
Modeling a Robot Arm in CD++ Builder

Saeed Ahmadi

Autumn 2011

Dept. of Systems and Computer Engineering

Carleton University

1125 Colonel By Drive

Ottawa, ON. K1S 5B6. Canada.

E-mail: sahmadi1@connect.carleton.ca

Abstract
 I will develop a model of a robot arm with two degrees of

freedom and then will simulate the model by using the

graphical tool of CD++ (CD++ builder). In this project, I

will show the usage of this state base tool for a discrete-

event system.

I will simulate the idle time of the robot arm for the times

that robot does not response to commands as expected due

to physical constrains or other controller issues. Then I will

measure the efficiency of the robot by several inputs. I will

analyze and discuss the results of the simulation at the end.

1. INTRODUCTION
Simulation has been an interesting subject for scientists,

industry and developers for years and many tools have been

introduced to help and simplify the modeling and

simulation process. The most popular method in modeling

the system is DEVS since it covers most of know systems.

There are many tools that can be used to model and

simulate a DEVS model. One of these tools is CD++

Builder which is a graphical tool of CD++.[1] Using the

graphical interface, make it easier to transfer the models on

the paper and ideas into a computer simulator and also it

requires less time to model and troubleshoot a system. It

can help to reduce the complexity of a large system due to

visual property of the tool. Other benefit of using a

graphical interface is that one with little or no knowledge of

programming can learn and use the tool. This is especially

useful for the people that their filed is not engineering, like

medical doctors or sociologist. [1]

The CD++ Builder is an open source project and can be

found in SourceForge website. [3] It is a state base tool that

has a graph definition of DEVS which is intuitive and easy

to use. I will use this tool through this project to simulate a

robot arm with two degrees of freedom that can receive

command form the user to move its arms by its joints, and

then will simulate and show the efficiency of robot when it

doesn’t act as desired.

2. BACKGROUND

2.1 DEVS Specifications

DEVS, Discrete Event System Specification, is used to

model and simulate the Discrete Events Dynamic Systems,

DEDS. In a DEDS system the state of the system will be

changed based on an event, and it defines a series of

transitions for the states. In DEVS a set of rules will be

defined for these transitions. A state of a system in DEVS

can change by receiving an external event or by expiration

of a time delay. A system can be seen and modeled in a

hierarchal view in DEVS in which each level of the system

can consist of other subsystems. The relation of these levels

and subsystems can be defined through the input and output

ports of systems. The hierarchy structure of the DEVS

model can help to reduce the complexity of a system. Each

system or subsystem can be seen as a black box. Each entry

from an input port of a box will consider as an external

event for the system that can change its state by triggering a

function. In this way the details of implementation of each

system will be isolated and hidden from other components,

and this will eliminate spreading complexity trough the

system.

The components that consist of other subsystems are

described as Couple (Structural) models, and others that are

not composed by other subsystems are described as Atomic

(Behavioral) models. A formal definition of a DEVS

Atomic model can be seen as below:

M = < X, S, Y, int, ext, , ta >

In this definition, X represents a set of input ports for the

atomic model. Similarly Y represents a set of output ports

of the model. The states of model belong to the set of S.

When an input enters from a port, it will be considered as

an external event to the system, and the ext function that is

described as “external transition function” will be triggered

that can change the state of the model. The int function

which is described as “internal transition function” will run

after expiration of the time of the current state. This time

will be defined by “ta”, or Time Advance. But just before

internal transition function runs, the function will be

triggered when the “ta” expires and send an output to the

output port(s).

The Coupled models that consist of other models have the

following formal definition:

CM = < X, Y, D, {Mi}, IC, EIC, EOC, select >

Here the X and Y are similar to the definition of atomic

model and represent set of input and output ports. D is an

index for the components of the coupled model, and for

each “i” that belongs to D, Mi is a DEVS model that in turn

can be atomic or coupled models. Atomic models then can

be defined by the formal definition that we saw for atomic

models. IC is set of input couplings to link the ports that

should communicate with each other inside a couple model.

EIC is set of External Input Couplings that links the

external input ports to internal input ports, and EOC is set

of External output Couplings that relates the insider output

ports to external output ports.

