
Automotive Computing with

Game Console Hardware

Pat Suwalski (294246)
2005

Supervisor: Professor G. Wainer

Department of Systems and Computer Engineering
Faculty of Engineering
Carleton University

April 2005

Abstract

This project describes a general-purpose automotive computer based on the

Microsoft Xbox game console. Several components that can be used to con-

struct a general-purpose automotive computer are designed and implemented.

While current solutions are likely to use a highly-integrated and simple client,

this project proposes the concept of a fully-functional mobile server. Consider-

ation of safety and usability research throughout the design results in a unique

product.

Contents

1 Introduction 1
1.1 DashBox . 1
1.2 Microsoft Xbox . 3
1.3 System Overview . 4
1.4 Report Organization . 6

2 Software Design 7
2.1 DashUI . 7

2.1.1 Secondary Window Manager 8
2.1.2 Simple Configuration 9
2.1.3 Usability . 10
2.1.4 Program Design . 10

2.2 Vehicle State Daemon . 11

3 Hardware Design 13
3.1 Power Control Unit . 13
3.2 Binary State Sensor . 18
3.3 Miscellaneous Hardware . 19

3.3.1 USB Dongle . 19
3.3.2 VGA Adapter . 21

4 Human Factors & Safety 22
4.1 Hardware Interaction Concerns 23
4.2 Software Interaction Concerns 25

5 Results 27
5.1 Touch-screen Interface . 27
5.2 Usable Software . 29
5.3 Other Peripherals . 30
5.4 Web Page . 31

i

6 Conclusions 32

A ATTiny2313 Introductory Material 35

B Weblog 40

ii

List of Figures

1.1 DashBox Logo . 2
1.2 Microsoft Xbox . 3
1.3 Top-level system design . 5

2.1 DashPC interface . 8
2.2 DashUI interface . 9

3.1 Power Control waveforms . 14
3.2 Power Control circuit schematic 15
3.3 Power Control execution flowchart 16
3.4 Power Control test implementation 17
3.5 Binary State Sensor schematic 18
3.6 State Sensor test implementation 19
3.7 USB Dongle . 20
3.8 VGA Adaptor . 20

4.1 Driver control reach envelope 24

5.1 Center console touch-screen design 28
5.2 Comparison of GTK Themes 30

iii

Chapter 1

Introduction

In recent years, computing devices designed to be embedded in vehicles have

become fairly commonplace. Their general purpose ranges from Global Po-

sitioning System navigation to passenger entertainment. However, there is

a growing movement of hobbyists who are interested in installing standard

computing devices in their vehicles because they:

• cannot afford a vehicle with a built-in computer;

• stand to gain from having a more sophisticated device.

The goal of this project is to investigate and build upon the latter point.

Specifically, using standard personal computer parts is a low-cost and highly-

flexible method of testing new ideas and expanding upon existing ways.

Current car-computing devices are generally not very powerful or expand-

able: they are very integrated and have a very closed architecture. In many

ways they are little more than a PDA (personal digital assistant) built into

the dashboard. From a systems point-of-view, they are simple devices fulfilling

the role of clients for simple tasks.

1.1 DashBox

This project, codenamed DashBox, aims to take the opposite viewpoint. Whereas

car computing traditionally uses embedded hardware, DashBox uses off-the-

1

Pat Suwalski CHAPTER 1. INTRODUCTION

Figure 1.1: DashBox Logo

shelf computer components. A closed architecture is replaced with the most

widely deployed open architecture, Linux. Whereas traditional solutions are

not expandable, DashBox can accommodate any number of software and hard-

ware extensions.

The sum of these differences is that contrary to the embedded client model,

DashBox is a server that serves any number of applications to any number of

clients, be they PDAs, laptops, or a client to itself via a direct touch-screen

interface. Vehicles are large enough to support more than highly-embedded

devices. DashBox proposes the concept of a mobile server.

The problem underlying this project is that “serious” car-computing ap-

pears to currently be limited to hobbyists who have little regard for standard-

ization or configurability. A prime example of this philosophy is DashPC1,

with a hard-coded interface and little thought to usability.

From the hardware standpoint, there is little freely-available information

for constructing hardware to support the automotive computer.

DashBox goal is to provide a solution to the aforementioned problems by

being completely open-source. The philosophy is to provide the simplest tools

to accomplish the task. All hardware designed is composed of readily available

parts and relatively cheap to construct. To further lower the cost, amongst

other things, the feasibility of using readily-available gaming consoles as the

1http://www.dashpc.com

2

Pat Suwalski CHAPTER 1. INTRODUCTION

Figure 1.2: Microsoft Xbox

the central computer is considered throughout.

A significant portion of this project is to accomplish the goals using game

console hardware. At first, this may seem unusual, but game consoles have

several benefits over regular personal computers:

• Durability: they are designed to withstand the rigor of children;

• Low power consumption: not designed to carry add-on hardware;

• Relatively powerful for price.

The first two points are clearly beneficial to a vehicle environment, and the

third is a bonus which comes from the processing-intensive nature of current

video games.

1.2 Microsoft Xbox

The Microsoft Xbox [Figure 1.2] is a modern gaming console built from par-

tially proprietary, but mostly standard x86 hardware. Because of this, its

3

Pat Suwalski CHAPTER 1. INTRODUCTION

main strength is its price and compatibility with common third-party hard-

ware. While its BIOS is designed to boot into a gaming console that under-

stands the Xbox game disc format, it can be re-flashed to accommodate a

Linux bootloader, which allows the unit to function as a standard computer.

With its relatively cheap hardware and ability to do more than it was

designed to do, the Xbox is a good candidate for automotive computing. It

has four USB ports, a network interface, an optical disc reader, a hard drive,

as well as video output. From a hardware perspective, the Xbox has all of

the components needed to allow for user interaction, as well as data collection

from the vehicle.

At this point in time, Xbox hardware has been well documented. A stock

Xbox requires only slight hardware modification to allow for alternate soft-

ware. The process, including the hardware encryption present on an Xbox, is

explained in detail in Huang’s Hacking the Xbox [1]. A working Debian-based

Linux distribution, Xebian2, specifically for the Xbox is available.

1.3 System Overview

The result of research into the problem domain has led to the top-level system

pictured in Figure 1.3. In this design, the Microsoft Xbox is at the center of the

system. Any number of peripherals are attached to it through its Audio/Video,

USB, and network jacks. The entire system is integrated so that when the

vehicle is turned on, the system boots and no additional tasks are required to

make it work.

To achieve the desired design, the project was divided into small compo-

nents, both hardware and software. This approach is beneficial for unit testing

the individual components prior to system integration.

Specifically:

• a software user interface was designed and implemented;

• a hardware power control unit was designed and implemented;

2http://www.xbox-linux.org

4

Pat Suwalski CHAPTER 1. INTRODUCTION

F
ig

u
re

1.
3:

T
op

-l
ev

el
sy

st
em

d
es

ig
n

5

Pat Suwalski CHAPTER 1. INTRODUCTION

• hardware and software to read the state of equipment within a car was

designed and implemented;

• the topic of human factors, including safety, was researched;

• several peripherals beyond those designed were integrated and tested.

1.4 Report Organization

This report is organized into chapters and sections. The chapters immedi-

ately following this introduction explain the technical aspects of the system

design. These are followed by a research chapter about designing with a focus

on human-to-system interaction, especially with regard to safety. The cul-

mination of the technical and research chapters is explained via the Results

chapter. Finally, ther are concluding statements and various appendices.

6

Chapter 2

Software Design

The initial intent of this project was to use existing software with new hard-

ware combinations. The initially-proposed software was DashPC1, a simple

graphical program launcher with large buttons, designed to be used via touch-

screen. However, the latest version of DashPC (0.45) quickly proved inade-

quate in terms of configurability, user interface design, as well as expandability.

