
 1

Using DEVS Model to Identify and Control WIP in Manufacturing

Systems

Abdullah Alfaify
5894259

aalfa064@uottawa.ca

Mechanical Engineering, University of Ottawa,

75 Laurier Avenue East Ottawa ON Canada K1N 6N5

Abstract: Work-in-progress (WIP) is one of the most important issues in any manufacturing system. A Modeling and simulation

technique helps to identify the bottleneck and WIP volume at any stage of operation in the manufacturing system. This project

implements case study, booster cable, as an example of manufacturing system. CD++ toolkit is used in implementing booster-cable case

study. In addition, DEVS graph is created to visualize the implementation and study the workflow of production line of the booster-

cable case study. Moreover, after studying and analyzing the bottleneck and WIP results of the original booster cable implantation on

CD++Builder, some enhancements and suggestions are implemented. The result of comparison shows that the new enhancement of

booster cable gives more throughputs and lower WIP.

Index Terms— booster cable, Discrete Event System Specification (DEVS), modeling, simulation, Work-In-Progress (WIP)

I. INTRODUCTION

Manufacturing System is a set of machines,

transportation elements, computers, storage buffers,

people, and other items that are used together to transform

materials into something useful and portable. There are many

issues that should be considered when any manufacturing

system is built such as capacity or production rate, variability,

resource utilization, lead time, and others. One of the most

important issues in modern manufacturing systems is work-in-

progress (WIP) reduction. Many different techniques are used

to study a manufacturing system and identify bottleneck and

WIP volume at any stage of operation. However, modeling

and simulation have become one of the most popular

techniques employed to analyze complex manufacturing

systems especially from respect of time, cost, and risk.

Simulation has been used for capacity planning, bottlenecks

detection, and creating and testing manufacturing schedules

[1,2,3]. Within the manufacturing life cycle, simulation can be

applied at both the justification phase and the design phase of

manufacturing technology programs. However, it is at the

operational phase that simulation can potentially provide the

greatest insights [4]. While most of manufacturing systems

have states change at discrete intervals of time, discrete-event

simulation is an ideal methodology to study such systems.

Project Objectives

This project aims to use Discrete Event System

Specification (DEVS) formalism to design and simulate a

manufacturing system using CD++ toolkit to identify WIP

volumes at each stage of operation and suggest solutions to

minimize WIP, increase productivity, and eliminate

bottlenecks in the system. In CD++ builder code, self

descriptive code is written by choosing meaningful variable

names and some comments are added for illustration.

Moreover, DEVS Graphs created to visualize and animate the

model.

In the following section, background, there are brief

descriptions about WIP and DEVS formalism. After that,

model defined follows, then case study will be introduced

followed by its design and implementation, results and

analysis, issues and suggestions. Finally, there are future

work, conclusion, and references.

II. BACKGROUND

Work In Progress (WIP), in a very simple definition, means

the number of products that partial produced during

production at any process at any point of time. It is one of the

fundamental issues that should be considered when

manufacturing systems are built. Optimizing WIP is the one

of the main aims of many modern manufacturing systems

such as Lean Manufacturing System, Canban System and

other. Designers consider WIP as waste of materials and

resources. It affects utilizing floor space properly, and it has a

negative impact on the flexibility of manufacturing systems

due to change on demands.

A manufacturing system modeled using DEVS can be

represented by a hierarchy of atomic and coupled components.

The basic model of any DEVS is an atomic model which can

be connected to other atomic model(s), so they create a new

model called coupled model. An atomic model can be

describe as figure (2.1) illustrates, and its formal specification

is , where:

 X : external input event set

 Y : external output event set

 S : sequential state set

 int: internal transition function

 ext :external transition function

  : output function

 ta : time advance function

A

 2

 Figure (2.1): DEVS atomic model

Coupled model is a combination of atomic and/or coupled

models, and the formal specifications of the coupled model is

defined as

CM = < X, Y, D, {Md}, EIC, EOC, IC, select >, where

 X is the set of input events;

 Y is the set of output events;

 D is an index for the components of the coupled model,

and

 Md is a basic DEVS model (that is, an atomic or

coupled model);

 EIC is the set of External Input Couplings;

 EOC is the set of External Output Couplings;

 IC is the set of Input Couplings;

 Finally, select is the tiebreaking selector.