2.2 Formal Specification of DEVS Graph

As Christen G. et al [1] has stated in their introduction of

CD++ Builder, the GGAD notation has been used as the

formal definition for DEVS graph by this tool. The GGAD

formal definition can be seen as below (Christen G. et al):

“GGAD = < X M , S, Y M , int, , ext , , D >

X M {(p,v)| p IPorts, v X p } set of input ports;

Y M = {(p,v)| p OPorts, v Y p } set of output

ports;

S = B x P(V) states of the model,

B = { b | b Bubbles } set of model states.

V = { (v,n) | v Variables, nR0 } intermediate state

variables of the model and their values.”

As we see other, than set of “S” which represents the states,

the other elements of this definition have the same

definitions as in the DEVS formalism definition in section

2.1. In order to accommodate the graphical presentation of

the states, a set of Bubbles has been defined and used in

this formal specification.

2.3 CD++ Builder Graphical Tools
As introduced by Christen G. et al [1], the CD++ Builder

uses the GGAD notification. It leverages the core of the

CD++ as its engine. Each state in the system introduces by

a bobble that has a time advance associated with the state.

The external transition functions, ext, and internal

transition functions, int, will be shown by solid and dashed

lines. The arrow at the end of the lines shows the target

state of the transition. After expiration of time advance, the

internal transition function will be run. The output function

can be define in the definition of int if require, which will

be run before the transition.

Figure 3 shows the interface of CD++ Builder. Both atomic

DEVS Coupled Model Diagram and Atomic DEVS-Graphs

Diagrams are available and can be added to the model, to

represent the coupled model and atomic model. In addition

to these diagrams, a C++ atomic model also can be inserted

to the model. This flexibility allows overcoming some of

the limitations related to graphical development of a model.

Each graphical design will be converted into a GADScript

format in which the CD++ simulator can run and simulate

them as the model. CD++ Builder will create a text file

with the “.cdd” extension for each atomic graphical model.

These files contain the GADscript of the graphical model.

Figure 1 shows a sample of a cdd file.

Figure 1: A cdd file

As we see from the format of the text file, “in” and “out”

define the input and output ports, “state” defines the states;

“int” and “ext” define internal and external transition

functions and so on. The output function will be defined as

part of internal transition function. CD++ Builder provides

a set of log files that are good tools for troubleshooting. It

creates a system log file, a transition log file (with the

extension of “translog”) and a log file for each cdd file.

Translogs can be very beneficial in order to see the step by

step transitions of the program. It shows all the state

transitions based on external events or internal transitions.

You can check to see whether the state has been changed in

a specific time as desired or not. Figure 2 is an example of

a translog file.

Figure 2: A translog file

Figure 3: Definition of an atomic model in graphical interface of CD++ Builder

There is only one translog file for each component, and it

will be overwritten anytime that the simulator runs. For that

reason, if you need to keep the translog file of different

event files, you should change the name of the translog file

before running the simulator again. The letter “C” indicates

the start of the simulation. The question mark shows that an

input has been entered in from an input port. The letter “E”

means an external transition function has triggered and

started. The letter “O” is for an output and the letter “I” is

for and internal transition function. For instance in the line

six of the Figure 2, the text in front of “?” means that at the

time 00:02:00:050 the value of one has been entered

through the “ucmdin” input port. A related external

transition function has been triggered upon this input in the

next line and changes the state of the system from “idle” to

“init”. And then after the “ta” consumed, which is zero in

this case, the value of one has been sent to “hcmdout” port,

and then and internal transition function runs and changes

the state of the system to “initializing” from “init” in the

line ninth. And this will continue.

3. THE ROBOT ARM MODEL

3.1 Definition and Modeling

I will use CD++ Builder to model a robot arm with two

degrees of freedom. This robot arm receives the commands

from user and moves based on the degrees entered in the

command. The command could be like: “MOVE 120 35”.

