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Abstract: 
 
 Recognizing the need for a network simulator, that is capable of handling large 

network simulations running over large simulation time spans, requiring a multitude of 

resources to achieve the desired state of accuracy, due to the scale and heterogeneity of 

the topologies under consideration. And to allow for better assessment of real life threats 

to network architecture from various events such as natural disasters, and man caused 

events. A network simulator based upon the DEVS formalism was proposed to fill the 

need for such a tool. The formalism is based on sound theoretical grounds, allowing for 

an abstract design of models that would be independent from the implementation 

platform and running conditions. It will also enable the simulator to maximize resource 

use by means of distributing the load of the simulation.  

 

CD++ was chosen as the tool for implementing the library models, providing the 

ground bases for the simulator. Furthermore, the tool follows the theoretical bases of the 

DEVS formalism, allowing the models to be run in a parallel distributed environment, 

which would result in a decreased simulation time as a whole and better resource 

management schemes.  

 

The models are built in a modular fashion to maintain a high degree of flexibility 

and customizability for future development of the tool. Further more, the models are built 

to be as generic as possible, so as to leave a space for development of other network 

devices and protocols using the existing models as templates and guidelines.    
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1.0 Introduction 
 

 

The fourth year project report submitted by Mohaemd Abd El-Salam, Khalil 

Yonis and, Abdul-Rahman Elsahfei, titled "building a library for parallel simulation of 

networking protocols" aims at shedding the light on the details of the design, 

implementation, and testing of the DEVS models comprising the library. The library 

facilitates the simulation of complex network architectures, built on the TCP/IP protocol 

stack. This document, in addition to being required for the successful competition of our 

fourth year project, is also necessary, for projects aiming to continue working on 

extending the model library in particular, and building a network simulator tool based on 

the DEVS formalism in general. 

 

Rapid diffusion of internetworking technology brings two major sources of stress 

to the underlying protocol mechanisms and associated design methods: scale, and 

heterogeneity. Scale, affects both the correctness and the performance of a network in 

general. On the other hand, Heterogeneity of applications translates into a large number 

of interacting protocols, each with a certain requirements and traffic pattern [1].  

 

The dynamic behaviour of networking protocols in packet-switched data networks 

must be examined to determine if current protocol design and engineering practices are 

critically adequate, to produce robust and evolvable network technology in the future. 

 

To be able to handle large-scale simulations, a network simulator based on the 

DEVS formalism was proposed. The simulator should be capable of simulating user-

defined topologies to assess network functionality. The simulator should be built upon a 

modular library of models defining the behaviour of well-known protocol stacks (such as 

TCP/IP), and common widely used inter-networking devices. Also, the library modular 

design should allow for the addition of new models easily and the models themselves 

should be flexible enough to allow future enhancements. 
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Although various network simulators are readily available (both academic and 

commercial such as OPNET, OMNet++, and NS-2), it was felt that a new simulation 

library based on the DEVS formalism, would add the ability to interface models 

simulating non-network entities, that affect network operation to a network topology, to 

assess their effect on network operation, thus coming up with more realistic results from 

the simulation. 

 

The rest of the report will go through a background chapter explaining the bases 

on which the library models were designed, with a brief explanation of the tool used. The 

background, shall then explain what the main functionality of each model, and the packet 

format used as traffic in the network. After this, the design and implementation chapter 

will show the DEVS model specification for each library device and show the 

implementation of the each of the devices. To prove the functionality of the library, the 

testing chapter will explain some of he tests ran to verify the behaviour of the models, 

and the integration tests performed. 

 

Finally, the report will provide a recommendations chapter outlining steps that 

should be taken for future extensions. The recommendations aim at getting the project 

closer to becoming a complete network simulator based on the DEVS formalism. 
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2.0 Background 
 
  

The background section will present some details concerning the tool used in the 

project. The chapter also define the components comprising the library, giving an 

overview of the functionality of each model. For simplicity, each set of models was 

grouped together to assemble a specific device. Never the less, the models in general 

were built to be generic, meaning models from one device could be used in another 

according to the designer’s needs. And the last section of this chapter will discuss the 

choices made in creating the packet that will represent out network traffic. 

 

The library consists of two major units, data generators and inter-networking 

devices. Data generators are modeled with the host model. The model is based on 

emulating the TCP/IP protocol stack. Inter-networking devices models are a router and a 

hub, which gives the library the initial depth it needed to simulate fairly complex 

topologies.  

 

Before the project went under way, it was felt that a survey about field of parallel 

simulation was necessary, to acquaint our selves with the latest developments in the field. 

The research documentations are provided in appendix “A”. We also studied currently 

available network modeling and simulation tools, focusing on OPNET, OMNet++, and 

NS-2. The research in particular was very helpful in choosing what devices to include in 

this project, so as to serve as a starting point for an ongoing project. The surveys 

compiled can also be found in appendix “A”.   

 

The remaining of this chapter will introduce the DEVS formalism, and the main 

features of the tool that our work was based on (CD++). CD++ is a modular based 

simulation tools, built on the DEVS formalism. The tool allows for building event driven 

models to simulate complicated systems. Finally the chapter intends to explain the 

functionality of each model in the library, and the traffic format.  
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2.1 The DEVS formalism and the CD++ toolKit 
 
 

DEVS (Discrete-Event system Specifications) was developed as a theoretical 

approach, which allows the definition of hierarchical models that can be easily integrated 

and reused [2]. Any system modeled with DEVS is described as a composite of sub-

models, each being an Atomic or a coupled model.  

 

DEVS Atomic models are formally defined as follows: 

 

M=<I, X, S, Y, δint, δext, λλλλ, D> 

 

Where: 

I :    set of model interfaces 

X:   the input events set. 

S:   the state set. 

Y:   the output event set. 

δint: the internal transition function. 

δext: the external transition function. 

λλλλ:  the output function. 

D:  the duration function. 

 

Each atomic model is provided with a set of unidirectional ports (input and 

output) to interact and communicate with other models. The input event set and the 

output event set are made of all possible events that might occur on the input or output 

ports respectively. The external function is invoked when an event occur on any of the 

model input ports. In the external function (described later on) the event gets processed 

and the model executes by changing variables and setting states if needed as a result of 

the event.  
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The model stays in its current state for a period defined by the duration function. 