III. MODEL DEFINE

A. Structural Conceptual Model of Case Study

The case study was conducted by DEVS modeling and

simulation of manufacturing system using the structural

conceptual model at a company producing the booster cable

[5] with slight change and different assumptions. In this

project, one production line was studied which consists of

sequence of processes illustrated in figure (3.1), and average

processing time for each process shown in table (3.1).

Figure (3.1): Operations of producing booster cable

Process Processing

time (sec)

Peel Cable 8

Rivet Cable 8

Refine 6

Assemble Clip 17

Join Clip to Cable 21

Check 6

Package 34

Table (3.1): Processing time

The case study will be designed and implemented as DEVS

model using CD++ toolkit (modeling and simulation) as you

will see in section IV.

B. Petri Nets Model of the Case Study

Since the requirement of this project to be implemented

using CD++builder and DEVS graph we focus on it.

However, in order to predict the results of implementation and

compare them with other simulation tool, petri net is

developed as shown in figure (3.2)

Figure (3.2) Petri Net of the Booster Cable Manufacturing

IV. CASE STUDY DESIGN AND IMPLEMENTATION

A. Production System Top Level

1) CD++Builder implementation

A top level of this production system is developed as a part

of this project and as practice of using DEVS formalism. The

top level represents any production system in a simple way.

As shown in figure (4.1), it consists of atomic model as source

or raw materials and coupled model which simply contains

two atomic models: buffer and production. Based on figure

(4.1), the coupled model can be defined as follows:

. Where:

;

;

;

 3

 and

P
ro

d
u

c
ti
o

n

B
U

F

done

in

out

in

out

mg

productionNode

S
o

u
rc

e

O
f
R

M in

Finished Product

out

rmCount

rmCount

Production System

fpCount Total Finished Product

Figure (4.1): The top level of production system and its internal and

external connections

And, the formal specifications <S, X, Y, δint, δext, λ, ta> of

atomic models are defined in brief as follows:

rmSource:

State Variables:

phase = generate;

rmCount = 0; //the number of the elements generated by

the source

state generate; // the source generates elements at initial

stage without request from the buffer

 state passivate; // the source passivates until gets request to

generate another element

Formal specification:

X = {mg}

Y = {out, rmCount}

S = {{phase, out, counter, state}}

δext (mg, passive) = active

δext (mg, active) = active

δint (counter, element, state)

{ case generate:

 active:

 counter++;

 requiredToSend= maxBufferSize-element.Size;

//number of element to be sent

 passive:

}

λ(active)

{ send counter to the port rmCount

 //total raw material

generated

 send requiredToSend to the port out

 //message of the element value

}

ta(passive) = INFINITY

ta(active) = raw material generation delay = 0

Buffer: (the maximum size of the buffer is 5 elements, and

the delay is one second)

S = {passive, active}

X = {in, done}

Y = {out, mg}

δint (active) = passive

δext (in, passive) = active

δext (in, active) = active

δext (done, active) = active

δext (done, active) = passive

λ(active)

{

when done, send next packet to the front of the buffer

send element from front of the queue to the port out

send message to the port mg // to the source to

replace element

}

ta(passive) = INFINITY

ta(active) = buffer delay

Production: (delay is 3 seconds)

S = {passive, active}

X = {in}

Y = {out, fpCount, done}

δint (active) = passive

δext (in, passive) = active

δext (in, active) = active

λ(active)

{ if the production of element done send it to out port

//according to production delay

 Send Counter to fpCount port

 Send done message to done port

 // message will send to the buffer

to inform it production is ideal

and it is time to send the front

element in the buffer.

}

ta(passive) = INFINITY

ta(active) = production delay

 4

The implementation of this model is done using CD++

Builder (ProductionSystem.zip). After running the simulation

for 10 minutes, a part of the output file (i.e. .out) is as follows:

00:09:29:000 rmcount 68

00:09:36:000 finishedproduct 1

00:09:36:000 totalfinishedproduct 64

00:09:38:000 rmcount 69

00:09:45:000 finishedproduct 1

00:09:45:000 totalfinishedproduct 65

00:09:47:000 rmcount 70

00:09:54:000 finishedproduct 1

00:09:54:000 totalfinishedproduct 66

00:09:56:000 rmcount 71

The output shows, at the end of this sample, there are 66

finished products are produced and 71 raw materials are

generated. The difference between the number of raw

materials and the number of total finished products is the

number of elements in the buffer, as assumed, the capacity of

buffer is 5 elements.

