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Abstract—A novel approach is designed to improve the 

performance of Conway life game, which is an existing cellular 

automata model has been defined in this paper. Meanwhile the 

develop Cell-DEVS tools CD++ is used as a reference during the 

experiment. Specifically, the three-fold experiment demonstrates 

the model being executed in different amount of processors and 

presents some convincing results based on the individual rules. In 

addition, another type of CA model such as modified von 

Neumann CA model is also test in the new platform with running 

in parallel. Overall, the calculate speed have been boosted up as 

twice as the original speed. That is, the time consuming in the 

experiment have a dramatic reduce near one half of the usual 

calculation time. 
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I.  INTRODUCTION  

Over the decades, Cellular Automata (known as CA) has 
become increasingly present in solving general-purpose 
problems yet most of the focuses are on the mapping problem. 
The study of cellular automata was started by von Neumann 
and Stanislaw Ulam in the middle of the 20th century [1]. 
Generally, the automata includes some cells on a two 
dimension grid and the states of these cells. The states are 
determined by a transition function that computes from states 
of the cell’s neighbor in previous time span. Following von 
Newman opinions, Ulam[1] who devised a two-dimensional 
imaginary finite lattice for one-cellular machine formed of 
components named cells raised some propositions 

The cellular automata model such as life game usually run 
in a serial based procedure, however, when the scale of the 
problem is increasing, the computation time on the problem 
will become dramatically large if the model is still running in a 
single processor. Due to the locality and uniformity of the 
cellular automata, one can adjust the transition function to fit 
the multi-processors platform such as CUDA and OpenMP. 

In this project, the serial based processing on the cellular 
automata would be demonstrated firstly as a reference in the 
transformation. Then, the model would be tested by using the 
Conway life game rules. After the method is being proved in 
stability, a parallel life game model would be built and 
implemented on CUDA platform to speed up the calculation 
process for each cell. The results demonstrate an enhancement 

on the calculation process and a highly convincing mappings 
strategy from the CD++ to the Visual Studio and CUDA 
platform. 

The report would be organized as follows. In Section 2, the 
background of the cellular automata would be discussed as 
well as the parallel programming platform that have been used 
in the experiments. A formal specification of Conway life 
game Cellular Automata model would be discussed in Section 
3. Section 4 shows the results of the experiment using the 
different initial values in the model and the result of testing the 
modified von Neumann Cellular Automata model. 

II. BACKGROUND 

A. Cellular Automata (CA) 

A cellular automaton (as known as CA) is a discrete model 
that has been studied through various domains such as 
computability theory, mathematics, complexity science and etc. 
[1] Specifically, a cellular automaton is made by cells in a 
typically lattice representing the finite states of the cell. In 
addition, the grid can be in any existing dimensions. The 
neighbor of the cell, which plays a vital role in the automaton, 
decide the direction of evolution in the game. That is, the state 
of the neighbor and the cell decides the state of the cell itself 
according to some presetting rules. Generally, the rules for the 
updating is similar to the others and it usually does not change 
too much during the iteration. The main purpose for inventing 
the automata was to solve Self-Replication problem in a system. 

Besides, the cellular automata could be widely used in  

 Computer processors 

This means that the machine can process information 
computationally by implementing the cellular automaton 
processors with CA concepts physically. 

 Cryptography 

It also shows that the cellular automaton could be used for 
random number generation in 2D. Typically, Rule 30 is 
able to encode the context with Block cipher algorithm. 

 Correcting error code 

Cellular Automata could also be implemented for 
correcting the code. In the paper written by Chowdhury et 



al. [2], a new scheme of building the SEC-DED codes 
using the proper CA model has been demonstrated. 
Meanwhile, it also shows an ability on decoding the code in 
a fast way. 