When the duration function time expires, the output function is invoked. The output 

function sends events from the output event set through specific output ports, defined in 

the model's set of outputs, according to the models current state.  

 

After the output function execution, the internal transition function will be 

invoked to determine the new state of the model. The duration function is invoked before 

every execution of the external and the internal function, since every state must be 

associated with a unique timing value. 

 

A coupled DEVS model is a set of interconnected basic models (atomic or 

coupled). The coupled model is defined formally by: 

 

CM <I, X, Y, D, {M i}, {I i}, {Z ij }> 

 

Where: 

I : the models interface. 

X the input event set; 

Y the output event set; 

D the index of the components of the coupled model; and ∀ i ∈ D,  

M i is the a basic DEVS (an atomic or coupled model); 

I i is the set of influences of model i (that is the model that can be influenced by model 

i); and ∀ j ∈ Ii, 

Z ij  is the i to j translation function. 

 

DEVS coupled models are defined by a set of inter-connected atomic or coupled 

models. The influencees of a model determine where to send the outputs. The translation 

function is in charge of converting one model's outputs into another model’s inputs. To 

do so, an index of influencees (Ii) is kept to determine which outputs of models Mi are 

connected to inputs of model Mj, where j is an element of Ii. 
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CD++ is a toolkit for modeling and simulation based on the DEVS formalism. 

The tool is built as a set of independent software pieces running on different platforms 

[3]. The toolkit depends on the concept of separating the modeling process from the 

simulation. Atomic models are built in C++, and coupled models are defined using a 

specification language. The language provides a textual representation independent from 

any tool and development environment [3]. 

 
 

Atomic models are created using C++ classes, derived from the class Atomic. The 

new class representing a model must overwrite four functions inherited from class 

Atomic, to define the behavior of the model. Coupled models, on the other hand are a 

combination of models either Atomic or coupled, with the addition of the Top-level port 

connections added. 

 

For each atomic model two sets of ports are defined; a set of input ports to receive 

incoming events, and a set of output ports to send outgoing event. Input and output ports 

are defined first in the model header file, as follows 

 

private: 

           const Port &in;                         // defining input port “in” 

           Port &out;                                // defining output port “out” 

Figure 1: Atomic model’s port definition 
  

After a port has been defined in the header file, it is registered with the tool by 

calling on the add port method as shown below. 

 

modelName :: modelName(const string &name):Atomic(name)  // Constructor             

,in( addInputPort ("in") )                         // register Input port "in"                                     

,out( addOutputPort ("out') )                   // register Output port "out"                                

{….}   

Figure 2: Atomic model port registration 
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As mentioned earlier, each model must overwrite four functions, which represents 

the DEVS specification in the CD++ toolkit. The functions are: 

 

• initFunction : this function starts executing with the start of the simulation. In this 
function the initial values for the model variables are set, and the state is normally set 
to passive. 
 

• externalFunction: this function is invoked every time an external event is detected at 
any of the model's input ports. Normally each port will have an associated action to 
perform.  
 

• outputFunction: this function is invoked after the duration function has expired. This 
is the only place where the model should interact with other models by means of 
outputting messages, to conform to the DEVS specifications. 
 

• internalFunction : this function is invoked upon expiry of the duration function and 
after the outputFunction has finished execution. 

 

The four previously mentioned functions could make use of a set of methods 

defined in the tool, to manipulate simulation time and state, including:  

 
• holdIn ( state, time): instructs the model to hold in the specified state for certain 

amount of time. The expiration of the time invokes the outputFunction and the 
internalFunction. 
 

• passivate(): sets the atomics model state to the passive state. Equivalent to calling 
holdIn(passive, infinity). 
 

• sendOutput( time, port, value): this function is called from the model's 
outputFunction to send out events. In this function the output port  that will be used 
and the value for the event, and the event time are specified. The value must be a 
double.   
 

• state(): returns the current state of the atomic model. 
  
 

After building a new model, we must incorporate it with the rest of the tool. In order 

to do that we must change the file “register.cpp”, by adding a call to the 
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singleModelAdm::regisrteAtomic method from within the MainSimulator class 

registerNewAtomics method. This is shown in figure 3.  

 

#include  "modelHeaderfile.h"     
 
void  MainSimulator::registerNewAtomics() 
{ 
SingleModelAdm::Instance().registerAtomic(NewAtomic Function< modelName>() 
, " modelName" ) ; 
}  

Figure 3: reistering a new atomic model 
 

 

 

As we need the new model to be part of the tool, the compiler must be instructed 

to compile the new model’s code files (header and source code files) as an integral part of 

the simulator. The compilation of the simulator is done by means of the "make" 

command, which searches for a "makefile". The makefile will instruct the compiler 

which files to use to create the simulator executable file. To make the tool compile the 

new model files, the models must be added to the “makefile”. Changes to the makefile 

are shown below. 
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DEFINES_C=

# If we are compiling for Unix
INCLUDES_CPP=-I/usr/include
# or if we are compiling for Windows 95
#INCLUDES_CPP=

INCLUDES_C=
CFLAGS=
DEBUGFLAGS =
LDFLAGS += -L. -g 

EXAMPLESOBJS=MyModel.o queue.o main.o generat.o cpu.o transduc.o trafico.o distri.o com.o 
linpack.o debug.o register.o
LIBNAME=simu
LIBS=-lsimu
ALLOBJS =${EXAMPLESOBJS } ${SIMOBJS} 
INIOBJS=initest.o ini .o
ALLSRCS=${ALLOBJS :.o=.cpp} gram.y 
.

.

.

.

.