Specifically, all of these criteria are problematic because DashPC hardcodes

everything in its binary. The interface is based on fixed-image panes, as can

be seen in Figure 2.1.

2.1 DashUI

Based on the analysis above, a new design was sought, with emphasis on

ideals of usability and configurability. The software project is named DashUI.

Specifically, goals of the design are that it takes the role of a secondary window

manager, it has a simple configuration mechanism, and its interface places a

high priority on usability.

1http://www.dashpc.com

7

Pat Suwalski CHAPTER 2. SOFTWARE DESIGN

Figure 2.1: DashPC 0.45 interface when first started

2.1.1 Secondary Window Manager

The unique feature that makes DashUI different from other interfaces is the

way it handles launched programs. The interface consists of large tabs, each

containing an instance of a program. While other interfaces are simple launch-

ers, DashUI actually swallows the programs it launches into the tab sheets.

This interface can be seen in Figure 2.2.

Effectively, DashUI becomes a secondary window manager. It occupies

the entire screen and allows easy switching between programs by selecting the

appropriate tab on the driver’s side. The advantage of DashUI not playing

the role of window manager is that should programs actually need to show

transient (“pop-up”) windows, they still have the familiar titlebar and controls.

However, with usability and safety in mind, transients should be exception

rather than the rule.

The majority of the swallowing code is based on a small Gnome applet

called gnome-swallow2, with extra wrapper code to allow for multiple tabs

2http://interreality.org/ tetron/technology/swallow

8

Pat Suwalski CHAPTER 2. SOFTWARE DESIGN

Figure 2.2: DashUI interface with swallowed movie player

and configurability. The swallowing code was also optimized and updated for

recent compilers, including a bug fix submitted up-stream. These changes

make the swallowing code suitable for DashUI.

2.1.2 Simple Configuration

With its unique tabbed interface, DashUI requires a method for the user to

specify the contents of each page of the tabs. A simple configuration file,

which conforms to the IniFile convention, can be used for this. A flexible

parser was written for this purpose. The configuration file is made up of any

number of blocks. A tab is created for each new program block. An example

block, containing instructions on how to swallow the X-Eyes demo application

follows:

[xeyes]

program = "/usr/bin/xeyes"

window = "xeyes"

icon = "applet3 -48. png"

resize = 1

9

Pat Suwalski CHAPTER 2. SOFTWARE DESIGN

In this example, the swallowed window has the window title xeyes be-

longing to the program binary /usr/bin/xeyes, has an icon specified by the

PNG file, and is resized to fill the entire tab sheet (much like the Totem media

player in Figure 2.2). Based on these settings, the program flow is as follows:

1. create a new tab with icon applet3-48.png

2. execute the binary /usr/bin/xeyes

3. search for a window that is labelled xeyes

4. obtain window control from the X server

5. reparent the window to the area in the new tab

6. resize the swallowed window to match the size of the tab sheet

2.1.3 Usability

DashUI’s design is specifically such that once an individual has set their config-

uration file, the swallowed applications can be accessed without much thought.

Because of the even spacing of tabs along the edge of the touch-screen closest

to the driver, knowing where to push becomes second nature.

Lighting considerations are important for vehicle computing, as light levels

change dramatically. As such, it is important that all user-interface elements

stand out as clearly as possible. A nearly monochrome, high-accessibility

theme like the GTK theme HighContrast works well. This theme would benefit

from having thicker lines around controls. However, it is generally preferable

as-is over other themes.

2.1.4 Program Design

DashUI is written in C and uses GTK+3 for the user interface. It operates

using POSIX threads. The main thread is the interface as seen by the user.

3Gimp Tool Kit, http://www.gtk.org

10

Pat Suwalski CHAPTER 2. SOFTWARE DESIGN

When new programs are launched into tabs simultaneously at start-up, each

program is launched and swallowed from a child thread. There are two benefits

to this approach:

1. the swallowed programs are terminated when the main program closes;

2. all tabs are loaded in parallel, providing better start-up time.

A third thread is maintained to stay in constant communication with the

Vehicle State Daemon, described below.

2.2 Vehicle State Daemon

It is useful to know the state of various devices within a vehicle. To that end,

a simple piece of hardware based on a USB mouse was constructed to read

the 12V states native to the vehicle. Specific information can be found in

Section 3.2. The goal of the daemon, which is the term for a program that

executes in the background to perform any number of utility functions, is to

read changes in the state of the mouse, which is equivalent to reading state

changes in the vehicle.

The daemon is a short program written in C. Its output is a standard UNIX

IPC pipe, with DashUI occupying the other end. Changes in mouse button

states are passed through this pipe, and it is up to DashUI to react accordingly.

The program efficiently avoids polling the mouse by simply opening the mouse

device node with the blocking flag. Therefore, only as new data packets are

sent by the mouse does the daemon process and pass the information through

the pipe. This program was designed as an external daemon so that is it an

optional element of the DashUI interface; DashUI will run without it.

Currently, DashUI reacts to mouse button 1 by tinting the screen. The

intended goal for this behaviour is to minimize glare from the computer screen

when driving in the dark. To accomplish this, the 12V signal corresponding

to headlight state is read. This is the same signal that is often passed to

clocks and radios to dim their display. The screen is tinted red using existing

11

Pat Suwalski CHAPTER 2. SOFTWARE DESIGN

X-Windows extension XFree86-VidModeExtension, designed, amongst other

things, for colour gamma-level manipulation. When the signal drops, the

screen brightness and colour are returned to normal.

12

Chapter 3

Hardware Design

Standard computing devices are designed to be stationary units, powered by

120 or 240 volts, operated directly by a human. When the conventional com-

puter is to be used within a vehicle where there is a 12V supply and limited

direct interaction with the hardware, there are several extensions to its hard-

ware that must be considered, and others that provide for better integration.

This chapter discusses several simple designs that make it viable to use a

standard computer or gaming console alike.

3.1 Power Control Unit

When using conventional computing devices, it is important to have definitive

control over their power consumption. Unlike embedded devices, they can

drain a car battery if left on overnight.

The first step to enforcing good behaviour is to notify the computer of

when it is safe to turn on and turn off. With ACPI (Advanced Configuration

and Power Interface)1, it is possible to allow for clean software shutdown. For

example, when the power button is pushed, the computer can be informed

that it must begin its shutdown sequence. However, this is not sufficient as

there is always the possibility of an unexpected malfunction in the shutdown

1ACPI4Linux, http://acpi.sourceforge.net

13

Pat Suwalski CHAPTER 3. HARDWARE DESIGN

5s

1s

50s

Vin

POWER

ATX

Figure 3.1: Power Control input signal Vin controlling outputs

sequence that would prevent the computer from switching itself to a low-power

(off) state.

The solution to this potential problem is to externally control power to

the unit. A high-reliability system that physically enables power, turns on

the computer, soft-shuts down the computer, and then eventually removes its

current supply altogether is the answer.

The designed Power Control module uses an input signal Vin to control two

output signals, called POWER and ATX [Figure 3.1]. The signal represented

by Vin is the same 12V signal that informs vehicles appliances such as radios

to turn on when the ignition switch is turned. Therefore, once the ignition

is on, there is a 5 second countdown until the ATX power switch is shorted,

causing the computer to turn on. This time should be enough for power

usage throughout the vehicle to steady so as not to strain the alternator.

The computer is provided power for an indefinite period of time. Once the

ignition signal pulls low, the Power Control unit once again shorts the ATX

signal, which begins a soft-shutdown of the computer. After 50 seconds, by

which point the computer should be safely powered off, the POWER signal is

dropped, removing the computer’s supply current.