B. Parallel programming 

In computer software, a parallel programming model is a 
model which are compiled and executed via different processor 
basically. The value of a programming model can be judged on 
its universality: how well a variety of different architectures 
can express a range of different problems, and its performance: 
how efficiently of the problem being executed. The 
implementation of a programming model can take several 
forms such as libraries invoked from traditional sequential 
languages, language extensions, or complete new execution 
models. [3] 

CUDA, also named as Compute Unified Device 
Architecture, is a parallel computing platform and 
programming model that implemented by NVDIA company by 
providing the access to the virtual instruction set and the usage 
of the memory in graphic processing units (GPUs) [4]. By 
using this programming language, a serial of independent data 
could be calculated through various threads concurrently. This 
will boost up the throughput of a general program in order to 
maximize the efficiency of the running program. 

Moreover, the classic CA model was enhanced to Global 
Cellular Automata (GCA) by Rolf Hoffmann et al. [1] In the 
new model, it is not limited to a local neighborhood, which 
means that they can connect across to the various domain of 
the automata. 

III. MODELS DEFINED 

In this section, a formal specification cellular model of the 
life game will be discussed in the first place, followed by the 
rule that implements on the model. Mainly, there are two 
different rules applied on the general model — Conway’s and 
Von Neumann’s cell rule. The difference between these two 
are the numbers of the neighbor. The details are given as 
follows. 

A. Formal specification of the Conway and modified von 

Neumann’s neighbor Cellular Automata model 

The Cell Spaces of the CA model have been defined in 
Figure 3.1. Notes that the graph below illustrates the Conway’s 
and von Neumann’s neighbor of a cell (shown in grey zone and 
black stripe). 

 

Figure 3.1 Cells and neighbour 

The more concrete and specific Cellular models is defined 
as follows: 

CCA = < S, n, C, η, N, T, τ> 

Where 

 C cell’s state variables;  

 S finite alphabet to represent each cell’s state; 

 η dimensional space; 

 N neighboring cells; 

 T global transition function; 

 τ local computing function;   

The basic procedure for simulating a typical cellular 
automaton follows the discrete time simulation algorithm. The 
procedure flow could be defined as follows: 

 The steps of executing cellular automaton 

1. Scan all cells 

2. Apply state transition function to each cells 

3. Save the next state into a different memory space 

4. When all next states have been computed, the time 

advance, followed by constructing the next global 

state data. 

5. Repeat the steps from 1 to 4 until the simulation ends. 
Note that the dead state is sometime called quiescent state 

which means that if the cell and all its neighbors are in the 
quiescent state, its next is also quiescent. i.e. There is no 
change on the next step for the current cell. In this way, the 
discrete event simulation algorithm focuses more on processing 
the events rather than the cells of those with inherently more 
efficient. 

In Conway’s model, the neighbor’s illustration in Figure 
3.2 describes one part of the step 2. The neighborhood that is 
used to calculate the next states of the current cell. 

 



Figure 3.2: Conway’s neighbor 

Furthermore, for any cell, there are two possible states, 
either live (the black spot on Figure 3.1) or die (represented in 
the white color). [1][2][3] The rules of transaction, also called 
the decision of state machine, is depended on these four atomic 
action: 

1. The cell is alive (i.e. Cell(0,0) = 1) and the numbers of 
the living neighbor Ni,j  strictly less than 2; the cell will 
die. 

2. The cell is alive and the numbers of the living neighbor 
Ni,j are 2 or 3; the cell will keep alive. 

3. The cell is alive and the numbers of the living neighbor 
Ni,j are more than 3; the cell will die. 

4. The cell is die or does not exist and the numbers of the 
living neighbor Ni,j are equal to 3; the cell would be 
generated (become alive). 

These four rules demonstrate how the live is decided which 
includes rare lives condition (rule #1), normal lives condition 
(rule #2), overabundance lives condition (rule #3) and the 
propagating live condition (rule #4). In addition, the transaction 
of the life consist of rules above and the neighbor being used to 
calculate and this makes the disparity outcomes between the 
Conway and Von Neumann, in which Von Neumann only have 
5 neighbors (Figure 3.3). 

In this CA model, the original transition function can be 
defined as 

1 The cell is alive (i.e. Cell(0,0) = 1) and the numbers of 
the living neighbor Ni,j  strictly less than 2 or more than 
3; the cell will die. 