########################
# Without Optimization
MyModel.o: MyModel.cpp

${CPP} -c ${INCLUDES_CPP} ${DEFINES_CPP} ${DEBUGFLA GS} ${CPPFLAGS} $<

generat .o: generat .cpp
${CPP} -c ${INCLUDES_CPP} ${DEFINES_CPP} ${DEBUGFLAGS } ${CPPFLAGS} $<

queue .o: queue .cpp
${CPP} -c ${INCLUDES_CPP} ${DEFINES_CPP} ${DEBUGFLAGS } ${CPPFLAGS} $<

toCDPP.o: toCDPP.cpp
${CPP} -c ${INCLUDES_CPP} ${DEFINES_CPP} ${DEBUGFLAGS } ${CPPFLAGS} $<

mainsimu.o: mainsimu.cpp
${CPP} -c ${INCLUDES_CPP} ${DEFINES_CPP} ${DEBUGFLAGS } ${CPPFLAGS} $<

# Uncomment these lines only for Windows
#macroexp .o: macroexp.cpp
# ${CPP} -c ${INCLUDES_CPP} ${DEFINES_CPP} ${DEBUGFLAGS } ${CPPFLAGS} $<
#
#flatcoup .o: flatcoup .cpp
# ${CPP} -c ${INCLUDES_CPP} ${DEFINES_CPP} ${DEBUGFLAGS } ${CPPFLAGS} $<
########################

..

.

.

.

.

.

 
Figure 4: Makefile changes 

 

 

Once the model is integrated with the simulator, a simulation can be executed. 

The simulator receives a set of inputs to execute (a model file and an optional external 

event file), an output and a log file (used to show the simulation outputs, and in case of 

errors the log file can be viewed to determine where the fault occurred). 

 

 The simulator is activated by  

 
./simu –mMyModel.ma –eMyModel.ev –oMyModel.out –lMyModel.log 

 
Figure 5: Simulator activation command 
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After compiling the models, the new models can be instantiated and used within 

the model file (*.ma). In the model file coupled models are created by linking atomic 

models together. A simple example of model file is shown below. 

 

[top] 
components : router_out@RouterOutput 
out  : out 
in   : from_RPU interfaceNum 
link : out@router_out out 
link : interfaceNum interfaceNum@router_out 
link : from_RPU from_RPU@router_out 
 
[router_out] 
preparation : 00:00:00:050  

Figure 6: the RouterOut model file 
 

The model file is made up of at lest one component called the top. Components in 

the model file are defined between two square brackets and follow a specific format in 

there definition. After the name of the component is specified, a list of sub-components is 

defined after the key word components: every sub-component is either an instance of an 

atomic model or another component. The format for defining sub-components is: 

 
Instatnce_name@atomic_model_name   for instances of atomic models, 
 
or 
 
component_name  for components that are other coupled model in the model file.    
 

Once listing the models components is done, the list of input and output ports for 

the model is defined, each after its keywords in:  and out: respectively. Once the models 

ports are defined, the linking of models begins by using the keyword link: followed by 

the port that will output the event then the port that will receive the event as shown in the 

example below. 

 
Link : source_port@instance_name destination_port@other_instance_name 
 

If any of the ports used belongs directly to the model and not to one of its 

components, the identifier part (@instatnce_name) of the syntax is dropped.  
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Link : source_port @instance_name  destination_port 
 
Link : source_port  destination_port @instance_name 

  

 The event file is used to input events to the simulation at specific times. Values 

coming from the event file are used to excite the system, to observe its behaviour. Event 

files are simply a list of time variables that defines the event time, followed by the port 

that the event must arrive at, then the value of the event. Something to note here is that 

event file’s can only support double values for their events. The format for the event file 

is shown in the figure below. 

 

 

time(h:m:s:ms) port     event 
00:00:06:002     in         2.3 
00:00:06:003     in         2.4 
00:00:07:000     ready   3 

Figure 7: event file example 
 

 

 

 After this brief introduction about the tool and the formalism used in the course of 

this project, the remaining of the background chapter describes the behaviour of the 

various models of each of the library devices.  
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2.2 Library models 
 
  

Models comprising the library where chosen very carefully. The criteria was to 

choose models, which will enable the creation of fairly complex network topologies, and 

in the same time to function as a starting point for other projects, aiming at incrementing 

the functionality of the library, to achieve the goal of creating a network simulator based 

on the DEVS formalism. It must be noted, that flexibility of the models was of great 

importance, the models where designed to be as generic as possible, to allow each model 

to be reused in many devices if needed. 

 

 As mentioned earlier in this chapter, the library consists of a Host as a 

representation of a data generator and a couple of inter-networking devices (the router 

and the hub). The remaining of this section will describe the function of each one of these 

models.  

 

2.2.1 Host 
 

The Host emulates the behaviour of the TCP/IP protocol stack. This specific stack 

was chosen for its wide use, and abundance of information related to it. The Stack is 

divided into five layers, outlined in the following figure: 

 
Figure 8: TCP/IP protocol stack  
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 The application layer is the top layer of the network protocol stack. It is 

concerned with the semantics of work, and how to represent that data [4]. 

 The transport Layer transport data streams from a source application to a 

destination application reliably, and with integrity. The layer is capable of handling 

multiple connections and multiple applications. The Transport layer isolates lower layers 

from application programmers. 

 The transport layer could implement one of two protocols: Transport Control 

Protocol (TCP) or the user datagram protocol (UDP). In this project the emphasis was on 

TCP, which is a connection oriented protocol that provides a reliable data transmission 

via end-to-end error detection and correction. TCP Guarantees that the data is transferred 

across a network accurately and in the proper order. The protocol retransmits any data not 

received by the destination node, it also guarantees against data duplication between 

sending and receiving nodes. Finally TCP supports Telnet, FTP, SMTP, and POP [5]. 

TCP is discussed in RFC# 793[6] 

 

The network protocol is the heart of the TCP/IP protocol stack. The protocol 

“IPV4” was chosen as the network protocol, for its heavy use in both the commercial and 

industrial sectors, making it the most widely used network protocol the Internet is made 

of. Another reason for this choice is the development of “IPV6” which having the same 

architecture of “IPV4” adds more quality of service parameters and more addressing 

space. By having a model of “IPV4” this allows the simulation of current packet switched 

networks, with the ability to create an “IPV6”, later on, to complement the protocol 

library. 

 “IPV4” is a classless addressing protocol (meaning The protocol header carries 

its full addressing parameters such as source and destination addresses), the protocol also 

holds Quality of service (QOS) parameters for routing purposes such as time to live and 

identification field to allow for fragmentation at routers. In addition, it includes error 
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control parameters (Header checksum field). Finally, the protocol provides full-duplex 

communications of the network.  