The implementation of the Power Control unit consists of an Atmel AT-

Tiny2313 microcontroller driving two relays, one for the output signal POWER,

and the other for ATX [Figure 3.2]. The ATTiny chip contains two 7-bit I/O

ports. See Appendix A for an overview of the pin layout and I/O port infor-

14

Pat Suwalski CHAPTER 3. HARDWARE DESIGN

ATX

POWER

7805

ATTiny2313

2N3904

2N3904

4.7K

220

2.7K

10K

10

2
20

13

12

0.1uF

0.33uF

4.7K

12V

Vin

(12V)

1
2 3

Figure 3.2: Power Control circuit schematic

15

Pat Suwalski CHAPTER 3. HARDWARE DESIGN

Figure 3.3: Power Control execution flowchart

16

Pat Suwalski CHAPTER 3. HARDWARE DESIGN

Figure 3.4: Power Control test implementation

mation for the ATTiny2313. One port is used to read the state of ignition

(pin 2), using a voltage divider to achieve the correct voltage. Both outputs

(pins 12 and 13) control 2N3904 NPN transistors, which in turn drive 12V

relays. In the case of the POWER relay, it controls one of the power wires

to the computer power supply, or 120V inverter as the case may be. For the

ATX signal, the relay simply shorts the power button header pins provided

on the ATX-compliant motherboard. The entire ATTiny is fed by a MC7805

5V voltage regulator. A LED is provided to display the state of the POWER

signal, though it is not required.

The program execution can be modeled as a flowchart depicted in Fig-

ure 3.3. Input and output operations are specified by port letter and bit

number. Therefore D1 is Port D, bit 1, or pin #13 on the microcontroller.

The Power Control Unit design was proven by a hardware test implemen-

tation [Figure 3.4]. Although the relay designated for reacting to the POWER

signal is potentially too small to carry the current requirements of a com-

puter, it can be replaced with any larger 12V relay that can be driven by the

transistor. The board demonstrates that the design works.

17

Pat Suwalski CHAPTER 3. HARDWARE DESIGN

Figure 3.5: Binary State Sensor schematic

3.2 Binary State Sensor

No car-computing device is complete without some level of integration with

its vehicle’s systems. Much of what such a machine does is in response to

the state of the vehicle. Automobiles generally maintain states of various

components as logic levels 0V and 12V. For safety, these signals need to be

electrically isolated from the computer. In most implementations, the states

are read through a relay system over a parallel or serial port on the computer.

In the case of the Xbox and many new small desktop computer motherboards,

this cannot work, as they do not support either of these legacy ports.

A simple solution to the problem is to build upon previous solutions in-

volving relays and serial ports. Simplifying further, a USB computer mouse

provides all of the required functionality with an easy to decode interface. The

initial design is pictured in Figure 3.5, with relays on the right shorting the

contact pads where the mouse buttons normally are. Using the signals from

the mouse as a sensing interface is described in more detail in Section 2.2.

The design specified in Figure 3.5 was constructed from a Cicero USB

mouse to produce what is seen in Figure 3.6. The mouse, connected to the

Microsoft Xbox via a USB-to-Xbox converter cable allows the state of the

relays to be read. Using 12V relays, any signal in the car can be read relative

to ground.

18

Pat Suwalski CHAPTER 3. HARDWARE DESIGN

Figure 3.6: State Sensor test implementation

3.3 Miscellaneous Hardware

Working with the Xbox and standard peripherals necessitates the construction

of several miscellaneous devices. These are for the most part simple pass-

through adaptors that are placed between the Xbox and a peripheral to allow

the two to communicate.

3.3.1 USB Dongle

The ports on the front side of Microsoft Xbox implement a standard USB

interface despite their proprietary connector. To be able to interface with the

unit, a USB converter cable was designed, as pictured in Figure 3.7 with USB

flash memory.

The dongle is a passive device. In fact, the pins are connected straight-

through, pin-for-pin.

19

Pat Suwalski CHAPTER 3. HARDWARE DESIGN

Figure 3.7: USB Dongle

Figure 3.8: VGA Adaptor

20

Pat Suwalski CHAPTER 3. HARDWARE DESIGN

3.3.2 VGA Adapter

For the Xbox to be able to output to a high-resoution video device, such as a

touch-screen, a standard set of VGA signals is required. While the Xbox can-

not produce VESA-compliant VGA output, because the DAC (digital-analog-

converter) is tuned for television output, enough signals are present so that

with the help of a sync-converter microchip, most VGA screens are able to

display high-resolution (640x480 and up) output.

The converter [Figure 3.8] is based on a design provided on the Xbox-Linux

site2. While the Xbox only outputs red, green, and blue signals. The green

signal also carries a composite sync signal. The adaptor contains a LM1881N

chip, which generates proper horizontal- and vertical-sync signals. The output

of this adaptor is nearly VESA-compliant, differing only in voltage levels.

However, most modern display devices can cope with this.

Added value from this dongle comes from the fact that the Xbox output

connector (AVIP) contains both video and audio lines. For the purposes of car

computing, this is beneficial because both can be carried to the front of the

cabin through one cable, where they are both likely to be used. The adaptor

in Figure 3.8 contains an audio connector.

2http://www.xbox-linux.org/Xbox VGA HOWTO

21

Chapter 4

Human Factors & Safety

Human factors are a very important concern when considering automotive

technology, especially an interactive process such as computing.

The concern over human usability factors as they apply to ergonomics and

safety has been heavily studied over the past decade or so, as a multitude of

new interfaces for new technologies need to be considered. This chapter makes

references to several of these studies.

Whenever there is discussion of safety regarding using technology within

the car, there are often strong opponents whose position is that the driver must

be completely concerned with the task of driving at all times. There are also

those who believe that good judgment permits for a certain level of distraction,

for example, the use of a mobile telephone. In a study conducted in the mid-

1980’s, researcher Hughes Cole concluded that between 30 and 50 percent

of visual attention of a driver can be allocated for tasks not driving-related.

Their basis for this conclusion was that most drivers do not utilize their full

mental capacity when driving, and that only 50 to 70 percent concentration

is required to be safe[2]. It must be noted that Hughes and Cole refer only

to visual attention and their study predates the wide deployment of mobile

telephones, which are currently being scrutinized for causing many distraction-

related accidents. However, the system being considered here concerns visual

multitasking above all else. The system is far less personal than a telephone

conversation, its likelihood to produce emotional response and distraction far

22

Pat Suwalski CHAPTER 4. HUMAN FACTORS & SAFETY

lower that of a personal communication.

4.1 Hardware Interaction Concerns

Vehicle-driver ergonomic concerns are a broadly researched area in recent

years. Researchers tend to focus on aspects of visibility and reach as it re-

lates to drivers of all sizes and impairments. Recent advances in computer

technology have researchers considering trade-offs of various possible computer

display technologies and their physical situation within the vehicle. As early

as 1993, in-dash computer navigation systems were actively tested (see Antin,

1993 [3]).

For the purpose of this project, which aims to be useful as an add-on

technology to a pre-fabricated vehicle, overall dash panel layout must be con-

sidered fixed. The best solution is one that can be integrated such that it

follows as many safety and usability guidelines as possible. For the purpose of

this project, the 1994 Mazda Protegé is considered.

The most suitable location for a small liquid-crystal display is the center

console, as it could benefit both the driver and a passenger. Considering the

use-case where a driver is accompanied a navigator on a road trip, safety could

be higher than with the navigator using a paper map which can occlude the

driver’s vision. However, in considering that the system would often be used

by a single occupant, the driver, there are several concerns that must be ad-

dressed. In researching placement of mirrors and electronic screens, Flannagan

and Sivak concluded that:

For horizontal extent of eye movements, an ‘optimal’ range is

given as 15 degrees left or right of the principal line of sight, and an

‘acceptable’ range is given as 30 degrees left or right. For vertical

extent of eye movements, the ‘optimal’ range is from 15 degrees up

or down, and the ‘maximum’ range is 45 degrees up to 65 degrees

down. [4]

The large difference between “optimal” and “maximum” ranges can be at-

23

Pat Suwalski CHAPTER 4. HUMAN FACTORS & SAFETY

Figure 4.1: Driver control reach envelope

tributed to their observation that “People are good at monitoring the periph-

ery of their visual field for potentially important events” [4]. The horizontal

angle from the driver’s head looking forward and toward the center console is

largely proportional to the width of the vehicle. Therefore, large vehicles could

be problematic with this approach. For smaller vehicles, the 30-degree range

can be satisfied. Vertical placement is completely dependent on the vehicle

design and optimal placement of a screen. However, Figure 4.1 is the outcome

of a study by Roe in 1972, showing that the center console is properly within

reach of the driver at most vertical levels in a typical car.

