
 3D Visualization of a CD++ Cell-DEVS Football Stadium Simulation Using Blender

SYSC 5104. Methodologies for Discrete Event Modelling and Simulation

3D Visualization of a CD++ Cell-DEVS
Football Stadium Simulation Using Blender

Jipson Johnson (101028751)
Dept.of Systems and Computer Engineering

Carleton University
jipsonjohnson@cmail.carleton.ca

Antony Anty Kannampilly (101053630)

Dept.of Systems and Computer Engineering
Carleton University

antonyantykannampill@cmail.carleton.ca

Abstract-

Cell-DEVS is an expansion of the DEVS formalism
which consolidates DEVS with the formalism for Cellular
Automata. It is especially helpful for characterizing spaces
by deteriorating them into individual cells. The CD++
Toolkit empowers one to model and simulate a genuine or
manufactured framework utilizing either DEVS or Cell-
DEVS. It contains a Modeler device that grants just 2D
visualization of the simulation. This specific paper centers
upon a push to create a 3D representation of a current
CD++ Cell-DEVS reproduction utilizing the open source 3D
perception programming called Blender. The simulation
scenario utilized was one that included the visualization of
a football stadium and 4 robots securing the stadium.
Stadium is under attack by ISIS and bombs are planted in
the ground. The individual robots were compelled to move
about the stadium with a specific end goal to filter the
ground to identify the appearance or nonappearance of
bomb. This paper talks about the conceptual design and
employment processes, issues experienced alongside their
determination.

Keywords: Cell-DEVS, CD++ Toolkit, Cell-DEVS visualization,
Blender, football ground stadium

I. INTRODUCTION

A definitive objective of this work was to take the
yield from a CD++ Cell-DEVS simulation and utilize it to
create a 3D visualization. The approach that was picked
included the utilization of the [freely available] and open
source 3D content creation suite [called Blender]

This paper will examine in detail the means taken
to accomplish this objective, from beginning acquaintance

with past work and the apparatuses required, through
applied plan, lastly to usage. Issues experienced and areas
for future work will likewise be examined. The scenario for
the simulation is robots searching for bombs in a football
stadium.

In June 2016 France was attacked by ISIS, and
there was scattered bomb explosion all over France. And at
that time Euro 2016 was held at France. And here in our
case the final match is going on between France and
Portugal in Stad de France. And ISIS have planted bombs in
the ground, so in order to secure the stadium and
audiences we are trying to search the bomb and diffuse it
using Robots. This have been simulated in Cell-DEVS and
implemented in Blender for a 3D view of the model.

II. BACKGROUND

A. Discrete Event Systems (DEVS) Specification
formalism

The Discrete Event systems Specification (DEVS)
formalism gives a strong scientific displaying establishment
and it is based upon Systems Theory ideas. While applying
the DEVS formalism to the demonstrating of a genuine or
counterfeit framework, one can break down it into atomic
and coupled segments, or models. A atomic model might
be thought to be the most fundamental of building block
with which to speak to a framework. Particular states are
characterized for each atomic model, and the model can
exist in just a single state at a given point in time. A coupled
model is made out of a few atomic or coupled models. The
DEVS formalism is utilized to characterize every model and
their various leveled interconnections [2]

mailto:jipsonjohnson@cmail.carleton.ca
mailto:antonyantykannampill@cmail.carleton.ca

 3D Visualization of a CD++ Cell-DEVS Football Stadium Simulation Using Blender

SYSC 5104. Methodologies for Discrete Event Modelling and Simulation

B. Cell-DEVS

Cell-DEVS is an augmentation of the DEVS formalism

which consolidates DEVS with the formalism for Cellular
Automata (CA). Utilizing this way to deal with displaying
permits an expert to characterize a cell space that is
comprised of individual cells. Every cell is characterized as a
atomic model and the technique for the atomic of these
cells is additionally characterized. [4]

A cell's conduct is characterized utilizing the data

inputs (N) from its neighbors (which are characterized by a
specific kind of neighborhood). It is these inputs of info that
actuate a cell's neighborhood computing function (τ). The
yields from a cell are controlled by the kind of delay (d).
Figure 1 gives a portrayal of this.

Figure 1. Cell-DEVS atomic model with transport delay

A coupled Cell-DEVS model is the resulting array of
cells (atomic models) with a given dimensions, border, and
zones (if applicable).

Figure 2. A Cell-DEVS coupled model

The key parameters that are used to define a Cell-DEVS

model are discussed below:

Neighbourhood: A cell's neighborhood is comprised of the
neighbors whose inputs of info the cell will get. The most
broadly utilized neighborhoods from CA include: Moore
(incorporates the 8 adjoining cells and the starting point
cell); Von Neumann (incorporates cells toward the North,

South, East and West and the inception cell); expanded Von
Neumann (a 5x5 rhombus with birthplace in the focal cell);
hexagonal topology; and triangular topology. [4] Figure 3
portrays three of these areas.

