
Modeling Energy Conservation in Wireless Sensor 
Network using Cell-DEVS 

 Victor Soto 
Department of Systems and 

Computer Engineering 

Carleton University 

1125 Colonel By Drive 

Ottawa, ON. K1S-5B6 

Canada 

vsoto101@uottawa.ca 

  

 
ABSTRACT 

 

Simulation is a tool for studying complex systems.  

 When simulating a process, we always start from 

the observation of a real system, and then create a 

model.  The DEVS formalism provides a 

framework for the construction of hierarchical 

models in a modular manner. DEVS has been 

extended with Cell-DEVS to accommodate cellular 

automata. Timed Cell-DEVS is a formalism based 

on DEVS for the simulation of cellular models. As 

the development of computer technique, it is 

possible to execute the model’s instructions to 

generate its behavior by computer system.  Cellular 

automata can be used to model various physical 

phenomena. In this term paper, we will create a 

Cell-DEVS model to simulate a Sensor Network 

while sending/receiving a message using the 

topology control method for energy conservation 

and implement CD++ to analysis its result. 

 Keywords 

DEVS; topology control; cluster head 

 

INTRODUCTION 
 

Modeling and Simulation is a popular tool for 

studying many different types of complex systems. 

The need for such a tool has arisen with the advent 

of systems that may be too big, small, costly, 

dangerous or time consuming to observe directly. 

Discrete Event Systems (DEVS) is a popular 

formalism for describing simulations and can be 

used to construct simulations of real-world 

phenomena. Fundamentally, the DEVS formalism is 

implemented by subdividing a system into atomic 

models, each with their own state and behavior, 

and modeling the interaction between these 

models. This type of modeling allows for 

hierarchical construction of complex models and is 

a powerful simulation tool for many different types 

of simulation. To further extend the    simulation    

capabilities    of    the    system, extensions were 

specified to accommodate different simulation 

techniques. 

This study will specifically utilize the Cell-DEVS 

specification which allows for the implementation 

of cellular automata in DEVS. This study aims to 

demonstrate how Cell-DEVS can be effectively 

used to create a working model of a physical 

system. Specifically, a cellular automata model 

for the conservation of energy in a wireless sensor 

network will be define and tested using the CD++ 

toolkit. Additionally, new techniques for 

simulation will be explored and the performance 

advantages will be discussed 

 

BACKGROUND 

 

Discrete Event Simulation is a formalism that 

allows for the modeling and simulation of many 

different types of systems. One of the goals of 

DEVS is to be able to separate the modeling and 

simulation aspects of a given problem. Using 

hierarchies of atomic components, DEVS is able 

to abstract these aspects and increases usability 

and interoperability of simulations. 

Atomic models form the basis of any DEVS 

model [2]. Atomic models consist of input and 

output ports along with internal states and 

behaviors. Using time advance functions, a state 

transition can be triggered and output is generated. 



Additionally, external events can be received on 

the input ports and cause external transitions to be 

executed within the model. The overarching idea 

is that models only interact through ports and 

never know anything about other models other than 

what is provided on the input ports. 

 

FIGURE 1 – ATOMIC DEVS MODEL 

 

Coupled models are DEVS models that consist of 

multiple atomic models that are connected through 

their input and output ports in a specific way. 

Using the model specification (.ma) file, the 

specifics of the interconnections between the 

models and how these models interact with the 

output of the simulation. 

 

To extend DEVS to include cellular automata 

phenomena, the Cell-DEVS [3] framework was 

created. This framework allows for the 

implementation of cellular automata models and 

includes functionality for timing delays. It is 

worth noting that each cell in the cellular 

automata created in Cell-DEVS is implemented 

as a DEVS atomic model and the cellular 

automata can be thought of as a large 

interconnection of DEVS atomic models. 

Each cell in a Cell-DEVS model has inputs 

coming from each of its neighboring cells. It uses 

these inputs to compute its next state through the 

local computing function. The state of the cell is 

transmitted to other cells using the output port of 

the model. Output can appear on the output port 

after a specified delay. 

