
Modeling Hatton Cross Roundabout system with Cell-DEVS

Peter Miebach Pradeep Gunaratnam

Department of Systems and Computer Engineering

Carleton University

1125 Colonel By Drive

Ottawa, Ontario, K1S 5B6 Canada

{petermiebach, pradeepkumargunaratn}@cmail.carleton.ca

Keywords: Discrete event simulation, DEVS models, Cell-

DEVS, Cellular automata, Hatton Roundabout system

Abstract
 Hatton Cross Roundabout (HCR) is a modern

roundabout where large ring of road composed of six mini

roundabouts. In this paper, CD++ Cell-DEVS and Rise

software are used for simulation to reproduce the behavior

of Hatton Cross Roundabout system, and to further identify

the factors that affect the throughput of the roundabout

system. Cell-DEVS is an extension of DEVS that supports

defining and executing cellular automata models [1][2].

Firstly, this paper will introduce the project, idea and the

background. Then, it will provide detailed information about

the background needed for the project. Model definition is

presented in the next section followed by simulation results.

Based on the simulation results, a conclusion will be

provided.

1. INTRODUCTION

A type of circular intersection or junction in which road

traffic is slowed and flows almost continuously is called a

roundabout. Hatton Cross Roundabout (HCR) is a modern

roundabout where large ring of road composed of six mini

roundabouts as shown in the figure 1 below. Two lanes in

each direction to its neighbor link, which is indicated in blue

box in the figure 1, connect with the other mini-

roundabouts. Therefore, approaching it, you can turn either

left or right on to the "roundabout" and proceed around it in

whichever direction provides the shortest route to your exit.

Traffic flow around the smaller, inner roundabout is

clockwise, and traffic flows in the usual counter-clockwise

manner around the six mini-roundabouts and the outer loop.

The dashed line represents the yield point where entering

traffic must always yield to traffic already in the circle

regardless of lane position. It is assumed that a car would

know its destination exit before it enters the Hatton Cross

Roundabout. In order to simulate that, random exit number

is assign to each car as their destination exit before allow

them into the HCR [3][4].

Figure 1: Hatton Cross Roundabout [4]

The red square in the figure 1 shows one of the exits in the

one of the mini-roundabouts. In Hatton Cross Roundabout,

exiting directly from inner lane is generally permitted. In

order to simplify the problem, we made the assumption that

we can only take exit from the outer lane. The exiting traffic

has the right-of-way over entering traffic. On the other hand,

exiting from inner loop directly in the traffic circle, which is

shown in the orange square in figure 1, is usually not

allowed. One must change lane to the outer loop before

exiting.

The purpose of this simulation is to use CD++ Cell-DEVS

and RISE software to reproduce the behavior of Hatton

Cross Roundabout system, and to further identify the factors

that affect the throughput of the roundabout system. For this

project, some of the components and models that we

implemented in the assignment 2 will be reused as a base

and we will enhance it to meet the project expectations.

http://en.wikipedia.org/wiki/Intersection_%28road%29
http://en.wikipedia.org/wiki/Right-of-way_%28traffic%29

2. BACKGROUND

 The model chosen for assignment 2 is a two-lane

circular mini-roundabout traffic intersection, which is

similar to the one of the mini circles in the Hatton Cross

Roundabout in the figure. The example was extracted from

the paper [5]. The figure 2 below shows the mini-

roundabout that we implemented in assignment 2. The

arrow shows the direction of the traffic flow in the round

about.

Figure 2: Traffic Direction within a Two-Lane Roundabout

(assignment 2) [5]

We will modify this model to fit to our project requirement

where only three exits to the mini-roundabout and two exits

connect to other mini-roundabouts in each direction. The

figure 3 below shows the modified version of the mini-

roundabout that will be used in the Hatton Cross

Roundabout for this project. The left and the right exits

connect with the other mini-roundabouts while the bottom

exit connects with the road external the Hatton Round

About system. Special rules will be used for connecting the

mini roundabouts to decide while lanes the traffic should be

fed into the next roundabout. It will consider how many

hops the car is away from its destination exit.