Figure 3. Moore, Von Neumann and
Extended Von Neumann neighbourhoods

Local computing function (τ): The capacity used to register
the future condition of the cell based upon the
contributions from the neighbourhood.

Delay (d): A delay can relate to every cell. It is this delay
characterizes the time at which state changes are
transmitted to neighboring cells. The delay can be either
inertial or transport. Transport delay characterizes state
changes that happen upon the close of the delay. Inertial
delay presents the idea of pre-emption. The last arrived
future occasion can be pre-empted if there is another
contribution before the utilization of the inertial delay [4].

Dimensions: The cell space might be two dimensional or
incorporate extra layers that give a more prominent level
of detail to the model.

Border: A cell space can have a characterized border or no
border. At the point when there is no outskirt, this
characterizes a model where all cells have a similar conduct
(ie. the cells are said to be wrapped, or depicted another
route: cells in one outskirt are associated with those in the
inverse one utilizing the area relationship). On the off
chance that a fringe is characterized then the phone space
is not wrapped and the related one of a kind zones should
likewise be characterized.

Zones: These are utilized to characterize ranges of the cell
space with remarkable conduct. For instance, if the Cell-
DEVS model represents to a room, the outskirt would not
be wrapped and zones would be determined to
characterize the one of a kind conduct of dividers,
entryways, spaces, obstacles, etc.

 3D Visualization of a CD++ Cell-DEVS Football Stadium Simulation Using Blender

SYSC 5104. Methodologies for Discrete Event Modelling and Simulation

C. CD++ Toolkit

The CD++ Toolkit is a modeling and simulation tool

that takes into consideration the development and
simulation of models in both DEVS and Cell-DEVS. In the
case of DEVS, atomic models are modified in C++ and are
joined into an essential class chain of command. Models
can then be coupled and built into the simulation engine by
utilizing specification language.

At the point when utilizing a Cell-DEVS approach, the

toolkit likewise incorporates a specifications language for
characterizing models based upon the formal specification.
Cell-DEVS models are thought to be an exceptional instance
of coupled models. Keeping in mind the end goal to
appropriately describe the total cell space, the parameters
talked about in area A must be characterized [6]. The
behaviour of the neighborhood computing function (τ) is
caught in an arrangement of principles that take after a
given format:

POSTCONDITION DELAY (PRECONDITION)

This implies when the precondition is fulfilled, the

condition of the cell will change to the characterized
postcondition taking after the predetermined delay time.
The best possible requesting of the standards is significant.
On the off chance that the precondition is observed to be
False, then the following standard in the rundown will be
assessed. On the off chance that no control in the rundown
is observed to be True, an error will be produced to
recognize that the specification is not finished.

Figure 4 provides a case of the specification languages used
to characterize models utilizing the CD++ Toolkit for Cell-
DEVS. This specific case was created for the simulation of
football ground searching that will be depicted in detail in
the following area.

Figure 4. Sample Cell-DEVS specification

Following defined parameters are of from Figure 4
Neighbourhood: Characterized by indicating each of the
neighbors in connection to the cell of inception. Every cell
(x1,i,...,xn,i) represents a displacement from the middle cell
(0,...,0), where - x signifies both up and left, and +x
indicates down and ideal, as appeared in Figure 5.

Figure 5. Sample definition of neighbours

Local computing function: indicated through the meaning
of the principles.

Delay: transport.

Dimensions: 10x10 with two layers.

Border: is not wrapped, so exceptional zones have been
indicated.

Zones: have been utilized to determine the remarkable
conduct for the four outskirts of the stadium and each of its
four corners. Every zone represents a cell, or gathering of
cells, with its own arrangement of rules.

 3D Visualization of a CD++ Cell-DEVS Football Stadium Simulation Using Blender

SYSC 5104. Methodologies for Discrete Event Modelling and Simulation

initialCellsValue: a .val CD++ record is utilized to
characterize the begin values for each of the cells in the cell
space.

C.1. CD++ Toolkit File and Message Types

CD++ Toolkit records are of 3 types these are: the
.ma file; the .val file; and the .log file. The fundamental
parameters that characterize the cell space are contained
in the .ma record (Figure 4 is a depiction taken from the
.ma document from). Next, initial values for the cells may
be defined in several ways within the toolkit: using a
default initial value (initialvalue); creating a file that
contains a list of initial values for the cells
(initialCellsValue); or creating a file that contains a map of
values that will be used as the initial state for the cellular
model. The underlying cell qualities were unequivocally
characterized inside a.val record (Figure 6).