 

FIGURE 2 – ATOMIC CELL-DEVS MODEL 

 

A coupled Cell-DEVS model is created by 

interconnecting these cells and specifying the 

rules with which these cells interact. Generally, 

the Cell-DEVS models contains many 

interconnected atomic DEVS models and each 

cell is connected through input and output ports to 

cells in its neighborhood. For the purposes of this 

study, it is useful to note that certain cells can 

have behaviors that are non-general, such as for 

border cells, it is possible and useful to specify 

custom rules. 



To create these models, the CD++ modeling 

environment is used. This framework, developed 

in C++ implements the DEVS formalism and has 

been extended to include an implementation of 

Cell-DEVS. Once m o d e l s  have been written, 

they can be executed using the CD++ environment. 

DEVS atomic models are generally written in C++ 

and included as part of a class hierarchy in a CD++ 

executable, whereas Cell-DEVS models could 

function this way or use standard cells with 

specified rules. There have been many extensions 

to the DEVS formalism that are worth noting for 

the purposes of this study. Specifically, the 

Parallel DEVS framework will be used to 

implement state variables and specific ports for 

the later part of the study. Additionally, real-time, 

embedded and traffic simulation engines have 

been implemented in DEVS. Since the study 

presented mainly focuses on the Cell-DEVS 

models, this framework will be covered in greater 

detail. 

RISE CLIENT 

For user’s point of view, RISE [7] is intended to be 

easy to use. RISE supports different CD++ versions 

of DEVS/Cell-DEVS formalism, including DCDpp 

for normal and distributed simulation and Lopez 

with different ports/variables. You do not need to 

install complicated simulation software, the only 

need to choose the right RISE API, upload the 

model file and run it online with standard HTTP 

requests, then retrieve simulation results from the 

website. 

 

Most modeling and simulation methods run on 

single-user workstations, which normally cost too 

much time of installation and configuration of all 

the software and dependencies needed by the 

simulation. It is better to realize a much easy way to 

remote access of the simulation resources with web 

service interfaces, improving data accessibility, 

interoperability and user experience. In this way, 

users can reuse and share simulation resources on 

site without worrying about the capability of their 

local machine CPU or memory. Plus, with the help 

of advanced distributed simulation technologies, the 

simulation can be executed on distributed 

computers via communication networks, which can 

further improve interoperability and speed up the 

execution time. 

 

RESTful WS can solve these issues. It is to transfer 

message representations of Web resources using a 

set of uniform stateless operations. The resources 

here are not only files, but also a query, a table, or 

any concepts. Access to RESTful WS is through 

Web resources (URIs) and XML messages using 

HTTP methods (GET, PUT, POST and DELETE). 

Its strengths of simplicity, efficiency and scalability 

make RESTful WS an excellent candidate to 

perform remote simulation. Based on these ideas, 

in, the authors presented the first existing RESTful 

Interoperability Simulation Environment (RISE) 

middleware. The main objective of RISE is to 

support interoperability and mash-ups of distributed 

simulations regardless of the model formalism, 

model language or simulation engine. RISE is 

accessed through Web resources (URIs) and XML 

messages using HTTP methods. Implementations 

can be hidden in resources, which are represented 

only via URIs. Users can run multiple instances as 

needed, which are persistent and repeatable by 

specific URIs. The HTTP methods are typical four 

types: GET (to read a resource), PUT (to create or 

update a resource), POST (to append data to a 

resource), and DELETE (to remove a resource). 

 

In each HTTP response (no matter from which 

URI), the Response Status is very informative. 

Normally, it means the request is successful if you 

see 200 (OK) and 201 (Created); otherwise, some 

error or unexpected things would have happened, 

such as 400(bad request), 401(unauthorized), 

403(forbidden), 404(not found), 406(not 

acceptable), 501(not implemented). 
 

 

DEFINING ENERGY CONSERVATION MODEL 

 

DEVS and Cell-DEVS have been used to model 

and simulate energy conservation systems. 

In this paper [4] we are dealing with topology 

control problem in Wireless Sensor Node (WSN) 

using Block cellular automata which in turn help 

reducing the power consumption. Using block 

cellular automata, we are able to divide number of 

cells into particular number of blocks and thus 



control the states of a group of entities together, 

instead of one. 

