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Abstract 
 I will develop a model of a robot arm with two degrees of 

freedom and then will simulate the model by using the 

graphical tool of CD++ (CD++ builder). In this project, I 

will show the usage of this state base tool for a discrete-

event system. 

I will simulate the idle time of the robot arm for the times 

that robot does not response to commands as expected due 

to physical constrains or other controller issues. Then I will 

measure the efficiency of the robot by several inputs. I will 

analyze and discuss the results of the simulation at the end.  

 

1. INTRODUCTION 
Simulation has been an interesting subject for scientists, 

industry and developers for years and many tools have been 

introduced to help and simplify the modeling and 

simulation process. The most popular method in modeling 

the system is DEVS since it covers most of know systems. 

There are many tools that can be used to model and 

simulate a DEVS model. One of these tools is CD++ 

Builder which is a graphical tool of CD++.[1] Using the 

graphical interface, make it easier to transfer the models on 

the paper and ideas into a computer simulator and also it 

requires less time to model and troubleshoot a system. It 

can help to reduce the complexity of a large system due to 

visual property of the tool. Other benefit of using a 

graphical interface is that one with little or no knowledge of 

programming can learn and use the tool. This is especially 

useful for the people that their filed is not engineering, like 

medical doctors or sociologist. [1] 

The CD++ Builder is an open source project and can be 

found in SourceForge website. [3] It is a state base tool that 

has a graph definition of DEVS which is intuitive and easy 

to use. I will use this tool through this project to simulate a 

robot arm with two degrees of freedom that can receive 

command form the user to move its arms by its joints, and 

then will simulate and show the efficiency of robot when it 

doesn’t act as desired. 

 

2. BACKGROUND 

2.1 DEVS Specifications 

DEVS, Discrete Event System Specification, is used to 

model and simulate the Discrete Events Dynamic Systems, 

DEDS. In a DEDS system the state of the system will be 

changed based on an event, and it defines a series of 

transitions for the states. In DEVS a set of rules will be 

defined for these transitions. A state of a system in DEVS 

can change by receiving an external event or by expiration 

of a time delay. A system can be seen and modeled in a 

hierarchal view in DEVS in which each level of the system 

can consist of other subsystems. The relation of these levels 

and subsystems can be defined through the input and output 

ports of systems. The hierarchy structure of the DEVS 

model can help to reduce the complexity of a system. Each 

system or subsystem can be seen as a black box. Each entry 

from an input port of a box will consider as an external 

event for the system that can change its state by triggering a 

function. In this way the details of implementation of each 

system will be isolated and hidden from other components, 

and this will eliminate spreading complexity trough the 

system. 

The components that consist of other subsystems are 

described as Couple (Structural) models, and others that are 

not composed by other subsystems are described as Atomic 

(Behavioral) models.  A formal definition of a DEVS 

Atomic model can be seen as below: 

M = < X, S, Y, int, ext, , ta > 

 

In this definition, X represents a set of input ports for the 

atomic model. Similarly Y represents a set of output ports 

of the model. The states of model belong to the set of S. 

When an input enters from a port, it will be considered as 

an external event to the system, and the ext  function that is 

described as “external transition function” will be triggered 

that can change the state of the model. The int function 

which is described as “internal transition function” will run 

after expiration of the time of the current state. This time 

will be defined by “ta”, or Time Advance.  But just before 

internal transition function runs, the function will be 

triggered when the “ta” expires and send an output to the 

output port(s).  

 



The Coupled models that consist of other models have the 

following formal definition: 

 

CM = < X, Y, D, {Mi}, IC, EIC, EOC, select > 

 

Here the X and Y are similar to the definition of atomic 

model and represent set of input and output ports. D is an 

index for the components of the coupled model, and for 

each “i” that belongs to D, Mi is a DEVS model that in turn 

can be atomic or coupled models. Atomic models then can 

be defined by the formal definition that we saw for atomic 

models. IC is set of input couplings to link the ports that 

should communicate with each other inside a couple model. 

EIC is set of External Input Couplings that links the 

external input ports to internal input ports, and EOC is set 

of External output Couplings that relates the insider output 

ports to external output ports. 