Figure 6. .val file

Finally, the .log file contains the resulting messages
passed during the simulation of the model(s). There are
several types of these messages, including:

 Message type I – Initialization message

 Message type * – Internal message

 Message type X – External message

 Message type Y – Output message

 Message type D – Done message

It is the Y messages that are of particular import to the
discussion related to visualization, as they provide the time,
cell coordinates, and new state values with which to depict
the results of the simulation. The complete format for the
Y messages is as follows:

Message Y/time/cell/port/new state value

Figure 7 provides a snapshot of the .log file.

Figure 7. .log file

III. CELL-DEVS FOOTBALL GROUND

SIMULATION

The cell space displayed in the Cell-DEVS
simulation of the simulation represent the football ground.
ISIS have planted bombs in different parts of the gound.
Every cell speaks to a sensible zone of ground that a robot
could be relied upon to check for a bomb. The stadium cell
space has two layers. The main (layer 1) contains the real
manner of the bombs. The state values for this layer don't
change during the simulation. The second (layer 0) contains
the guide of the stadium produced by the robots moving
about the stadium. The state values for this layer change as
the robots move about the stadium and sweep the ground
for bombs. Table 1 delineates the state values that are
characterized for this simulation and the colour palette that
was utilized for the CD++ Cell-DEVS visualization.

In this simulation, robots are compelled to move
just to their North, East, South and West. For crash
evading, the robots look to the two cells to their North,
East, South, and West keeping in mind the end goal to

 3D Visualization of a CD++ Cell-DEVS Football Stadium Simulation Using Blender

SYSC 5104. Methodologies for Discrete Event Modelling and Simulation

maintain a strategic distance from crashes with different
robots. The neighbourhood may therefore be considered as
a variation on the extended Von Neumann neighbourhood
(which is meant to be a 5x5 rhombus).

Table 1. State values and colour palette for CD++ Cell-
DEVS simulation

Definition State Colour

LAYER 1 – FOOTBALL GROUND OUTLOOK

No bomb 30 Red

Cell with bomb 40 Blue

LAYER 0 – FOOTBALL GROUND MAP

Cell without mapping 20 Dk
Grey

Cell without mapping with robot 120 Grey

Cell after mapping – without bomb 0 Blue

Cell after mapping – with bomb 10 Red

Cell after mapping – without bomb,
robot

100 Lt Blue

Cell after mapping – with bomb,
robot

110 Pink

Cell after mapping – without bomb,
robot moving North

201 Med
Blue

Cell after mapping – without bomb,
robot moving East

202 Med
Blue

Cell after mapping – without bomb,
robot moving South

203 Med
Blue

Cell after mapping – without bomb,
robot moving West

204 Med
Blue

Cell after mapping – without bomb,
robot moving North

211 Med
Red

Cell after mapping – without bomb,
robot moving East

212 Med
Red

Cell after mapping – without bomb,
robot moving South

213 Med
Red

Cell after mapping – without bomb,
robot moving West

214 Med
Red

 The variation on the extended Von Neumann
neighbourhood is shown in Figure 9.

Figure 9. Variation on Extended Von Neumann
Neighbourhood

The football ground cell space was intended to

have an border that obliges the movement of the robots to
that space as it were. In this manner (as appeared in Figure
4), in CD++ the border is characterized as:

border : nowrapped

Keeping in mind the end goal to show the suitable

conduct of robots that are obliged to move just inside the
characterized stadium cell space, unique zones were
characterized. Zones were characterized for the stadium
borders furthermore for each of the four corners. Each
zone has its own unique local transition function rules
defined in order to properly model the behaviour expected
from the cells within those zones. The definition of the
zones is depicted in Figure 4.

Keeping in mind the end goal to start the
simulation with a characterized arrangement of robots and
the real manner of the bombs inside the stadium, a .val
record was used. This record was utilized to list the
underlying state values for every cell inside the cell space
(both layers 0 and 1). A specimen of the .val file for is
appeared in Figure 6.

To show that the model appropriately catches the
sought of desired behaviour, the accompanying three
figures delineate screen captures from the CD++ Modeler
at various circumstances all through the simulation. The
first figure (Figure 10) demonstrates that the underlying
situation of the robots has been completed as per the .val
file (ie. that a robot was set in each of the four corners).
Layer 0 is appeared at left and layer 1 is appeared at right.

 3D Visualization of a CD++ Cell-DEVS Football Stadium Simulation Using Blender

SYSC 5104. Methodologies for Discrete Event Modelling and Simulation

Figure 10. Initial stage of the Football Ground simulation

The second figure (Figure 11) shows that the
robots are precisely mapping the stadium and apprising the
stadium map (layer 0). Note that the location of the bombs
in the stadium (layer 0 at left) accurately reflects their
actual location within the stadium (layer 1 at right).

Figure 11. Intermediate stage of Football Ground
simulation

The last figure (Figure 12) shows that the robots were
effective in completing and accurately mapping the
stadium.