2 The cell is alive and the numbers of the living neighbor 
Ni,j are 2 or 3; the cell will keep alive. 

3 The cell is dead and the numbers of the living neighbor 
Ni,j are equal to 2; the cell will be re-borned. 

4 The cell is dead or does not exist and the numbers of 
the living neighbor Ni,j are not equal to 2; the cell 
would keep the states. 

 

Figure 3.3: Von Neumann’s neighbor 

 After the formal specification of the cellular automaton has 
been defined, the actual processing could run on the model 
itself. The following section discusses how the neighbors are 
calculated in the real program transformation. 

B. Single processing model 

 For saving the cell spaces, the 2D matrix will give the exact 
view as the definition in CD++. The definition of cell model in 
single processor is shown as follows 

Cell[i][j] 

Where the column represents the width of the 2D cell’s map. 
The i and j is the iteration direction of lateral and vertical, 
respectively. Here, we could also use the 2D matrix which 
show the cell space distribution directly yet it does not support 
for the large scale problem solving when the rows and columns 
over 1000. That is the system limitations on the 2D array. 
Alternatively, one dimension array could have done the same 
work only if the correct configuration is given. The definition 
of the cell space in 1D is described as follows 

Cell[i*column+j] 

 For the calculation of the neighbor states through the 
cellular model on boarder conditions, it is well-defined in 
CD++, yet in other types of platform, the general and specific 
approaches is decided as follows 

 Top left corner 

 

Figure 3.4a): Neighbor includes: (i,j), (i+1,j), (i,j+1),(i+1,j+1) 

 Top right corner 

 

Figure 3.4b): Neighbor includes: (i,j),(i+1,j), (i,j-1),(i+1,j-1) 

 Top boarder 

 

Figure 3.4c): Neighbor includes: (i,j),(i,j-1),(i,j+1), 
(i+1,j),(i+1,j-1),(i+1,j+1) 

 Left boarder 

 



Figure 3.4d): Neighbor includes: (i,j),(i+1,j),(i-1,j), (i,j+1),(i-
1,j+1),(i+1,j+1) 

 Right boarder 

 

Figure 3.4e): Neighbor includes: (i,j),(i+1,j),(i-1,j), (i,j-1),(i-1,j-
1),(i+1,j-1) 

 Bottom boarder 

 

Figure 3.4f): Neighbor includes: (i,j), (i+1,j),(i-1,j), (i,j-1),(i-
1,j-1),(i+1,j-1) 

 Bottom left corner 

 

Figure 3.4g): Neighbor includes: (i,j),(i,j+1), (i-1,j),(i-1,j+1) 

 Bottom right corner 

 

Figure 3.4h): Neighbor includes: (i,j),(i,j-1), (i-1,j),(i-1,j-1) 

 General cell 

 

Figure 3.4i): Neighbor includes: (i,j), (i±1,j±1) 

By combining the counting rules illustrated above with the one 
dimension array shown before, one can easily construct a 
different version of the Conway life game. 

The counting of the von Neumann neighborhood, however, is 
shown below. 

 

Figure 3.4j): Neighbor includes: (i,j), (i+1,j),(i-1,j),(i,j-1),(i,j+1) 

 It shows that the Von’ neighbor does not count the diagonal 
cell as its neighbor. 

 Another problem we faced is that the judgment of the 
boarders. It is boards that meet the definition problem in the 
most of cases. Hence, for the 1D array, the judgments are show 
as follows 

 

Figure 3.5: cell space boarder (with size of 10*10) 

Taking the 10*10 matrix as an example shown above, the 
boarder’s settings are:  

 1A is the top left corner 

 1J is top right corner 

 10A is the bottom left corner 

 10J is the bottom right corner 

 1B to 1I are the top boarder 

 2A to 9A are the left boarder 

 2J to 9J are the right boarder 

 10B to 10I are the bottom boarder 

By using i and j represents the row and column, respectively. 
The condition for the boarders and corners are as follow 