2.2 Formal Specification of DEVS Graph 

As Christen G. et al [1] has stated in their introduction of 

CD++ Builder, the GGAD notation has been used as the 

formal definition for DEVS graph by this tool. The GGAD 

formal definition can be seen as below (Christen G. et al): 

 

“GGAD = < X M , S, Y M , int, , ext , , D > 

X M {(p,v)| p IPorts, v X p } set of input ports; 

Y M = {(p,v)| p OPorts, v Y p } set of output 

ports; 

S = B x P(V) states of the model, 

B = { b | b Bubbles } set of model states. 

V = { (v,n) | v Variables, nR0 } intermediate state 

variables of the model and their values.” 
 

As we see other, than set of “S” which represents the states, 

the other elements of this definition have the same 

definitions as in the DEVS formalism definition in section 

2.1. In order to accommodate the graphical presentation of 

the states, a set of Bubbles has been defined and used in 

this formal specification. 

 

2.3 CD++ Builder Graphical Tools 
As introduced by Christen G. et al [1], the CD++ Builder 

uses the GGAD notification. It leverages the core of the 

CD++ as its engine. Each state in the system introduces by 

a bobble that has a time advance associated with the state. 

The external transition functions, ext, and internal 

transition functions, int, will be shown by solid and dashed 

lines. The arrow at the end of the lines shows the target 

state of the transition. After expiration of time advance, the 

internal transition function will be run. The output function 

can be define in the definition of int if require, which will 

be run before the transition. 

 

Figure 3 shows the interface of CD++ Builder. Both atomic 

DEVS Coupled Model Diagram and Atomic DEVS-Graphs 

Diagrams are available and can be added to the model, to 

represent the coupled model and atomic model. In addition 

to these diagrams, a C++ atomic model also can be inserted 

to the model. This flexibility allows overcoming some of 

the limitations related to graphical development of a model. 

 

Each graphical design will be converted into a GADScript 

format in which the CD++ simulator can run and simulate 

them as the model. CD++ Builder will create a text file 

with the “.cdd” extension for each atomic graphical model. 

These files contain the GADscript of the graphical model. 

Figure 1 shows a sample of a cdd file. 

 

 
 

Figure 1: A cdd file 

 

As we see from the format of the text file, “in” and “out” 

define the input and output ports, “state” defines the states; 

“int” and “ext” define internal and external transition 

functions and so on. The output function will be defined as 

part of internal transition function. CD++ Builder provides 

a set of log files that are good tools for troubleshooting. It 

creates a system log file, a transition log file (with the 

extension of “translog”) and a log file for each cdd file. 

Translogs can be very beneficial in order to see the step by 

step transitions of the program. It shows all the state 

transitions based on external events or internal transitions. 

You can check to see whether the state has been changed in 

a specific time as desired or not. Figure 2 is an example of 

a translog file. 

 



 

Figure 2: A translog file 

 

 

 

 

Figure 3: Definition of an atomic model in graphical interface of CD++ Builder 

 

There is only one translog file for each component, and it 

will be overwritten anytime that the simulator runs. For that 

reason, if you need to keep the translog file of different 

event files, you should change the name of the translog file 

before running the simulator again. The letter “C” indicates 

the start of the simulation. The question mark shows that an 

input has been entered in from an input port. The letter “E” 

means an external transition function has triggered and 

started. The letter “O” is for an output and the letter “I” is 

for and internal transition function. For instance in the line 

six of the Figure 2, the text in front of “?” means that at the 

time 00:02:00:050 the value of one has been entered 

through the “ucmdin” input port. A related external 

transition function has been triggered upon this input in the 

next line and changes the state of the system from “idle” to 

“init”. And then after the “ta” consumed, which is zero in 

this case, the value of one has been sent to “hcmdout” port, 

and then and internal transition function runs and changes 

the state of the system to “initializing” from “init” in the 

line ninth. And this will continue.  

 

 

 



3. THE ROBOT ARM MODEL 

3.1 Definition and Modeling 

I will use CD++ Builder to model a robot arm with two 

degrees of freedom. This robot arm receives the commands 

from user and moves based on the degrees entered in the 

command. The command could be like: “MOVE 120 35”. 