In considering the concern about video screen placement, Wierwille sug-

gests:

It is generally recognized that as the angle between the forward

view and the in-car task increases, transition time for the eyes

also increases. Furthermore, accommodation time (time to refocus

from the forward scene to the in-car task) increases with change

of distance from the viewer and also with age. Finally, the further

down into the car the task is, the less likely it is that peripheral

24

Pat Suwalski CHAPTER 4. HUMAN FACTORS & SAFETY

vision could be used to detect a hazard in the forward scene. These

well-known results suggest that it is best to locate the in-car task

display as high on the IP [(instrument panel)] as possible (or even

above the IP) and the focus distance to the in-car display should

be further away rather than nearer. [6]

The significance of this statement regards human eye response in addition

to the findings of Flannagan and Sivak. The task of focusing ones eyes between

the road and a screen is tedious, and increasingly so as eye motion increases.

At the same time, Wierwille’s statement is applied to the panel design of small

cars such as the Toyota Echo, whose instrument cluster is at the center of the

panel. Toyota’s ergonomics designers may have considered the trade-off of eye

motion versus forward-visibility when choosing this design. Whatever their

intentions, it is clear that the center console design is viable.

4.2 Software Interaction Concerns

Software usability is currently a prime concern for many software designers.

Recent trends have proceeded beyond simply creating an attractive interface

to actual studies of highly accessible user interfaces. These studies often result

in standard guidelines to be used throughout a project, as is the case with the

Gnome Human Interface Guidelines1. For automotive purposes, clear design

is even more crucial and should satisfy simplicity above all else. In addition

to purely software concerns, the effects of light and glare can affect how the

software is perceived by an individual. In considering controls drivers operate,

Graesser and Marks find that:

The time to find a control should be faster when there is a

word, letter string, or graphic symbol that distinctively conveys

the function of the control. The time should be faster when there

is a contrast in color, texture and brightness between the controls

and the background. [7]

1http://developer.gnome.org/projects/gup/hig

25

Pat Suwalski CHAPTER 4. HUMAN FACTORS & SAFETY

Since texture on a video screen is not a variable, efforts must be focused

on using high contrast with brightness appropriate for driving conditions, and

using symbols effectively. A quicker response time is desirable because it ac-

counts for less concentration expended to perform the overall task.

Tight coupling between hardware and software usability is required to pro-

duce a powerful, but safe system.

26

Chapter 5

Results

This section of the project culminates the research and design of software,

hardware, and human factors, and combines them into a possible solution.

The overall model used is the one in Figure 1.3. At the center of the system

is the Xbox loaded with Xebian Linux and attached to other hardware via its

custom peripherals.

5.1 Touch-screen Interface

In considering all possibilities for direct interaction with the system, the most

feasible is via a touch-screen. Other options, including a wireless keyboard or

voice recognition are less suitable.

Placement of the touchscreen is a serious concern due to safety issues. As

stated in previous chapters, it is important that the screen be as high up as

possible and as far away from the user so that the eye is not forced to look

away and refocus. The other criteria for a touch-screen is that it be easy to

reach.

A rendering of the chosen design is depicted in Figure 5.1, based on the

interior of a 1994 Mazda Protegé. The idea is to use the space left in most

consoles for compact disc changer. This area is often closed off or made into a

small storage compartment. However, it is the ideal height for a touch-screen

drawer. As can be seen from the rendering, the screen would slide out and

27

Pat Suwalski CHAPTER 5. RESULTS

Figure 5.1: Center console touch-screen design

28

Pat Suwalski CHAPTER 5. RESULTS

hinge down to an ergonomic angle.

Incorporating a design within close proximity to an existing user interface

has a distinct benefit over choosing other locations: it is very likely that sig-

nificant resources went into research & development to ensure that the radio

is properly positioned for easy reach and minimal distraction. A touch-screen

interface benefits from the same research.

Alternative options considered for the interface are:

• heads-up-display: this option is expensive, difficult to implement with

full colour, would only benefit one person in the vehicle, and would not

work well during daylight hours.

• sun-shade touch-screen: an alternative position for the touch screen,

swinging down on the sun shade has potential, but it also places the

screen much closer to the user’s eyes, forcing refocusing. It, too, would

only benefit one person.

• top-mounted screen: mounting the display on top of the dash panel

would incur more obstruction. This could be unsafe.

A touch-screen sliding out from under the car radio is within reach, suffi-

ciently far from the driver’s head, and at an acceptable angle to the driver.

5.2 Usable Software

Using DashUI has the potential to decrease the concentration required to op-

erate the car computer. However, it is still very important that the contents

of the screen are visible under all lighting conditions. As suggested in a pre-

vious chapters, high-contrast user interface elements for the programs to be

displayed on the touch-screen are a necessity.

GTK (Gimp Tool Kit), due to a high concern for usability, provides a

theme called HighContrast. This theme is mostly sufficient for automotive

uses, with controls clearly separated. However, because touch-screens tend

to be smaller than average computer monitors, the theme would benefit from

29

Pat Suwalski CHAPTER 5. RESULTS

Figure 5.2: Default, HighContrast, and Modified HighContrast Themes

using thicker lines to throughout. Figure 5.2 shows the default GTK theme,

HighContrast, and HighContrast modified to have double the line thickness.

Also, it is suggested that a high-visibility interface would benefit from screen

fonts that are bold and not anti-aliased, as in the figure. With the variability

in TFT-LCD display clarity under certain angles, non anti-aliased text is easier

to read.

5.3 Other Peripherals

It was suggested in the Introduction that an important aspect of the philosophy

of this project involves the concept of a “mobile server.” This works very well

when a wireless access point is cross-over wired into the network port of the

Xbox. The Xbox runs a DHCP server, enabling laptops and other wireless

devices to connect to it very easily. These devices can control the computing

system or exchange data with it.

With computer aided navigation a primary idea, a Garmin eTrex global

positioning system transceiver was tested with the Xbox. This worked quite

well, though there were some issues with swallowing the correct window of

GpsDrive1, a popular open-source GPS mapping tool, into DashUI. However,

GpsDrive otherwise worked properly through the Xbox hardware.

OBD-II (On-Board Diagnostics II) would have provided for interesting

possibilities for tracking a multitude of information about the vehicle. Un-

fortunately, the testbed 1994 Mazda Protegé only supports OBD-I, making it

1http://www.gpsdrive.cc

30

Pat Suwalski CHAPTER 5. RESULTS

impossible to extract any reasonably interesting data.

Overall, the tested components worked and did not interfere with each

other.

5.4 Web Page

In the interest of continuing this project, hosting was sought at SourceForge.net.

SourceForge is the world’s largest host of open-source projects. DashBox suc-

ceeded in the approval process. At present, a preliminary web site has been

set up for the project, with some introductory information and an archive of

DashUI and the DashUI Daemon.

The web site is located at http://dashbox.sourceforge.net.

31

Chapter 6

Conclusions

The goal of this project was to implement a system based on gaming console

hardware that makes it suitable for use in automotive environments. Ex-

isting software and hardware solutions were problematic due to proprietary

components, hard-coded software, and little regard for uniformity. The solu-

tion required the design and implementation of software such as DashUI and

hardware such as the Power Control Unit and Vehicle State Sensor. The so-

lution was termed mobile server in contrast with existing, tightly-integrated

solutions.