A traffic queue model will be joined in the exits in which

connect with roads outside of the system in order to form a

new Cell-DEVS model. The queue delivers the car to the

first entrance cell of the mini roundabout. When it is safe to

enter the roundabout, the car will be move from the entrance

cell into the mini roundabout circle of cells. Each car enters

the roundabout one at a time. A car’s velocity is

predetermined, it is an indication of the driver’s speed at

which they prefer to travel at. Before a car that enters the

system, it will be given a random exit point at which the car

will leave the roundabout, the number of mini roundabout

the car must pass through to reach that exit point, and the

speed of which the driver likes to drive at. Car entering

traffic must always yield to traffic already in the circle, and

enter the roundabouts when it is safe, by perceiving the

other car’s velocity and position. The traffic will flow in the

counter-clock wise inside the circle.

Figure 3: Traffic Direction rule for mini-roundabouts in

HCR (project)

In Hatton Cross Roundabout model, each mini-roundabout

and roundabout connectors will be represented as Cell-

DEVS model while the roundabout entrance to the system

will be characterized as a queue DEVS models as discussed

above[6].

As part of the conceptual definition of the system, we make

the following assumptions that can serve as the boundary

conditions of the system, which further form the so-called:

1. When a car exiting the roundabout circle to another

mini roundabout doesn’t need to wait.

2. A car can only travel from one cell to its adjacent cell

ahead except at the exit point where it can travel to

right/exit cell and exit the system.

3. The car within the mini roundabout will leave at the

destination exit that it was assigned.

4. When the car leaves a mini roundabout that is

connected to another mini roundabout, it will decrease

its ‘number of mini roundabout hops left’ by 1. If the

number of mini roundabout hops is 0 when the car

enters the mini roundabout, its destination will be

changed to leave the system.

5. The out-going exits will be free always and the car

doesn’t have to wait to exit out of the system.

6. The capacity of the roundabout area is limited; the

maximum number of vehicles it accommodates is

constant and defined when the system is built.

7. No vehicle stops in the roundabout circle area at any

given time unless there is no free adjacent cell ahead.

8. Each vehicle in traffic uses the same amount of time to

pass through the intersection area.

9. Except traffic roundabout circle and the yield lines,

there are no other traffic control methods considered in

the system.

10. The traffic in each direction has at least one lane

respectively.
11. From each exit, only one car will enter the HCR system

at a given time.
12. The length of each lane, that feeds the traffic into the

HCR, is unlimited and each lane is capable of

accommodating unlimited number of vehicles at a

given time. Therefore, unlimited number of vehicle will

approach each exit to enter the system.

13. The entering traffic will be queued in the each exit and

will be send into the system one by one as the space

available in the system

3. MODEL DEFINITION

The roundabout is composed of three main models: Input

Queue mode, mini-roundabout connector model and

roundabout models. Each of this models and how they are

represented is discussed below. This section also discussed

about the formal definition

3.1. Input (Entrance) Queue

 This queue is used to store all cars in that enter the

specific entrance into the HCR system. It can contain zero

or more car at any time. When the cell in front of the exit

becomes free the car will be removed from the queue and

send into the system. Each car in the queue will be assigned

a destination exit number, number of mini roundabouts it

must pass through and the driver’s level of speed. The

entrance part is the one feeds the traffic from outside of the

HCR roundabout to the roundabout. It also, sends the traffic

outside of the HCR roundabout from the inside of the

system. Before it feeds the traffic into the system, it verifies

if the system has capacity to take another car and the cell in

front is empty. If yes then it will take the car from the input

queue and sends it into the system. This will be represented

by Queue DEV model.

3.2. Mini-Roundabout connector

The mini-roundabout connector connects the two mini-

roundabouts. One of the exits from one mini-roundabout is

connected to other mini-roundabouts exits that receive

traffic input. The figure 1 shows how it is connected. To

which lane of the exit the car should be fed decided based

on how many hops the car is away from its destination exit.

This will be represented by Cell-DEVS model

3.3. Roundabout

This component represents one of the mini-roundabouts

where a circle road exists. The lane and the area of

roundabout, through which the traffic of that lane passes, are

stateless. A car can move around the roundabout if no car is

ahead. Cars move in a counterclockwise direction. Cars

entering the roundabout yield to cars already present in the

roundabout that as coming towards those cars. The mini

roundabout component will also be represented by Cell-

DEVS model.

3.4. Formal Definition

In this section, the specification of the models will be

discussed one by one.

The DEVS formal specification, <X, S, Y, δint, δext, λ, ta>

for each of the atomic models is as follows:

3.4.1. Traffic Input Queue (atomic)

We will have six instance of Traffic Input Queue. As be

explained in the previous section, it will be coupled with the

external exit of the HCR. The names of the each instance

are: TrafficInput_1, TrafficInput_2, TrafficInput_3,

TrafficInput_4, TrafficInput_5 and TrafficInput_6.