This command tells the robot moving its first joint 120

degrees and the second joint for 35 degrees. In addition to

move command, users can stop the robot movement at any

time by “STOP” command. Other command is “INIT”

command that causes the robot to move itself in the initial

point so it can calculate its position form there. This is call

“Homing”. During the process of homing, the sensors of

robot need to be zeroed. The INIT command has to be the

first command and the robot would not accept the other

commands until it does the homing and is homed. One

other condition is that while the robot is moving; it would

not accept other move commands. However, it will accept

the stop command at anytime during the homing or

movement for the safety of people that are working around

the robot, and for the safety of the robot. In 5% of cases,

the robot may not achieve the desired point exactly, but still

trying to get to destination and does not return from moving

state. For this reason there would be a time out timer which

would be equal to longest possible movement of the robot

in order to force a transition from the moving state. This

will increase the idle time of robot. Every time that the

robot (5% chance), will waste some time till it gets out of

the moving state resulting in lower efficiency. The chance

of not reaching the goal will be modeled by a random

number generator and the overall efficiency of the robot in

operation will be evaluated using this model.

When the robot turns on, it should be in the “idle” state and

waiting for commands. It is better to not doing the homing

process automatically after turning on the robot since there

may be obstacles on the way of the arms, and this is

considered as a safety measure. So if it turns on

accidentally, it wouldn’t damage itself or hurts others and

just stays at idle state until it receives the INIT command.

To model this robot, I have defined a coupled model

“Robot” that consists of two other coupled models:

“Motion Controller” and “Homing”. “Motion Controller” is

composed of two atomic models: Decision, to decide where

to send the entered command, and Motion to simulate the

robot movement. Figure 4 shows the diagram of the model,

its components and ports, and how they are related to each

other by links. The “Homing” coupled model is composed

of two atomic models, Joint1 and Joint2 to simulate the

homing process. The data flow has been shown in the

diagram. The user command will arrive to the Decision

model trough the UserInput port at the top model that has

the appropriate links to input port of decision model,

UCmdIN.

Robot will decide where to send the command in the

decision atomic model. It will check whether it is for

homing or movement, or it simply should ignore the

command if it is not a valid command. When it receives the

first init command, it will pass the command to Homing

coupled model and will wait until it receives the done

signal from the Homing component through the HDoneIN

input port. It will just accept the STOP command at this

stage.

 In the Homing component, when the first INIT command

arrives, it will be forwarded to the both Joint1and Joint2

atomic models. Both joints will start homing at the same

time. Joint2 will send a signal to Joint1 when it finishes its

homing. Joint1 waits until it receives the done signal form

the Joint2 through its J2Done input port. It will be 18

seconds time out for this waiting period to force the robot

to coming out of the homing stage if it does not receive a

signal form Joint2. During the homing process, Joint1 and

Joint 2 will accept the STOP command. After this, it will be

considered as homed. A variable “Homed” has been

defined to show if the robot is homed or not. After robot is

homed, Joint1 and Joint2 won’t accept any other commands

and will go to passivate mode until the robot resets.

If the Decision receives a MOVE command while the robot

has been homed and it is in idle state, it will pass the

command to the Motion atomic model. This model then

produces a random number between zero to one hundred

([0,100]). If it is more than 5 (95%), then model will

produce two random numbers in [0, 180] to simulate the

movement of the joints. Then it will wait for sum of the

numbers in second, and will send the current position of the

robot to the output and a done signal to the Decision

module. If the first random number is less than 5 (5%), then

model waits for a timeout and will calculate the efficiency

of the robot based on the total number of move commands

and the number of times that the random number has been

less than 5. It will send the efficiency number to output and

send a done signal to the Decision module after this

timeout. If we suppose P = Total number of times that the

random number is less than 5, and N = Total number of the

move commands, then the efficiency of the robot can be

calculated as following

Robot Efficiency =

Later we can consider other factors in the formula, like the

age of the joints of robot, and compare the output of the

simulation with acceptable efficiency number to predict the

next service time, for example. If the robot is expensive and

its working condition is important, this simulation will help

to have less down time.

Figure 4: Diagram of the Model of Robot Arm

3.2 Implementing the Robot Arm Model Using

CD++ Builder

As I discussed in section 2.3, CD++ Builder is graphical

tool for modeling and simulation that I have used to

simulate the robot arm model. Adding coupled models and

atomic models in CD++ is provided by the tool box on the

right side of the screen. At the top of hierarchy I have

defined the two coupled models, Motion Controller and

Homing, and then I implemented the atomic models as per

robot model diagram in figure 4. Here I explain each

atomic model in more details.

3.2.1 Decision Atomic Model

Figure 3 depicts the definition of Decision atomic model.