 

The Data Link layer is associated with logical interface between an end system 

and a network. It is responsible for providing the means to activate, maintain, and 

deactivate the link. It also provides services to the higher layers of the TCP/IP protocol 

architecture such as error detection and control. The structure of the data link control is 

divided into two sub-layers; the Logical Link Control and the Medium Access Control 

outlined in the following figure. [7]  

Application

Transport

Network

Data Link

Physical

LLC
sublayer

MAC
sublayer

 
Figure 9: Data Link sub layers 

 

The Logical Link Control provides an interface to higher layers and performs 

error detection and control. On the other hand, the Medium Access Control sub-layer 

provides controlling access to the transmission medium in order to give an orderly and 

efficient use of that capacity.  

Whenever higher-level data is sent to the data-link layer, the Logical link control 

creates a Protocol Data Unit (PDU) with control information appended to the data as a 

header. The LLC then keeps track of the PDU’s that have been successfully received and 

retransmits unsuccessful frames [7:437]. The PDU format is shown in figure 8.  
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Figure 10: LLC PUD 

The fields of the PDU are:  

1. I/G:  Individual/Group 
2. DSAP: destination service access points 
3. C/R: Command/Response 
4. SSAP: Source service access points 
5. LLC control:  specifies the type of frame 
6. Information:  can either be control information or the Packet received from the 

internet layer. 
7. FCS: Frame check Sequence for CRC error detection 

 

DSAP and SSAP are addresses given to LLC users. I/G, C/R and LLC control are 

services that are mainly based on the High-level Data Link Control standards [7:437]. 

Most of these services are not discussed in this section because they are not a major 

concern, for this project. On the other hand, HDLC flow control mechanisms were 

already modeled in another protocol layer.  

Error detection in the LLC was our main interest in-order to discard any frames 

that are in error. One of the most common error detecting techniques used in data link 

protocols is the Cyclic Redundancy Check [7:202]. The CRC can be described as 

follows:  

“Given a k-bit block of bits, or message, the transmitter generates an n-bit 

sequence, known as a frame check sequence (FCS), so that the resulting frame, consisting 

of k + n bits, is exactly divisible by some predetermined number” [7:202]. Hence, an 

error can be detected in an incoming frame by dividing the frame by the predetermined 

number and examine if the remainder is greater than zero. These predetermined numbers, 

P(X) are usually expressed as polynomials with binary coefficients that correspond to the 
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bits in a binary number. One version of P(X) that is usually used in wide area networks is 

the CRC-16 [7:204]. A mathematical presentation of the CRC-16 process can be 

described as: 

CRC-16: P(X) = X16 + X15 + X2 + 1 = (11000000000000101)b = (98309)d 

Let, M = original message or data 

M = the message or data received 

∴FCS = M / P(X)  

∴Discard frame {  

 

The Medium Access Control (MAC) sub layer uses the carrier sense multiple 

access with collision detection (CSMA/CD) control technique, which is the basis for the 

IEEE 802.3 standard [7:470]. Based on this technique, if a device wishes to transmit data, 

it first senses the carrier to find out if another device is transmitting data over the link. If 

the medium is busy, the device must wait, otherwise it may transmit data. After 

transmission of data, the device senses the carrier again if there has been a collision just 

in case if another device was sending data at the same time. If a collision has been 

detected, the device sends out a 32-bit jamming signal into the transmission link that 

informs all connected devices that a collision has occurred [8].  

As a result of the jamming signal, all devices that have sent data over the 

transmission link during the collision would resend the data again but after a random 

delay. The random delay ensures that the retransmission of data from the connected 

devices does not occur at the same time to avoid simultaneous collisions [8].  A flow 

chart describing the CSMA/CD algorithm is in the following figure. 

Yes, if (M  - FCS) mod P(X) = 0 
No,   otherwise    
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Figure 11: CSMA 

 

Besides the CSMA/CD operation, receives a PDU from the LLC and appends a 

header to create a MAC frame. The MAC frame shown in figure 12 has the following 

fields: 

• preamble: pattern of alternating ones and zeros and 1’s used by receiver for 
synchronization 

• Start frame delimiter (SFD): to locate first bit of rest of frame 
• Pad: octets added to ensure that the frame is long enough for proper operation 
• Source Address (SA): the station that sent the frame 
• Destination Address (DA): the physical address of the destination 
• Length/Type: length of the LLC PDU 
• LLC: the PDU sent from the LLC sub-layer 

 

 
Figure 12: MAC frame 

 

The FCS in the MAC frame is provided by the LLC sub-layer, which was 

discussed earlier. Similar to the LLC, the other minor functions used in the MAC frame 
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are based on bit-operations and it is difficult to model in CD++, since message passing in 

CD++ are of double variables. Details of this problem is discussed in the problems 

encountered section 

 
 The physical layer is the lowest layer of both the ISO/OSI and TCP/IP protocol 

stacks. Consists of the cables, connectors and associated hardware such as driver chips to 

implement a network such as Ethernet or Token Ring [9]. For the purpose of this project, 

the physical layer will be limited to three of the widely used implementations Fibre 

optics, T1, and Ethernet.  

 

 T1 is known to be "a digital transmission link with capacity of 1.544 Mbps. T1 

uses two pairs of twisted pairs of normal twisted wires, the same found in most 

residences. T1 normally handles 24 voice conversations, each one digitized at 64 Kbps. 

But, with more advanced digital voice encoding techniques, it can handle more voice 

channels. T1 is a standard for digital transmission in the United States. T1 lines are used 

to connect networks across remote distances. Hubs and routers are used to connect LANs 

over T1 networks."[10] 

 

 Fibre optics on the other hand, is "the technology in which communication signals 

in the form of modulated light beams are transmitted over a glass fibre transmission 

medium. Fibre optic technology offers high bandwidth, small space needs and protection 

from electromagnetic interference, eavesdropping and radioactivity"[11].  

  

The last physical layer implementation we are interested in, is the Ethernet Link, 

which is "a very common method of networking computers in a LAN. Ethernet will 

handle about 10 Mbits-per-second. And can be used with almost any kind of 

computer"[12].   

 

2.2.2 Inter-networking devices 
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 To be able to create and simulate network topologies we needed to include inter-

networking devices to the library. The devices we decided to add are a router and a hub. 