The main focus of any 

sensor network is how 

duty cycle can be 

controlled. For energy 

conservation, it is required 

to put radio receiver in 

sleep or active mode, 

accordingly when 

communication is required 

and when not. 

The active nodes are 

selected by topology 

control method. The 

topology control 

mechanism means a 

collection of nodes which 

monitors a particular 

region consuming less 

energy 

Random deployment is 

preferable in a practical 

scenario but to keep the 

things simple we consider 

a uniform grid where each 

cell contains only one 

sensor node. 

A Moore type neighborhood is considered here; 

where each sensor node is surrounded by other 8 

neighborhood nodes. The state of that sensor node 

(either Active or Idle) depends on the states of the 

neighborhood nodes. Here a simple rule is followed, 

i.e. a sensor node goes to IDLE state (for that 

particular round) if at least 2 of its neighbors are 

ACTIVE. In the next round the node runs a check 

again and decides on its state depending on the 

states of neighborhood, at that instant. 

 

We try to address these issues in our proposal. We 

group/cluster the sensor nodes into blocks. We use 

grid clustering technique for that. We then apply the 

same CA neighborhood based rules 

 

The rule that governs the transition of a certain 

block is:  

 

 

 

 

 

 

N=Number of active neighbor nodes (CH) 

EAVG=Mean residual energy of the active neighbors 

(CH) 

EC=Residual energy of the current CH 

C=CH current state 

 

IF N>2 AND EAVG>EC THEN C=” IDLE” 

ELSE C=” ACTIVE” (See Fig 4). 

 

 

 

 

 

 

 

 

 

Figure 3. Neighborhood 

Figure 4. Flowchart 



 

On Table 1 we can see the variables used in the 

experiment for the states in CD++ along with the 

colors for each cell value included in the 

EnergyCon.pal file. The first three values (0-2) are 

used to define the energy level of the signal, they go 

from low energy signal to high energy signal along 

with a blue color going lighter. The fourth value (3) 

is used for an active state for the cluster head with a 

red color, and the last value (4) is used for a cluster 

head with an idle state along with black cell color. 

 

 

 

 

 

 

 

 

 

 

 

This experiment follows completely the flowchart 

from Figure 3. The grid cluster is modeled using 

Cell-DEVS. The model has one layer with 

dimensions of 20x20, where each cell represents an 

open area and there are 36 cluster heads (CH) as 

shown on Figure 5.  

 

 

Figure 5. Grid cluster 

 

The system can be summarized as follows: 

 A two dimensional area where 36 sensor 

controllers are located 

 Each sensor controller or cluster head is in one 

of two states: active or idle 

 Each cluster head is only affected by the 

residual energy of the sensors being controlled 

 If the neighborhood being controlled by the 

cluster head has enough residual energy the 

controller stays in an active state 

 If the residual energy of the neighborhood 

controlled by the cluster head is low, then the 

sensor goes to an idle state 
 

 

CD ++ IMPLEMENTATION 

 

The neighborhood in this experiment is defined as 

shown in Figure 3 using 9 blocks and each block 

taking 9 cells with a CH in the center. The 

important cells to consider here are the CH cells, 

everything else is considered as open space where 

the wireless signal energy varies at random. 

 

Figure 6. Definition of neighborhood  

 

To follow the flowchart on Figure 2, the following 

rules are used (Figure 7), where we can define the 

state of the CH if the number of active neighbor CH 

is higher than 2 and the average residual energy 

Cell State State Name Color 

0 Low Energy 

Signal 

 

1 Mid Energy 

Signal  

 

2 High Energy 

Signal  

 

3 Active CH  

4 Idle CH  

Table 1. Variable definitions 

neighbors : EnergyCon(-4,-4) EnergyCon(-3,-4) EnergyCon(-2,-

4) EnergyCon(-1,-4) EnergyCon(0,-4) EnergyCon(1,-4)  
EnergyCon(2,-4) EnergyCon(3,-4) EnergyCon(4,-4)  

neighbors : EnergyCon(-4,-3) EnergyCon(-3,-3) EnergyCon(-2,-

3) EnergyCon(-1,-3) EnergyCon(0,-3) EnergyCon(1,-3)  

      EnergyCon(2,-3) EnergyCon(3,-3) EnergyCon(4,-

3)   

. 