2) DEVS Graphs

A DEVS graph is created using CD++ Builder –cpp files-,

and also, an interesting animation is obtained from running

the graph using the log file that it is created from running

simulation. Both of them are shown in figure (4.2) and figure

(4.3) respectively.

Figure (4.2): DEVS graphs of the model

Figure (4.3): Animation of the graph

This part of the project (i.e. the high top level of a

production system) is done as assignment #1. However, for

the purpose of the project, this model will not help so that I

have to get more details about the steps of production in order

to study WIP in each buffer at each process. So, the case study

is considered completely in order to achieve that.

B. Production System Detailed Level

Before going deeply in model details, some assumption

should be mentioned first:

 Raw material sources have unlimited of elements

(i.e. unlimited raw materials)

 Buffer at peel and buffer at clip assemble can be

considered as storages so that they have limited

capacities, 5 elements.

 All other buffers have unlimited capacities just for

purpose of the study. It cannot be true in real life.

 Interruption is not allowed. When the operation start

working on an element, it should not be interrupted

until it finishes and asks for next element.

 Time to move from any buffer to the operation is one

second.

 Raw materials are sent immediately whenever

sources receive requests via “mg” port.

P
e

e
l

R
iv

e
t

R
e

fi
n

e

B
U

F

B
U

F

B
U

F

done done

done

in in in in in in in

out out out out out out

out

C
lip

A
s
s
e

m
b

le

B
U

F

done

in

out

in

out

C
a

b
le

S
o

u
rc

e

mg

mg

Cable

Clip

C
lip

S
o

u
rc

e

in

out

out

C
o

n
tr

o
lle

r

B
U

F

done

in

out

in

out

Clip&Cable

in

in

C
h

e
c
k

B
U

F

done

in

out

in

out

Check

in

out

P
a

c
k
a

g
e

B
U

F

done

in

out

in

out

Package

inout out out

Booster Cable

out

mg
mg

mg mg

mg

mg

mg

B
U

F

out

in

in

mg

rmCount

C
lip

C
a

b
le

A
s
s
e

m
b

le

done

rmCount

Inform Inform

Inform

Inform

fpCount
TotalFinished

Product

WIP@PackageWIP@CheckWIP@CableBUF.

WIP@ClipBUF.

Element@storage

WIP@Refine

WIP@Rivet

TotalRMofCable

TotalRMofClip

Element@storage

Output

out
Inform

count1

count2

count

count

in

in

Figure (4.4): Production line of booster cable model

Production line is divided into 5 zones as coupled

components: cable, clip, clip-cable, check, and package,

shown in figure (4.4). Beside these coupled models, there are

two atomic models as sources of raw material of cable and

clip. This five coupled models and atomic models are inside a

top coupled model called booster cable.

 5

1) Production zones explanation and implementation

Zones explanation and implementation in CD++ Builder:

Cable Zone

This zone is to prepare cable. The zone contains three

processes which are peel cable, rivet cable, and refine.

Processing time at peel cable, rivet cable, and refine is 8

seconds, 8second, and 6 seconds respectively. This zone is

represented as coupled model contains six atomic models.

Three of them reveal the processes at this zone and the other

three are buffers for each process which they are the core of

studying WIP.