This command tells the robot moving its first joint 120 

degrees and the second joint for 35 degrees. In addition to 

move command, users can stop the robot movement at any  

time by “STOP” command. Other command is “INIT” 

command that causes the robot to move itself in the initial  

point so it can calculate its position form there. This is call 

“Homing”. During the process of homing, the sensors of 

robot need to be zeroed. The INIT command has to be the 

first command and the robot would not accept the other 

commands until it does the homing and is homed. One 

other condition is that while the robot is moving; it would 

not accept other move commands. However, it will accept 

the stop command at anytime during the homing or 

movement for the safety of people that are working around 

the robot, and for the safety of the robot. In 5% of cases, 

the robot may not achieve the desired point exactly, but still 

trying to get to destination and does not return from moving 

state. For this reason there would be a time out timer which 

would be equal to longest possible movement of the robot 

in order to force a transition from the moving state. This 

will increase the idle time of robot. Every time that the 

robot (5% chance), will waste some time till it gets out of 

the moving state resulting in lower efficiency. The chance 

of not reaching the goal will be modeled by a random 

number generator and the overall efficiency of the robot in 

operation will be evaluated using this model. 

When the robot turns on, it should be in the “idle” state and 

waiting for commands. It is better to not doing the homing 

process automatically after turning on the robot since there 

may be obstacles on the way of the arms, and this is 

considered as a safety measure. So if it turns on 

accidentally, it wouldn’t damage itself or hurts others and 

just stays at idle state until it receives the INIT command. 

 

To model this robot, I have defined a coupled model 

“Robot” that consists of two other coupled models: 

“Motion Controller” and “Homing”. “Motion Controller” is 

composed of two atomic models: Decision, to decide where 

to send the entered command, and Motion to simulate the 

robot movement. Figure 4 shows the diagram of the model, 

its components and ports, and how they are related to each 

other by links. The “Homing” coupled model is composed 

of two atomic models, Joint1 and Joint2 to simulate the 

homing process. The data flow has been shown in the 

diagram. The user command will arrive to the Decision 

model trough the UserInput port at the top model that has 

the appropriate links to input port of decision model, 

UCmdIN. 

 

Robot will decide where to send the command in the 

decision atomic model. It will check whether it is for 

homing or movement, or it simply should ignore the 

command if it is not a valid command. When it receives the 

first init command, it will pass the command to Homing 

coupled model and will wait until it receives the done 

signal from the Homing component through the HDoneIN 

input port. It will just accept the STOP command at this 

stage. 

 In the Homing component, when the first INIT command 

arrives, it will be forwarded to the both Joint1and Joint2 

atomic models. Both joints will start homing at the same 

time. Joint2 will send a signal to Joint1 when it finishes its 

homing. Joint1 waits until it receives the done signal form 

the Joint2 through its J2Done input port. It will be 18 

seconds time out for this waiting period to force the robot 

to coming out of the homing stage if it does not receive a 

signal form Joint2. During the homing process, Joint1 and 

Joint 2 will accept the STOP command. After this, it will be 

considered as homed. A variable “Homed” has been 

defined to show if the robot is homed or not. After robot is 

homed, Joint1 and Joint2 won’t accept any other commands 

and will go to passivate mode until the robot resets. 

If the Decision receives a MOVE command while the robot 

has been homed and it is in idle state, it will pass the 

command to the Motion atomic model. This model then 

produces a random number between zero to one hundred 

([0,100]). If it is more than 5 (95%), then model will 

produce two random numbers in [0, 180] to simulate the 

movement of the joints. Then it will wait for sum of the 

numbers in second, and will send the current position of the 

robot to the output and a done signal to the Decision 

module. If the first random number is less than 5 (5%), then 

model waits for a timeout and will calculate the efficiency 

of the robot based on the total number of move commands 

and the number of times that the random number has been 

less than 5. It will send the efficiency number to output and 

send a done signal to the Decision module after this 

timeout.  If we suppose P = Total number of times that the 

random number is less than 5, and N = Total number of the 

move commands, then the efficiency of the robot can be 

calculated as following 

 

Robot Efficiency = 
         

 
 

 

Later we can consider other factors in the formula, like the 

age of the joints of robot, and compare the output of the 

simulation with acceptable efficiency number to predict the 

next service time, for example. If the robot is expensive and 

its working condition is important, this simulation will help 

to have less down time. 



 

 

Figure 4: Diagram of the Model of Robot Arm  

 

 

3.2 Implementing the Robot Arm Model Using 

CD++ Builder 

As I discussed in section 2.3, CD++ Builder is graphical 

tool for modeling and simulation that I have used to 

simulate the robot arm model. Adding coupled models and 

atomic models in CD++ is provided by the tool box on the 

right side of the screen. At the top of hierarchy I have 

defined the two coupled models, Motion Controller and 

Homing, and then I implemented the atomic models as per 

robot model diagram in figure 4. Here I explain each 

atomic model in more details. 