. 

. 

neighbors : EnergyCon(-4,4)  EnergyCon(-3,4)  EnergyCon(-2,4)  
EnergyCon(-1,4)  EnergyCon(0,4)  EnergyCon(1,4)   

      EnergyCon(2,4)  EnergyCon(3,4)  EnergyCon(4,4) 



from all the neighborhoods is higher than the 

average residual energy from the actual CH. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Active CH rules 

 

In the next rule (Figure 8) we define that if the CH 

is Idle and the values of the neighborhood average 

residual energy is now lower than the residual 

energy surrounding the actual CH the state becomes 

Active 

 

 

Figure 8. Idle CH rules 

 

In figure 9 we can see the initial values used in the 

simulation, where all the cluster heads are in an 

active state and the energy level of the 

neighborhood is not shown yet. 

 

Figure 9. Initial values 

For the next step we see (Figure 10) how the energy 

level of the neighborhood is shown now and then 

the values of energy start changing at random for 

simulation purposes. 

 

Figure 10. Simulation starting 

 

 

SIMULATION RESULTS 

 

For a good view of the results a simulation with a 

time of 00:00:05:00 it’s enough and to understand 

better the above explained we will use an example 

of the results obtained in the simulation focusing on 

a specific CH and its neighborhood. 

rule : 4 100 { (0,0) = 3 and ((-3,-3)+(-3,0)+(-

3,3)+(0,-3)+(0,3)+(3,-3)+(3,0)+(3,3)) >= 9 and ((-2,-
2)+(-1,-2)+(0,-2)+(1,-2)+(2,-2)+(2,-

1)+(2,0)+(2,1)+(2,2)+(1,2)+(0,2)+(-1,2)+(-2,2)+(-

2,1)+(2,0)+(-2,-1))/16 >= ((0,-1)+(1,-
1)+(1,0)+(1,1)+(0,1)+(-1,1)+(-1,0)+(-1,-1))/8 } 

rule : 4 100 { (0,0) = 4 and ((-3,-3)+(-3,0)+(-

3,3)+(0,-3)+(0,3)+(3,-3)+(3,0)+(3,3)) >= 9 and ((-2,-
2)+(-1,-2)+(0,-2)+(1,-2)+(2,-2)+(2,-

1)+(2,0)+(2,1)+(2,2)+(1,2)+(0,2)+(-1,2)+(-2,2)+(-

2,1)+(2,0)+(-2,-1))/16 >= ((0,-1)+(1,-
1)+(1,0)+(1,1)+(0,1)+(-1,1)+(-1,0)+(-1,-1))/8 } 

 

rule : 3 100 { (0,0) = 4 and ((-2,-2)+(-1,-2)+(0,-2)+(1,-2)+(2,-

2)+(2,-1)+(2,0)+(2,1)+(2,2)+(1,2)+(0,2)+(-1,2)+(-2,2)+(-
2,1)+(2,0)+(-2,-1))/16 <= ((0,-1)+(1,-1)+(1,0)+(1,1)+(0,1)+(-

1,1)+(-1,0)+(-1,-1))/8 } 



 

Figure 10. Simulation result example (First step) 

 

 

In the first step if we focus on the CH inside the 

green square shown on figure 4, we can see how 

both of the rules necessary of it to become Idle are 

true. 

- It has more than 2 neighbor CH with an 

Active state 

- The average residual energy from the 

neighbor CH (1.0625) is higher than the one 

from the actual CH (0.375) 

 

 

Figure 11. Simulation result example (Second step) 

 

In figure 6 we can see the next step to look how the 

state changes from Active to Idle. 
 

 

 

 

DEFINING ADVANCED MODEL 

 

Reading this paper [6], arose the idea of an 

advanced model to show a simulation of how the 

energy conservation topology control method would 

work while the sensors where in activity. 

 

On Table 2 we can see the variables used in the 

advanced model experiment for the states in CD++ 

along with the colors for each cell value included in 

the EnergyCon.pal file.  