 

The router is the device that determines the next network point to which a data 

packet should be forwarded. Routers route information based on traffic’s layer-three 

information (IP address). Routers maintain a table of the available routes and use this 

information to determine the best route for a given data packet [13]. The router extracts 

the packets destination IP address and compares it to the entries in its routing table, which 

contains the needed information for routing packets. 

 

An Internet routing protocol enables exchanging information about reachability of 

destinations in the network. To dynamically update the routing information, special 

routing protocols are used. One of the first routing protocols used in (DARPA internet) 

was the Routing Information Protocol (RIP) [13]. 

 

RIP is a n interior routing protocol designed to work with IP-based moderate 

sized networks using a reasonably homogenous technology [14]. RIP uses the distance 

vector algorithm to find the best route with the smallest metric size for each destination. 

There for, keeping a table with an entry for every possible destination is necessary. 

 

In order to gather the necessary information about the network topology, routers 

send two main messages to its neighbouring nodes; Request command to ask for routing 

information and to make sure that they are still functioning, and Response commands to 

respond on received requests from neighbours. 

 

According to RIP, the request command is sent every 30 sec. to ensure that 

neighbour nods are still connected, and to gather routing information. If a neighbour node 

did not respond within 180 sec. the router will consider this nod to be disconnected. 
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 As for the hub, it is a simple network device that joins multiple clients by means 

of a single link to the rest of the LAN. A hub has several ports to which clients are 

connected directly, and one or more ports that can be used to connect the hub to the 

backbone or to other active network components. The hub’s operates as a multi-port 

repeater; signals received on any port are immediately retransmitted to all other ports of 

the hub. Hubs function at the physical layer of the reference model [15]. 
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2.3 Traffic Format 
 

The headers for the Internet Protocol are based on RFC # 791[6]. They contain 

the full addressing information (source and destination IP) as well as other Quality of 

Service parameters such as Time to live (TTL), identification field, and finally a 

checksum. The choice of these parameters was due to the fact that CD++ can only handle 

primitive types for the time being. This choice of parameters will enable us to create 

simple Service level Agreements (SLA) for a more realistic simulation of the Core 

network. However, a more complete version of the IP header is provided in Appendix 

“E”. This version offers bit level manipulation of the header allowing the model to 

provide the full functionality of the protocol. 

The traffic packets are made of four values; either the option or the update field 

followed by the source address, the destination address, and the TCP field. The options in 

each field chosen from the IPV4 packet format are presented in the following figure. 

Command
1 : Request
2 : Response

Version
1 : RIP1 2 : RIP 2

Metric For
RIP max = 16

Identification Time To Live)

TTL

(

Header
Checksum

Source IP, Classless
Addressing scheme IPV 4

Destination IP, Classless
Addressing scheme IPV4

Sequence #
Acknowledgement#

Source Port
Destination
Port

Window Size
Checksum

Data

 
Figure 13 IP headers Format 

 

 

Update Field 

Options Field 

TCP Field 
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Where: 

• Command; Defines the update type either request or response, more on that. 
• Version; Used for the RIP protocol, to identify protocol version (1 for RIP 1 and 2 

for RIP 2). 
• Metric; specifies the cost (number of hop) for getting to the specified destination 

(maximum of 16). 
• Time to live; represent the maximum number of hobs the packet is allowed to take 

before it gets discarded. 
• Identification; A field to identify packets belonging to the same transfer. 
• Header checksum; a mathematical calculation to assure packet integrity. 
• Source IP address; the IP address of the packet’s source host. 
• Destination IP address; the IP address of the destination of the packet. 
• Source & destination ports; value identifying which application sent the data. And 

where it should be received 
• Sequence number: The sequence number of the first data octet in this segment 

(except when SYN is present). If SYN is present the sequence number is the 
initial sequence number (ISN) and the first data octet is ISN+1 [16]. 

• Acknowledgment number; value of the next sequence number the sender of the 
segment is expecting to receive.  Once a connection is established this is always 
sent [16]. 

• Window size; The number of data octets beginning with the one indicated in the 
acknowledgment field which the sender of this segment is willing to accept[16]. 

• Checksum; addition of the values in the packet 
• Data; data portion to send. 
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3.0 Design and implementation 
 

This chapter will show each model’s DEVS specification and explain the 

behaviour and functionality of each of the models. 

 

The three devices explained are the Host, the Router, and the Hub. 

 

 

3.1 Host 
 
 

The host is comprised of five models. The models are built to be reusable, in any 

other device as need arises. The five models represent the host’s application layer, the 

transport layer, network layer, the data link layer, and physical layer. 

 

3.1.1 The Application layer 
 

The front end of the host model is the application layer according to the TCP/IP 

protocol stack, illustrated in figure 8. It is designed as a simple atomic model as follows: 

 

HTTP

SMTP

TelNet

SNMP

FTP

Data Port

Data

Output to user (Output file)

User Input

User Input

User Input

User Input

User Input

D
at

a 
fr

om
 th

e 
E

ve
n

t f
ile

 
Figure 14: Application logical Design 
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The layer manipulates the data received from the user, in a way to identify 

application type sending the data. This step is done to facilitate creating a connection 

manager. The data specifications is shown here 

 
 

Data 
Value

Input 
port

2 digits2 digits

 
Figure 15: Application Layer otput data format 

 
 
 

The layer formal specification is as follows: 
 

M=<I, X, S, Y, δint, δext, λ, D> 

Where: 

I(interface): 
HTTP_In: input port simulating HTTP traffic 
FTP_In: input port simulating FTP traffic 
TelNet_In: input port simulating TelNet traffic 
SMTP_In: input port simulating mail protocols traffic 
SNMP_In: input port to simulate the simple network management protocol. 
ApplicationOut: output port to display received data 
in: input port to receive data coming from the transport layer 

X ∈{HTTP data  ∈ N , FTP data ∈ N, TelNet data ∈ N, SMTP data ∈ N, SNMP 
data ∈ N, transport layer data ∈ N };   
S : {Sigma, X, Preparation Time} 
Y ∈{ parsed application layer data ∈  N }; 
δext(s,e,x) 
{ 
 If passive 

Case msg.port 
  HTTP_In 

Identify protocol port and save data, signal output function to send 
to transport 

  FTP_In 
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Identify protocol port and save data, signal output function to send 
to transport 

  SMTP_In 
Identify protocol port and save data, signal output function to send 
to transport  

  SNMP_In 
Identify protocol port and save data, signal output function to send 
to transport 

  TelNet_In 
Identify protocol port and save data, signal output function to send 
to transport  

  In 
   Signal output function to output to user 
 Else 
  continue 
} 
δint(s,e) 
{ 
 Case phase 
  active: passivate 
  Default: continue 
} 
λ(s) 
{ 
 Send application value to application out 
} 

 

 

3.1.1 The Transport layer 
 

The second layer in the host is the transport layer. The layer is responsible for 

reliable, end-to-end data transfer through out the network. There are many protocols 

functioning in this layer, however as a starting point, TCP was chosen since it provides a 

solid base to build upon. 