 3D Visualization of a CD++ Cell-DEVS Football Stadium Simulation Using Blender

SYSC 5104. Methodologies for Discrete Event Modelling and Simulation

Figure 12. Final stage of Football Ground simulation

IV. 3D TOOLS – PYTHON AND BLENDERS

Blender is depicted as "an incorporated

application that empowers the formation of an expansive
scope of 2D and 3D content. It gives an expansive range of
displaying, finishing, lighting, liveliness and video post-
preparing usefulness in one package." It has a fairly one of
a kind User Interface and depends vigorously upon console
easy routes connected alone or in conjunction with the
mouse. Figure 13 gives a preview of the Blender interface
at initial stage. This screencap demonstrates the
accompanying key parts of the interface: the 3D View (1);
the 3D square that is available at the initial stage (2); the
lamp that is available at initial stage (3); the camera that is
available at initial stage (4); and the Buttons Window (5).

Figure 13. Blender interface

As we were new to Blender, we found that there
was a somewhat soak expectation to absorb information
connected with acquainting our self with how to utilize
Blender and how to saddle the greater part of its
components. Inside the time limitations connected with
this specific venture, I was unquestionably not ready to
wind up distinctly a completely useful Blender client. The
accompanying segment will talk about a portion of the
issues connected with this reality.

The Blender site depicts Python as a universally

useful scripting language. A regularly growing Blender
Python API [14] exists that gives access to Blender's inward
capacities so as to influence them furthermore to broaden
Blender's usefulness. The prescribed adaptation of Python
is regularly included and introduced with the appropriation
of Blender. Since Python was implanted in Blender, access
to the Blender Python API modules must be made by
running the scripts in Blender. You [cannot] import the
Blender module into an outside Python translator. [9][10]

Inside Blender, a scene is made to contain the
greater part of the items that will shape part of that scene.
A solitary Blender record can contain numerous scenes,
since it is sorted out and set up to have the capacity to
contain a whole motion picture. [11] Essentially a scene
contains numerous articles that may then be sorted out
into layers for simplicity of administration [11]. The sorts of
articles that can be available inside a scene are compelled
just by the creative energy and expertise of the scene's
architect. Every object is comprised of various faces,
vertices and edges, all of which can be controlled utilizing
Blender. The scene will likewise incorporate lamps to give
lighting to the scene. Lamps are required when a creator

1

2
3

4

5

 3D Visualization of a CD++ Cell-DEVS Football Stadium Simulation Using Blender

SYSC 5104. Methodologies for Discrete Event Modelling and Simulation

means to quicken the scene, if no lamp(s) are available
then the rendered scene will be dark. Cameras additionally
shape part of the scene. These can be set all through the
scene to film it from different edges, and it is from a
camera's vantage point that a liveliness is shot. The
accompanying figure (Figure 14) delineates the Outliner
View inside Blender, which gives a rundown of those items
that are found inside the scene for the re-enactment from.

Figure 14. Scene for Football Ground visualization

There are a few modes in which is used to work inside
Blender. Edit and Object modes where the important
modes that are used here. The faces of the items must be
chosen in Edit Mode. So, keeping in mind the end goal to
apply diverse materials to a object it was important to be in
Edit Mode. In Object Mode, articles could be moved,
pivoted or scaled. Edit Mode was essential for performing
more nitty gritty changes to the geometry and materials of
object.

Just in our acclimation with Blender, we start to peruse

about an ability called interpolation (IPO). We never did
completely build up a comprehension of the power that
insertion could loan to the perception of our CD++ Cell-
DEVS recreation. If we had known more about the force of
insertion, we think this would have a huge effect upon our
theoretical outline. We found that IPO is the way toward
assessing a object's position (or different traits) based upon
a known begin and end points, and the time between the
begin and end [12] and that it is utilized for the liveliness of
a scene.

Animation software for the most part uses three

techniques to make 3D objects move, these are: key
frames; movements and paths. The Blender IPO framework

fuses the initial two, and either can be connected to
objects keeping in mind the end goal to enliven them.
There are a few sorts of addition inside Blender, including
constraints, object, sequence, material, texture, world and
shape. Inside every IPO there are diverse sorts of channels
against which introduction (movements or key frames) can
be connected. For instance, inside the Material IPO type,
there are channels like R, G, B, and texR, texG, texB. So as
to apply insertion, one should first choose a channel and
after that apply movements or key frames to it. Insertion
can be connected to more than one object (i.e. one IPO can
enliven a many objects).

Commands to make new scenes, objects, lights, cameras,
and so on is contained in Python scripts, or they can be
utilized to just copy objects that as of now exist in a
Blender scene. They can likewise contain commands to
collaborate IPO motions or key frames with a object or
multiple objects.