 1A: i == 0 && j == 0 

 1J: i == 0 && j == (column - 1) 

 10A: i == (row - 1) && j == 0 

 10J: i == (row - 1) && j == (column - 1) 



 1B to 1I: i == 0 && j != 0 && j != (column - 1) 

 2A to 9A: j == 0 && i != 0 && i != (row - 1) 

 2J to 9J: j == (column - 1) && i != 0 && i != (row - 1) 

 10B to 10I: i == (row - 1) && j != 0 && j != (column 
- 1) 

C. Parallel processing model 

The structure of parallel model in CUDA is shown as 
below 

 

Figure 3.6: Kernel structure of running association in device 

The host issues a succession of kernel invocation to the 
device. Each kernel is executed as a grid of thread blocks. [6] 
The model in this problem could be defined as follows  

Cell[id]                                              

where id = blockIdx.x * blockDim.x + threadIdx.x 

Note that the each block is organized as 3D array of threads 
(i.e. blockDim.x, blockDim.y and blockDim.z). The id in this 
case considers the block index within the grid (blockIdx.x) and 
dimensions of the block (blockDim.x) and thread index within 
the block (threadIdx.x). Specifically, id represents the ID of the 
thread that have been designated to calculate the state counts 
for a typical cell itself. Because of the uniqueness of thread ID, 
this could be realized to process the calculation regardless of 
the environment around the target. Therefore, this makes the 
core of the parallel computing in CUDA platform. In addition, 
same calculation methods have been implemented in the kernel 
function (show in below) which are the same as the Figure 3.4a 
to 3.4j including the modified von Neumann neighborhood 
calculation shown in previous section [5][11]. And the 
execution function is 

__global__ lifeGame<<<Dg,Db,Ns>>>(arguments) 

where Dg represents the dimension and size of the grid; Db is 
the dimension and size of each block; Ns is an optional setting 

that illustrates the number of bytes in shared memory that is 
dynamically allocated in addition to the statically allocated 
memory. In this project, the Ns is set as same as the default 
value 0 and the rest is set as 

lifeGame <<< nblocks, 512 >>> (d_a, d_b); 

Where the d_a and d_b are the allocated memory on the device 
and nblocks represents the grid dimension settings to be 
row*column / 512 + 1. 

The steps of processing the cell calculation in this model 
are as follows: 

 Initialize two 1D arrays in the host memory (i.e. the 
system memory) 

 Pass arrays to the GPU device global memory 

 Distribute the block dimension and size for running 
the core function 

 Call the __global__ function to process the cell 
calculation in each thread 

 Synchronized all the threads and record the time 
consuming for this iteration 

 Copy out the data after each iteration to the host 
memory, and continue running the program in the next 
time step until receive the interrupt signal from the 
user. 

Overall, this section discusses the neighbor definition and 
calculation method in the life game and modified von 
Neumann CA model as well as the illustration on the parallel 
computing structure in CUDA platform. In the next chapter, 
the experiments on different platform using the same initial 
value would be proceeded. For the reliability of the approach, 
different initial values have been set in the afterwards running 
in a single processor and multi-processors as well. 

IV. SIMULATION RESULTS 

In this chapter, the result obtained from three different types 
of computation approaches will be demonstrated and compared 
with each other to verify the simulation procedures and 
transformation. The result on two processors only appears on 
the efficiency analysis in Section E since the configuration of 
two processors’ experiment only need the adjustments of the 
core in Visual Studio running environment parameters. In 
addition, the past time during the experiment is also captured 
for the index of efficiency in the improvement of different 
approaches. 

A. Simulation result from CD++ 

The simulation setting using CD++ is demonstrated as 
Figure 4.1a. Different initial values are also set. Figure 4.1a to 
4.1d aims to test the CD++ configuration and regard the 
outcomes as reference for the upcoming experiments via 
different approaches and platforms. 