The initial state is idle and is waiting for commands from

UCmdIN input port. When a command enters, different

external transition functions may be triggered based on the

value of the input. I discussed some of the conditions of

working with robot, such as it won’t accept the move

commands while is in moving state. Here also is the list of

conventions in this implementation:

- The value “1” for command means it is an INIT

command

- The value “2” for command represent the MOVE

command

- The value “3” for an input will interpret as a STOP

command

- The “Homed” variable is used in all modules, except

Motion, to show if the robot is homed or not. If it is 1,

it is homed and if it is 0, it is not homed.

- The “CurrentState” variable is used in all modules to

hold the current state of the robot. For example if the

CurrentState holds number 2, it means the robot is in

the moving state. I check this variable in modules to

decide whether to accept or refuse the other

commands.

- There is also a “Command” variable that has been

used in all modules to hold the current command

entered. Most of the time the value of this variable is

equal to the value of CurrentState variable.
- The average speed of robot movement is 10

degrees/second.

When the value of 1 arrives at the UCmdIN input port of

the Decision model, the condition of the external transition

of INIT command will be met and it will be triggered. All

of the variables will be set to appropriate values (in this

case to “1” except the Homed variable) and the state will

change from “idle” to “init”. The time advance of the “init”

state dictates that internal transition function should run

immediately. When internal transition function runs, it puts

the command to the HCmdOUT output port of the Decision

module which is linked all the way to the Homing coupled

model in order to initialize the robot. The output function

can be defined as part of the definition of internal transition

function. Figure 5 shows this definition.

Figure 5: Internal Transition Function and the Output Function definition

The internal transition function then will change the state

form “init” to “Initializing” state. Decision model then will

stay in this state till either the HomeDone signal arrives

from the HDoneIN input port, or the ta=40 consumes. This

time is a timeout that is a little bit longer that the maximum

movement time of the robot which is 36 seconds. This is

based on the 10 degrees/second average speed of robot that

I defined in conventions. After this time, the robot will be

considered as homed and set the Homed variable to 1.

Meanwhile, if a STOP command arrives at the input port,

the movement or homing must stop. This will trigger an

external transition function to change the state from the

“Initializing” to “StopInit” state. During this transition it

will set the variables (except Homed variable) to 3. The

“StopInit” state has a ta=0 and its internal transition

function will send and output of the command to the

HCmdOUT which is 3, to tell the Homing model to stop

the process. Then it will change the state back to the

“Initializing” state. A STOPPED signal (the value of 3)

should be appear on the HDoneIN after a moment, and that

means the initialization process has been stopped in the

Homing model. This will change the state from

“Initializing” state to “idle state”. Since Homed variable

will get different values based on type of input that can be

received on HDoneIN input port, two external transition

function are in place to check these conditions, one for

value “1” (initialized), and one for the value “3” (stopped).

Very similar procedure will be used for MOVE commands.

If the value of input command is “2”, an external transition

function will be triggered, variables (except Homed) get the

value of 2, and the state will change to “Move”. Then the

internal transition of the “Move” state will run. It will run

the output function first which will put the value of 2 on the

MCmdOUT to send the MOVE command in Motion

model, and then it will change the state from “Move” to

“MovingStopping”. The same technique has been used to

accept the STOP command here as explained in

initialization process. The time out of 40 seconds again has

been defined here to force the transition from moving state.

Decision model will receive the MoveDone signal from its

MDoneIN input port showing that the motion has been

completed.

3.2.2 Motion Atomic Model

Figure 6 shows the states in the Motion atomic model. The

initial state of this model is “idle”. Here I have defined

more variables to hold the random numbers and calculate

the efficiency. When a MOVE command (2) appears at the

MoveCommand input port, an external transition function

will be triggered. It will generate a random number in

[0,100] range and hold the number in the variable named

“RandomNumber”. This random number will be used to

simulate the efficiency of the robot. The state will be

change to the “Random” state during this transition. The

ta=0 will cause to change the state to “MoveReady” state.

In this state, the value of RandomNumber will be examine

and if it is less than 5, then it goes to “TimeOut” state, and

if it is more than 5, the movement will be proceed.

Figure 6: Motion Atomic Model

We would need to have an input to trigger the external

transition function. So before examining the

RandomNumber in MoveReady state, the internal transition

of Random state should send an output. I have defined an

output and an input port called RandomIN and

RandomOUT for this matter. The internal transition

function of Random state will send the value of

RandomNumber variable to the RandomOUT output port.