 

 

 



3.2.1 Decision Atomic Model 

Figure 3 depicts the definition of Decision atomic model. 

The initial state is idle and is waiting for commands from 

UCmdIN input port. When a command enters, different 

external transition functions may be triggered based on the 

value of the input. I discussed some of the conditions of 

working with robot, such as it won’t accept the move 

commands while is in moving state. Here also is the list of 

conventions in this implementation: 

- The value “1” for command means it is an INIT 

command 

- The value “2” for command represent the MOVE 

command 

- The value “3” for an input will interpret as a STOP 

command 

- The “Homed” variable is used in all modules, except 

Motion, to show if the robot is homed or not. If it is 1, 

it is homed and if it is 0, it is not homed. 

- The “CurrentState” variable is used in all modules to 

hold the current state of the robot. For example if the 

CurrentState holds number 2, it means the robot is in 

the moving state. I check this variable in modules to 

decide whether to accept or refuse the other 

commands. 

- There is also a “Command” variable that has been 

used in all modules to hold the current command 

entered. Most of the time the value of this variable is 

equal to the value of CurrentState variable. 
- The average speed of robot movement is 10 

degrees/second. 

When the value of 1 arrives at the UCmdIN input port of 

the Decision model, the condition of the external transition 

of INIT command will be met and it will be triggered. All 

of the variables will be set to appropriate values (in this 

case to “1” except the Homed variable) and the state will 

change from “idle” to “init”. The time advance of the “init” 

state dictates that internal transition function should run 

immediately. When internal transition function runs, it puts 

the command to the HCmdOUT output port of the Decision 

module which is linked all the way to the Homing coupled 

model in order to initialize the robot. The output function 

can be defined as part of the definition of internal transition 

function. Figure 5 shows this definition. 

 

 

Figure 5: Internal Transition Function and the Output Function definition 

The internal transition function then will change the state 

form “init” to “Initializing” state. Decision model then will 

stay in this state till either the HomeDone signal arrives 

from the HDoneIN input port, or the ta=40 consumes. This 

time is a timeout that is a little bit longer that the maximum 

movement time of the robot which is 36 seconds. This is 

based on the 10 degrees/second average speed of robot that 

I defined in conventions. After this time, the robot will be 

considered as homed and set the Homed variable to 1. 

Meanwhile, if a STOP command arrives at the input port, 



the movement or homing must stop. This will trigger an 

external transition function to change the state from the 

“Initializing” to “StopInit” state. During this transition it 

will set the variables (except Homed variable) to 3. The 

“StopInit” state has a ta=0 and its internal transition 

function will send and output of the command to the 

HCmdOUT which is 3, to tell the Homing model to stop 

the process. Then it will change the state back to the 

“Initializing” state. A STOPPED signal (the value of 3) 

should be appear on the HDoneIN after a moment, and that 

means the initialization process has been stopped in the 

Homing model. This will change the state from 

“Initializing” state to “idle state”. Since Homed variable 

will get different values based on type of input that can be 

received on HDoneIN input port, two external transition 

function are in place to check these conditions, one for 

value “1” (initialized), and one for the value “3” (stopped).  

Very similar procedure will be used for MOVE commands. 

If the value of input command is “2”, an external transition 

function will be triggered, variables (except Homed) get the 

value of 2, and the state will change to “Move”. Then the 

internal transition of the “Move” state will run. It will run 

the output function first which will put the value of 2 on the 

MCmdOUT to send the MOVE command in Motion 

model, and then it will change the state from “Move” to 

“MovingStopping”. The same technique has been used to 

accept the STOP command here as explained in 

initialization process. The time out of 40 seconds again has 

been defined here to force the transition from moving state. 

Decision model will receive the MoveDone signal from its 

MDoneIN input port showing that the motion has been 

completed. 

 

3.2.2 Motion Atomic Model 

Figure 6 shows the states in the Motion atomic model. The 

initial state of this model is “idle”. Here I have defined 

more variables to hold the random numbers and calculate 

the efficiency. When a MOVE command (2) appears at the 

MoveCommand input port, an external transition function 

will be triggered. It will generate a random number in 

[0,100] range and hold the number in the variable named 

“RandomNumber”. This random number will be used to 

simulate the efficiency of the robot. The state will be 

change to the “Random” state during this transition. The 

ta=0 will cause to change the state to “MoveReady” state. 