 

 TCP model was broken into a set of two models; this was to facilitate full-duplex 

communications over the network. A complete overview of the model is shown below. 



Fourth year project report: Building a library for parallel simulation of networking 
protocols 

 

 
Page 30 of 87 

(

Checksum Verifier

daatagramStripper

checksumCreator

datagramCreator

Transmitter Receiver

TransportLayer

(IP_Out) (APP_Out)

(IP_In)

A Connection between 
the two models to 

signal Acks on

(APP_In)

 
Figure 16: TCP logical design 

 
  

The Transmitter module is responsible for receiving data from the application 

layer model; the data is then parsed in the format shown in figure 17, refereeing back to 

section 2.3 Traffic Format), it is seen that this packet is shown at the very bottom of the 

data sent out by the host models, before the Data Link Layer. This is to conform to the 

concept of layered protocols (where each layer builds on the one before it)    

 

Port #
Sequence# 
Acknowledge
#

Window # 
Checksum # Data

2 digits 2 digits4 digits 4 digits

 
Figure 17: TCP Packet format 

 
 Parsing is done in steps, to accommodate the creation of the checksum. The event 

flow can be seen in the following diagram 
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Receive data 
from 

Application 
layer

Create TCP 
Packet

Signal 
checksum 
Creator

Send Packet

Parse data

Send Parsed data to 
checksum Creator

Received data from 
checksum creator

Save Packet in case of 
resend request

 
Figure 18: Receiver Flow of events 

  
 

Parsing behaviour is split between two atomic models; "datagramCreator" and 

"checksumCreator". Data is received from the application layer in the "datagramCreator", 

the creator will create an initial packet and forward it to the "checksumCreator". The 

checksum creator will create the appropriate checksum, according to the received packet 

and forward the completed packet to the "datagramCreator". The packet is then sent to 

the next layer in the protocol stack. However before the packet is sent, it is saved in the 

model, to accommodate the connection manager, which will resend packets in case they 

are not received 

 
The formal specification of the datagreamCreator is:  
 

M=<I, X, S, Y, δint, δext, λ, D> 

Where: 

I(interface): 
in: general model input to receive application layer data on. 
Checkin: input port to receive packet on after checksum has been created in the 
checksumCreator model 
ackPort: input port to receive acknowledgments on from the datagram Stripper 
model 
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ackSender: an input port to receive requests to send acknowledgments on, the 
received data is the acknowledgment to send. 
gocheck: an output port to send data (packet, with checksum field set to 0) to the 
checksum creator, to signal the model to create the checksum 
datagramCreatorOut: model general output port to the network layer 

X ∈{ application layer data ∈ N , acknowldgment ∈ N, request to send ack ∈ N, parsed          
TCP packet with checksum ∈ N }; 
S : {Sigma, X, Preparation Time} 
Y ∈ { parsed TCP packet with checksum set to 0 ∈  N } ∪ { parsed packet to send ∈ N }; 
δint(s,e) 
{ 

Case phase 
  active: passivate 
  Default: continue 
}  
δext(s,e,x) 
{ 
 If passive 
 Case msg.port 
  In: 
  Create packet, and signal checksum creator to create a checksum 
  Checkin: 
  Packet received after checksum has been added, send to the network layer 

ackPort: 
check acknowledgement, to verify it is correct 
 if yes: delete saved packet 
 else: resend saved packet 
ackSender: 
 send received data as an acknowledgment. 

} 
λ(s) 
{ 

If received message is data from application layer, and checksum hasn't been 
created yet 

  Send packet with checksum field = 0 to checksum creator 
 If received message is data and checksum has been created 
  send data on the datagramOut port to the network port 

If received message is an ack, check ack to be correct or not. 
  If not correct discard ack and resend the packet. 
 If received message is a request to send an ack 
  Send received message on the resend port to the network layer.  
} 
 
 And for the checksumCreatoer model: 

M=<I, X, S, Y, δint, δext, λ, D> 
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Where: 

I(interface): 
In: input port for the model to receive data, to create checksum on. 
checksumcreatorOut: output port to send data with checksum value on, to the 
datagram creator, to be forwarded to the network layer. 

X ∈{ parsed TCP packet with checksum set to 0 ∈ N }; 
S : {Sigma, X, Preparation Time} 
Y ∈{ parsed TCP packet with checksum set ∈  N };  
δint(s,e) 
{ 

Case phase 
  active: passivate 
  Default: continue 
}   
δext (s,e,x) 
{ 
 If msg.port = in 
  Create the checksum 
} 
λ(s) 
{ 
 Send packet with checksum out on the checksumcretorOut model 
}  
 
  

 

On the receiver side of the transport layer, a receiver module is used to receive 

data from the network layer. The module is made of two atomic models a 

"datgramStripper" and a "checksumValidator". The "datagramStripper" receives the data, 

from the network layer, which is also sent to the "checksumValidator". The validator will 

check the checksum field of the packet. If the checksum field is valid then the 

"datagramStripper" is notified, that the packet is not corrupted. Once the confirmation 

message is received the "datagramStripper" will check the packet type, to see if it is data 

or an acknowledgement. In case of data the packet headers are striped, and the data is 

forwarded to the application layer. The "datagramStripper" will also request the 

"datagramCreator" to send an Acknowledgment, to the source of the packet. On the other 

hand if the data is an Acknowledgement (data field is 0), the datagram stripper forwards 

the acknowledgment message to the datagramCreator to check if the acknowledgment is 
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expected, to either delete the saved packet or resend it. If the checksum is incorrect, the 

packet is simply discarded.  