This port is linked directly into the RandomIN input port

and so any output on RandomOUT will be appeared on

RandomIN port immediately. Then in the MoveReady state

this value will be examined. It either triggers the external

transition to change the state to JointDegrees (more than 5)

or to TimeOut state (less than 5). If the state changes to

JointDegrees, another two random numbers will be

generated during this transition. These two numbers are in

the [0,180] range and are used as the degree that each joint

has to move. The number is between zero and 180. Since

the degree can be negative or positive, it will cover the 360

degrees if we use 180 degrees in both direction. Because

we are not simulating the direction of the movement and

just the time of the movement, the sign of the numbers is

not important. The RandJ1 and RandJ2 variables will hold

the two numbers. The WaitCount variable will be sum of

the RandJ1 and RandJ2 divided by two (since both joints

can move at the same time) to keep the total time of the

movement.

In order to simulate the time passed for this movement, the

“Waiting” state has been added, and this state with the

JointDegrees state will work together to count down the

amount of WaitCount variable. Each time that internal

transition function runs, it will send the WaitCount to the

TAWaitOUT output port. TAWaitOUT port is directly

linked to the TAWaitIN port, and so the output will be

appears on the TAWaitIN port immediately. Then this input

will trigger the external transition function of Waiting state,

and this will change the state form Waiting to JointDegrees

state again. During this transition, the value of the

WaitCount varilable will be decreased by one unit. The

time advance of the JointDegrees is one second and so each

set of back and forth transitions between these two states,

will count one second (the numbers are divided by 10 in

this diagram to speed up the simulation). A comparison will

be done in the external transition to see if the WaitCount

value is zero or not. When the counter is zero (or less than

1), the Waiting State will change to the “Move” state. The

output function of internal transition function in Move state

will send the current state of the joints to the output ports

which are implicitly link to the output ports of the Robot

and user can see the results. The Motion model will go to

“Idle” state after Move state and will be waiting for the

next command.

Now if we go back to the MoveReady state and suppose

that the RandomNumber is less than 5. In this case the state

will change from MoveReady to “TimeOut”. In TimeOut

state, I defined the maximum time that take for robot to

finish its movement (here the number is divided by 10

again in figure 6). In this way I simulated the non efficient

times of the robot that it will stay in the movement state,

not reaching the destination. The robot efficiency will be

calculated during the transition to TimeOut state by the

formula presented in the section 3.1. Then it will be sent to

output of the robot by the internal transition of the TimeOut

state that will change the state of the Motion model to the

Idle and waits for the next command.

We should notice that we had another time out in the

Decision model which was also equal to the maximum time

of robot movement. The time out in Decision model was

the waiting time for the done signal from the Motion

model, while the time out defined here, in the Motion

model, is to simulate the efficiency of robot. As the matter

of fact, the time out of the Decision model would never

expire (reaches 40 second) if the Motion model works

correctly. This can be seen in the output of the simulation.

The results and the result analysis of the robot model with

different test criteria have been discussed in the next

section.

The STOP command can arrive at any time and in any state

of motion model so an external transition function to the

“Stop” state has been defined for the input value of 3 for

each state that has time advance greater that zero. In this

case all of the variables and counters will be reset.

The arrival of another MOVE command also might be

possible if the Decision model doesn’t work properly. An

external transition function from each state to itself has

been defined to ignore the new move command while the

robot has not finished its movement. The arrival of another

move command during the movement has been prevented

in the Decision model, and it should never send the MOVE

command again while it is waiting for the done signal from

the previous MOVE command. This repeats in Motion

model just for the safety. This also has been tested in the

Robot model and in Motion model individually.

The coupling of the Motion Controller coupled model has

been shown in the figure 7.

Figure 7: Motion Controller Coupling

3.2.3 Joint1 and Joint2 Atomic Models

Due to their similarities and relation, I discuss these two

models together. Figure 8 and Figure 9 show the graphical

design of these two models. Both models start at the “Idle”

state. When the INIT command arrives, the Homing

coupled model will pass the command to the both Joint1

and Joint2. Since the initialization happens just once, for

simplicity, I ignored the movement of the robot during the

initialization process for robot efficiency calculation.

