then used

to update the scene. For each update, a key-frame is

added to create the animation with the appropriate

timing. Key-frames will be discussed in more depth in

section 4.7.

Figure 4: Pseudo code flow chart

4.4. Graphical User Interface

 When the user first runs the visualization, they

will be greeted with this graphical user interface

window.

Figure 5: Graphical User Interface

 This window was fairly simple to implement using

MEL Scripts GUI commands. The data from the input

parameters (dimension and log file) are acquired in the

simulation function, which is called when the user

presses the “Run Simulation” button.

 The user selects the “Browse” button to select a

file. The pseudo code for this is that a browse file

function is called, which opens a separate window (see

Figure 6) which enables users to browse for files. The

code also filters the available files to .log files only.

Figure 6: File browser window

The style of window that was implemented using the

MEL script is Maya specific and independent of

different Operating Systems (OS) such as Mac,

Windows or Linux.

4.5. Simulation (Main) Function

 When the user selects the “Run Simulation” button

the simulation function is called. This is essentially the

main function of the simulation. This function creates

a new scene, to ensure a clean slate for the rest of the

simulation. It then extracts the file path to the user-

selected log file (as a string).

 The other essential function of this main

simulation function is to check if the user has in fact

selected a valid log file. If no valid log file has been

selected, then a confirmation dialogue box is created,

prompting the user to select a log file before

continuing. On the other hand, if a valid log file has in

fact been selected, then the set up function is then

called, followed by the function which reads the

relevant file and uses the information extracted from

this file to implement the simulation visualization.

These functions will be described in more depth in the

following sections.

4.6. Set Up

 The set up function uses the user-specified

dimensions of the cell space to create a 3D grid of

polygonal cubes.

 The two important factors of the implementation

of this function are the materials applied to each cube

and the naming convention used.

4.6.1. The Materials

 In Autodesk Maya 2011, materials are nodes that

are applied to Maya meshes (such as the cubes used in

this simulation) to make them appear to be made out

of a certain material. For example, materials can be

different colours, and have different specular levels.

 In this visualization, each cube represents a cell in

the induced hydraulic fracturing simulation model.

Cells in the simulation model (and therefore cubes in

the visualization) will not share the same state at the

same time. Some cells will have states pertaining to

being a rock, others will have states pertaining to

being a fracture, and others even will have a state

value pertaining to being filled with the fracturing

fluid.

 Because of the way Maya materials are designed,

a different material must be applied to each cube in

order to be manipulated independently. Otherwise, as

soon as one instance of the material on one cube is

changed, that same material on every other cell would

also change.

4.6.1. The Naming Convention

 In order to be able to access the material of each

cube in a logical manner, a specific naming convention

was designed and implemented. This naming

convention mirrors the row by column layout of the

cell DEVS model. This naming convention is

illustrated in a small five by five matrix in figure 6.

Aligning the names of the meshes and the materials

with the naming convention in the cell DEVS model

allows for a smoother transition between simulation

and visualization.

 Materials are therefore called “mat5_0” where

“mat” designates that this object is a material, 5

designates that it has been applied to a cell in row 5

(the sixth row) and column 0 (the first column).

 The associated polygonal mesh of the cube is

therefore called “c5_0”. The “c” designates that this

objects is a cube, and the “5” and “0” tell the script

that it is in row 5 and column 0.

This naming convention is essential to the pseudo code

described in section 4.8.

Figure 6: Illustration of naming convention used for

the induced hydraulic fracturing visualization in Maya,

based on the row/column naming convention in CD++.

Figure 7: Illustration of the grid of cubes that are generated programmatically

 using MEL script in the set up function.

Figure 8: Visual break down of information extracted from log file.

4.7. Extracting Relevant Information

 In this function, the log file will be opened and

read. The first step to understanding this section is to

understand the anatomy of the log file produced by

CD++.

 Although there is much more information present

in the log file than simply the out messages, the out

messages are the only messages relevant to visualizing

a simulation in this case. These output messages are

sent when the cell changes states and they are

preceded with “Mensaje Y”. Therefore, the first step is

to filter out all of the messages that do not start with

“Mensaje Y”.