Source generates raw material for peel buffer. At the

initialization stage, the source will send complete packet

where its size is equal to the buffer capacity, in this project the

size of this buffer is 5. The first element is sent directly to the

operation, peel. After that, buffer will not send any other

element until the operation finishes and asks for another

element. As soon as the element sent to the operation from the

buffer, the buffer asks the source to replace that element so

that the buffer will not be empty or even not less than 4

elements. Note that, this buffer as we will see in the result

section will have 4 elements all the time since it asks for a

new one after every element sent to the peel operation

At the next operations, rivet and refine, the buffers do not

send any element until getting a request “done” from the

operation so that we are sure no two elements or more are in

the operation at a certain time (i.e. one by one). This condition

makes the model closer to the reality. After all these three

processes accomplished, an element is sent out of this couple

model through “out” port to “Cable buffer” at “Clip-cable

assemble”. One important note is the first product will take 25

seconds and next product will take only 8 seconds since every

operation in this zone will asks for next element immediately

after sending the current item from the output interface. This

point will be illustrated in more details in the result and

analysis section

This zone implemented in CD++Builder by customizing

and extending some built-in classes. Firstly, we extend

Generator class to represent row material source. In

CableSource class we defined three ports as it is shown in the

Figure (4.4). “mg” port is used to receive the signal from

buffer in order to send new material. As explained before,

initially, the CableSource class will send five elements of row

material to the peel buffer. I defined also bufferMaxSize

variable and initially we sent it to be five and later can be

changed according to the system or problem modeled.

Moreover, we have active and passive state of this class. In

active state, it could be sending or waiting. In fact these sub

states added to handle the “mg” message.

Secondly, we extended queue class to represent the buffer.

In this extended class, the size of the buffer is fixed to

simulate the real life when we have a limited space for raw

materials. In fact, after sending output from this buffer, the

size of the buffer will be send to CableSource from mg port.

Then, CableSource will compare the current size and

maximum size then send the row material to fill-up the peel

buffer.

Thirdly, new classes of operations are created to represent

peel, rivet, and refine. These classes will receive an element

and hold it for some time as operation/processing time. Then

send it from out interface to the next buffer. In mean time,

when an operation sends element via “out” port, it will send a

request message to its buffer asking for new material thought

“done” interface. Note that in case the buffer is empty, it will

not send any thing and it will change its state to passive until

new “in” message comes in then it will change to active state

and perform the required operation.

Clip Zone

Clip coupled model is similar to cable one except it

contains just one operation to prepare clips to be ready to join

to the cable at clip-cable assemble zone. The process here

takes in average about 17 seconds. At the initialization stage,

source fills up the buffer by raw material. The first element is

sent directly to the operation, clip assemble. After that, buffer

will not send any other element until the operation finishes

and asks for another element. As soon as the element sent to

the operation from the buffer, the buffer asks the source to

replace that element so that the buffer will not be empty.

The implementation of clip zone in CD++Builder is exactly

similar of cable zone. The only difference is that the cable

zone has more than one operation (peel, rivet, and refine), but

in Clip zone we have only one operation called “Clip

assemble”.

Clip-cable assemble Zone

This zone, where clips are joined to the cable, is critical

because there are two buffers connected to one operation, and

it necessary to be sure that the operation will not run until it

gets one element from cable buffer AND another one from

clip buffer. In order to solve and control this issue, an atomic

model called “Controller” is added. Whenever there is an

element goes into the clip buffer or cable buffer, the buffer

insert that element at the end of queue and informs the

controller about its size (i.e. how many elements does the

buffer have at a specific moment). Controller holds this value

and compares it with the other value that comes from the other

buffer. When each of them has one or more elements,

controller informs the operation –Clip&CableAssemble- about

the availability of elements in both buffers. If there is no

elements under operation at that moment, the clip-cable

assemble model can ask immediately for an element from

each buffer. First element in buffer will be sent after one

second to operation. The joining clip to cable takes about 21

seconds. After that, the booster cable is ready to move to the

next zone which is “check”. In case the operation

“Clip&CableAssemble” is busy, simply it will ignore the

message and complete its work. Controller will keep

informing “Clip&CableAssemble” operation after each new

 6

element added to any of two buffers. In this mechanism I am

sure no element will be lost from any buffer and

“Clip&CableAssemble” operation will work if we have at

least one elements of each buffer.

The previous scenario implemented in CD++builder by

creating two buffer classes and one controller class and

ClipCableAssemble class. Both buffers are unlimited size

buffer. Also, both of them will send their size to the controller

using “count” port after receiving a new material from “in”

port.

In controller class, two integer variables are defined and

they are used as counters for each buffer. Each buffer will

send the size to the controller using counter ports. Controller

will verify and compare the last values of both buffers’ sizes.

When both buffers have one element or more, “Controller”

will send inform message to “Clip&CableAssemble” class.

“ClipCableAssemble” class will keep receiving informing

message from controller whenever buffer has element.