However, this can be done by implementing the same

concept in Joint1 model and sending the result to the

Motion model. The average time of the robot movement,

((360 /10) / 2 = 18 seconds) will be used for the

initialization process for the same reason mentioned above.

In Joint2, when it is done homing, it will send a done signal

to the Joint1, set the Homed variable to one, and will go to

Idle stat.

The Joint1model is a little bit more complicated. It first will

change the state from Idle state to Homing state by an

external transition function. After 18 seconds, the time

advance will be consumed and the internal transition

function will change the state to DoneJoint1 and will set the

J1Homed variable to one. While it is in the Homing state, if

the done signal from Joint2 arrives at the J2DoneIN input

port, and external transition function will set the J2Homed

variable but will stays in the Homing state until the time

advance expires. The output function will put the J2Homed

variable on the J2HomedOUT output port. This port is

directly connected to the J2HomedIN input port and the

value on the output port will be appeared on the input port

immediately. This value will be used to check different

conditions later in the DoneJoint1 state.

In DoneJoint1 state, if the J2Homed variable is one, it

shows that the Joint2 has done its homing at the time that

Joint1 was in the Homing state. If the J2Homed variable is

zero (joint2 is not finished its homing), then Joint1 model

should wait until it receives a done signal from the Joint2

model. It then changes the state from the DoneJoint1 to

WaitingJ2 state by an external transition function that will

be triggered by arrival of the value of J2Homed variable on

the J2HomedIN port as explained above. Again there will

be a time out for waiting. Here the time out is another 18

seconds to make the total time to 36 seconds (maximum

time). After this time expires, it assumes that Joint2 has

homed itself (as part of predefined conditions). It then set

the Homed variable to one and changes the state to

DoneJoint2 state. If the done signal arrives from the Joint2

during this time, an external transition function will change

the state from DoneJoint2 state to itself. In both cases,

either internal transition function or external transition

function will set the Homed variable to one. The internal

transition function in the DoneJoint2 then will change the

state to Idle and send the Homed variable on the DoneOUT

output port that has linked all the way to the Decision

model.

The STOP command can arrives at any time during the

homing process. In each state, an external transition

function is in place for the stop command. Once the Homed

variable is set to one, it means the robot has initialized, and

the stop command won’t affect it. So once it is in the

DoneJoint2 state, the model will ignore the stop command.

When the initialization process stops by a STOP command,

all the variables will be reset and state will be change to

Idle. An output (value of 3) will be sent to Decision model.

While in the Idle state, the model will ignore other INIT

commands if it is already homed. This will be also checked

in the Decision model. It also will ignore the STOP

commands and J2Done signal in the Idle state since it is not

in the initialization process.

Figure 8: Joint1 Mode

Figure 9: Joint2 Model

Figures 10 and 11 show the Homing and the Robot coupling.

Figure 10: Homing Model Coupling

Figure 11: Robot Copuling

3.3 Analyzing the Results of Simulation

3.3.1 Examining Conditions

I have run the simulation with different criteria. I have

entered different commands while the model is in moving

or initializing state to analyze its reaction to different

conditions and validated the results. Entries can be

provided through an event file to the simulator in CD++.

An event file has to have the “.ev” extension. Entries in an

event file are similar to these lines:

00:01:01:00 UserInput 2

00:02:00:50 UserInput 1

00:03:05:00 UserInput 2

00:03:15:00 UserInput 3

Each entry has a time stamp at the beginning of the line that

tells the time of input or event, followed by the port name

and the value that will be fed to that port. Each line is

considered as an external event to the system through the

specified input port. The first line of previous example

indicates that the value of 2 will be inserted to the input

port name “UserInput” at the minute one and second one

after starting the simulation. The second line indicates that

the number “1” will be inserted at the same port at second

minute and .5 second after beginning of the simulation and

etc.

As we saw in figure 4 - diagram of the robot - the only

input port that users can input their commands is

“UserInput” port.