The first three values (0-2) are used to define the 

energy level of the signal, they go from low energy 

signal to high energy signal along with a blue color 

going lighter. The fourth value (3) is used for an 

active state for the cluster head with a red color, and 

the last value (4) is used for a cluster head with an 

idle state along with black cell color.  

 

Almost all the values are the same but there are 3 

values added. The value of 5 is used as a state for 

when the cluster head is sending a message 

requested, value 6 is used for when a cluster head is 

repeating the message sent by the CH with a state of 

5, value 7 is for when the message is received and 

an acknowledge message is sent back to the sender, 

and value 8 is for when a CH is requesting a 

message (information obtained) from another CH. 



Table 2. Variable definitions 

 

 

This experiment follows completely the flowchart 

from Figure 3. The grid cluster is modeled using 

Cell-DEVS.  

The model has one layer with dimensions of 20x20, 

where each cell represents an open area and there 

are 36 cluster heads (CH).  

Simulations were made for 4 different scenarios, 

and each one has a different set of initial values 

which will be shown in the next figures 

 

 

Figure 12. Initial Values (Scenario #1) 

 

 

 Figure 13. Initial Values (Scenario #2) 

 

Figure 14. Initial Values (Scenario #3) 

Cell State State Name Color 

0 Low Energy 

Signal 

 

1 Mid Energy 

Signal  

 

2 High Energy 

Signal  

 

3 Active CH  

4 Idle CH  

5 Sending 

Message 

 

6 Repeating 

Message 

 

7 Acknowledge  

8 Requesting 

Message 

 



 

Figure 15. Initial Values (Scenario #4) 

In figure 16 we can see the new rules added on 

scenarios 1, 2 and 3 for the message to be delivered. 

In the first 3 scenarios the CHs continue to perform 

the topology control method, so the message waits 

for a CH to be in an active state to continue 

repeating it. 

Figure 16. Rules added for scenarios #1, #2 and #3 

 

In figure 17 we can see the rules for scenario #4, 

there is a small change because of the results 

obtained in scenario #3. Here the CHs that are in an 

inactive state change to an active state to deliver the 

message faster and to ensure al the receivers get the 

message properly. 

 

 

 

Figure 17. Rules added for scenario #4. 

 

MODEL IMPROVEMENT 

 

To handle the random generation of state variables 

an additional term was added to each transition rule 

that contained a probability distribution. 

An updated CD++ software was obtained that 

allows the definition of multiple variables for each 

cell.  The addition of multiple variables will allow 

the existing model to be expanded to provide 

additional functionality. The transition functions 

have been expanded to allow for both the assigning 

of new values to the internal state variables and for 

sending the state variables to input ports on the 

neighboring cells.  The transition function is broken 

into four components: 

{port_assignations} [ {assignations} ] {delay} 

{condition} 

Output ports are assigned using in 

port_assignations: 

~variable_port ≔ value; 

The default output port can still be assigned 

using either ~out or (0,0).   Assigning state 

variables is optional and is done in assignations: 

$variable ≔ value; 

In both of these cases the value can be the result of 

any function that returns a value.  It should be noted 

rule : 6 100 {(0,0) = 3 and statecount(5) >= 1} 

rule : 6 100 {(0,0) = 3 and statecount(6) >= 1} 

rule : 7 100 { (0,0) =6 and statecount(8) >= 1} 

rule : 3 100 { (0,0) =5 and statecount(7) >= 1} 

rule : 7 100 { (0,0) =6 and statecount(7) >= 1} 

rule : 3 100 { (0,0) =8 and statecount(6) >= 1} 

rule : 5 100 {(0,0) = 5} 

rule : 6 100 { (0,0) = 6} 

rule : 8 100 { (0,0) = 8} 

rule : 3 100 {(0,0) = 7} 

rule : 6 100 {(0,0) = 3 and statecount(5) >= 1} 

rule : 6 100 {(0,0) = 3 and statecount(6) >= 1} 

rule : 7 100 { (0,0) =6 and statecount(8) >= 1} 

rule : 3 100 { (0,0) =5 and statecount(7) >= 1} 

rule : 7 100 { (0,0) =6 and statecount(7) >= 1} 

rule : 3 100 { (0,0) =8 and statecount(6) >= 1} 

rule : 5 100 {(0,0) = 5} 

rule : 6 100 { (0,0) = 6} 

rule : 8 100 { (0,0) = 8} 

rule : 3 100 {(0,0) = 7} 



that with the internal value of state variables and the 

variables sent on the output port can now be 

different.  