V. INSPIRATION FROM EARLIER WORK

Blender was picked as the tool to create the 3D

representation of the CD++ Cell-DEVS football ground
simulation. This decision was overwhelmingly based upon
the way that the work that we done to make the
assignment 1, made us think that making a stadium and
giving it a 3D view would be a marvelous enhancement. So
we thought of implementing the model in Cell-DEVS and
convert it in to 3D.

With a specific end goal to complete 3D representation

of a CD++ simulation, a Python script is required. The first
Python script, by Poliakov, empowered Blender to translate
a CD++ Cell-DEVS simulation [14]. This script was just
intended to peruse and picture the .log document from a
CD++ Cell-DEVS reproduction.

The first Python script was essentially enhanced by

Castonguay in [13]. His adaptation of the script included
two new and critical capacities. The first of these was the
capacity to peruse the .ma file and look for the presence of
a .val file. The script then read in the underlying cell state
values from the .val file and gave a 3D perception of these
with a specific end goal to portray the simulation begin
state. The second ability that was included was that of an
information log file for investigating. The Python script
made an information log content document that was
utilized to catch key moves that were made, including: the
perusing of the .ma file; the perusing and perception of the
.val file (if relevant); and the perusing and representation

 3D Visualization of a CD++ Cell-DEVS Football Stadium Simulation Using Blender

SYSC 5104. Methodologies for Discrete Event Modelling and Simulation

of the .log file. This capacity was especially useful for
troubleshooting the script in our specific case.

Keeping in mind the end goal to acquaint our self with

Blender and the current Python script, furthermore to
influence the previously mentioned extra usefulness, we
depended upon the aircraft evacuation simulation and
Python script created by Castonguay [13]. In his work, he
made a scene inside Blender that officially contained three
objects: a human shape; a 3D cube that is similar to a seat;
and a 3D cube similar to a plane exit. The Python script
then read the suitable .val and .log files for the visualization
of the system. So as to construct the representation, the
Python script was organized to make Blender copy the
objects that as of now existed in the scene.

At the start of our perception exertion, we didn't know
that the Python script could likewise be utilized to teach
Blender to make fresh out of the new scenes and objects.
Therefore, the approach that we took unequivocally
reflects that of Castonguay [13]. We in the long run made a
scene inside Blender that officially contained the model of
a football stadium with floodlights and scoreboard. And
this was made using the different functions that Blender
offers such as cube, plane, tube etc. The initial step four
objects in my underlying Blender scene towards this project
was a football stadium and it is appeared in the
accompanying figure:

Figure 15. Initial Blender scene for the Football Ground
simulation

We knew about the troubles experienced by
Castonguay in legitimately scaling an open source-acquired
seat object in the scene. Thus, I decided to just utilize the

human frame that both he and Poliakov used keeping in
mind the end goal to portray my robots. Also the football
stadium that we made in the first stage was not looking as
original as a football stadium. So we had other ideas in
mind. The time imperatives connected with finishing this
venture did not allow us to investigate the issues identified
with outlining our own particular robot utilizing Blender or
appropriately scaling an alternate open source instantiation
of a robot inside our scene.

VI. BLENDER AND ITS INFLUENCE ON
 THE VISUALIZATION CONCEPTUAL DESIGN

 As beforehand specified, we confronted a
precarious expectation to absorb information in
acquainting our self with Blender. If we have been more
well known the program, the calculated outline for the
perception of the CD++ Cell-DEVS simulation would likely
have been exceptional adjusted to amplify Blender's
abilities. Rather, we were compelled to all the while figure
out how to utilize and saddle Blender's components and to
build up our applied outline. It was difficult to totally
acclimate our self with the extensive variety of elements
and usefulness gave by Blender in the time distributed for
this venture.

At the beginning of the project we thought of
using the blender functions to make the stadium our own,
and we made it as it is seen in the Figure 15. Since it does
not look originally as a stadium we made use of open
source stadium properties and built our own football
ground stadium. This stadium is visualized using the
blender functions such as tubes, cubes, spheres etc and
connecting those together to look like a stadium with
stands.

The accompanying two figures portray the different views
of the football stadium in Blender 2.43.

 3D Visualization of a CD++ Cell-DEVS Football Stadium Simulation Using Blender

SYSC 5104. Methodologies for Discrete Event Modelling and Simulation

Figure 16. View of our Football Stadium in Blender 2.43

Figure 17. Another view of our Football Stadium in
Blender 2.43

 Also this football ground can be viewed better in the
newer version of Blender such as 2.78 and above, with the
greenery of the ground, the stands etc.

VII. 3D VISUALIZATION USING BLENDER

The important structure pieces that is used to
accomplish the visualization incorporated: the CD++ Cell-
DEVS .ma, .val, .log files from the effective 4 robot
simulations; the Python script; and the Blender .blend
document with the robot, unscanned cell, no bomb cell,
and bomb cell. These will each be examined in this area.