In order to validate the behaviour of the robot model, I

tested it with three different event files. In the first and

second one, I entered the different commands at various

times to see if the robot simulator works as per pre-defined

conditions described in section 3.2.1. Consider the

following lines of the first event file:

00:00:01:00 UserInput 2

00:01:01:00 UserInput 2

00:02:00:50 UserInput 1

00:03:05:00 UserInput 2

00:04:05:00 UserInput 2

As per our conventions and conditions in section 3.2.1, the

robot simulator must ignore the first two move commands,

since it has not homed yet, then it does the homing process

at time 00:02:00:50, and after that it start accepting the

move commands. This worked as desired, however, I will

explain the details of the analysis of the second event file

here that meets more conditions. Let see the first six lines

of the second event file of our test:

00:00:01:00 UserInput 2

00:02:00:50 UserInput 1

00:02:02:00 UserInput 3

00:03:01:00 UserInput 2

00:04:00:00 UserInput 1

00:05:03:00 UserInput 2

In this test, the firs command must be ignored (robot is not

homed). The second command should start homing process

at 00:02:00:50, but this process should stop since there is a

STOP command right after this INIT command at

00:02:02:00. So the MOVE command at the forth line of

the event file still should be ignored by the robot since it is

still not homed yet. Then at 00:04:00:00 it should be

initialize itself and accept the next move command at

00:05:03:00. Below is the output of the simulator for this

event file:

00:05:04:590 robotj1 162.392

00:05:04:590 robotj2 154.967

00:08:06:000 robotj1 106.362

...

As we see the first output of the robot is at 00:05:04:590

which mean all of the commands before this time have

been ignored or stopped as we expected. Let’s take a closer

look at these activities. As shown in figure 2, we can find

all of the transitions in details in translog file. Figure 12

shows a part of the Decision translog file as the result of

running this event file:

Figure 12: Decision translog file

As we see in trasnlog, in time 00:00:00:00, the robot has

been in idle state and all of the variables are zero.

At time 00:00:01:000, there had been an input in UCmdIN

port (of Decision model) with the value of 2 (“?” for input).

Number 2 means the move command, but the robot should

ignore any commands except INIT command (“1”) until it

is homed.

At 00:00:01:000, third line, the external transition function

changes the state from idle to itself (idle) as the result of the

previous entry in second line. The letter E is for external

transition function. There isn’t any other input until

00:02:00:050.

At 00:02:00:050, an INIT command - the number 1- will be

entered to the UCmdIN port.

At 00:02:00:050, line fifth, an external transition function

will accept this command, changes the state to “init”. The

Command and CurrentState variables get the value of one.

At 00:02:00:050, lines sixth and seventh, because the init

state has the ta=zero, the internal transition function will

run immediately and the output function will send the init

command to the Homing module for the homing process

through the HCmdOUT output port. Then the state will be

changed to initializing from init. It is now waiting for the

done signal from the Homing model.

At 00:02:02:000, line eighth, the STOP command appears

to the UCmdIN port. Because the Homed variable is still

zero, and CurrentState is one, it means the robot is in the

middle of homing but it is not finished yet. The robot

should stop the homing process by receiving the STOP

command at this point.

At 00:02:00:050, from line ninth to line thirteen, first an

external transition function will change the state to

“stopinit”. In this state ta=0 and so internal transition

function will run immediately. The STOP command then

will be passed to Homing model to stop the homing by

HCmdOUT port (lint 10th). The Command and

CurrentState have the value of 3 now. The Homing module

stops the homing process right away and send back the

stopped signal (number 3) to the Decision model coming

from the port HDoneIN (line 12th). Then an external

transition function will trigger upon receiving the stopped

signal from HDoneIN while in the initializing state, and

cause the model changes its state to idle again. This

function then set the variables to zero (line 13th). Figures 13

and 14 are the translog of Joint1 and Joint2 atomic models

of Homing module, for the same event file and simulation.

These translog files confirm the validation of the output of

the model.

Figure 13: Joint1 translog file

Figure 14: Joint2 translog file

If we look at the time 00:03:01:000 (lines 14th and 15th) in

figure 12, we see that the next MOVE command has been

ignored because the robot is not homed yet.

At 00:04:00:000 (line 16th), another INIT command has

entered. The same process started as previous INIT

command, however there in no STOP command at this time

to stop the initialization process, and as a result, the robot

has been homed at 00:04:18:000 (lines 20th and 21st).

Eighteen seconds was the time that we set as the average

time of homing process. Joint1 and Joint2 translog files

also validate this process.