In this state, the value of RandomNumber will be examine 

and if it is less than 5, then it goes to “TimeOut” state, and 

if it is more than 5, the movement will be proceed. 

 

 

 

 

 
 

Figure 6: Motion Atomic Model 

 

We would need to have an input to trigger the external 

transition function. So before examining the 

RandomNumber in MoveReady state, the internal transition 

of Random state should send an output. I have defined an 

output and an input port called RandomIN and 

RandomOUT for this matter. The internal transition 

function of Random state will send the value of 

RandomNumber variable to the RandomOUT output port. 

This port is linked directly into the RandomIN input port 

and so any output on RandomOUT will be appeared on 

RandomIN port immediately. Then in the MoveReady state 

this value will be examined. It either triggers the external 



transition to change the state to JointDegrees (more than 5) 

or to TimeOut state (less than 5). If the state changes to 

JointDegrees, another two random numbers will be 

generated during this transition. These two numbers are in 

the [0,180] range and are used as the degree that each joint 

has to move. The number is between zero and 180. Since 

the degree can be negative or positive, it will cover the 360 

degrees if we use 180 degrees in both direction. Because 

we are not simulating the direction of the movement and 

just the time of the movement, the sign of the numbers is 

not important. The RandJ1 and RandJ2 variables will hold 

the two numbers. The WaitCount variable will be sum of 

the RandJ1 and RandJ2 divided by two (since both joints 

can move at the same time) to keep the total time of the 

movement. 

 

In order to simulate the time passed for this movement, the 

“Waiting” state has been added, and this state with the 

JointDegrees state will work together to count down the 

amount of WaitCount variable. Each time that internal 

transition function runs, it will send the WaitCount to the 

TAWaitOUT output port. TAWaitOUT port is directly 

linked to the TAWaitIN port, and so the output will be 

appears on the TAWaitIN port immediately. Then this input 

will trigger the external transition function of Waiting state, 

and this will change the state form Waiting to JointDegrees 

state again. During this transition, the value of the 

WaitCount varilable will be decreased by one unit. The 

time advance of the JointDegrees is one second and so each 

set of back and forth transitions between these two states, 

will count one second (the numbers are divided by 10 in 

this diagram to speed up the simulation). A comparison will 

be done in the external transition to see if the WaitCount 

value is zero or not. When the counter is zero (or less than 

1), the Waiting State will change to the “Move” state. The 

output function of internal transition function in Move state 

will send the current state of the joints to the output ports 

which are implicitly link to the output ports of the Robot 

and user can see the results. The Motion model will go to 

“Idle” state after Move state and will be waiting for the 

next command. 

 

Now if we go back to the MoveReady state and suppose 

that the RandomNumber is less than 5. In this case the state 

will change from MoveReady to “TimeOut”. In TimeOut 

state, I defined the maximum time that take for robot to 

finish its movement (here the number is divided by 10 

again in figure 6). In this way I simulated the non efficient 

times of the robot that it will stay in the movement state, 

not reaching the destination. The robot efficiency will be 

calculated during the transition to TimeOut state by the 

formula presented in the section 3.1. Then it will be sent to 

output of the robot by the internal transition of the TimeOut 

state that will change the state of the Motion model to the 

Idle and waits for the next command. 

We should notice that we had another time out in the 

Decision model which was also equal to the maximum time 

of robot movement. The time out in Decision model was 

the waiting time for the done signal from the Motion 

model, while the time out defined here, in the Motion 

model, is to simulate the efficiency of robot. As the matter 

of fact, the time out of the Decision model would never 

expire (reaches 40 second) if the Motion model works 

correctly. This can be seen in the output of the simulation. 

The results and the result analysis of the robot model with 

different test criteria have been discussed in the next 

section. 

 

The STOP command can arrive at any time and in any state 

of motion model so an external transition function to the 

“Stop” state has been defined for the input value of 3 for 

each state that has time advance greater that zero. In this 

case all of the variables and counters will be reset. 

The arrival of another MOVE command also might be 

possible if the Decision model doesn’t work properly. An 

external transition function from each state to itself has 

been defined to ignore the new move command while the 

robot has not finished its movement. The arrival of another 

move command during the movement has been prevented 

in the Decision model, and it should never send the MOVE 

command again while it is waiting for the done signal from 

the previous MOVE command. This repeats in Motion 

model just for the safety. This also has been tested in the 

Robot model and in Motion model individually. 