DashUI uses a unique tabbed interface to improve driver concentration by

presenting a uniform interface, allows for full user control over configuration,

and allows for reacting to state changes in the vehicle itself. The Power Control

Unit enables game consoles and desktop computers alike to be safely powered

by the vehicle. The State Sensor allows for reading changes in the state of the

vehicle’s systems in a simple and efficient manner. Consideration of safety and

usability throughout the design resulted in a unique product. The DashBox

project will benefit others, as it is an open-source project easily obtainable

from SourceForge.net.

Throughout the course of the project, several weaknesses in the original

goal became apparent. While a game console like the Microsoft Xbox is suffi-

cient for the task of in-vehicle computing, it cannot be recommended for this

purpose. The Xbox’s ruggedness, low power consumption, and low price are

32

Pat Suwalski CHAPTER 6. CONCLUSIONS

offset by its low (64MB) memory capacity, non-compliant video output, and

the need to void the warranty by opening it to make it useful for this purpose.

The latter point alone limits the number of people who would consider using

the designs suggested in this project. Using a standard micro-ATX computer

motherboard would overcome this issue, possibly for a negligible difference in

price once all of the conversion dongles are accounted for. Because the op-

erating system used is Linux, using the software created for this project on

standard x86 computer components involves no extra work.

In conclusion, as a concept, game consoles can be used for in-dash au-

tomotive computing, though the shortcomings outweigh the benefits of this

approach.

33

Bibliography

[1] Andrew “Bunnie” Huang. Hacking the Xbox: An Introduction to Reverse

Engineering. San Francisco: No Starch Press, 2003.

[2] Hughes, P. K. and Cole, B. L. “What attracts attention when driving?”
Ergonomics 29 (1986): 377-391.

[3] Jonathan F. Antin. “Informational aspects of car design: Navigation.” Au-

tomotive Ergonomics. Ed. Brian Peacock and Waldemar Karkowski. Lon-
don; Washington, DC: Taylor & Francis, 1993. 321-337.

[4] Michael Flannagan and Michael Sivak. “Indirect vision systems.” Automo-

tive Ergonomics. Ed. Brian Peacock and Waldemar Karkowski. London;
Washington, DC: Taylor & Francis, 1993. 205-217.

[5] R. W. Roe. “Occupant Packaging.” Automotive Ergonomics. Ed. Brian
Peacock and Waldemar Karkowski. London; Washington, DC: Taylor &
Francis, 1993. 11-42.

[6] Walter W. Wierwille. “Visual and manual demands of in-car controls
and displays.” Automotive Ergonomics. Ed. Brian Peacock and Waldemar
Karkowski. London; Washington, DC: Taylor & Francis, 1993. 299-320.

[7] Arthur C. Graesser and William Marks. “Models that simulate driver per-
formance with hand controls.” Automotive Ergonomics. Ed. Brian Peacock
and Waldemar Karkowski. London; Washington, DC: Taylor & Francis,
1993. 383-399.

34

Appendix A

ATTiny2313 Introductory
Material

35

Pat Suwalski APPENDIX A. ATTINY2313 MANUAL

 2543F–AVR–08/04

Features
• Utilizes the AVR® RISC Architecture

• AVR – High-performance and Low-power RISC Architecture

– 120 Powerful Instructions – Most Single Clock Cycle Execution

– 32 x 8 General Purpose Working Registers

– Fully Static Operation

– Up to 20 MIPS Throughput at 20 MHz

• Data and Non-volatile Program and Data Memories

– 2K Bytes of In-System Self Programmable Flash

Endurance 10,000 Write/Erase Cycles

– 128 Bytes In-System Programmable EEPROM

Endurance: 100,000 Write/Erase Cycles

– 128 Bytes Internal SRAM

– Programming Lock for Flash Program and EEPROM Data Security

• Peripheral Features

– One 8-bit Timer/Counter with Separate Prescaler and Compare Mode

– One 16-bit Timer/Counter with Separate Prescaler, Compare and Capture Modes

– Four PWM Channels

– On-chip Analog Comparator

– Programmable Watchdog Timer with On-chip Oscillator

– USI – Universal Serial Interface

– Full Duplex USART

• Special Microcontroller Features

– debugWIRE On-chip Debugging

– In-System Programmable via SPI Port

– External and Internal Interrupt Sources

– Low-power Idle, Power-down, and Standby Modes

– Enhanced Power-on Reset Circuit

– Programmable Brown-out Detection Circuit

– Internal Calibrated Oscillator

• I/O and Packages

– 18 Programmable I/O Lines

– 20-pin PDIP, 20-pin SOIC, and 32-pin MLF

• Operating Voltages

– 1.8 - 5.5V (ATtiny2313V)

– 2.7 - 5.5V (ATtiny2313)

• Speed Grades

– ATtiny2313V: 0 - 4 MHz @ 1.8 - 5.5V, 0 - 10 MHz @ 2.7 - 5.5V

– ATtiny2313: 0 - 10 MHz @ 2.7 - 5.5V, 0 - 20 MHz @ 4.5 - 5.5V

• Typical Power Consumption

– Active Mode

1 MHz, 1.8V: 230 µA

32 kHz, 1.8V: 20 µA (including oscillator)

– Power-down Mode

< 0.1 µA at 1.8V

8-bit

Microcontroller
with 2K Bytes
In-System
Programmable
Flash

ATtiny2313/V

Preliminary

Rev. 2543F–AVR–08/04

36

Pat Suwalski APPENDIX A. ATTINY2313 MANUAL

2 ATtiny2313/V
2543F–AVR–08/04

Pin Configurations Figure 1. Pinout ATtiny2313

Overview The ATtiny2313 is a low-power CMOS 8-bit microcontroller based on the AVR

enhanced RISC architecture. By executing powerful instructions in a single clock cycle,

the ATtiny2313 achieves throughputs approaching 1 MIPS per MHz allowing the system

designer to optimize power consumption versus processing speed.

(RESET/dW)PA2

(RXD)PD0

(TXD)PD1

(XTAL2)PA1

(XTAL1)PA0

(CKOUT/XCK/INT0)PD2

(INT1)PD3

(T0)PD4

(OC0B/T1)PD5

GND

20

19

18

17

16

15

14

13

12

11

1

2

3

4

5

6

7

8

9

10

VCC

PB7(UCSK/SCK/PCINT7)

PB6(MISO/DO/PCINT6)

PB5(MOSI/DI/SDA/PCINT5)

PB4(OC1B/PCINT4)

PB3(OC1A/PCINT3)

PB2(OC0A/PCINT2)

PB1(AIN1/PCINT1)

PB0(AIN0/PCINT0)

PD6(ICP)

PDIP/SOIC

37

Pat Suwalski APPENDIX A. ATTINY2313 MANUAL

3

ATtiny2313/V

2543F–AVR–08/04

Block Diagram

Figure 2. Block Diagram

PROGRAM
COUNTER

PROGRAM
FLASH

INSTRUCTION
REGISTER

GND

VCC

INSTRUCTION
DECODER

CONTROL
LINES

STACK
POINTER

SRAM

GENERAL
PURPOSE
REGISTER

ALU

STATUS
REGISTER

PROGRAMMING
LOGIC

SPI

8-BIT DATA BUS

XTAL1 XTAL2

RESET

INTERNAL
OSCILLATOR

OSCILLATOR

WATCHDOG
TIMER

TIMING AND
CONTROL

MCU CONTROL
REGISTER

MCU STATUS
REGISTER

TIMER/
COUNTERS

INTERRUPT
UNIT

EEPROM

USI

USART

A
N

A
L
O

G
C

O
M

P
A

R
A
T

O
R

DATA REGISTER
PORTB

DATA DIR.
REG. PORTB

DATA REGISTER
PORTA

DATA DIR.
REG. PORTA

PORTB DRIVERS

PB0 - PB7

PORTA DRIVERS

PA0 - PA2

DATA REGISTER
PORTD

DATA DIR.
REG. PORTD

PORTD DRIVERS

PD0 - PD6

ON-CHIP
DEBUGGER

INTERNAL
CALIBRATED
OSCILLATOR

38

Pat Suwalski APPENDIX A. ATTINY2313 MANUAL

4 ATtiny2313/V
2543F–AVR–08/04

The AVR core combines a rich instruction set with 32 general purpose working registers.