A. CD++ Cell-DEVS Files

The .ma, .val, and .log files from CD++ provided the

data that was required to visualize the simulation of four
robots scanning a football ground. The .ma file provided
the name of the .val file. Initial state values for each of the
cells in both layers of the cell space is listed by .val file. The
Y messages from which the cell coordinates, state values
and time were extracted is provided by the .log file.

B. .blend File

The .blend file was planned to contain the football
ground stadium, the ground areas with bomb, and the
ground areas without bomb. The observation was created
by duplicating these objects according to the cell
coordinates, state values and times isolated from the CD++
records using the Python script.

C. .py file

Our Python script work principally utilized that of
Castonguay [13]. Note that his script utilized the first work
of Poliakov [14]. Python script takes after the structure of
Castonguay's work with significant alterations to represent
the way of my specific simulation. The script contains the
accompanying key functions:

i. read_val, read_ma, and read_log

ii. apply_log
iii. import_maFile and import_logFile
iv. gui
v. buttonHandler

The first three functions are relatively self-

explanatory. The read_ma function searches the .ma file
for either a default initial value to assign to all of the cells,
or for a .val file that contains a list of initial values by cell.
In the case of the football ground simulation, this function
would locate the IsisFootballGround.val file. The read_val
function takes the cell coordinates and initial state values
(time = 00:00:00:000) from the .val file in order to visualize

 3D Visualization of a CD++ Cell-DEVS Football Stadium Simulation Using Blender

SYSC 5104. Methodologies for Discrete Event Modelling and Simulation

the initial state of the simulation. The read_log function
then takes the cell coordinates, state values and time
values from the Y messages in the .log file in order to
visualize the simulation from start to finish.

Both the read_val and read_log functions call the

apply_log function keeping in mind the end goal to do the
visualisation. An apply_log function call is made every time
another state esteem is perused in. The apply_log function
does numerous things. To start with, it pulls the estimation
of the hours, minutes, seconds, milliseconds from the time
esteem keeping in mind the end goal to ascertain the
aggregate time in milliseconds. This value is utilized to set
the present frame in Blender and partner the time, state
and cell values with that frame. Besides, it pulls the x, y,
and z coordinates out of the cell value. It also calculate the
state value (the Y message design for the state value has
three decimal places, these are truncated here). Next, it
makes two strings based upon the coordinates, one for the
football ground cell name and one for the robot's name.
Finally, the main part of the apply_log function manages
the treatment of each of the state values when they are
connected with a cell. In a nutshell, the accompanying
moves are made for the following state values:

i. 20 (unmapped cell)

a. Get the Cube.Unscanned
b. Assign it a pointer

(isisFootballGround)
c. Link it to the scene, if it is not

already
d. Select it
e. Duplicate it
f. Make this duplicate the active object
g. Name it according to its intended

coordinates
h. Place it according to its coordinates
i. Deselect it

ii. 120 and time = 00:00:00:000 (robot on an
unscanned cell at initial stage)

a. Get the Robot
b. Assign it a pointer (robot)
c. Link it to the scene, if it is not

already
d. Select it
e. Duplicate it
f. Make this duplicate the active object
g. Name it according to its intended

coordinates
h. Place it according to its coordinates
i. Deselect it

j. Add an unscanned cell as for state =
20

iii. 120 and time != 00:00:00:000 (robot on an
unscanned cell during the simulation)

a. Only add a new robot as per 120 and
time = 00:00:00:000

b. Do not add an unscanned cell as one
already exists

iv. 0 and 10 (no bomb in cell OR bomb in cell:
need to remove robot, cell already scanned
and coloured accordingly)

a. Look for robot in the scene with
coordinates matching the cell

b. Select it
c. Make it the active object
d. Rename it
e. Unlink it

v. 100 and 110 (no bomb and a robot OR bomb
and a robot: need to add a robot, cell already
scanned and coloured accordingly)

a. Only add a new robot as per 120 and
time = 00:00:00:000

b. Do not add a scanned cell as one
already exists

vi. 301-304 (cell just scanned, no bomb: change
the football ground cell to no bomb)

a. Look for football ground cell in the
scene with coordinates matching the
cell

b. Select it
c. Make it the active object
d. Rename it
e. Unlink it
f. Get Cube.Nobomb
g. Link it to the scene, if it is not

already
h. Select it
i. Duplicate it
j. Make this duplicate the active object
k. Name it according to its intended

coordinates
l. Place it according to its coordinates
m. Deselect it

vii. 311-314 (cell just scanned, bomb: change the
football ground cell to bomb)

a. Look for football ground cell in the
scene with coordinates matching the
cell

b. Select it
c. Make it the active object
d. Rename it

 3D Visualization of a CD++ Cell-DEVS Football Stadium Simulation Using Blender

SYSC 5104. Methodologies for Discrete Event Modelling and Simulation

e. Unlink it
f. Get Cube.Bomb
g. Link it to the scene, if it is not

already
h. Select it
i. Duplicate it
j. Make this duplicate the active object
k. Name it according to its intended

coordinates
l. Place it according to its coordinates
m. Deselect it

The roles of the import_maFile and import_logFile
functions are self explanatory. The gui function takes care
of the display that is generated when the script entitle
CD++ Simulations is selected from the Scripts menu under
Misc (Figure 19) . The gui itself is shown in Figure 20.

