
Life Game Design in CUDA
Running existing Cellular Automata in parallel environments

Zheng Xia

Electrical and Computer Engineering

University of Ottawa

Ottawa, Canada

zxia010@uottawa.ca

Abstract—A novel approach is designed to improve the

performance of Conway life game, which is an existing cellular

automata model has been defined in this paper. Meanwhile the

develop Cell-DEVS tools CD++ is used as a reference during the

experiment. Specifically, the three-fold experiment demonstrates

the model being executed in different amount of processors and

presents some convincing results based on the individual rules. In

addition, another type of CA model such as modified von

Neumann CA model is also test in the new platform with running

in parallel. Overall, the calculate speed have been boosted up as

twice as the original speed. That is, the time consuming in the

experiment have a dramatic reduce near one half of the usual

calculation time.

Keywords—Cellular Automata; Parallel computing; CUDA;

Conway life game

I. INTRODUCTION

Over the decades, Cellular Automata (known as CA) has
become increasingly present in solving general-purpose
problems yet most of the focuses are on the mapping problem.
The study of cellular automata was started by von Neumann
and Stanislaw Ulam in the middle of the 20th century [1].
Generally, the automata includes some cells on a two
dimension grid and the states of these cells. The states are
determined by a transition function that computes from states
of the cell’s neighbor in previous time span. Following von
Newman opinions, Ulam[1] who devised a two-dimensional
imaginary finite lattice for one-cellular machine formed of
components named cells raised some propositions

The cellular automata model such as life game usually run
in a serial based procedure, however, when the scale of the
problem is increasing, the computation time on the problem
will become dramatically large if the model is still running in a
single processor. Due to the locality and uniformity of the
cellular automata, one can adjust the transition function to fit
the multi-processors platform such as CUDA and OpenMP.

In this project, the serial based processing on the cellular
automata would be demonstrated firstly as a reference in the
transformation. Then, the model would be tested by using the
Conway life game rules. After the method is being proved in
stability, a parallel life game model would be built and
implemented on CUDA platform to speed up the calculation
process for each cell. The results demonstrate an enhancement

on the calculation process and a highly convincing mappings
strategy from the CD++ to the Visual Studio and CUDA
platform.

The report would be organized as follows. In Section 2, the
background of the cellular automata would be discussed as
well as the parallel programming platform that have been used
in the experiments. A formal specification of Conway life
game Cellular Automata model would be discussed in Section
3. Section 4 shows the results of the experiment using the
different initial values in the model and the result of testing the
modified von Neumann Cellular Automata model.

II. BACKGROUND

A. Cellular Automata (CA)

A cellular automaton (as known as CA) is a discrete model
that has been studied through various domains such as
computability theory, mathematics, complexity science and etc.
[1] Specifically, a cellular automaton is made by cells in a
typically lattice representing the finite states of the cell. In
addition, the grid can be in any existing dimensions. The
neighbor of the cell, which plays a vital role in the automaton,
decide the direction of evolution in the game. That is, the state
of the neighbor and the cell decides the state of the cell itself
according to some presetting rules. Generally, the rules for the
updating is similar to the others and it usually does not change
too much during the iteration. The main purpose for inventing
the automata was to solve Self-Replication problem in a system.

Besides, the cellular automata could be widely used in

 Computer processors

This means that the machine can process information
computationally by implementing the cellular automaton
processors with CA concepts physically.

 Cryptography

It also shows that the cellular automaton could be used for
random number generation in 2D. Typically, Rule 30 is
able to encode the context with Block cipher algorithm.

 Correcting error code

Cellular Automata could also be implemented for
correcting the code. In the paper written by Chowdhury et

al. [2], a new scheme of building the SEC-DED codes
using the proper CA model has been demonstrated.
Meanwhile, it also shows an ability on decoding the code in
a fast way.

B. Parallel programming

In computer software, a parallel programming model is a
model which are compiled and executed via different processor
basically. The value of a programming model can be judged on
its universality: how well a variety of different architectures
can express a range of different problems, and its performance:
how efficiently of the problem being executed. The
implementation of a programming model can take several
forms such as libraries invoked from traditional sequential
languages, language extensions, or complete new execution
models. [3]

CUDA, also named as Compute Unified Device
Architecture, is a parallel computing platform and
programming model that implemented by NVDIA company by
providing the access to the virtual instruction set and the usage
of the memory in graphic processing units (GPUs) [4]. By
using this programming language, a serial of independent data
could be calculated through various threads concurrently. This
will boost up the throughput of a general program in order to
maximize the efficiency of the running program.