 

The coupling of the Motion Controller coupled model has 

been shown in the figure 7. 

 



  

Figure 7: Motion Controller Coupling 

 

3.2.3 Joint1 and Joint2 Atomic Models 

Due to their similarities and relation, I discuss these two 

models together. Figure 8 and Figure 9 show the graphical 

design of these two models. Both models start at the “Idle” 

state. When the INIT command arrives, the Homing 

coupled model will pass the command to the both Joint1 

and Joint2. Since the initialization happens just once, for 

simplicity, I ignored the movement of the robot during the 

initialization process for robot efficiency calculation. 

However, this can be done by implementing the same 

concept in Joint1 model and sending the result to the 

Motion model. The average time of the robot movement, 

((360 /10) / 2 = 18 seconds) will be used for the 

initialization process for the same reason mentioned above. 

In Joint2, when it is done homing, it will send a done signal 

to the Joint1, set the Homed variable to one, and will go to 

Idle stat.  

The Joint1model is a little bit more complicated. It first will 

change the state from Idle state to Homing state by an 

external transition function. After 18 seconds, the time 

advance will be consumed and the internal transition 

function will change the state to DoneJoint1 and will set the 

J1Homed variable to one. While it is in the Homing state, if 

the done signal from Joint2 arrives at the J2DoneIN input 

port, and external transition function will set the J2Homed 

variable but will stays in the Homing state until the time 

advance expires. The output function will put the J2Homed 

variable on the J2HomedOUT output port. This port is 

directly connected to the J2HomedIN input port and the 

value on the output port will be appeared on the input port 

immediately. This value will be used to check different 

conditions later in the DoneJoint1 state.  

In DoneJoint1 state, if the J2Homed variable is one, it 

shows that the Joint2 has done its homing at the time that 

Joint1 was in the Homing state. If the J2Homed variable is 

zero (joint2 is not finished its homing), then Joint1 model 

should wait until it receives a done signal from the Joint2 

model. It then changes the state from the DoneJoint1 to 

WaitingJ2 state by an external transition function that will 

be triggered by arrival of the value of J2Homed variable on 

the J2HomedIN port as explained above. Again there will 

be a time out for waiting. Here the time out is another 18 

seconds to make the total time to 36 seconds (maximum 

time). After this time expires, it assumes that Joint2 has 

homed itself (as part of predefined conditions). It then set 

the Homed variable to one and changes the state to 

DoneJoint2 state. If the done signal arrives from the Joint2 

during this time, an external transition function will change 

the state from DoneJoint2 state to itself. In both cases, 

either internal transition function or external transition 

function will set the Homed variable to one. The internal 

transition function in the DoneJoint2 then will change the 

state to Idle and send the Homed variable on the DoneOUT 

output port that has linked all the way to the Decision 

model.  

The STOP command can arrives at any time during the 

homing process. In each state, an external transition 

function is in place for the stop command. Once the Homed 

variable is set to one, it means the robot has initialized, and 

the stop command won’t affect it. So once it is in the 



DoneJoint2 state, the model will ignore the stop command. 

When the initialization process stops by a STOP command, 

all the variables will be reset and state will be change to 

Idle. An output (value of 3) will be sent to Decision model. 

While in the Idle state, the model will ignore other INIT 

commands if it is already homed. This will be also checked 

in the Decision model. It also will ignore the STOP 

commands and J2Done signal in the Idle state since it is not 

in the initialization process. 

 

 
Figure 8: Joint1 Mode 

 

 
Figure 9: Joint2 Model 



Figures 10 and 11 show the Homing and the Robot coupling. 

 

 

 

Figure 10: Homing Model Coupling 

 

 
 

Figure 11: Robot Copuling 

 

3.3 Analyzing the Results of Simulation 

3.3.1 Examining Conditions 

I have run the simulation with different criteria. I have 

entered different commands while the model is in moving 

or initializing state to analyze its reaction to different 

conditions and validated the results. Entries can be 

provided through an event file to the simulator in CD++. 