All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing

two independent registers to be accessed in one single instruction executed in one clock

cycle. The resulting architecture is more code efficient while achieving throughputs up to

ten times faster than conventional CISC microcontrollers.

The ATtiny2313 provides the following features: 2K bytes of In-System Programmable

Flash, 128 bytes EEPROM, 128 bytes SRAM, 18 general purpose I/O lines, 32 general

purpose working registers, a single-wire Interface for On-chip Debugging, two flexible

Timer/Counters with compare modes, internal and external interrupts, a serial program-

mable USART, Universal Serial Interface with Start Condition Detector, a programmable

Watchdog Timer with internal Oscillator, and three software selectable power saving

modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, and

interrupt system to continue functioning. The Power-down mode saves the register con-

tents but freezes the Oscillator, disabling all other chip functions until the next interrupt

or hardware reset. In Standby mode, the crystal/resonator Oscillator is running while the

rest of the device is sleeping. This allows very fast start-up combined with low-power

consumption.

The device is manufactured using Atmel’s high density non-volatile memory technology.

The On-chip ISP Flash allows the program memory to be reprogrammed In-System

through an SPI serial interface, or by a conventional non-volatile memory programmer.

By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a mono-

lithic chip, the Atmel ATtiny2313 is a powerful microcontroller that provides a highly

flexible and cost effective solution to many embedded control applications.

The ATtiny2313 AVR is supported with a full suite of program and system development

tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Cir-

cuit Emulators, and Evaluation kits.

39

Appendix B

Weblog

USB Cable

September 26, 2004
Today’s accomplishment was building a

USB←→Xbox cable. The Xbox end was pur-
chased a part of a controller extension cord. The
USB end used to be a Logitech USB←→PS/2
adaptor. It works really well with a 64M Intelli-
gentStick. The Xbox thinks it is its proprietary
storage unit. Copying the MechAssault Linux
Installer to it actually shows nice Tux icons in
the built-in file browser. Now I need to go out
and get MechAssault to really get going in the
4th-year project by installing Linux.

Xbox and USB, Continued

October 2, 2004
With the remaining female end of an Xbox USB cable, as well as the

male end of a broken cable, I decided it would be interesting to try doing the
opposite of what I did last weekend. Upon soldering together the cable ends,
I plugged a controller unit into my new PC.

The controller is a standard USB hub (since it has room to plug in other
accessories), as well as a somewhat less standard joystick. Searching the in-
ternet, I quickly came across drivers and it worked fabulously. A quick game
confirmed that everything works as it should.

40

Pat Suwalski APPENDIX B. WEBLOG

This cable may prove helpful in debugging
Xbox accessories in case they do not seem to
work, when Linux is on the Xbox. The accessory
with the standard USB end could plug into the
Xbox adaptor, which could then plug into this
new adaptop, bringing it back to standard USB.
Though seemingly pointless, it might help find
an error somewhere along the way. For now, it
is fun to have a game pad connected to my PC.

My supervisor has asked me to keep a web log of progress on this project,
so this entry is part of the new Xbox section of my log.

I am currently in the search for the MechAssault game needed to gain entry
into the unit. Looking at the stores, the game sells for about 25 dollars, but is
the fixed “Platinum Hits” edition. This one is patched to prevent the installer
from working. There is also a strong possibility that my Xbox has firmware
that makes this process more difficult. If that is the case, I will either have to
find an older used unit, or go directly to the hardware modification. Either
way, I will have to rent the original version of MechAssault from the rental
store to find out.

I am over half way through reading Hacking the Xbox. The chapters get
more and more interesting. I am currently reading about the internal hardware
encryption methods the units use. I am glad that this part has alrady been
figured out by others.

Hacking the Xbox

October 17, 2004
I finally finished reading Hacking the Xbox by An-

drew “Bunnie” Huang.
I consider this book to be the de facto textbook for

getting anywhere with the project. Though all of the
chapters were very interesting, only several will actually
be used to develop the “CarBox,” seeing as there is no
reason or desire to further knowledge of the Xbox’s secu-
rity system. Regardless, the book covered many aspects
of what will be required to have the unit operate with a
touchscreen device, network device, and other peripher-
als.

Last weekend I ordered the original version of

41

Pat Suwalski APPENDIX B. WEBLOG

MechAssault, which is needed to install Linux on the
Xbox. I was hoping to have it by this weekend, but it did not come in time.
Hzopefully, it will be here soon.

The DashPC Project

November 4, 2004
While I’m still waiting to get the Xbox hard-

ware to run Linux, I decided it would be a good
idea to look ahead and see what front-end soft-
ware I should be running.

DashPC has always seemed the logical
choice. It has an intuitive interface, what ap-
pears to be decent integration, and of course, it
runs on Linux using the GTK toolkit. However,
building and running it today, I was somewhat
disappointed:

• The tarball is not conventionally organized, and all of the files uncom-
pressed into the current directory.

• The UI is incomplete and buggy.

• The integration that was implied is non-existent. It’s simply a shell with
pretty graphics that does callouts to other programs.

• It’s not configurable, everything appears to be hardcoded.

• It seems disorganized: I downloaded a tarball versioned 0.45, and I got
version 0.5.9 of the program.

With these shortcomings, it would probably be easier to start a new in-
terface from scratch. There is really very little that could make this project
useful. However, that is not a bad thing, as the project’s major goal is to
consider user interfaces, both hardware and software.

Here are some ideas for a new project that would differentiate it from
DashPC:

• Interface elements should not be graphics. Graphics do not allow for
scalability or contrast modification.

42

Pat Suwalski APPENDIX B. WEBLOG

• Interface “screens” should be user-configurable, so that a new section is
easy to add.

• The UI could be written in Glade, to allow for easier design of various
panels/screens.

This software would be straightforward, with focus on two areas: user
interface design and plugins/extensibility. Seeing as the back-end work is
simple, the first step of the project should be to do some Glade mockups of a
new user interface.

Full Steam Ahead

November 13, 2004
At this point, it seems it is high time to get the project really going. The

plan is to do the bulk of the work during the Christmas holidays, so it is
imperative to have all of the ground work done by then. By December, all
work must be R&D.

To that effect, this evening I finally got around to trading my brand new
(version 1.6) Xbox with a friend who had the original (version 1.0/1.1) equip-
ment. This is a win-win situation, because he gets a new unit, with a new
warranty, and I get a unit that is more suitable for this project. Knowing the
difficulties with the 1.6 hardware also allows for another section of the project
report, where I can write about Microsoft’s continued attempts to prevent peo-
ple from running Linux on their gaming consoles, as they get more experience
with their ideas about trusted computing, of which the Xbox is a prototype
platform.

I was able to get Linux loaded into the two megabyte base image fairly
quickly:

Next, I will attempt to strip the unit of its ability to play games, in favour
of behaving as a small, cheap computer.

43

Pat Suwalski APPENDIX B. WEBLOG

Xebian Installed

November 14, 2004
Today was devoted to installing Xebian, a

flavour of Debian tailored specifically to Xbox.
After installation, it is 100% compatible with
Debian’s pool of software, but has a slightly dif-
ferent bootup process, as well as a kernel to be
used specifically with this hardware. It is now
running fairly well, with video output to a video
camera.