The width and length in the experiment are set to be 30 and 
30, respectively, which means that there are totally 900 cells in 
this iteration. The rows and column could be unequal to each 



other definitely. The rules in the Conway life game model have 
been set in the transition part. Figure 4.1b to 4.1d describes the 
running process in CD++ through different time spot. 

 

 

Figure 4.1a: Initial setting on MA 

 

Figure 4.1b: Running in CD++ (t = 0ms) 

 

Figure 4.1c: Running in CD++ (t = 200ms) 

 

Figure 4.1d: Running in CD++ (t = 400ms) 

B. Simulation from single processor 

Accordingly, the same initial settings have been configured 
in the single processing program. The simulation results for the 
corresponding running is shown as follows. 



 

Figure 4.2a: Running in single processor (t=0) 

 

Figure 4.2b: Running in single processor (t=200ms) 

 

Figure 4.2c: Running in single processor (t=400ms) 

From the Figure 4.2a to 4.2c we could conclude that the 
results are exactly the same as the outcomes from the CD++ 
and in the program, a timer is used to calculate the time elapse 
when the program is started. The observing result suggests that 
the time used in generating the result is relatively small as well. 

The result from the two-processor running given in below 
also show a confidence of stability on running the life game 
CA model into a two-processor program. (Figure 4.2d and 
Figure 4.2e) 



 

Figure 4.2d: Running in two-processor (t=200ms) 

 

Figure 4.2e: Running in two-processor (t=400ms) 

The next step is to run the same initial simulation settings 
on the parallel machine. The results are shown in section C in 
next chapter. 

C. Simulation results from CUDA 

 

Figure 4.3a: Running on multi-processor (t=0ms) 

 

Figure 4.3b: Running on multi-processor (t=200ms) 



 

Figure 4.3c: Running on multi-processor (t=400ms) 

 The Figure 4.3a to 4.3c show that the simulation works 
properly in the parallel machine. In order to validate the model 
correctness, the same rules with different initial value have 
been set into the afterward experiments, which is demonstrated 
in Section D. 

D. Simulation results with different initial 

The programs have also experimented with different initial 
value to test the stability of handling the boundary conditions. 
The result have shown as follows.  

Here, the setting considers the left corner and the top 
boarder, in which the most common errors will be seen during 
the iteration. 

 

Figure 4.4a: Running different initial value in CD++ (t = 0ms) 

 

Figure 4.4b: Running different initial value in CD++ (t = 
200ms) 

 

Figure 4.4c: Running different initial value in CD++ (t = 
400ms) 

 The correspond figures shown below is running the same 
condition in single processor. 



 

Figure 4.5a: Running different initial value in single processor 
(t = 0ms) 

 

Figure 4.5b: Running different initial value in single processor 
(t = 200ms) 

 

Figure 4.5c: Running different initial value in single processor 
(t = 400ms) 

  The results on multi-processing are shown as follows: 

 

Figure 4.6a: Running different initial value in multi-processor 
(t = 0ms) 

 



 

Figure 4.6b: Running different initial value in multi-processor 
(t = 200ms) 

 

Figure 4.6c: Running different initial value in multi-processor 
(t = 400ms) 

 The figures below is from the other test case. In this test 
case, arbitrary distributions on the initial value are given at the 
first place. The running also proves that the function of the 
system can work normally. 

 

Figure 4.7a: Running different initial value in CD++ (t = 0ms) 

 

Figure 4.7b: Running different initial value in CD++ (t = 
200ms) 

 

Figure 4.7c: Running different initial value in CD++ (t = 
400ms) 



 

Figure 4.8a: Running different initial value in single processor 
(t =0ms) 

 

Figure 4.8b: Running different initial value in single processor 
(t =200ms) 

 

Figure 4.8c: Running different initial value in single processor 
(t =400ms) 

 



Figure 4.9a: Running different initial value in multi-processor 
(t =0ms) 

 

Figure 4.9b: Running different initial value in multi-processor 
(t =200ms) 

 

Figure 4.9c: Running different initial value in multi-processor 
(t =400ms) 

E. Large scale simulation 

In order to test the reliability in large elements surroundings, 

the tests have included the scale of N2 which is upmost to 100 

million elements in single processing and two-processor 

processing. Yet, for the simplicity of the calculation, the rows 

and columns are set to be the same. This test is for showing the 

improvement of the multi-processor. There will be total 

number of scale (N2) in the actual running. In addition, the 

used initial value is generated by the rand() function. The table 

4.1 to 4.3 show the outcomes from different circumstance. 