 The pseudo code for this is as follows:

 Acquire the first line from the file

 Use regular expressions (a means of matching

strings of text) to check if the message type is

“Y”.

 If so strip relevant information from this line.

 Move to next line, until the end of the file has

been reached.

 An example of a standard output message, and the

relevant material that it contains, is illustrated above in

figure 8. The relevant information here is time, cell ID,

and state.

4.7.1. Time

 Time is parsed from the output message string

using tokenization (dividing a string by a certain

character, in this case slash and colon characters).

Hour, minute, second, and millisecond values where

acquired and converted to floats.

 However, the time in hours, minutes, seconds, or

milliseconds are not relevant. The relevant value here

is the frame number at which the change occurs.

 Despite recent theaters upgrading to 48 frames per

second for a larger-than-life immersive animation

experience (due to the theatrical release of The Hobbit:

The Unexpected Journey in December of 2012) the

standard video frame rate is 24 frames per second [8].

Autodesk Maya’s default frame rate is also 24 frames

per second, but is customizable. For the purpose of this

visualization, the assumption was made that this

visualization would run at 24 frames per second, and

care was taken during the exporting process that this

remained accurate.

 Taking this into consideration, the hour, minute,

second, and millisecond values were then converted

into frames by first converting hours, minutes and

milliseconds into seconds, and then multiplying the

total number of seconds by the frame rate (24 fps).

seconds = 24 / frame

 This frame number will later be used to set key-

frames for when the state of a cell changed.

4.7.2. Cell ID

 The identification of each cell is formatted row by

column, as described previously in section 4.6.1. This

information is extracted from the log file output lines

using a combination of tokenization techniques and

regular expressions. This script returns two values, the

row identification and the column identification. These

parameters will be used to locate the correct cube or

material to edit based on the change of state.

4.7.3. The State

 Similar to the time and cell ID parameters, the cell

state was acquired from the output messages in the log

file by using a tokenization method.

 When it comes down to it, the state of the cell is

the most important parameter of this entire

visualization. The value that the state represents here is

the pressure of the cell in question. This value was

used in the initial simulation to calculate whether or

not neighbouring cells would cause the current cell to

“fail” and become a fracture, or become filled with

fluid.

 In the case of this visualization, the cell state is a

value which will determine in what way that cube

(pertaining to the same cell ID) will be visualized.

This will be discussed in more depth in the following

section.

4.8. Update Scene

 This section is likely the aspect with the most

options. This is when the real visualization occurs. In

what way should we visualize the information that has

been extracted from the simulation log file? In this

case, we are manipulating the materials places upon

the polygonal cubes that were generated

programmatically in the set up function.

4.8.1. Selecting the colour

 Although it might have been interesting to also

play with the opacity of each cell based on the

pressure (and this would not be very hard to

implement in the future) to create a tree-like structure,

this visualization functions predominantly by changing

the colour of the material applied to the relevant

meshes. Figure 9 below illustrates the colours of

different states.

 The colour of cube 1 represents state values

between zero and one. Cubes with low fluid pressure

values such as these symbolize rocks, and are therefore

the dark, solid brown colour illustrated in figure 9.

 The slightly lighter brown of cube 2 in figure 9

represents fluid pressures between one and ten

thousand Pascals. This symbolizes rock that is under a

little bit of pressure.

 The grey cube illustrated as cube 3 in figure 9 is

the colour that cells take when their fluid pressure rises

between ten thousand and one million Pascals. This

symbolizes a fracture, but is not strong enough to

break neighbouring rock.

 The dark grey cube, cube 4, in figure 9 symbolizes

a full-fledged fracture. The pressure in this cell is

between one million and one hundred million Pascals.

Figure 9: Illustration of different states in the induced hydraulic fracturing visualization.

 Finally, the fifth cube that is blue in figure 9

represents cells with a pressure of one hundred million

and higher. This is illustrated as a fracture filled with

water, and at a base depth of three hundred meters that

is nearly strong enough to break neighbouring rock.