As mentioned above in the assumptions this class can work

only on one element at a time, so in order to implement this

mechanism, I defined enumeration variable called state for

“ClipCableAssemble” operation, and it has three states

(processing, requesting and waiting). Initially it will be in

waiting state. If an element is received through “in” port, the

state will be changed to processing. In case the informing

message received from “inform” port and the state is

processing, simply it will ignore it and complete the work for

the current product. When the current product is sent out from

“out” port to the next stage, the state will be changed to

waiting. This means it is waiting for an informing message

from the controller in order to request other elements from

both buffers. The state will be changed from waiting to

requesting after sending a message from “done” port to both

buffers. Once material received from both buffers, the state

will be changed to processing.

Check and Package

Checking process and packaging take about 6, 34 seconds

respectively. At the check point, they check if a booster cable

is connected properly to a clip, and if it satisfies their

standard. Packaging takes the longest time because it is

accomplished manually. The behavior of check and package

models and their buffer are exactly similar to the behavior of

rivet or refine process.

Implementing these zones is similar to rive or peel

operation. Buffers of booth operations are unlimited sizes and

they send material to “check” or “package” operation from

“out” interface of buffer to “in” interface of any of these

operations. After preparation time elapses, “done” message

send from an operation –either Check or Package- through

“done” port to “done” interface at an operation’s buffer in

order to send another element.

2) DEVS Graph model

DEVS graph and animation of this project are created. They

are very long to put them here, so I attached them in ZIP file.

V. RESULTS AND ANALYSIS

After running simulation for whole Cable Booster

manufacturing system for a complete shift (8 hours), the

following results are obtained.

 Last values at each output port:

Port name description value

rmCblCount Number of raw material of

cable generated so far

3204

rmClpCount Number of raw material of

cable generated so far

1604

wipPeel Number of elements at

Peel

4

wipRivet Number of WIP at Rivet 0

wipRefine Number of WIP at Refine 1

wipClpA Number of elements at

Clip Assemble

4

wipCblCCA Number of WIP in Cable

at Clip-Cable Assemble

2132

wipClpCCA Number of WIP in Clip at

Clip-Cable Assemble

534

wipCheck Number of WIP at Check 0

wipPackage Number of WIP at

Package

245

fpCableBooster Finished product Always

= 1

totalFinishedProduct Number of Cable Boosters

produced so far

819

Buffers at first operations of cable and clip, “Peel” and

“ClipAssemble” respectively; will not be more than 5

elements because they have a limited size equal to 5 elements.

As assumed before, these two buffers work as storages of raw

materials so that they will not affect the study of WIP or

bottleneck of the system. However, the number of WIP in the

other buffers will vary from zero to infinity (unlimited), and

they are the important parts of the project. As the above table

reveals, number of WIP in the buffer at rivet and check is zero

because the processing time at the pervious operations is

greater than or equal to the processing time at the next ones.

For instance, processing time at rivet is equal to processing

time at peel so that the buffer before rivet operation is zero or

one. Similarly, the processing time at “Clip&CableAssemble”

is greater than processing time at “Check”, 21 and 6

respectively so that the buffer before checking (i.e. Check

Buffer) is zero or one at any time, and so is the buffer before

“Refine” process.

From the table results above, it is clear that the processes of

clip-cable assemble and package are the bottlenecks of the

production line. Number of WIP in cable buffer at clip-cable

assemble is very high, 2132 elements while the clip buffer at

the same stage contains 534 elements. This difference

between numbers of WIP in two buffers happens because the

 7

speed rate of cable operations (peel, rivet, and refine) is faster

than the rate of clip operation (clip assemble). In other words,

after each 9 seconds another cable arrives to cable buffer at

clip-cable assemble while after each 18 second another clip

enters the clip buffer at the same station. This station is the

first bottleneck of the systems. The other bottleneck is at

packaging. There are 245 WIP elements.

Number of raw materials generated for clip was 1604 and

for cable was 3204. Number of total product (Cable Booster)

produced, however, was 819 cable boosters. If the system

were high performance, the total of finished products should

be close, if not equal, to the minimum number of raw

materials generated. But, in our case the finished products is

about half of raw materials generated (819 to 1604).

VI. ISSUES AND SOLUTIONS

In this case, in order to improve the system by minimizing

WIP and increasing throughputs, there are some ideas can be

implemented. For instance, “Package” station can be replaced

by three package stations which work in parallel. That means

the processing time at this station will decrease to one third of

original. Similarly, “Clip&CableAssemble” station can be

doubled.