An event file has to have the “.ev” extension. Entries in an 

event file are similar to these lines: 

00:01:01:00 UserInput 2 

00:02:00:50 UserInput 1 

00:03:05:00 UserInput 2 



00:03:15:00 UserInput 3 

 

Each entry has a time stamp at the beginning of the line that 

tells the time of input or event, followed by the port name 

and the value that will be fed to that port. Each line is 

considered as an external event to the system through the 

specified input port. The first line of previous example 

indicates that the value of 2 will be inserted to the input 

port name “UserInput” at the minute one and second one 

after starting the simulation. The second line indicates that 

the number “1” will be inserted at the same port at second 

minute and .5 second after beginning of the simulation and 

etc. 

As we saw in figure 4 - diagram of the robot - the only 

input port that users can input their commands is 

“UserInput” port.  

 

In order to validate the behaviour of the robot model, I 

tested it with three different event files. In the first and 

second one, I entered the different commands at various 

times to see if the robot simulator works as per pre-defined 

conditions described in section 3.2.1. Consider the 

following lines of the first event file: 

00:00:01:00 UserInput 2 

00:01:01:00 UserInput 2 

00:02:00:50 UserInput 1 

00:03:05:00 UserInput 2 

00:04:05:00 UserInput 2 

 

As per our conventions and conditions in section 3.2.1, the 

robot simulator must ignore the first two move commands, 

since it has not homed yet, then it does the homing process 

at time 00:02:00:50, and after that it start accepting the 

move commands. This worked as desired, however, I will 

explain the details of the analysis of the second event file 

here that meets more conditions. Let see the first six lines 

of the second event file of our test: 

00:00:01:00 UserInput 2 

00:02:00:50 UserInput 1 

00:02:02:00 UserInput 3 

00:03:01:00 UserInput 2 

00:04:00:00 UserInput 1 

00:05:03:00 UserInput 2 

 

In this test, the firs command must be ignored (robot is not 

homed). The second command should start homing process 

at 00:02:00:50, but this process should stop since there is a 

STOP command right after this INIT command at 

00:02:02:00. So the MOVE command at the forth line of 

the event file still should be ignored by the robot since it is 

still not homed yet. Then at 00:04:00:00 it should be 

initialize itself and accept the next move command at 

00:05:03:00. Below is the output of the simulator for this 

event file: 

00:05:04:590 robotj1 162.392 

00:05:04:590 robotj2 154.967 

00:08:06:000 robotj1 106.362 

... 

 

As we see the first output of the robot is at 00:05:04:590 

which mean all of the commands before this time have 

been ignored or stopped as we expected. Let’s take a closer 

look at these activities. As shown in figure 2, we can find 

all of the transitions in details in translog file. Figure 12 

shows a part of the Decision translog file as the result of 

running this event file: 

 

 
 

Figure 12: Decision translog file  

 

As we see in trasnlog, in time 00:00:00:00, the robot has 

been in idle state and all of the variables are zero.  

At time 00:00:01:000, there had been an input in UCmdIN 

port (of Decision model) with the value of 2 (“?” for input). 

Number 2 means the move command, but the robot should 

ignore any commands except INIT command (“1”) until it 

is homed.  

At 00:00:01:000, third line, the external transition function 

changes the state from idle to itself (idle) as the result of the 

previous entry in second line. The letter E is for external 

transition function. There isn’t any other input until 

00:02:00:050. 

At 00:02:00:050, an INIT command - the number 1- will be 

entered to the UCmdIN port. 

At 00:02:00:050, line fifth, an external transition function 

will accept this command, changes the state to “init”. The 

Command and CurrentState variables get the value of one. 

At 00:02:00:050, lines sixth and seventh, because the init 

state has the ta=zero, the internal transition function will 



run immediately and the output function will send the init 

command to the Homing module for the homing process 

through the HCmdOUT output port. Then the state will be 

changed to initializing from init. It is now waiting for the 

done signal from the Homing model. 

At 00:02:02:000, line eighth, the STOP command appears 

to the UCmdIN port. Because the Homed variable is still 

zero, and CurrentState is one, it means the robot is in the 

middle of homing but it is not finished yet. The robot 

should stop the homing process by receiving the STOP 

command at this point. 

At 00:02:00:050, from line ninth to line thirteen, first an 

external transition function will change the state to 

“stopinit”. In this state ta=0 and so internal transition 

function will run immediately. The STOP command then 

will be passed to Homing model to stop the homing by 

HCmdOUT port (lint 10th). The Command and 

CurrentState have the value of 3 now. The Homing module 

stops the homing process right away and send back the 

stopped signal (number 3) to the Decision model coming 

from the port HDoneIN (line 12th). Then an external 

transition function will trigger upon receiving the stopped 

signal from HDoneIN while in the initializing state, and 

cause the model changes its state to idle again. This 

function then set the variables to zero (line 13th). Figures 13 

and 14 are the translog of Joint1 and Joint2 atomic models 

of Homing module, for the same event file and simulation. 