 The colours here were changed slightly from the

original colours in Christopher Burt’s simulation,

because the earthy colours appeared more appropriate

to represent the ground in the context of this

visualization.

 The colour to use was determined

programmatically using an if statement and separating

the states into relevant intervals. The colours

themselves are hardcoded in to the visualization at this

time. A possible future solution to this would be to

create a similar reader for pallet files, which could

then be manipulated to create a wider variety of

results. However, though Maya materials do use RGB

(red, blue green) values as their colour input, they are

out of 1 instead of 255, so this conversion would also

have to occur. This, and other possibilities, will be

discussed in section 6.

4.8.2. Key framing

 In order to create an animation in practically any

animation software, including Autodesk Maya 2011,

one must use key-frames. Key-frames are frames the

define movement or change in an animation. Usually

they mark the beginning or end of a smooth transition.

For example, to animate a circle moving from point A

to point B in 10 seconds, one would set a key-frame at

0 seconds with the circle at point A and a key-frame at

10 seconds with the circle at point B.

 It then follows that anything that one might use to

visualize a simulation in Autodesk Maya 2011 would

have to possible to key-frame. Fortunately, most

attributes in Maya can be key-framed. Unfortunately,

the opacity of the textures in Maya cannot be directly

key-framed, they must instead use Set Driven Keys.

Essentially, this means that the value can be controlled

by another object’s parameter, but it cannot be keyed

(meaning a key frame cannot be set on it) directly.

Because creating a Set Driven Key for each of many

cubes would be unnecessarily messy and complex, we

decided to work directly with the colours of materials

instead.

 Controlling the opacity of textures could have

been appealing as an option because, if one used a

layered texture in Maya (a material with several

textures applied upon it), one could use customized

textures of water and ground as part of the

visualization instead of a flat colour to represent the

state. This option could still be explored further at a

later date, but would also involve programmatic UV

mapping of the polygonal meshes to which the

textures will be applied. In simple terms, UV mapping

determines the orientation and scale of the texture

being applied to each face of the polygon.

 Materials and textures sound like similar objects,

but there are slight differences. Textures are applied to

materials (specifically linking to and overriding the

colour of materials) and materials are applied directly

to the meshes in the scene. The attribute that we

control in the induced hydraulic fracturing

visualization MEL script is the colour attribute of a

carefully labeled material.

 The pseudo code for each state update is as

follows:

 Go to frame (calculated in section 4.7.1)

 Set colour attribute of the material with the

appropriate row and column identification to

the colour specified by the state value.

 Set a key-frame on that material’s colour

attribute.

Once all the key-frames are in place, the visualization

has completed and the user can view the visualization

by clicking and dragging their cursor along the

timeline at the bottom of the Autodesk Maya 2011

window. To control the length of the timeline

displayed, simply change the first value below and to

the right of the timeline from 24.00 to a higher number

(five thousand for example).

5. VISUALIZATION RESULTS

 This visualization was implemented in MEL

script, and for that reason is perhaps not the most

efficient implementation method with respect to time.

The log files that were produced during the induced

hydraulic fracturing simulation were over two million

Figure 10: Comparison between the CD++ results and the 3D visualization in Autodesk Maya 2011.

The results on the left are the CD++ results, and the results on the right are screen-captures (not full renders) of

the 3D visualization. This small resolution 10 x 10 grid was used to test the visualization script.

Figure 11: Comparison between the CD++ results (left) and the 3D visualization in Autodesk Maya 2011 (right)

of a higher resolution 30 x 30 model. In this case, the visualization images were rendered.

lines long for a simulation space that is thirty cells by

30 cells. Unsurprisingly, it took quite some time for

the visualization script to go through each line of the

log file and extract the relevant information. The final

visualization takes approximately 20 minutes to run

with that resolution of simulation.

 For this reason, initial testing, debugging and

development were done using a smaller 10 by 10 grid

of cells and a shorter simulation time of only 10

seconds. This simulation can be run in seconds.