Moreover, the classic CA model was enhanced to Global
Cellular Automata (GCA) by Rolf Hoffmann et al. [1] In the
new model, it is not limited to a local neighborhood, which
means that they can connect across to the various domain of
the automata.

III. MODELS DEFINED

In this section, a formal specification cellular model of the
life game will be discussed in the first place, followed by the
rule that implements on the model. Mainly, there are two
different rules applied on the general model — Conway’s and
Von Neumann’s cell rule. The difference between these two
are the numbers of the neighbor. The details are given as
follows.

A. Formal specification of the Conway and modified von

Neumann’s neighbor Cellular Automata model

The Cell Spaces of the CA model have been defined in
Figure 3.1. Notes that the graph below illustrates the Conway’s
and von Neumann’s neighbor of a cell (shown in grey zone and
black stripe).

Figure 3.1 Cells and neighbour

The more concrete and specific Cellular models is defined
as follows:

CCA = < S, n, C, η, N, T, τ>

Where

 C cell’s state variables;

 S finite alphabet to represent each cell’s state;

 η dimensional space;

 N neighboring cells;

 T global transition function;

 τ local computing function;

The basic procedure for simulating a typical cellular
automaton follows the discrete time simulation algorithm. The
procedure flow could be defined as follows:

 The steps of executing cellular automaton

1. Scan all cells

2. Apply state transition function to each cells

3. Save the next state into a different memory space

4. When all next states have been computed, the time

advance, followed by constructing the next global

state data.

5. Repeat the steps from 1 to 4 until the simulation ends.
Note that the dead state is sometime called quiescent state

which means that if the cell and all its neighbors are in the
quiescent state, its next is also quiescent. i.e. There is no
change on the next step for the current cell. In this way, the
discrete event simulation algorithm focuses more on processing
the events rather than the cells of those with inherently more
efficient.

In Conway’s model, the neighbor’s illustration in Figure
3.2 describes one part of the step 2. The neighborhood that is
used to calculate the next states of the current cell.

Figure 3.2: Conway’s neighbor

Furthermore, for any cell, there are two possible states,
either live (the black spot on Figure 3.1) or die (represented in
the white color). [1][2][3] The rules of transaction, also called
the decision of state machine, is depended on these four atomic
action:

1. The cell is alive (i.e. Cell(0,0) = 1) and the numbers of
the living neighbor Ni,j strictly less than 2; the cell will
die.

2. The cell is alive and the numbers of the living neighbor
Ni,j are 2 or 3; the cell will keep alive.

3. The cell is alive and the numbers of the living neighbor
Ni,j are more than 3; the cell will die.

4. The cell is die or does not exist and the numbers of the
living neighbor Ni,j are equal to 3; the cell would be
generated (become alive).

These four rules demonstrate how the live is decided which
includes rare lives condition (rule #1), normal lives condition
(rule #2), overabundance lives condition (rule #3) and the
propagating live condition (rule #4). In addition, the transaction
of the life consist of rules above and the neighbor being used to
calculate and this makes the disparity outcomes between the
Conway and Von Neumann, in which Von Neumann only have
5 neighbors (Figure 3.3).

In this CA model, the original transition function can be
defined as

1 The cell is alive (i.e. Cell(0,0) = 1) and the numbers of
the living neighbor Ni,j strictly less than 2 or more than
3; the cell will die.

2 The cell is alive and the numbers of the living neighbor
Ni,j are 2 or 3; the cell will keep alive.

3 The cell is dead and the numbers of the living neighbor
Ni,j are equal to 2; the cell will be re-borned.

4 The cell is dead or does not exist and the numbers of
the living neighbor Ni,j are not equal to 2; the cell
would keep the states.

Figure 3.3: Von Neumann’s neighbor

 After the formal specification of the cellular automaton has
been defined, the actual processing could run on the model
itself. The following section discusses how the neighbors are
calculated in the real program transformation.