The formal definition of the traffic input queue is shown

below:

 Figure 4: Traffic Input queue

M = <X, Y, S, ,  >

 X = {TrafficIn, done}

 Y = {TrafficOut}

 done = TrafficOut

 S = {queue.length in [0,N]}

  : X * S  S

 (TrafficIn, n) = n+1 for all 0  n <N

 (done, n) = n-1 for all 0 < n N

  : S  Y

 (n 0) = TrafficOut

The traffic input queue module will be tested using the

“black box” testing method. Test cases are created by

adding inputs at different times. The queue boundaries will

be tested. It will be verified that the queue state increments

as new traffic arrives and decreases as traffic leaves. When

there is no traffic in the system it shows appropriate state[7].

 3.4.2. Cell-DEVS formal specifications

The formal specification for the Cell-DEVS is discussed in

this section.

(-2,-2) (-2,-1) (-2,0) (-2,1) (-2,2)

(-1,-2) (-1,-1) (-1,0) (-1,1) (-1,2)

(0,-2) (0,-1) (0,0) (0,1) (0,2)

(1,-2) (1,-1) (1,0) (1,1) (1,2)

(2,-2) (2,-1) (2,0) (2,1) (2,2)

Cell’s Neighbours

M = <Xlist, Ylist, I, X, Y, ƞ, N, {r,c}, C, B, Z, select>

Xlist = {(-1,-1)…(1,1)};

Ylist = { };

N = {(-2,-2), (-2,-1), (-2,0) , (-2,1), (-2,2), (-1,-2), (-1,-1), (-

1,0), (-1,1), (-1,2), (0,-2), (0,-1), (0,0), (0,1), (0,2), (1,-2),

(1,-1), (1,0), (1,1), (1,2), (2,-2), (2,-1), (2,0), (2,1), (2,2)};

Ƞ = 25;

r = 8; c = 20;

X=Y={1, 2, 3, 4, 5}:

B = not-wrapped

C = {Cij | i ϵ [1, 6], j ϵ [0, 19]};

Z: Inverse neighborhood of N

Select = {(0,1), (0,-1), (-1,0), (1,0)};

Cell-DEVS models also planned to be tested using black

box where different inputs will be given to each sub-

component. Then, the results will be compared with the

expected result to see the component is functioning

properly. This will be done in much iteration.

3.5. Model variables

Cell state variables are used to represent the direction of the

cell, isExitPort status, initialization, and the last for testing.

The first digit is direction (D), the second digit is isExitPort

(E) status, third digit is Init (I) and fourth one is Testing (T)

State variables composition: D E I T

The possible values for D, E, I and T are described below.

What each of the value indicates is also discussed below.

3.5.1. Cell Direction (D)

This variable describes the direction of the cell. The

possible value and what it meant by the value is listed

below.

 1 (North)

 2 (East)

 3 (South)

 4 (West)

3.5.2. isExitPort (D)

This field specifies if the cell is an exit and which one. The

possible values for “isExitPort” field and what it means are

listed below.

 7 (Exit West)

 8 (Exit South)

 9 (Exit East)

 0 (Not an Exit)

3.5.3. Initialization (I)

In order for cells to output their characteristics at run time,

initialization of directionPort and isExitPort is set by the

state variables direction and isExit. Initially “I” is zero and

after the first iteration through the cell runs it becomes 1. It

remains 1 for the remainder of the simulation.

3.5.4. Testing (T)

This value is used for testing. Used when inserting a car into

a cell and T is a flag to insure that the car is only inserted on

the first iteration of the rules on the cells. When T is used,

the car will be inserted in certain cells with set values such

as exit number, number of hops left and speed.

3.6. Initial state variable values

The initial state variable values are shown below. A rule

was created to set up the initial state variables.