 The results of both visualizations are included in

this paper. Figure 10 and 11 compare the 2D output of

the CD++ plugin to the 3D output of the Autodesk

Maya 2012 visualization. The higher resolution

visualization looks slightly different because it was

fully rendered. The lower resolution visualization was

not rendered because it is simply being use to illustrate

a smaller resolution test, and to demonstrate that

different log files (from this hydraulic fracturing

simulation) can be used to produce an equally accurate

visualization in Autodesk Maya 2011.

 As figures 10 and 11 demonstrate, the MEL script

effectively and accurately takes the values from the

log file and visualizes this data in a new way. Second

by second, our visualization matches the CD++

results.

 For the final renders of the higher dimension

simulation visualization, additional lights were added

to the scene for a more pleasing visual effect. The full

video is available for download here:

http://ug.csit.carleton.ca/~mleflar/fullSim_1.mp4

6. CONCLUSIONS

 All considered, this visualization of an induced

hydraulic fracturing cell DEVS simulation works

accurately. To conclude this paper we will touch on

the issue of efficiency, as well as approaches that

could be taken in the future to improve this

visualization. Such approaches include: reading from a

pallet file, controlling opacity of cells, implementing a

GUI which enables users to customize the simulation

visuals, animating textures, output media for the

simulation, and taking full advantage of the three

dimensional nature of Autodesk Maya 2011.

Additionally, we will explore the controversy behind

induced hydraulic fracturing and reflect on the

importance of simulation technologies in

environmental awareness.

6.1. Efficiency

 The most significant issue that this visualization

has encountered is that reading the log file with MEL

script can be slow for very long log files. The files that

were received from Christopher Burt were over two

million lines of code; text files too big to be sent via

email. While the log files for the 10 by 10 cell grids

took no time at all, the visualizations using 30 by 20

cell grids took up to twenty minutes to implement.

 One has to wonder at the length of some of these

log files. Could the CD++ simulation be designed in

such a way to influence the length of the log file? Is

every change in the pressure relevant to the state of the

cell, or could the state be changed solely when the

pressure reaches specific thresholds? This approach

might serve to minimize the length of the log files

because the state would only change when significant

change in pressure levels have occurred. However, this

approach would then influence the calculations of the

average fluid pressure of the neighbouring cells, and

may be less realistic in the end result.

 A second approach that could be taken to

minimize this efficiency dilemma would be to read

and parse the file using C++ which could then port

over the simplified file into MEL to implement the 3D

visualization based on this information. Or, one could

simply create the entire visualization in C++ using

Maya API instead of MEL script. While MEL script is

higher level, better documented, and much faster to

develop, Maya API would likely read the file more

quickly. Unfortunately, documentation for Maya API

is fairly limited, which is why a combination of both

C++ and MEL script might be ideal for future

visualization projects involving mammoth log files.

6.2. Pal File

 One way that this visualization might be improved

in the future would be to allow users to also select the

pallet (.pal) file from their CD++ simulation and use it

to specify the colour scheme for their 3D visualization

as well.

http://ug.csit.carleton.ca/~mleflar/fullSim_1.mp4

Figure 12: Updated pseudo code to include implementation of a pallet file as well as a log file.

 Pallet files are files that contain information about

the colour assigned to different ranges of state values.

These files can be read and parsed in similar ways to

the log files, except that the colour values in the pallet

file are in RGB (red blue green) 255 format, while

colours for Maya materials are out of 1, so this

conversion would have to be taken into consideration

when implementing this feature. The new MEL script

pipeline would look something like the flow chart

illustrated in figure 12.

6.3. Opacity

 Another interesting way that the induced hydraulic

cell DEVS simulation could be visualized would be to

link the opacity of the polygonal cube to the pressure

value of the cell. This would create an interesting tree

like structure that symbolizes the areas of high and low

pressure instead of trying to use colours to represent

the shift from rock to fracture.

6.4. Customizability GUI

 An alternative to using a pallet file to give users

the ability to customize the visualization would be to

extend the graphical user interface to enable users to

control the colours, opacity, textures, etc., directly in

the visualization interface.