With the introduction of multiple variables into 

CD++ the τ(N) function used in the Cell-DEVS 

formal specification to define the output value of 

the transition function must be expanded to reflect 

both the internal variable transition and the value 

sent to the output port. 

 

 

Figure 18. Rules for the extended version 

 

The initial values where changed to make a 

different simulation and obtain different results. The 

values can be found in the energycon.stvalues file. 

Where the value of 9 represent an obstacle on the 

network. 

 

 

 

 

 

 

SIMULATION RESULTS 

 

For a good view of the results a simulation with a 

time of 00:00:05:00 it’s enough and to understand 

better the above explained we will follow the 

simulation focusing on the message sent and 

acknowledged when received. 

First we will go on detail with Scenario #1 and 

show images of the process, then as scenario #2 and 

#3 are similar we will only give a short explanation. 

Finally, Scenario #4 and the new rules will be 

explained. 

 

Figure 18. Simulation result follow-up (Scenario #1) 

In Figure 18 we can see how the simulation has 

started and how the sender and receiver are shown, 

and the message has begun to be repeated, it will be 

repeated to every CH until it gets to the receiver as 

shown in Figure 19. 

 

Figure 19. Simulation result follow-up (Scenario #1)  

We can see how some of the CH are still in an 

inactive state, this is because they don’t change to 

rule : { $charge } { $charge := randInt(99);} 100 { 

$charge <100 } 

rule : { $state } { $state := 0;} 100 { $charge < 25 

} 

rule : { $state } { $state := 1;} 100 { $charge > 25 

} 

rule : { $state } { $state := 4; } 100 { $state = 3 and 

truecount >= 8 }  

rule : { $state } { $state := 3; } 100 { $state = 4 and 

truecount <= 8 } 

rule : { $state } { $state := 9; } 100 {  %state = 9 } 

rule : { $state } { $state := 3; } 100 {  %state != 9 } 



repeat the message, the topology control method 

continues without interruption.  

Finally, we can see in Figure 20 how the message 

has been delivered to the receiver and the 

acknowledge message has begun to be sent back. 

 

 

Figure 20. Simulation result follow-up (Scenario #1) 

 

 

Figure 21. Simulation result follow-up 

On Figure 21, we see how the message is being sent back. 

Once each CH receives the acknowledge message they go 

back to follow the topology control method normally, even 

the Sender CH as shown on Figure 22. 

 

Figure 22. Simulation result follow-up 

 

The results for Scenario #2 are pretty similar, the only thing 

that changes is the initial values, so this time the path the 

message follows is different. 

 

Figure 23. Simulation results Scenario #2; a) first step; 

b) second step; c) third step; d) fourth step 

 

For Scenario #3 (Figure 14) we added 2 more receivers to 

the initial values to see if the message was delivered 

correctly to each one of them and if the sender gets the 

acknowledge message properly. In figure 24 we can see the 

message starting to repeat along the CH. 



 

 

Figure 24. Simulation result follow-up (Scenario #3) 

 

As the message repeating rules have no influence over the 

topology control method the message starts to repeat in a 

nonuniform way as seen on figure 25.  

 

 

Figure 25. Simulation result follow-up (Scenario #3)  

 

Finally, the simulation for Scenario #3 ends leaving a 

receiver without getting the message requested as shown on 

figure 26.  

 

Figure 26. Simulation result follow-up (Scenario #3) 

There is a need to change the rules for cases when there are 

several receivers, for them to receive the message properly 

and in a faster way the rules for the CHs were changed.  

In scenario #4 when there is an immediate neighbor 

repeating or sending a message, the CHs in an inactive state 

change to active to repeat the message. To demonstrate this 

we repeat scenario #3 with the new rules. 