B. Single processing model

 For saving the cell spaces, the 2D matrix will give the exact
view as the definition in CD++. The definition of cell model in
single processor is shown as follows

Cell[i][j]

Where the column represents the width of the 2D cell’s map.
The i and j is the iteration direction of lateral and vertical,
respectively. Here, we could also use the 2D matrix which
show the cell space distribution directly yet it does not support
for the large scale problem solving when the rows and columns
over 1000. That is the system limitations on the 2D array.
Alternatively, one dimension array could have done the same
work only if the correct configuration is given. The definition
of the cell space in 1D is described as follows

Cell[i*column+j]

 For the calculation of the neighbor states through the
cellular model on boarder conditions, it is well-defined in
CD++, yet in other types of platform, the general and specific
approaches is decided as follows

 Top left corner

Figure 3.4a): Neighbor includes: (i,j), (i+1,j), (i,j+1),(i+1,j+1)

 Top right corner

Figure 3.4b): Neighbor includes: (i,j),(i+1,j), (i,j-1),(i+1,j-1)

 Top boarder

Figure 3.4c): Neighbor includes: (i,j),(i,j-1),(i,j+1),
(i+1,j),(i+1,j-1),(i+1,j+1)

 Left boarder

Figure 3.4d): Neighbor includes: (i,j),(i+1,j),(i-1,j), (i,j+1),(i-
1,j+1),(i+1,j+1)

 Right boarder

Figure 3.4e): Neighbor includes: (i,j),(i+1,j),(i-1,j), (i,j-1),(i-1,j-
1),(i+1,j-1)

 Bottom boarder

Figure 3.4f): Neighbor includes: (i,j), (i+1,j),(i-1,j), (i,j-1),(i-
1,j-1),(i+1,j-1)

 Bottom left corner

Figure 3.4g): Neighbor includes: (i,j),(i,j+1), (i-1,j),(i-1,j+1)

 Bottom right corner

Figure 3.4h): Neighbor includes: (i,j),(i,j-1), (i-1,j),(i-1,j-1)

 General cell

Figure 3.4i): Neighbor includes: (i,j), (i±1,j±1)

By combining the counting rules illustrated above with the one
dimension array shown before, one can easily construct a
different version of the Conway life game.

The counting of the von Neumann neighborhood, however, is
shown below.

Figure 3.4j): Neighbor includes: (i,j), (i+1,j),(i-1,j),(i,j-1),(i,j+1)

 It shows that the Von’ neighbor does not count the diagonal
cell as its neighbor.

 Another problem we faced is that the judgment of the
boarders. It is boards that meet the definition problem in the
most of cases. Hence, for the 1D array, the judgments are show
as follows

Figure 3.5: cell space boarder (with size of 10*10)

Taking the 10*10 matrix as an example shown above, the
boarder’s settings are:

 1A is the top left corner

 1J is top right corner

 10A is the bottom left corner

 10J is the bottom right corner

 1B to 1I are the top boarder

 2A to 9A are the left boarder

 2J to 9J are the right boarder

 10B to 10I are the bottom boarder

By using i and j represents the row and column, respectively.
The condition for the boarders and corners are as follow

 1A: i == 0 && j == 0

 1J: i == 0 && j == (column - 1)

 10A: i == (row - 1) && j == 0

 10J: i == (row - 1) && j == (column - 1)

 1B to 1I: i == 0 && j != 0 && j != (column - 1)

 2A to 9A: j == 0 && i != 0 && i != (row - 1)

 2J to 9J: j == (column - 1) && i != 0 && i != (row - 1)

 10B to 10I: i == (row - 1) && j != 0 && j != (column
- 1)

C. Parallel processing model

The structure of parallel model in CUDA is shown as
below

Figure 3.6: Kernel structure of running association in device

The host issues a succession of kernel invocation to the
device. Each kernel is executed as a grid of thread blocks. [6]
The model in this problem could be defined as follows

Cell[id]

where id = blockIdx.x * blockDim.x + threadIdx.x

Note that the each block is organized as 3D array of threads
(i.e. blockDim.x, blockDim.y and blockDim.z). The id in this
case considers the block index within the grid (blockIdx.x) and
dimensions of the block (blockDim.x) and thread index within
the block (threadIdx.x). Specifically, id represents the ID of the
thread that have been designated to calculate the state counts
for a typical cell itself. Because of the uniqueness of thread ID,
this could be realized to process the calculation regardless of
the environment around the target. Therefore, this makes the
core of the parallel computing in CUDA platform. In addition,
same calculation methods have been implemented in the kernel
function (show in below) which are the same as the Figure 3.4a
to 3.4j including the modified von Neumann neighborhood
calculation shown in previous section [5][11]. And the
execution function is

__global__ lifeGame<<<Dg,Db,Ns>>>(arguments)

where Dg represents the dimension and size of the grid; Db is
the dimension and size of each block; Ns is an optional setting

that illustrates the number of bytes in shared memory that is
dynamically allocated in addition to the statically allocated
memory. In this project, the Ns is set as same as the default
value 0 and the rest is set as

lifeGame <<< nblocks, 512 >>> (d_a, d_b);

Where the d_a and d_b are the allocated memory on the device
and nblocks represents the grid dimension settings to be
row*column / 512 + 1.