The first task to install a full Linux system
was to overwrite the Flash with one that can
boot Linux. This ROM, called Cromwell, was put together to be able to
boot Linux. The author did not release the source code publically due to
concerns that it could be used to do things considered illegal. To overwrite the
normal Flash, two tiny connections that were deliberately left out by Microsoft,
namely the traces the write pins, had to be filled in on the motherboard. Here
is one of them next to a pin head:

That was a fairly easy task, and the chip flashed flawlessly using the tiny
Linux install from yesterday. Next, the hard drive was replaced with one that
is expendable. Finally, a CD with Xebian was burned, and a boot attempted.
This is where the troubles started. The CD drive was having troubles reading
writable media, since writable optical discs tend to be of lesser quality than
commercially pressed discs. After four hours of trying various discs burned at
various speeds, a Google search revealed that many Xbox optical drive lasers
are not set powerfully enough to read writable discs. It was suggested that
the laser should be “tuned” to be more powerful. As hinted, right next to the
laser diode there was a potentiometer that could be set to lower resistance. It
was rotated from approximately 1250Ω to approximately 1050Ω. This setting
worked, Xebian installed:

44

Pat Suwalski APPENDIX B. WEBLOG

There are still issues to work out. The biggest one is that the system does
not want to boot directly from the hard drive. Instead, the Xebian developers
provide a CD that is simply a bootloader to the installed system. There is
confusion because documentation indicates the Cromwell Flash should be able
to boot directly from the hard drive. More research is required here.

While the system was installing, I looked into the complexity of creating
a VGA converter to output better video. Apparently, with the signals com-
ing out of an Xbox designed to work with Composite, S-Video, and HDTV,
there are enough signals to drive most VGA monitors with a straight-through
connection. If the touch-screen LCD I purchase for this unit does not work in
this mode, there is a very simple circuit that can be built between the Xbox
and the monitor that transforms the synchronization signals into pure VGA.

All in all, this weekend made for good progress.

Some Progress

November 18, 2004
After some eMailing to the xbox-linux mailing list with no success in finding

a cure for the Xbox not booting automatically from the hard drive, I discovered
that the Cromwell BIOS I was running was somewhat out of date. Flashing
the latest (2.32) fixed the issue, and the unit now powers up and boots itself
properly. The xbox-linux guys are a friendly and supportive group, I look
forward to contributing to the project.

Another good discovery was that with Cromwell, as opposed to the Mi-
crosoft firmware, any arbitrary ATAPI CD-ROM drive can be used. This is
good, because the built-in optical drive was causing no end of problems reading
burned media. The flipside to this is that now that the unit boots properly,
the usefulness of the optical drive is much lower. But it is still good to know.

The progress report for this project is due fairly soon. Now that the system
is fully running, it would be good to start transcribing ideas about how the
user interface should work in time to write about it. Then, the Christmas

45

Pat Suwalski APPENDIX B. WEBLOG

Break can be used to start implementing these things. Also, over the exam
period, it would be good to start looking for important components like the
touchscreen and the GPS unit.

VGA Output

December 7, 2004
The majority of this evening was spent con-

structing a simple converter that takes output
from the Xbox and converts it into mostly spec
VGA.

The Xbox has a video encoder chip that
takes the raw digital input and converts it to
(usually) composite video, although it also out-
puts luminance and chrominance for S-Video, as
well as both current HDTV standards. From a
combination of signals from all of these formats,
a VGA signal can be formed. The problem is that the sync signal for the whole
picture is encoded within the Green channel. This is not VESA-compliant.

The solution to creating a more-or-less VESA compliant signal is to use a
video sync splitter chip. In this case, the National LM1881N was used. The
input to the chip is the Green channel and the outputs are the horizontal and
vertical sync signals, which go directly to pins 13 and 14 on a VGA connector.

While the rest of the PCB is mostly pass-through for the video signals and
their ground lines, there Xbox also outputs audio through the same connector
as video. Therefore, there is a stereo headphone jack, and it works surprisingly
cleanly.

Unfortunately, the video portion of the converter is not ideal. It was ex-
pected from the start that there would be a slight greenish tint, since the
colours are not weighted for VGA display. However, the green tint is quite
heavy wherever other colours are not displayed. Also, there are occasionally
some sync issues. Upon investigating the completed circuit, it appears that
the resistor is approximately half as resistive as it is supposed to be. Perhaps
the resistor is faulty. This may explain some of the issues, so it will be replaced
at some point in the near future.

User Interface Idea

December 25, 2004

46

Pat Suwalski APPENDIX B. WEBLOG

Now that exams are over, as are Christmas
festivities, I am proceeding full-steam with pro-
ducing software I envisioned while studying for
exams.

It occurred to me that the flaw in DashPC’s
design philosophy is that it’s just a launcher. It
sits on top of a window manager and launches
applications (and a few other things). What is
needed in an automobile is an interface, some-
thing that does not hide behind windows, but rather allows control over them,
and is always available to switch to other programs. However, it should not
be a window manager, as that would have to take control of any child win-
dows that a program starts, and that is not the goal. The idea is that child
windows are the exception rather than the rule, and those should be handled
by a window manager when they do occur.

The result of my ideas is a tab interface with large, simple tabs on the
driver side of the screen. Tabs can be added or removed from a configuration
file, and each tab corresponds to a different program, always running. The
program corresponding to each tab is held within the tab’s content area, as
pictured for gpsdrive (this is only a concept graphic).

The difficulty lies in embedding the program. Several protocols were con-
sidered, including xembed. However, it needs to set up a socket and com-
municate with the client program, which would require modification for each
program to be used. Finally, today, I came across gnome-swallow, which lit-
erally swallows any window into its panel window. The whole program is
approximately 500 lines, with 75% of that being the panel code. The remain-
ing swallow code should be very easily portable to any other GTK application.
If all goes as planned, this means the program will be fairly trivial to write.

To make things even easier on the user, a high-contrast GTK theme could
be easily designed to make it very clear which tab is selected. This theme
could also enforce larger text, as needed for readability on smaller screens. I
am also thinking of designing a hardware switch that would make the software
automatically tint to a dark green or red when the vehicle’s lights are on. This
could be executed right at X11’s level via colour-correction functions.

Beyond a Mock-up

December 27, 2004

47

Pat Suwalski APPENDIX B. WEBLOG

The previously-designed mock-up is now a
reality. Written in GTK, with code borrowed
from gnome-swallow, the xeyes program was
swallowed into this preliminary design. The pro-
gram is actually attached to the tab pages, so
when a tab is switched, the eyes are hidden.
They return when the first tab is once again fo-
cused.

There are still many things to work out. The
immediate concern is whether it is possible to have multiple applications swal-
lowed. There is no reason why this should not be possible, but the current
code does interesting synchronization magic by forking the swallowed program
off and then attempting to control the main program loop. This, obviously,
cannot work with more than one program at a time. At the same time, with
a small number of programs swallowed, perhaps it is not a significant perfor-
manceissue to overcome.

The step after that is to be able to dynamically specify which programs
belong to which tabs, rather than hard-coding. Related to this is the ability
to set the swallowed applet’s size. Currently, the eyes are scaled to fit the
tab content area via command-line argument to xeyes. This solution is not
practical when there is a configuration file, as the size of the tabs is not known
in advance. Since the window identifier of the swallowed program is known, it
would be cleaner to suggest to the program to resize to given dimensions via
an Xlib call after the program is started, much like a window manager would.

Overall, this design is working out fairly well.

Success

December 30, 2004
The DashUI program is now moderately use-

ful. It runs cleanly, has a low overhead, and
looks pretty good too.