(1,1) = 4 7 0 0 //cell (1,1) has direction of west and it is exit west

(1,2) = 3 0 0 0 //cell (1,2) has direction of south and it is not an exit

(1,3) = 4 0 0 0 //cell (1,3) has direction of west and it is not an exit

(1,4) = 4 0 0 0 //same way following states can be interpreted

(1,5) = 4 0 0 0 //the last zeros represent init and test respectively

(1,6) = 4 0 0 0

(2,1) = 2 0 0 0

(2,2) = 3 0 0 0

(2,5) = 1 0 0 0

(2,6) = 2 9 0 0

(3,2) = 2 0 0 0

(3,3) = 2 0 0 0

(3,4) = 2 0 0 0

(3,5) = 1 0 0 0

(4,3) = 3 8 0 0

(4,4) = 1 0 0 0

3.6.2. Initial values for exitNumberPort:

The initial row value for the exitNumberPort neighbor port

is shown below.

initialvalue : 0

localtransition : roundabout-rule

initialrowvalue : 0 00000000

initialrowvalue : 1 01111110

initialrowvalue : 2 01100110

initialrowvalue : 3 00111100

initialrowvalue : 4 00011000

initialrowvalue : 5 00000000

Note that 1 represents an empty road and 0 is not a road.

3.7. Cell Input and Output Neighbour ports

The input and output neighbor ports detail is discussed in

this section. The car characteristic is influenced by Car Exit

Number, Number of Hops, Speed, direction, and isExit

neighbor ports. The neighbor ports are as follows:

exitNumberPort , numHopsLeftPort, speedPort,

directionPort, and isExitPort. Each of these variables and

the possible values for them are discussed below.

3.7.1. exitNumberPort

The following five values are used for car exit number.

What meant by car exit number is that, which exit the car is

going to take. The value zero means it is not a road. This

value is given to the car before in enters the system and this

values is passed along as car moves until it exits the system.

 1 (Empty Road)

 7 (Cell occupied by car going to West Exit)

 8 (Cell occupied by car going to South Exit)

 9 (Cell occupied by car going to East Exit)

 0 (Not a road a.k.a. border)

3.7.2. Number of Hops

The number of hops left neighbor ports indicates how many

mini roundabouts car must pass through before it reaches its

desired destination exit. In the case for the Hatton Cross

roundabout, the possible values for this is: 0, 1, 2, 3, 4 and 5

3.7.3. Car speed

The speed variables show the speed of the car. There are

two speed levels available which are low and high. They are

represented by 1 and 2 respectively. Typically car will have

a value of 1.

When a car is waiting to enter the roundabout it will check

if the cell in front and the cell to the left of the cell in front

are empty to avoid collision. If the car in the roundabout is

moving with low speed, 1, the car entering the system

would enter the roundabout as long as other car is at least

one cell away. If there is a car in the system that is two cells

away and is speeding, 2, the car entering the system will

wait for the speeding car to pass before entering the system.

3.7.4. Direction Ports

The direction ports are initialized at the start and never

changed. They are used to help guide cars through the

roundabout system.

3.7.5 isExit Ports

The isExitPorts are initialized at the start and never

changed. They are used to indicate to cars if the adjacent

cell is an exit cell. The car’s exitNumberPort must match

that of the cell’s isExitPort for the car to leave the system.

3.7.6. Local neighbors

The local neighbor representation is shown below. This is

different from our assignment two solution where positing

tracking neighbours were used by the cells that are not near

an exit so the correct rule will be executed and the car will

moved to the correct position. This is not the case anymore.

type : cell

width : 8

height : 6

delay : transport

defaultDelayTime : 100

border : nonwrapped

neighbors : roundabout(-2,-2) roundabout(-2,-1) roundabout(-2,0)

roundabout(-2,1) roundabout(-2,2)

neighbors : roundabout(-1,-2) roundabout(-1,-1) roundabout(-1,0)

roundabout(-1,1) roundabout(-1,2)

neighbors : roundabout(0,-2) roundabout(0,-1) roundabout(0,0)

 roundabout(0,1) roundabout(0,2)

neighbors : roundabout(1,-2) roundabout(1,-1) roundabout(1,0)

 roundabout(1,1) roundabout(1,2)

neighbors : roundabout(2,-2) roundabout(2,-1) roundabout(2,0)

 roundabout(2,1) roundabout(2,2)

3.7.6. Roundabout Ports
When a car leaves the mini roundabout to enter into another mini

roundabout, information about the car is passed along. Information

such as carExitNumber, numofhopsleft and speed are composed

into 3 digit integer which is sent out of the respective port

(out_west or out_east) to the next mini roundabout. The next

roundabout will decompose this 3 digit integer and set the entrance

cell’s neighbor ports for carExitNumber, numofhopsleft, and

speed.