The steps of processing the cell calculation in this model
are as follows:

 Initialize two 1D arrays in the host memory (i.e. the
system memory)

 Pass arrays to the GPU device global memory

 Distribute the block dimension and size for running
the core function

 Call the __global__ function to process the cell
calculation in each thread

 Synchronized all the threads and record the time
consuming for this iteration

 Copy out the data after each iteration to the host
memory, and continue running the program in the next
time step until receive the interrupt signal from the
user.

Overall, this section discusses the neighbor definition and
calculation method in the life game and modified von
Neumann CA model as well as the illustration on the parallel
computing structure in CUDA platform. In the next chapter,
the experiments on different platform using the same initial
value would be proceeded. For the reliability of the approach,
different initial values have been set in the afterwards running
in a single processor and multi-processors as well.

IV. SIMULATION RESULTS

In this chapter, the result obtained from three different types
of computation approaches will be demonstrated and compared
with each other to verify the simulation procedures and
transformation. The result on two processors only appears on
the efficiency analysis in Section E since the configuration of
two processors’ experiment only need the adjustments of the
core in Visual Studio running environment parameters. In
addition, the past time during the experiment is also captured
for the index of efficiency in the improvement of different
approaches.

A. Simulation result from CD++

The simulation setting using CD++ is demonstrated as
Figure 4.1a. Different initial values are also set. Figure 4.1a to
4.1d aims to test the CD++ configuration and regard the
outcomes as reference for the upcoming experiments via
different approaches and platforms.

The width and length in the experiment are set to be 30 and
30, respectively, which means that there are totally 900 cells in
this iteration. The rows and column could be unequal to each

other definitely. The rules in the Conway life game model have
been set in the transition part. Figure 4.1b to 4.1d describes the
running process in CD++ through different time spot.

Figure 4.1a: Initial setting on MA

Figure 4.1b: Running in CD++ (t = 0ms)

Figure 4.1c: Running in CD++ (t = 200ms)

Figure 4.1d: Running in CD++ (t = 400ms)

B. Simulation from single processor

Accordingly, the same initial settings have been configured
in the single processing program. The simulation results for the
corresponding running is shown as follows.

Figure 4.2a: Running in single processor (t=0)

Figure 4.2b: Running in single processor (t=200ms)

Figure 4.2c: Running in single processor (t=400ms)

From the Figure 4.2a to 4.2c we could conclude that the
results are exactly the same as the outcomes from the CD++
and in the program, a timer is used to calculate the time elapse
when the program is started. The observing result suggests that
the time used in generating the result is relatively small as well.

The result from the two-processor running given in below
also show a confidence of stability on running the life game
CA model into a two-processor program. (Figure 4.2d and
Figure 4.2e)

Figure 4.2d: Running in two-processor (t=200ms)

Figure 4.2e: Running in two-processor (t=400ms)

The next step is to run the same initial simulation settings
on the parallel machine. The results are shown in section C in
next chapter.

C. Simulation results from CUDA

Figure 4.3a: Running on multi-processor (t=0ms)

Figure 4.3b: Running on multi-processor (t=200ms)

Figure 4.3c: Running on multi-processor (t=400ms)

 The Figure 4.3a to 4.3c show that the simulation works
properly in the parallel machine. In order to validate the model
correctness, the same rules with different initial value have
been set into the afterward experiments, which is demonstrated
in Section D.

D. Simulation results with different initial

The programs have also experimented with different initial
value to test the stability of handling the boundary conditions.
The result have shown as follows.

Here, the setting considers the left corner and the top
boarder, in which the most common errors will be seen during
the iteration.

Figure 4.4a: Running different initial value in CD++ (t = 0ms)

Figure 4.4b: Running different initial value in CD++ (t =
200ms)

Figure 4.4c: Running different initial value in CD++ (t =
400ms)

 The correspond figures shown below is running the same
condition in single processor.