Figure 18. Selecting the CD++ Simulations script

Figure 19. CD++ Simulations script GUI

D. Setting up the visualization

The following set up procedure should be followed to
properly to carry out the visualization of the C++ Cell-DEVS
football ground simulation:

 Install Blender

 Install Python version 2.4

 Place IsisFootballGround.blend in
C:\Program Files\Blender
Foundation\Blender\.blender

 Place IsisFootballGround.py in
C:\Program
Files\BlenderFoundation\Blender\.blender\scripts

 Place IsisFootballGround.ma,
IsisFootballGround.val, and
IsisFootballGround.log in
C:\Program Files\Blender
Foundation\Blender\.blender

 Open IsisFootballGround.blend

 Load the CD++ Simulations script (see Figure 19)

 3D Visualization of a CD++ Cell-DEVS Football Stadium Simulation Using Blender

SYSC 5104. Methodologies for Discrete Event Modelling and Simulation

 In the script GUI, select IsisFootballGround.ma
and IsisFootballGround.log by browsing the
.blender folder, if they are not already selected

 Hit the Execute button in the script GUI

 Watch the 3D visualization

The following figure (Figure 21) depicts the final frame of
the football ground simulation visualization.

Figure 20. Final frame of the visualization of the Football
Ground simulation

The accompanying (Figure 22) delineates the
rendering of the final frame of the football ground
visualisation. So as to vivify the simulation, progressive
frames would need to be rendered. Since the applied
outline required the duplication of objects, this keeps
animation from being possible (ie. there are not genuinely
four robots, but instead various duplicates of the
underlying robot that are put in the scene and afterward
unlinked). Interpolation is required for animation, and it is
connected with particular objects. For our situation, the
robots are appeared to "move" by unlinking (erasing them)
from their past cell and copying them for the new cell.
Thus, it is impractical to apply interpolation to a specific
object accordingly in order to animate its movement. To
do so would require changing the conceptual design, and as
a result, the Python script.

 3D Visualization of a CD++ Cell-DEVS Football Stadium Simulation Using Blender

SYSC 5104. Methodologies for Discrete Event Modelling and Simulation

VIII. COMPLICATIONS CAME ACROSS

The Python .write summon was utilized to
compose key data to the information log .txt document to
investigate issues with the script and its conduct. I had at
first expected to utilize it overwhelmingly to comprehend
the conduct of the apply_log fucntion, considering the way
this was the capacity that was completing the
representation of the re-enactment. Shockingly, the more
.write orders I embedded in the apply_log function the less
the capacity would work. I at long last recognized that the
.write order arrange utilized by Castonguay [13] was
bringing on my Python script to make exemptions. The
underlying organization utilized was as per the following:

datalogfile.write("Processing:"+robotName+"forlogValue:"+logVal
ue+"\n")

This problem was resolved by using the following format
instead:

Figure 21. Another view of final frame of the Football
Ground simulation

datalogfile.write("Processing: %s for %d\n"
%(isisFootballGroundCell,logValue))

Underlying absence of Python information had a

negative effect upon our capacity to adjust Castonguay's
code [13] to address our particular re-enactment’s issues.
Every time we erased areas of the script or adjusted it
somehow, we would render that specific segment
pointless. We then realized that this was connected with
the way that our IDE was blending tabs with spaces and
rendering the code indiscernible. This is on the grounds
that in Python, space is utilized to gathering articulations
into squares [18].

 By blending tabs and spaces we were contrarily
influencing the gathering of the announcements in the
script.

 The determination for this issue was very
straightforward: legitimately arrange the IDE that
is utilized. The IDE ought to be arranged to
either:Add spaces when pressing the tab key; OR

 Add tabs when pressing the tab key. The
programmer should then also only use tabs for
indentation. [18]

 3D Visualization of a CD++ Cell-DEVS Football Stadium Simulation Using Blender

SYSC 5104. Methodologies for Discrete Event Modelling and Simulation

 IX. FUTURE WORK

While this visualization effort was an extremely
valuable experience for the us, it could serve as a
springboard for future work. As we can see that simulations
of the robots moving are being done in the corner of the
football ground, it is not being fully covering the stadium.
So keeping this in mind we can enhance the project as a
future work.