At this point, it can swallow just about
any window, even complex programs like me-
dia players such as Totem. However, one prob-
lem that needs solving is selection of which win-
dow to swallow. In programs that have unpre-
dictable titles, the window cannot be specified
in advance. In others, like gpsdrive, the splash

48

Pat Suwalski APPENDIX B. WEBLOG

screen gets in the way. Have not decided how to get around this yet.
From using DashUI with a mouse, it is fairly clear that the solution would

work very well on a touch screen. Large tabs that are always where they should
be, quick switching between applications, and the ability to swallow anything
really work. From here on, it should be mostly cleaning up the code, as well
as adding configuration file parsing.

DashUI Progress

January 11, 2005
Tonight was dedicated to adding configuration file parsing to DashUI. I

decided to use the standard IniFile format, as it’s easy to understand and easy
to parse.

The C parser is about one hunded lines in length, and handles comments,
whitespace, any field order, and the various data types that would be found
in a configuration file.

The format is extremely simple, For example, to embed the xlogo program:

This example swallows the xlogo program

[X Logo]

program = "xlogo"

window = "xlogo"

icon = "applet3 -48. png"

resize = 1

However, the main problem with the approach to DashUI is that it still
requires a window title to swallow any application. This is problematic for
some programs because of either synchronization, or unpredictable window
titles. That should be the next problem to solve.

A Possible Interface

January 23, 2005
When this project began, there was a fairly clear vision of what the interface

to the car computer could look like. Seeing as the presentation is coming up
this week, I felt it was high time to put the idea into a format where it can be
shared with others. This touch-screen would stow-away in the slot designed
for optional cd-changer units, and would slide out like a drawer, then hinge
down so that it could be easily usable from the front seats.

49

Pat Suwalski APPENDIX B. WEBLOG

While I had initially intended to build this
unit into a car, I am having difficulty locating
a reasonably-priced touch-screen that has a di-
agonal of 6 inches or less. The units I found
generally tend to be for medical equipment or
factory equipment purposes, and as such, are
far more expensive than common sense would
indicate. Understandable, seeing as the general
consumer would not find such equipment very
useful.

The difficulty in obtaining a screen coupled
with the Xbox’s green-tint VGA output are
making the unit look less and less appealing for
car-pc purposes. The initial benefits of low cost
(˜$200), good durability (designed to be han-
dled by children), and fairly low power requirements (˜100W) seem to be offset
by minor annoyances that make it impractical to build a fully-functional in-
dash unit. The very cold weather of this January has not been helpful either.
Would it even be safe to spin up a hard drive at -30oC temperatures?Would
the electronics be able to handle the condensation that would follow shortly
thereafter?

For the project, it should be possible to work without actually building the
computer in. For the poster-fair/demo I have come up with a simple method
of exporting the display to a touch-screen laptop that should show how things
are to work. This model may even be considered as an alternative to VGA
output, using a PDA mounted on the dash to interact with the car computer.
Still, I was hoping to have a fully-functional car computer in the end.

Project Progress and Setbacks

February 25, 2005
This reading week was to be used for completing several key phases in the

Dashbox project.
An initial goal of the project was to produce a plugin or some sort of appli-

cation that could communicate over OBD-II to the vehicle’s CPU and extract
meaningful statistics about its usage. While this is an attainable goal, my ve-
hicle is a year too old and only contains a non-standardized OBD-I interface.
This means that custom hardware would have to be built to communicate over
the interface, and it would be useless to others. Therefore, this component of

50

Pat Suwalski APPENDIX B. WEBLOG

the project report will be more of a research area. In searching for relevant
information, I came across a professor at NMSU.edu who is currently doing
a project with his students whereby a USB OBD-II interface communicated
via a kernel module. Also, freediag.sf.net has OBD-II tools, without a GUI.
These tools would be a good candidate for existing serial port hardware.

Progress has been made on another com-
ponent of the project, the relay-mouse status
sensor. This plan has been modified to use a
USB mouse, as it makes more sense then us-
ing a serial-USB dongle. The daemon is nearing
completion, with the ability to execute and ter-
minate programs based on button status. There
is no fancy IPC, though such a facility could be
implemented to communicate with the DashUI
element. I cannot see any use for this, however. The software and hardware
should be completed shortly.

Two software elements that should be examined over the next week or so
are the high-contrast/visibility GTK theme, and the project web page. As
more and more content is added, it would be good to house it somewhere. A
web page could also focus the work in these final stages. There is little over a
month left to complete the whole project!

Critical Mass

March 5, 2005
As the project deadline quickly approaches,

I have been spending considerable time putting
my ideas into motion.

Last week I decided that the power control
unit, while simple, would benefit from being
microcontrolled. I have spent a good portion
of this week researching the options, and con-
cluded that the Atmel Tiny series is perfect for
this and other applications. It is amazingly ver-
satile, simple to program, and conveniently has
an on-chip clock (other chips need an external crystal). After programming,
literally all that is needed is Vcc, Vss, and any inputs/outputs. Having spent
over 20 hours so far practicing writing software for it, I am completely in-
pressed with this chip. The software will be simple to write, and the hardware

51

Pat Suwalski APPENDIX B. WEBLOG

will hopefully be easy to design.
Additionally, some time this week was spent creating the GTK theme for

DashUI. A reference engine, HighContrast, is being used. The goal will be to
thicken up borders so that they are several pixels thick, and possibly modifying
the colour scheme so it is not as high contrast as it was originally designed to
be. This still needs work.

Lastly, library research was performed to obtain research about ergonomics
of vehicle multimedia hardware and its interaction with humans. Two excellent
books were found: Automotive Ergonomics and Human Factors in Driving,

Seating, & Vision. These books contain invaluable information and consid-
erations regarding revolutionary human interaction mechanisms, as well as
numerous related safety studies.

Microcontroller Success

March 6, 2005
After staying up half of the night, the program for the Atmel microcon-

troller power control unit was deemed satisfactory. Then I spent half of today
ironing out glitches inherent to moving from the test chip to the real one (they
are different models). After all of that, it only took 15 minutes to build a
breadboard prototype of the final circuit. Though the prototype is designed
to work on only 5V, it should not take long to modify it to handle 12V and
build the final unit.

These past three days have been extremely educational.

Poster Fair

March 17, 2005
The project poster fair was on Monday. I

decided that it would represent the deadline for
all of the aspects that were on the to-do list in
the presentation.

As such, over the two weeks preceding the
poster fair, I invested a total of about 60 hours
of time. While not by any means technically ad-
vanced, the power control unit represented a lot
of that time, and it certainly represented many
hours of learning Atmel microcontroller technol-
ogy and how to actually design simple circuits with transistors. Looking back,

52

Pat Suwalski APPENDIX B. WEBLOG

it seems completely straightforward, but there was some resistance in moving
from lecture-hall theory to actual design.

The poster show went well, the demo mostly worked. Of course, not when
the professor came to see it. Report-writing is slated to start any day now. I
seem to be well-off in terms of quantity of content. The quality is also present,
but it could still use some polish. An end is in sight.

53

	Title Page
	Abstract
	Table of Contents
	List of Figures
	1 Introduction
	1.1 DashBox
	1.2 Microsoft Xbox
	1.3 System Overview
	1.4 Report Organization

	2 Software Design
	2.1 DashUI
	2.1.1 Secondary Window Manager
	2.1.2 Simple Configuration
	2.1.3 Usability
	2.1.4 Program Design

	2.2 Vehicle State Daemon

	3 Hardware Design
	3.1 Power Control Unit
	3.2 Binary State Sensor
	3.3 Miscellaneous Hardware
	3.3.1 USB Dongle
	3.3.2 VGA Adapter

	4 Human Factors & Safety
	4.1 Hardware Interaction Concerns
	4.2 Software Interaction Concerns

	5 Results
	5.1 Touch-screen Interface
	5.2 Usable Software
	5.3 Other Peripherals
	5.4 Web Page

	6 Conclusions
	Bibliography
	A ATTiny2313 Introductory Material
	B Weblog