  

The datagramStripper formal specification is: 

M=<I, X, S, Y, δint, δext, λ, D> 

Where: 

I(interface): 
in: an input pot to receive data coming from the network layer. 
Checkin: an input port to receive confirmation of checksum on  
receiveAck: an output port to send the datagram creator acknowledgments on. 
sendAck: an output port to signal the datagram creator to send acknowledgments. 
The message sent from here is the ack. 
datagramstripperOut: output port to the application layer. 

X ∈{ data from the network layer ∈ N , checksum validation ∈ N }; 
S: {Sigma, X, Preparation Time} 
Y ∈ {application data ∈  N } ∪ { request to send ack ∈ N } ∪ { ack signal ∈ boolean }; 
δint(s,e)  
{ 

Case phase 
  active: passivate 
  Default: continue 
 
} 
δext(s,e,x) 
{ 
 Case msg.port 
  In 
    Save msg.value() as received TCP data. Set send flag to false 

Checkin 
   Check type of message  

if data, and ack is correct set send flag to true to signal the output 
function to send the message to the application layer, 
else if data and the ack is corrupted request resend of the packet 
else if ack, forward the message to the datagramcreator model 

}  
λ(s) 
{ 
 If flag to send data to application layer is true 
  Send data to the application layer through the datagramStripper out port 
 If flag to send request for an ack 
  Send message to send to the datagram creator on the sendAck port 
 If flag that we received an ack is true 
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Send the acknowledgment received to the datagramCreator on the 
receiveAck port 

} 
 
 
 
Methods used by the model to create the headers has the signature 
 

Double datagramCreator::creator( double appData) 
  

 
Figure 19: Creator signature 

 
And the method used to create the checksum is  

 

 
Figure 20: checksum method signature 

 
 
 
And for the checksumValidator model: 

M=<I, X, S, Y, δint, δext, λ, D> 

Where: 

I(interface): 
in: input port to receive data from the network layer on 
checksumvalidatorOut: output port to signal the datagramstripper model if the 
data is corrupted or not or if its an ack. 

X ∈ { packetIn  ∈ N , frameIn   ∈ N, status   ∈ N }; 
S : {Sigma, X, Preparation Time} 
Y ∈  { frameOut ∈  N } ∪ { packetOut ∈ N } ∪ { senseCarrier ∈ boolean }; 
δint(s, e) 
{ 

Case phase 
  active: passivate 
  Default: continue 
} 
δext (s, e, x)  
{  
  save incoming message data, to verify the cheksum 
}  
λ(s) 
{ 
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 Verfity the checksum 
Send the result of the verification process to the datagramStripper through the 
checksumvalidatorOut port 

} 

The method used to verify the checksum has the signature 

 
Figure 21: checksum Validator 

 

While the method used to strip the headers has the signature  

 
Figure 22: Stripper method signature 

 

 

3.1.3 The Network layer 

 

The third layer in the TCP/IP stack is the network layer. This layer is modeled by 

the Internet protocols. The network layer is responsible for end-to-end communication 

through out the network; it simulates a connection less network protocol, which is the 

Internet Protocol (IP). 

The layer is divided into two coupled models; a receiver module and a transmitter 

module. The logical (Coupled model illustration) of the layer is shown below. 
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Figure 23: IP logical design 

 

The models comprising the network layer are the network transmitter and the 

receiver. The network Transmitter receives data from the transport layer. The data is then 

parsed in the format illustrated earlier. The network transmitter would also save the 

destination IP in case of a resend request.  

The model formal specification is: 

M=<I, X, S, Y, δint, δext, λ, D> 

Where: 

I(interface): 
ingress: General Model input port to receive transport layer data on. 
resend: port to receives resend requests on from the transport layer. 
SIP: Input port to receive source IP on.  
DIP: input port to receive destination IP (IP of machine we would like to send 

data to) on 
Egress: output port to the data link layer. 

X ∈ {  transport layer message to send  ∈ N , request for resend ∈ N, source ip ∈ N, 
destination ip ∈ N }; 
S : {Sigma, X, Preparation Time} 
Y ∈  { parsed Network layer data ∈  N }; 
δint(s, e) 
 { 

Case phase 
  active: passivate 
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  Default: continue 
 
} 
δext(s, e, x) 
{  
 Case msg.port 
  SID 
   Save msg.value as source IP 
  DIP  

Save msg.value as destination ip, and set resend value to 
msg.value. 

Ingress 
   Create IP headers. Save msg.value as local value to send 
  Resend 
   Save msg.value() as local value to resend data 
   Set destination Ip to the resend ip value  
} 
λ(s)  
{ 
 If send 

Send the four messages shown in section 2.3 Traffic Format) on the 
networkTransmitter egress port 

 If resend 
Create the ip headers and send the received value through the 
networktransmitter output port.   

} 

The network transmitter methods used are header maker, with the signature  

 
Figure 24: header maker signature 

 

The receiver’s coupled model receives data from the Data Link layer and 

forwards it to the transport layer. The model removes all IP headers associated with the 

packet. 

The model formal specification is as follows  

M=<I, X, S, Y, δint, δext, λ, D> 
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Where: 
I (interface): 

Ingress: General Model input port to receive data from the data link layer on. 
SIP: Input port to receive source IP on.  
Egress: General Output port to output data to the transport layer 
 

X ∈ { data link layer message  ∈ N }; 
S : {Sigma, X, Preparation Time} 
Y ∈  { message stripped of IP headers, to be sent to transport layer ∈  N}; 
δint(s, e)  
{  

Case phase 
  active: passivate 
  Default: continue 
} 
δext (s, e, x) 
{ 
 Case msg.port 
  Ingress 
   Save msg.value as datalink layer data 
  SIP 
   Save msg.value as source ip 
}  
λ(s) 
{  
 Strip data of headers, verify checksum 
 Send message on the receiver egress port to the transport layer. 
}   

 

The receiver also makes use of the verifier method, with the signature 

 

 
Figure 25: Verify method 

 

 

 

3.1.4 The Data link layer 
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Modeling the data link required dividing it into two parts; coding the CRC 

operations of the LLC sub-layer and modeling the CSMA/CD algorithm of the MAC sub-

layer. However, the designs of both of these parts are combined into one atomic model 

called “dataLink”. 