Figure 4.5a: Running different initial value in single processor
(t = 0ms)

Figure 4.5b: Running different initial value in single processor
(t = 200ms)

Figure 4.5c: Running different initial value in single processor
(t = 400ms)

 The results on multi-processing are shown as follows:

Figure 4.6a: Running different initial value in multi-processor
(t = 0ms)

Figure 4.6b: Running different initial value in multi-processor
(t = 200ms)

Figure 4.6c: Running different initial value in multi-processor
(t = 400ms)

 The figures below is from the other test case. In this test
case, arbitrary distributions on the initial value are given at the
first place. The running also proves that the function of the
system can work normally.

Figure 4.7a: Running different initial value in CD++ (t = 0ms)

Figure 4.7b: Running different initial value in CD++ (t =
200ms)

Figure 4.7c: Running different initial value in CD++ (t =
400ms)

Figure 4.8a: Running different initial value in single processor
(t =0ms)

Figure 4.8b: Running different initial value in single processor
(t =200ms)

Figure 4.8c: Running different initial value in single processor
(t =400ms)

Figure 4.9a: Running different initial value in multi-processor
(t =0ms)

Figure 4.9b: Running different initial value in multi-processor
(t =200ms)

Figure 4.9c: Running different initial value in multi-processor
(t =400ms)

E. Large scale simulation

In order to test the reliability in large elements surroundings,

the tests have included the scale of N2 which is upmost to 100

million elements in single processing and two-processor

processing. Yet, for the simplicity of the calculation, the rows

and columns are set to be the same. This test is for showing the

improvement of the multi-processor. There will be total

number of scale (N2) in the actual running. In addition, the

used initial value is generated by the rand() function. The table

4.1 to 4.3 show the outcomes from different circumstance.

Figure 4.10 describes that the calculation time in the

corresponding scales. It indicates that the dramatic reduction of

the time consuming in the CUDA is lesser than running in

single processor or two-processor, which is similar to the

expectation.

Scale(N) 1st(ms) 2nd(ms) 3rd(ms) 4th(ms) Avg.(ms)

100 0 0 0 0 0

500 7 5 6 5 5.6

1000 16 23 23 22 21.2

3000 230 209 199 197 205.6

5000 652 564 557 548 572.2

7000 1332 1136 1086 1079 1141.4

9000 2081 1856 1805 1830 1864.6

10000 2606 2261 2225 2250 2313.4

12000 3739 3281 3190 3198 3316

Table 4.1: Simulation result from single processor

Scale(

N)

1st(ms) 2nd(ms) 3rd(ms) 4th(ms) Avg.(m

s)

100 0 0 0 0 0

500 4 3 4 4 3.75

1000 15 15 15 14 14.75

3000 127 126 126 124 125.75

5000 358 353 352 351 353.5

7000 687 695 689 736 701.75

9000 1152 1145 1132 1149 1144.5

10000 1428 1420 1425 1471 1436

Table 4.2: Simulation result from 2 processors on OpenMP

Scale

(N)

1st(ms) 2nd(ms) 3rd(ms) 4th(ms) Avg.(ms)

100 0.0862 0.3803 0.4018 0.376 0.3111

500 0.7504 1.0238 1.0505 1.0195 0.9610

1000 2.3312 2.6598 2.6461 2.6216 2.5647

3000 18.961 19.376 19.401 19.317 19.264

5000 51.497 51.497 51.497 51.497 51.497

5500 62.364 63.014 62.904 62.832 62.779

Table 4.3: Simulation result from multi-processors on CUDA

Figure 4.10: Time consuming through different scale in single
processor (red line), 2 processors (green line) and multi-

processors (blue line)

F. Other types of CA model—modified von Neumann CA

model

 By changing the transition rule and neighborhood definition,
a different CA model could be built as follows.

Figure 4.11a: Modified Neumann’s CA model (t=0ms)

Figure 4.11b: Modified Neumann’s CA model (t=100ms)

Figure 4.11c: Modified Neumann’s CA model (t=200ms)

Figure 4.12a: Modified Neumann’s CA model running in
single processor (t=0ms)

Figure 4.12b: Modified Neumann’s CA model running in
single processor (t=100ms)

Figure 4.12c: Modified Neumann’s CA model running in
single processor (t=200ms)

Figure 4.13a: Modified Neumann’s CA model running in mult-
processor (t=0ms)

Figure 4.13b: Modified Neumann’s CA model running in mult-
processor (t=100ms)

Figure 4.13c: Modified Neumann’s CA model running in mult-
processor (t=200ms)

V. CONCLUSIONS

From the various experiment on Conway life game, the

evidence shows that the calculation time on the given problem

domain has reduced by applying the parallel solving method

the cellular automata model. Moreover, another type of CA

model such as the modified von Neumann CA model has been

used to validate the stability of the parallel approach as well.