These translog files confirm the validation of the output of 

the model.  

 

 
 

Figure 13: Joint1 translog file 

 

 

 

 

Figure 14: Joint2 translog file 

 

 

If we look at the time 00:03:01:000 (lines 14th and 15th) in 

figure 12, we see that the next MOVE command has been 

ignored because the robot is not homed yet.  

At 00:04:00:000 (line 16th), another INIT command has 

entered. The same process started as previous INIT 

command, however there in no STOP command at this time 



to stop the initialization process, and as a result, the robot 

has been homed at 00:04:18:000 (lines 20th and 21st). 

Eighteen seconds was the time that we set as the average 

time of homing process. Joint1 and Joint2 translog files 

also validate this process.  

After the robot was homed, it has accepted the next MOVE 

command at 00:05:03:000. The output as the result of this 

move has appeared in the robot output file at 00:05:04:590. 

Figure 15 shows the Motion translog from the same event 

file. This will confirm the data in Decision translog. 

  

Figure 15: Motion translog file 

 

If we look at the Motion translog file (figure 15), the first 

transition after initialization of the robot (the letter C in the 

first line), is at 00:05:03:000 which confirms that the 

previous MOVE commands were ignored by Decision 

model. Also at 00:05:04:590, (lower highlighted line) it 

finishes moving and sends the current position to the output 

of the robot as well as a done signal to the Decision model, 

then changes the state to idle for the next command (the 

extra lines in translog have been trunked in the picture). 

 

We supposed that the robot should not accept other MOVE 

commands while it is in moving state. This has also been 

tested in the next input of the event file, at 00:05:03:011. If 

we see the line started with this time stamp in Decision 

translog file (figure 14), the external transition function 

associated with this condition will keep the state at 

MovingStopping state and simply ignores the command. 

We don’t see this input in the Motion translog file (figure 

15). The next valid move command appears at 

00:08:05:000. Both Decision and Motion tarnslog files, as 

well as the output of the robot show this event.  

 

3.3.2 Testing the Robot Efficiency 

In the next event file (2DOFRobotArmGraphic_2.ev), I 

have tested the efficiency of the robot. Remember from the 

Motion model, a random number between [0,100] will be 

generated for this reason. If it is less than 5 (5% of times), 

then it is one of the conditions that robot cannot coming out 

of moving state and this is unsolicited idle time. Since it 

happens just 5% of times, I had to test this condition with 

numerous entries. More entries give more accurate results. I 

have inserted 357 entries to test the efficiency of the robot 

in the next test. In the first few lines I have also tested the 

reaction of the robot to different condition as well. The test 

ran for some minutes and the last number for the efficiency 

was 94.9527. The output 

(2DOFRobotArmGraphOUT_2.out) and the translog 

(decision.03-ev_2.translog) files of this test are so long, and 

figure 16 shows the part of output file that includes the last 

efficiency line.  



 
 

Figure 16: Output file showing the efficiency of robot 

 

4. CONCLUSION 

DEVS modeling and simulation was used to model the 

efficiency of a robot arm in graphical tools of CD++, CD++ 

Builder. Two objectives were followed in this project, first 

measuring the efficiency of a robot arm with two degrees of 

freedom, and second the use of CD++ Builder. I modeled 

and simulated the robot arm and measured its efficiency by 

generating and using a set of random variables. The model 

can be expanded and be used for the robots with more 

joints in future. Same atomic models can be added for more 

joints. Also other factors, like the age of the robot, the heat 

of area that robot is working in, the weight of the robot and 

etc, can be considered in calculation of the efficiency. We 

can predict the next service time of the robot for instance, 

by considering these factors in simulation. If the robot is 

expensive and the uptime is crucial, the service time then is 

important. 

I also showed how we can use the CD++ Builder tool to 

implement a discrete-event system. I used the robotic arm 

as a case study and discussed implementing and analysing 

the results of simulation using CD++ Builder and its log 

files.  

The model still can refine, especially in the Motion module 

while it’s countdown the counter which was most time 

consuming step in simulation.  
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