3.7.7. Roundabout Rules

In order to replicate the behavior of the real HCR

roundabout and car movements, different rules were

developed. The rules are:

 Initial rules

 Movement rules (counter clockwise)

 Entering mini-roundabout exit rule

 Leave mini- roundabout rule

 Car entering cells

 Car exiting cells

 Yield rules

 Car exiting Hatton Round About system

 Car enter Hatton Round About system

The roundabout rule format is as follows:

<port_assignations>

[<assignations>]

 <delay>

 <condition>

Example rule: The following rule is used for initializing the

cells. This will be run only once by each cell at the

beginning. It is used to transfer the information from the

cell’s state variables, that were previously determined in the

roundabout.stvalues file, to the neighbor ports.

[roundabout-rule]
%/////////////////////////////INITIALIZATION///////////////////////////

%initialization of cells (to be run only once by each cell)

rule : { ~directionport := $direction;
~isexitport := $isexit;

~exitnumberport := (0,0)~exitnumberport;

~numhopsleftport := 0;}
 { $initDone:=1;}

 100
 { $direction > 0 and

 $initDone =0 }

%///////////////////////END OF INITIALIZATION/////////////////////////

4. SIMULATION RESULTS

The models and simulations were developed as discussed in

the previous sections. Simulations were then run and the

captured results were analyzed. In this section, the

simulation and the results will be discussed.

Figure 5 below shows a test with an initial congested mini

roundabout, which was captured in the CD++ builder. The

cells that has blue (7), yellow (8) and red (9), has cars that

are moving towards west, south and east exits respectively.

The video that attached with the package shows the

movements of these cars. It shows how cars yield the cars in

the system before entering the roundabout. It also shows

how the cars will exit when they arrive at their target exits.

Figure 5: Initial congested mini-roundabout

As it was mentioned earlier, the east exit of one mini-round

about is connected with west exit of its adjacent (right)

roundabout. Same way, west exit of the same roundabout is

connected with the east exit of its adjacent (left) roundabout.

When the car leaves from one mini-roundabout to enter the

next one, the car characteristics (exit number, number of

hops left and the speed) will be sent to the next mini-

roundabout through a port (out_west or out_east).

The following figures show different scenarios that were

used for testing the mini-roundabout. It verified that model

behavior meets the expected results.

In first scenario it was tested that when the car enters the

mini-roundabout from another mini-round and the

‘numofhopsleftport’ is at ‘0’, the exit number gets updated

to ‘8’ indicating that in this mini roundabout the car will

leave the system, at the south exit, and NOT entering into

another mini roundabout. As you can see in the figure 6, the

car with the exit number 9 enters the mini-roundabout from

the left. According to the target HCR exit of the car, a new

exit number of the current mini-roundabout will be

assigned, which is 8 in this case.

 =>
Figure 6: Testing exit number update when car enters

Car movement inside the mini-roundabout was tested as the

next scenario. Figure 7 below illustrates that. The car with

exist number 8 moves from the cell (2,2) to (2,3). The

previous cell gets updated.

=>
Figure 7: Testing Movement rules

Car exiting the mini-roundabout was tested next. The figure

8 below shows how the car in the south exit leaves the

roundabout that the cell is being replaced with 1.

 =>

Figure 8: Testing exit rules (out of HCR)

Figure 9 shows the scenario where a car approaches the

mini-roundabout west exit and its ‘numberofhopsleft’ for

the target exit attribute is decremented by one (not shown in

diagram) when car leaves the exit. In this case, the

information is sent to the ‘out_west’ port.

 =>

Figure 9: Testing exit into another mini-roundabout and

number of hops left is decrement by one

The following test case is created to test whether the

entering car factors in the speed of the car that is already in

the system when it tries to enter the system. As you can see

in the figure 10, in the first drawing, the car in the cell (4,4)

waiting to enter the mini-round about. It checks the cell in

front (4,3) and the cell on the left (3,3) to it to see if they are

free. It senses that they are free. However it further checks

that the car on the left in cell (2,3) with the carExitNumber 9

is moving with high speed(2). It decides not enter the exit to

avoid collision as the other car will occupy the cell at the

same time. It yields the car in the system and waits until the

cell in front becomes free. This test was passed. If the speed

of the car in the roundabout was slow (1), the car entering

the roundabout would have entered.

 =>

Figure 10: Testing entering car factors in the speed of the

car in the system when deciding to enter the system

Example testing rule is shown below:

%%%%%TESTING-numhopsleftport%%%%%

%(2,1)

rule : { ~exitnumberport := 9;

 ~numhopsleftport := 1;}

 {$testinitDone:=1; }

 100

 { (-1,0)~isexitport = 7 and

 $testinitDone =0}

Overall, extensive tests were done to ensure each

components functions properly. Then they were integrated

and integration tests were performed. Many different

scenarios and different inputs were covered in the testing.