Besides, the performance applying parallel computing

with CUDA in the Cellular Automata model have a

remarkable advance comparing to the single and two-

processor in which the single processor have an exponential

increasing while the two-processor approach only have a

slightly slow but also the same trend as the single processor.

ACKNOWLEDGMENT

I would like to thank Dr. Gabriel A. Wainer for his patient
guidance and helpful advice during my project and assignments,
and for introducing me the realm of modeling and simulation
of discrete events.

I would like to thank Sixuan Wang and my classmates for
their helps in my assignments when I meet the bottle neck of
my assignments as well.

REFERENCES

[1] Cellularr automaton ,Wiki,
http://en.wikipedia.org/wiki/Cellular_automaton, 2014

[2] Chowdhury, D.R.;Basu, S.;Gupta, I.S.;Chaudhuri, P.P., “Design of
CAECC - cellular automata based error correcting code,” IEEE
Transactions, vol. 43(6), pp. 759-764, June 1994

[3] Parallel programming model, Wiki,
http://en.wikipedia.org/wiki/Parallel_programming_model, 2014

[4] CUDA, Wiki, http://en.wikipedia.org/wiki/CUDA, 2014

[5] CUDA Tutorial, http://geco.mines.edu/tesla/cuda_tutorial_mio/, 2014

[6] Rybacki, S.; Himmelspach, J.Experiments with Single Core, Multi-core,
and GPU Based Computation of Cellular Automata, Advances in
System Simulation, 2009. SIMUL '09. pp.62-67, Sept 2009

[7] NVIDIA, “What is cuda,” http://www.nvidia.com/object/cuda what is.

html, 16.01.2009.

[8] AMD/ATI, “Gpu technology for accelerated computing,”
http://www.amd.com/stream, 16.01.2009.

[9] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K. Skadron,
“A performance study of general-purpose applications on graphics
processors using cuda,” J. Parallel Distrib. Comput., vol. 68, no. 10, pp.
1370–1380, 2008.

[10] L. Nyland, M. Harris, and J. Prins, “Fast n-body simulation with cuda,”
in GPU Gems 3, H. Nguyen, Ed. Addison Wesley Professional, August
2007, ch. 31.

[11] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, “Cg: a
systemfor programming graphics hardware in a c-like language,” in
SIGGRAPH03: ACM SIGGRAPH 2003 Papers. New York, NY, USA:
ACM, 2003,pp. 896–907.

[12] Microsoft, “Writing hlsl shaders in direct3d 9,”
http://msdn.microsoft.com/en-
us/library/bb944006(VS.85).aspx,16.01.2009.

[13] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[14] J. Himmelspach and A. M. Uhrmacher, “Plug’n simulate,” in
ANSS ’07:Proceedings of the 40th Annual Simulation Symposium.
Washington,DC, USA: IEEE Computer Society, Mar. 2007, pp. 137–
143.

[15] D. Johnson, “A theoretician’s guide to the experimental analysis of
algorithms,” in Fifth and Sixth DIMACS Implentation Challenges, 2002.

[16] S. Gobron, F. Devillard, and B. Heit, “Retina simulation using cellular
automata and gpu programming,” Mach. Vision Appl., vol. 18, no. 6,
pp.331–342, 2007.

[17] M. Corporation, Microsoft DirectX 9 Programmable Graphics Pipeline.
Redmond, WA, USA: Microsoft Press, 2003.

[18] S. Druon, A. Crosnier, and L. Brigandat, “Efficient cellular automata for
2d/3d free-form modeling,” in In WSCG, 2003, p. 102108.

http://en.wikipedia.org/wiki/Cellular_automaton
http://en.wikipedia.org/wiki/Parallel_programming_model
http://en.wikipedia.org/wiki/CUDA
http://geco.mines.edu/tesla/cuda_tutorial_mio/
http://msdn.microsoft.com/en-%20%20us/library/bb944006(VS.85).aspx,16.01.2009
http://msdn.microsoft.com/en-%20%20us/library/bb944006(VS.85).aspx,16.01.2009