6.5. Animating textures

 During the development of this visualization, the

possibility of using layered textures instead of simply

changing the colour of the material was explored. A

layered texture is a material that can have more than

one texture applied to it, and the opacity of each

texture could then be toggled to control which one was

most visible at a specific instant. However, the issue

that was encountered was that opacity of each texture

could not be key-framed in the typical way, which

made it difficult to control quickly using MEL script.

 With layered textures (and layered Shaders, which

are a similar concept but slightly different

implementation) one cannot key-frame the opacity of

individual textures that make up the layers, however

one can connect the opacity of that texture layer to the

attribute of another object using Set Driven Keys. One

can then key-frame the attribute that they opacity of

the texture layer has been connected to. This was not

pursued initially because the process became very

roundabout, but in hindsight could perhaps be refined

with time if an appropriate attribute is selected as the

driven key.

 Another issue that becomes present using textures

instead of simply using materials is that the polygonal

mesh would have to be UV mapped in order for the

textures not to look stretched and distorted. UV

mapping essentially defines the relationship between

the 3D object and the 2D texture, usually by

“unwrapping” the 3D object. It is a fairly simple

process to UV map a shape using automatic mapping,

but automatic mapping is not always flawless, so other

approaches to programmatically UV mapping the

meshes would also have to be explored.

6.6. Output Media

 This section of the conclusion is more abstract and

contemplative, but with the growing popularity of 3D

output devices (such as 3D TVs and the technology

behind 3DSs which does not involve using 3D

glasses), it might be very interesting pursue taking

advantage of 3D output medial as well as 3D

visualization software when it comes to moving

simulations from 2D to 3D.

6.7. Three Dimensions

 It was briefly discussed with Christopher Burt and

Sergio Zlotnik that the simulation be designed in 3D

instead of simply in 2D. However, it was decided that

the simulation rules should be refined and tested in

more depth in 2D before a more extensive 3D

simulation could be developed. Although the Autodesk

Maya 2001 visualization is in 3D space, it is simply a

3D representation of a 2D model. It would better

harness Maya’s visualization capabilities if the

simulation was in three dimensions instead of two as

well.

 In light of this, if a 3D model is developed in the

future by Professor Zlotnik and his team, this 3D

visualization could be modified to support a 3D

simulation, and take the visualization of induced

hydraulic fracturing to the next level.

6.8. Controversy

It is impossible to discuss induced hydraulic

fracturing at length without briefly touching upon the

controversy that “fracking” inspires. Although

proponents of induced hydraulic fracturing argue for

the benefits of natural gas over more conventional

energy sources like coal and oil, and the economic

advantages of this method of extraction, there are a

few areas (as large as France) that have banned

hydraulic fracturing [9].

The controversy with fracking revolves primarily

around four main issues: water contamination, leaked

methane, a market influence that could have a negative

effect on climate change, and earthquakes.

When hydraulic fracturing is induced, not all of

the fluid that is injected into the ground is always

recovered. Sometimes the hydraulic fracturing fluid,

which can contain unfriendly chemicals, leaches into

the water table which can contaminate the local

environment [10]. This would likely be the reason that

hydraulic fracturing was banned from New York State

in the Hudson watershed, on the logic that New York

City’s drinking water supply is more important than

natural gas they can import from elsewhere.

Another concern expressed about induced

hydraulic fracturing is that poor controls on operations

can lead to the leaking of methane, a notorious

greenhouse gas [11, 12]. Protections are being put into

place to monitor this occurrence, but legislation only

takes effect in the United States in 2015.

Advocated against induced hydraulic fracturing

are also concerned that a more cost-effective and

accessible energy source (natural gas) may lead to a

higher demand and consumption, minimizing the

benefits of cleaner burning fuel over coal in the eyes

of the economy. These advocates believe that induced

hydraulic fracturing has the possibility of crowding out

renewable energy sources on the market, leading to an

overall negative influence on climate change [13].

In addition to this, there is also some evidence that

induced hydraulic fracturing might cause small

earthquakes, which can potentially trigger larger

earthquakes [10, 14].