The test results were satisfactory. We used RISE software

with Lopez API for testing. RISE supports different CD++

versions of Cell-DEVS formalism. Lopez is an extended

version of CD++ for allowing the cells to use multiple state

variables and to use multiple ports for inter-cell

communications. Since we used multiple state variables and

multiple neighbor ports in our models, we used Lopez API.

Testing was initially performed on the workstation since the

RISE server was down. Running these simulations on

workstation consumes lot of time due to the fact of having

issues trying to bring up the simulation server. Once the

RISE web server was available, all of the testing was

perform on the web server.

5. CONCLUSION

In this paper, CD++ Cell-DEVS and RISE software, lopez

API, are used for simulation to reproduce the behavior of

Hatton Cross Roundabout system and to further identify the

factors that affect the throughput of the Hatton Cross

Roundabout system which is a modern roundabout where

large ring of road composed of six mini roundabouts. Cell-

DEVS is an extension of DEVS that supports defining and

executing cellular automata models.

The project was based on assignment two and expanded it to

make the roundabout behavior more realist by considering

more factors and scenarios. Issues from assignment 2 that

were found were fixed in this project. Multiple states were

introduced to factor speed, number of hops and etc.

For the testing, we considered many scenarios in multiple

test cases and tested each component individually and

extensively before combining them and testing to ensure

each components functions properly. We used RISE

software with Lopez API for testing. Testing and running

the simulation of the RISE server was much faster than

running on the workstation.

During development and testing phase, many challenges

were encountered and much time was spent debugging the

issues. One of the main challenges faced was the compiler

doesn’t give details about the syntax errors such as what the

error was and where. Hours were spent in some cases in

debugging the code before finding the actual syntax error.

Another issue was that the RISE server was down for about

a week therefore hindering testing and simulation of the

code. Learning curve also played an important role in the

slow start.

At the end, many issues were overcome and most of the

goals that were set were achieved for this project. Due to

time constrains, the last component of connecting mini-

roundabout together was not achieved. Given more time,

and more support with the tools, all of the project’s goals

would be fully achieved.

Overall, it was a very good learning experience of

simulating a real system using DEVS, Cell_DEVS, RISE,

and other tools.

6. REFERENCE

[1] G. Wainer; N. Giambiasi: "Application of the Cell- DEVS

Paradigm for Cell Spaces Modeling and Simulation",

Simulation, Vol. 71, No. 1, pp. 22-39, January 2001.

[2] “Discrete-Event Modeling and Simulation: a Practitioner’s

approach”. G. Wainer. CRC Press. Taylor and Francis.

2009

[3] http://www.airliners.net/aviation-

forums/non_aviation/print.main?id=1075964

Accessed: December 15, 2012

[4] http://en.wikipedia.org/wiki/Roundabout

Accessed: December 15, 2012

[5] Gwizdalla, T.M.; Grzebielucha, S.; , "The traffic flow

through different form of intersections," Computer

Information Systems and Industrial Management

Applications (CISIM), 2010 International Conference

on , vol., no., pp.299-304, 8-10 Oct. 2010

[6] J. Ameghino; G. Wainer: "Application of the Cell-Devs

paradigm using N-CD++”, Summer computer

simulation conference, 2000

[7] Chaudhuri, P.P.; Chowdhury, D.R.; Paul, K.; Sikdar,

B.; , "Theory and Applications of Cellular Automata for

VLSI Design and Testing," VLSI Design, 2000.

Thirteenth International Conference on , vol., no., pp.4,

2000

BIOGRAPHIES

PETER MIEBACH is a Masters of Engineering student at the

Computer Systems Department at Carleton University, Ottawa,

Canada. He completed his Bachelor’s degree in

Communications engineering from Carleton University in

2008. He has been working in private sector as software

developer since then. His e- mail address is

petermiebach@cmail.carleton.ca

PRADEEP GUNARATNAM has received Bachelor in

Communications Engineering from the Carleton University,

Ottawa, Canada in 2008. He has worked as software developer

in private and public sectors. He is currently pursuing his

Masters of Engineering in Electrical and Computer Engineering

at Carleton University (expected to graduate in 2013). His e-

mail address is pradeepkumargunaratn@cmail.carleton.ca

mailto:petermiebach@cmail.carleton.ca
mailto:pradeepkumargunaratn@cmail.carleton.ca