Figure 4.10 describes that the calculation time in the 

corresponding scales. It indicates that the dramatic reduction of 

the time consuming in the CUDA is lesser than running in 

single processor or two-processor, which is similar to the 

expectation. 

 

Scale(N) 1st(ms) 2nd(ms) 3rd(ms) 4th(ms) Avg.(ms) 

100 0 0 0 0 0 

500 7 5 6 5 5.6 

1000 16 23 23 22 21.2 

3000 230 209 199 197 205.6 

5000 652 564 557 548 572.2 

7000 1332 1136 1086 1079 1141.4 

9000 2081 1856 1805 1830 1864.6 

10000 2606 2261 2225 2250 2313.4 

12000 3739 3281 3190 3198 3316 

Table 4.1: Simulation result from single processor 

Scale(

N) 

1st(ms) 2nd(ms) 3rd(ms) 4th(ms) Avg.(m

s) 

100 0 0 0 0 0 

500 4 3 4 4 3.75 

1000 15 15 15 14 14.75 

3000 127 126 126 124 125.75 

5000 358 353 352 351 353.5 

7000 687 695 689 736 701.75 

9000 1152 1145 1132 1149 1144.5 

10000 1428 1420 1425 1471 1436 

Table 4.2: Simulation result from 2 processors on OpenMP 

Scale

(N) 

1st(ms) 2nd(ms) 3rd(ms) 4th(ms) Avg.(ms) 

100 0.0862 0.3803 0.4018 0.376 0.3111 

500 0.7504 1.0238 1.0505 1.0195 0.9610 

1000 2.3312 2.6598 2.6461 2.6216 2.5647 

3000 18.961 19.376 19.401 19.317 19.264 

5000 51.497 51.497 51.497 51.497 51.497 

5500 62.364 63.014 62.904 62.832 62.779 

Table 4.3: Simulation result from multi-processors on CUDA 

 



Figure 4.10: Time consuming through different scale in single 
processor (red line), 2 processors (green line) and multi-

processors (blue line) 

F. Other types of CA model—modified von Neumann CA 

model 

 By changing the transition rule and neighborhood definition, 
a different CA model could be built as follows. 

 

Figure 4.11a: Modified Neumann’s CA model (t=0ms) 

 

Figure 4.11b: Modified Neumann’s CA model (t=100ms) 

 

Figure 4.11c: Modified Neumann’s CA model (t=200ms) 

 

Figure 4.12a: Modified Neumann’s CA model running in 
single processor (t=0ms) 



 

Figure 4.12b: Modified Neumann’s CA model running in 
single processor (t=100ms) 

 

Figure 4.12c: Modified Neumann’s CA model running in 
single processor (t=200ms) 

 

Figure 4.13a: Modified Neumann’s CA model running in mult- 
processor (t=0ms) 

 

 

Figure 4.13b: Modified Neumann’s CA model running in mult- 
processor (t=100ms) 



 

Figure 4.13c: Modified Neumann’s CA model running in mult- 
processor (t=200ms) 

V. CONCLUSIONS 

From the various experiment on Conway life game, the 

evidence shows that the calculation time on the given problem 

domain has reduced by applying the parallel solving method 

the cellular automata model. Moreover, another type of CA 

model such as the modified von Neumann CA model has been 

used to validate the stability of the parallel approach as well.  

Besides, the performance applying parallel computing 

with CUDA in the Cellular Automata model have a 

remarkable advance comparing to the single and two-

processor in which the single processor have an exponential  

increasing  while the two-processor approach only have a 

slightly slow but also the same trend as the single processor. 
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