Despite these arguments against induced hydraulic

fracturing, there is still a great deal of optimism in the

industry. The IEA (International Energy Agency) has

offered a report on how to make induced hydraulic

fracturing more environmentally friendly and socially

acceptable endeavor (available for download here:

http://www.worldenergyoutlook.org/goldenrules/#d.en

.27023). In addition to this, many of the issues touched

upon here could be mitigated by better monitoring and

better understanding the process of induced hydraulic

fracturing. If technicians could predict more accurately

where the fluid will congregate, contamination and

loss of fluid could be better controlled. This

http://www.worldenergyoutlook.org/goldenrules/#d.en.27023
http://www.worldenergyoutlook.org/goldenrules/#d.en.27023

emphasizes the importance of simulating induced

hydraulic fracturing for a more environmentally

conscious and more effective hydraulic fracturing

process.

Reference List

1. Spence, D.A., Turcotte, D.L., Magma-driven

propagation crack. Journal of Geophysical

Research 90 (1985), 575-580.

2. Fjaer, E., Holt, R.M., Horsrud, P., Raaen, A.M.,

Risnes, R. Petroleum related rock mechanics.

Elsevier series Development in Petroleum Science,

vol 53, 2
nd

 edition (2008).

3. Duong, A.N., Phillips, C. Rate-Decline Analysis for

Fracture-Dominated Shale Reservoirs. SPE

Reservoir Evaluation and Engineering 14, 3

(2011), 377-387.

4. Cleary, M.P., Barr, D.T., Willis, R.M.

Enhancement of Real-Time Hydraulic Fracturing

Models With Full 3-D Simulation. SPE Gas

Technology Symposium, (1988).

5. Nordren, R.P., propagation of a Vertical Hydraulic

Fracture. Society of Petroleum Engineers (1972),

306-314.

6. Khristianovic, S.A., Zheltov, Y.P. Formation of

Vertical Fractures by Means of Highly Viscous

Liquid. Proceedings of the fourth world petroleum

congress (1955), 579-586.

7. Sneddon, I.N. The Distribution of Stress in the

Neighbourhood of a Crack in an Elastic Solid.

Proceedings of the Royal Society A (1946), 229-

260.

8. Sangani, K. The Final Reel. Engineering &

Technology 7, 8 (2012), 32-35.

9. Wikipedia. “Hydraulic Fracturing by Country,” last

modified December 4, 2012,

http://en.wikipedia.org/wiki/hydraulic_fracturing_b

y_country.

10.Garthwaite, J. The Science and Technology Behind

the Natural Gas Boom. Grist (2012).

11.Lehner, P., October 15, 2012, “ Fracking’s Dark

Side Gets Darker: The Problem of Methane

Waste,” Switchboard: Natural Resources Defense

Council Staff Blog,

http://switchboard.nrdc.org/blogs/plehner/frackings

_darker_side_gets_darke.html.

12.Gavin, April 16, 2011, “Fracking Methane,” Real

Climate: Climate science from climate scientists,

http:///www.realclimate.org/index.php/archives/201

1/04/fracking-methane/.

13. Drum, K., September 7, 2012, “Is Fracking Good

for the Environment?” Mother Jones,

http://www.motherjones.com/kevin-

drum/2012/09/fracking-good-environment.

14. Fischetti, M. Ohio Earthquake Likely Caused by

Fracking Wastewater. Scientific American (2012).

http://en.wikipedia.org/wiki/hydraulic_fracturing_by_country
http://en.wikipedia.org/wiki/hydraulic_fracturing_by_country
http://switchboard.nrdc.org/blogs/plehner/frackings_darker_side_gets_darke.html
http://switchboard.nrdc.org/blogs/plehner/frackings_darker_side_gets_darke.html
http://www.realclimate.org/index.php/archives/2011/04/fracking-methane/
http://www.realclimate.org/index.php/archives/2011/04/fracking-methane/
http://www.motherjones.com/kevin-drum/2012/09/fracking-good-environment
http://www.motherjones.com/kevin-drum/2012/09/fracking-good-environment