 

 

Figure 27. Simulation result follow-up (Scenario #4) 

We can see in Figure 27 how the message spreading begins 

in the same way as scenario #3, but then it gets significantly 

faster to all the receivers. 



 

Figure 28. Simulation result follow-up (Scenario #4) 

Finally, in figure 28 and 29 we see how every receiver 

acknowledge receiving the message and the topology 

control method continues running. 

 

Figure 29. Simulation result follow-up (Scenario #4) 

The results on Figure 29 show us that the new rules are 

more complete than before. 

RISE CLIENT COMPARISON 
 

 

Both models were run using the newest version of 

CD++ with the help of the RISE client and we have 

some images of the process below. 

First (Figure 30) we have to get access the RESTful 

Web server through web resources and xml 

messages. 

 

 

Figure 30. Setting up the framework 

 

Now we can access the framework where we will 

see the complete process of the simulation shown 

and we can get all the information we need. The 

next step is to upload the Model file 

(EnergyCon.ma) inside a .zip file to the web server 

(Figure 31). 

 

 

Figure 31. Upload process 

 

Now we can see the model file has been uploaded 

and we are ready to start the simulation 



 

Figure 31. Framework showing the .ma file uploaded 

 

Finally, after we run the simulation (Figure 32) we can 

download the results obtained and we get the detail of the 

simulation time. 

 

 

Figure 32. Running simulation 

 
And for comparison purposes we ran the original model and 

the advanced model and we can see (Figure 33) how the 

advanced model takes a little more time to complete the 

simulation, this is because it is more complex and even 

though it has the same neighborhood it also has some rules 

added. 

 

Figure 33. Simulation times obtained 

 

 

 

 

 

 

CONCLUSION 
 

Cell-DEVS allows to use a cell-based approach to 

describe systems, and we have seen how it is a very 

useful technique for modeling and simulating 

space-shape models. One can use an existing model 

of any system, start creating and modifying it to get 

different results, sometimes better ones. 

As was presented, a Cell-DEVS model was created 

to simulate the effect of the topology control in 

energy conservation for wireless sensor networks 

using predefined rules as specified in the paper that 

formed the basis for this study. 

Rules for an advanced energy conservation model 

was created to show how the topology control 

method works while sending a message from one 



sensor to another and the model was tested using 

the latest version of CD++. 

Additionally, as results from the advanced model 

Scenario #3 were not as expected, new rules were 

added to the model so it has no problems with 

different initial values.  

 

 

FUTURE WORK 

This project is open to a lot more development and 

would be greatly aided with 3D simulation such as 

in Blender. The 3D realization would allow users to 

see the effects of the energy conservation method 

more easily and friendly. 

Additionaly more advanced rules for how messages 

are sent and wich paths to follow could be analyzed.  

REFERENCES 
 

1. Discrete-Event Modeling and Simulation, 

Gabriel A.Wainer, 2009 

2. B. Zeigler; T. Kim; H. Praehofer: Theory of 

Modeling 

and Simulation: Integrating Discrete Event and 

Continuous Complex Dynamic Systems, 

Academic Press, 2000. 

3. G. Wainer; N. Giambiasi: "Application of the 

Cell-DEVS Paradigm for Cell Spaces Modeling 

and Simulation", Simulation, Vol. 71, No. 1, pp. 

22-39, January 2001 

4. Giuseppe Anastasi, Marco Conti, Mario Di 

Francesco, Andrea Passarella, “Energy 

conservation in wireless sensor networks: 

survey,” Elsevier, 2008. 

5. Energy Conservation in Wireless Sensor 

Network using Block Cellular Automata, 

International conference on computer 

communication and Informatics, 2013. 

6. Energy saving in wireless sensor networks, 

Zahra Rezaei, Shima Mobininejad, IJCSES, 

2012 

7. RISE Manual draft v2.0 – S. Wang, G. Wainer, 

2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ACKNOWLEDGMENTS 

This project was completed with the use of the 

Eclipse plataform, the CD++ toolkit (open source 

and /lopez versions), RISE client and the support 

of Professor Gabriel Wainer and his laboratory 

members 

 

 