After the robot was homed, it has accepted the next MOVE

command at 00:05:03:000. The output as the result of this

move has appeared in the robot output file at 00:05:04:590.

Figure 15 shows the Motion translog from the same event

file. This will confirm the data in Decision translog.

Figure 15: Motion translog file

If we look at the Motion translog file (figure 15), the first

transition after initialization of the robot (the letter C in the

first line), is at 00:05:03:000 which confirms that the

previous MOVE commands were ignored by Decision

model. Also at 00:05:04:590, (lower highlighted line) it

finishes moving and sends the current position to the output

of the robot as well as a done signal to the Decision model,

then changes the state to idle for the next command (the

extra lines in translog have been trunked in the picture).

We supposed that the robot should not accept other MOVE

commands while it is in moving state. This has also been

tested in the next input of the event file, at 00:05:03:011. If

we see the line started with this time stamp in Decision

translog file (figure 14), the external transition function

associated with this condition will keep the state at

MovingStopping state and simply ignores the command.

We don’t see this input in the Motion translog file (figure

15). The next valid move command appears at

00:08:05:000. Both Decision and Motion tarnslog files, as

well as the output of the robot show this event.

3.3.2 Testing the Robot Efficiency

In the next event file (2DOFRobotArmGraphic_2.ev), I

have tested the efficiency of the robot. Remember from the

Motion model, a random number between [0,100] will be

generated for this reason. If it is less than 5 (5% of times),

then it is one of the conditions that robot cannot coming out

of moving state and this is unsolicited idle time. Since it

happens just 5% of times, I had to test this condition with

numerous entries. More entries give more accurate results. I

have inserted 357 entries to test the efficiency of the robot

in the next test. In the first few lines I have also tested the

reaction of the robot to different condition as well. The test

ran for some minutes and the last number for the efficiency

was 94.9527. The output

(2DOFRobotArmGraphOUT_2.out) and the translog

(decision.03-ev_2.translog) files of this test are so long, and

figure 16 shows the part of output file that includes the last

efficiency line.

Figure 16: Output file showing the efficiency of robot

4. CONCLUSION

DEVS modeling and simulation was used to model the

efficiency of a robot arm in graphical tools of CD++, CD++

Builder. Two objectives were followed in this project, first

measuring the efficiency of a robot arm with two degrees of

freedom, and second the use of CD++ Builder. I modeled

and simulated the robot arm and measured its efficiency by

generating and using a set of random variables. The model

can be expanded and be used for the robots with more

joints in future. Same atomic models can be added for more

joints. Also other factors, like the age of the robot, the heat

of area that robot is working in, the weight of the robot and

etc, can be considered in calculation of the efficiency. We

can predict the next service time of the robot for instance,

by considering these factors in simulation. If the robot is

expensive and the uptime is crucial, the service time then is

important.

I also showed how we can use the CD++ Builder tool to

implement a discrete-event system. I used the robotic arm

as a case study and discussed implementing and analysing

the results of simulation using CD++ Builder and its log

files.

The model still can refine, especially in the Motion module

while it’s countdown the counter which was most time

consuming step in simulation.

5. REFERENCES

[1] Christen G, Dobniewski A. and Wainer G. 2004.

Modeling State-Based DEVS Models CD++: MGA,

Advanced Simulation Technologies Conference 2004.

Arlington, VA. U.S.A.

[2] CGGAD Graphic Tool - CD++ User Manual, User’s

Guide, Gabriel A. Wainer 2005 – Chapter 9

[3] SourceForge web site:

http://dcplusplus.sourceforge.net/

[4] Online CD++ Builder User Manual at

http://sce.carleton.ca/courses/sysc-

5104/UserManualv2.0.htm

[5] Wainer, Gabriel A. 2009. Descrete-Event Modeling

and Simulation: A Practitioner’s Approach. CRC

Press, Taylor and Francis Group, NW.

[6] CHRISTEN, G.; DOBNIEWSKI, A. "Extending

theCD++ toolkit to define DEVS graphs". M. Sc.

Thesis. Computer Science Dept. Universidad de

Buenos Aires. 2003

http://dcplusplus.sourceforge.net/
http://sce.carleton.ca/courses/sysc-5104/UserManualv2.0.htm
http://sce.carleton.ca/courses/sysc-5104/UserManualv2.0.htm