The limited exposure to interpolation during this work
did not enable the us to fully utilize the functionality that
interpolation could provide. Two points were made clear
from reading the Blender documentation:

 Interpolation is required for the animation of a
scene; and

 Interpolation animates an object, or objects, by
estimating [their] position based upon a known
start end value, and the time between the start
and end.

Primary focus could instead be upon how to apply

interpolation to a scene. As a result, our recommendations
are that future work should:

 Overcome the design hurdles early on;

 Shift focus to understanding and applying
interpolation to the scene. Key things such as IPO
types, channels, IPO curves, key frames, etc.
should be understood;

 Investigate the use of IPO types, and their
associated channels, in order to animate the
scene;

Also this football ground stadium can be viewed more lively
in the Blender 2.78. Since we have done this in Blender
2.43 it is not that too eye catching. We also tried to
implement this in newer versions but the CD++ simulations
was not being carried out properly. So as a future work,
implementing this in latest version of Blender also can be
done. Figure 22 depicts the view of the stadium in Blender
2.78.

Figure 22. View in Blender 2.78

X. CONCLUON

This paper has introduced the foundation, plan and
execution steps, and issues experienced and settled, as for
a push to envision a CD++ Cell-DEVS re-enactment utilizing
both Blender and a Python script. It has likewise given
suggestions to future work. While the creator has no other
3D programming against which to analyze usefulness and
usability, no doubt Blender could be a fitting
representation device for CD++ Cell-DEVS simulations. The
individuals who seek future work here can influence the
current Python script and the lessons gained from this work
to build up their own particular remarkable situations, or
they can develop the present Cell-DEVS football stadium
situation. The conceivable outcomes are numerous and the
potential methodologies are just constrained by the
creative energy and time of future designers.

XI. References

[1] Blender, "Blender," 2016, http://www.blender.org/.

[2] G. Wainer, "Introduction to the DEVS Modeling and
Simulation Formalism," in Discrete-Event Modeling and
Simulation: A Practitioner's Approach (Draft), pp. 1-22.

[3] G. Wainer and N. Giambiasi, "Application of the Cell-
DEVS Paradigm for Cell Spaces Modeling and
Simulation," Simulation, vol. 71, No. 1, pp. 22-39,
January 2001.

 3D Visualization of a CD++ Cell-DEVS Football Stadium Simulation Using Blender

SYSC 5104. Methodologies for Discrete Event Modelling and Simulation

[4] G. Wainer, "The Cell-DEVS Formalism," in Discrete-
Event Modeling and Simulation: A Practitioner's
Approach (Draft), pp. 1-22.

[5] G. Wainer, "CD++: A Toolkit to Develop DEVS Models,"
Software - Practice and Experience, vol. 32, No. 13, pp.
1261-1306, November 2002.

[6] G. Wainer, "Introduction to the CD++ Toolkit," in
Discrete-Event Modeling and Simulation: A
Practitioner's Approach (Draft), pp. 1-32.

[7] A. C. Morris, S. P. N. Singh, and S. M. Thayer,
"Development of an Immunology-Based Multi-Robot
Coordination Algorithm for Exploration and Mapping,"
Conference on Intelligent Robots and Systems,
Presentation, October 2, 2002.

[8] S. P. N. Singh and S. M. Thayer, "ARMS: Autonomous
Robots for Military Systems - A Survey of Collaborative
Robotics Core Technologies and Their Military
Applications," Carnegie Mellon University Robotics
Institute, CMU-RI-TR-01-16, 2001.

[9] Blender, "Manual/Introduction - BlenderWiki," 2016,
http://wiki.blender.org/index.php/Manual/Introductio
n.

[10] The Blender Python Team, "Module API_Intro: The
Blender Python API Reference: Built Thu May 10
20:32:02 EST 2007," 2007,
http://www.blender.org/documentation/245PythonD
oc/.

[11] Blender, "Scene Management Structure," 2016,
http://wiki.blender.org/index.php/Manual/Scene_Ma
nagement.

[12] Blender, "Manual/Ipo Types," 2016,
http://wiki.blender.org/index.php/Manual/Ipo_Types.

[13] P. Castonguay, "CD++ Simulations version 1.0.2," 2008.

[14] E. Poliakov, "CD++ Simulations version 1.0.1," 2007.

[15] Blender, "Open Material Repository," 2016,
http://www.blender-materials.org/index.php.

[16] Blender, "Blender 2.43 Download,"
http://download.blender.org/release/Blender2.43/ble
nder-2.43-windows.exe.

[17] Python, "Python version 2.4 - Download,"
http://www.python.org/ftp/python/2.4.4/python-
2.4.4.msi.

[18] Python, "How to Edit Python Code," 2016,
http://wiki.python.org/moin/HowToEditPythonCode.