There are two ways to implement this improvement. First,

create a new class for each a new station with same

preparation time. In addition, controller class should be added

before these stations to control the flow among them. Second

option is manipulate preparation time in order to simulate this

enhancement by dividing preparation time on the number of

stations. For example, preparation time of “Package” is

(00:00:34:000) after adding two other stations, the preparation

time will be (00:00:11:333).

Due to the complexity of the former option, the later one is

easy to implement and get result in shorter time.

After implementing this enhancement using the second

technique, the following results are obtained.

Port name description value

rmCblCount Number of raw

material of cable

generated so far

3204

rmClpCount Number of raw

material of cable

generated so far

1604

wipPeel Number of elements

at Peel
4

wipRivet Number of WIP at

Rivet
0

wipRefine Number of WIP at

Refine
1

wipClpA Number of elements

at Clip Assemble
4

wipCblCCA Number of WIP in

Cable at Clip-Cable

Assemble

1599

wipClpCCA Number of WIP in

Clip at Clip-Cable

Assemble

1

wipCheck Number of WIP at

Check
0

wipPackage Number of WIP at

Package
0

fpCableBooster Finished product Always =

1

totalFinishedProduct Number of Cable

Boosters produced so

far

1597

By comparing both results, we notice that the throughput is

increase by almost double and number of WIP is decrease

with high percentages. And, there is no bottleneck.

Other suggestions are studied such as making each of

“ClipCableAssemble” and “Package” contains three stations.

However, the enhancement that was implemented (i.e. 2

ClipCableAssemble stations and 3 Package stations) was the

best if cost of adding machine or worker is considered and

compared with the outputs of the system.

VII. FUTURE WORK

By using CD++ toolkit, the model of this project can be

used to clarify the idea behind pull or push systems with slight

change on the code. For example, the concept of pull system

is instead of an operation produces an element and throws it to

the next operation’s buffer, the operation at the next stage will

ask the previous operation to produce and send an element. By

other words, buffer at the next stage will send request to the

pervious operation to produce a certain number of elements.

Also, developing a model using same the feature of the

CD++ builder and connect it with an optimization solver can

be done to handle more complex problems in flexible

manufacturing systems FMS.

VIII. CONCLUSION

 CD++Builder is used to implement and simulate the

cable booster case study. In fact, it helps to identify the WIP

in order to improve the case study model. In the

implementation, built-in classes extended to accommodate the

case study requirements. For instance, controller class added

in the cable assemble zone in order to control the material that

 8

is sent to assemble operation from two buffers. Moreover,

queue class is also extended to represents the buffer in each

stage. Initially some assumption are listed and fixed to control

the implementation. DEVS graphs created to visualize the

model. By analyzing the results of the simulation some issues

are identified. According to the analysis, some enhancement

was implemented in order to improve the system. Indeed, the

result of enhanced model shows significant improvement in

the number of WIP and throughput.

REFERENCES

[1] Farrington, P. A., Feng, Y., Simulators as a Tool for Rapid

Manufacturing Simulation, Proceedings of the 1994 Winter Simulation

Conference, SWC'94, Dec. 1994, 994-999.
[2] Lynggaard, H. J., Bilberg, A., and Alting, L., New Concepts and

Methods for Developing Shop Floor Control Systems, Annals of the

CIRP: Manufacturing Technology, Vol. 47, No. 1, 1998, 377-380.

[3] Ramzi, B., Mohamed, B., and Georges, H., An Object Model for

Simulation of Manufacturing Systems, Manufacturing Research and

Technology, Vol. 22: Advances in Manufacturing Systems: Design,
Modeling and Analysis, 1995, 137-142.

[4] J.F. O'Kanea, J.R. Spenceleyb, R. Taylorc, Simulation as an essential

tool for advanced manufacturing technology problems : Journal of
Materials Processing Technology, 107, 2000, 412-424.

[5] Xiaofeng Hu, Ruxiao An, Modeling and Simulation of Manufacturing

Systems in Unstable Environment, Proceedings of the World Congress
on Engineering 2011 Vol I WCE 2011, July 6 - 8, 2011, London, U.K.