 

The DEVS specification of the ‘data Link’ model: 

M=<I, X, S, Y, δint, δext, λ, D> 
Where: 
 I: Model Interface, 
 getPacket: receives packet from higher layer for transmission 
 sendPacket: sends a packet received from another device to the internet layer 
 getFrame: this port receives frames from another device via physical layer  

sendFrame: sends a frame to the physical layer 
 senseCarrier:  port connected to the physical layer model to sense its status 
 status: input port from physical model that indicates the status of carrier 
X ∈ { packetIn  ∈ N , frameIn   ∈ N, status   ∈ N }; 
S : {Sigma, X, Preparation Time} 
Y ∈  { frameOut ∈  N }  ∪ { packetOut ∈ N } ∪ { senseCarrier ∈ boolean }; 
δint:  { 
            if(carrier is busy) 
                 send 0 at senseCarrier output port after 5 miliseconds 
            else 
                phase = passive; 
       }   
δext: { 
            case port 
        getPacket: 
      case packet count 
   0: other.push_back(msg.value()); 
       increment pcount; 
   1: destination.push_back(msg.value()); 
       increment pcount; 
   2: source.push_back(msg.value()); 
       increment pcount; 
   3: data.push_back(msg.value()); 
       reset pcount; 
       sigma = preparationTime; 
       phase = active; 
       sense carrier is true;  

        getFrame: 
      case frame count 
   0: temp.other = msg.value(); 
       increment fcount; 
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   1: temp.destination = msg.value(); 
       increment fcount; 
   2: temp.source = msg.value(); 
       increment fcount; 
   3: temp.data = msg.value(); 
       increment fcount; 

4: temp.fcs = msg.value(); 
       reset fcount; 
       check for errors in frame using CRC function 
       if(no error)     
        sigma = preparationTime; 
        phase = active; 
    send packet is true;  
  status: 
   if(status is idle) 
    if(there was a collision) 
     resend previous frame sent 
    else 
     if(frame was sent)  go to next element in queue 
     send frame = true; 
    sigma = preparationTime; 
    phase = active; 
   if(status is a jam) 
    jamming is true; 
    sigma = preparationTime; 
    phase = active; 
   if(status is busy) 
    busy carrier is true; 
    sigma = preparationTime; 
    phase = active; 
   if(status is collision) 
    collision is true; 
    sigma = preparationTime; 
    phase = active; 
 } 
λ:  { 
 if(send frame) 
  send all frame fields in the sendFrame output port 
 if(send carrier) 
  send 0 in the senseCarrier output port 
 if(send packet) 

send all packet fields from the frame received into the sendFrame output 
port 

 if(jamming is true) 
  send 0 in the senseCarrier output port after random time 
 if(collision) 
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  send -1 in the senseCarrier output port 
    } 
D: defined by the preparation time 

 

 

 

The CRC operations are constructed in a header file (crc.h) included in the 

“datalink” atomic model. The CRC operations involve calculating the frame check 

sequence field before sending a frame, and detecting for errors when a frame is received. 

These operations are implemented similarly to the mathematical representation of the 

CRC-16 as shown earlier in this section. 

 

The second part is modeling the carrier sense multiple access with collision 

detection algorithm. When a packet is received from higher-level protocol such as the 

‘networkTransmitter’ model in the host, the CRC function appends a FCS field into the 

packet in order to create a frame. The frames that are ready to be sent are first pushed into 

a queue. Yet, before transmitting a frame the dataLink senses the carrier by sending a 

senseCarrier port message to the physical layer and waits for a response. Eventually, the 

physical layer would send its current status, which could be either one of the four: idle, 

busy, jammed or a collision. If the carrier were busy, the dataLink would send another 

senseCarrier message and wait for another response and it would repeat this process until 

the carrier is idle and then outputs the frames in the queue. However, after every frame 

sent, the dataLink sends a senseCarrier message to the physical layer again to ensure that 

from the status of the carrier there is no collision. If there was a collision the dataLink 

sends a jamming signal to the physical layer via the senseCarrier port with a message 

value of –1 and waits for a response from the carrier. The carrier responds by sending a 

jamming signal to all connected devices. Upon receiving this response the device that had 

their frames lost, will resend the frame that was stored in the queue after a random delay 

of 0 to 10 milliseconds. This random delay is determined by getting the first ‘double’ 

message of the frame that the device wishes to send and we divide that number by 10. 

The remainder is the random delay which is added to the msg.time() during output. In 
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contrast, if there was no collision after the frame was sent, the frame stored in the queue 

is deleted and the same scenario is applied for the next frame. 

 

Besides sending frames into the physical layer, the dataLink model also receives 

frames sent by other devices through the physical layer. Upon receiving these frames, the 

frame is first checked for any errors by the cyclic redundancy check result. If there was 

no error the FCS field is stripped off the frame and the packet is sent directly to the 

network layer, namely the ‘Receiver’ model. The format of the frame sent and received 

over the physical layer is shown below. Each field corresponds to a single double 

variable and is sent sequentially. 

 

OPTIONS SOURCE DESTINATION DATA FCS

 
Figure 26: Frame message format 

 

 

 

3.1.5 The Physical layer 
 

The last of the TCP stack is the physical layer. The physical layer is modeled as a 

simple atomic model, with the following logical view: 

 

Physical Layer
Data from Data Link 

Layer
Data to Data Link Layer

Sensing signal 
request

Response to 
sensing signal

 
Figure 27: Physical layer Logical view 

 
 

And its formal specification is  
M=<I, X, S, Y, δint, δext, λ, D> 
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Where: 
I(Interface) 
 in: input port to receive data from physical layer end # 1 
 in1: input port to receive data from physical layer end # 2 

Out: output port to output data to the physical layer end #1 
Out1: output port to output data to the physical layer end # 2 

 type: an input port to set the the type of the link 
signal: an output port to notify the data link layer of the current state of the link. 

 sensingPort:  an input port to receive sensing requests from the data link layer on. 
X ∈ { request for sensing  ∈ N , data to send on either ends of the link ∈ N, type of 
link∈ N }; 
S : {Sigma, X, Preparation Time} 
Y ∈  { state of the link∈  N }  ∪ { message passed through the link from one end to 
another ∈ N }; 
δint(s, e) 
{ 

Case phase 
  active: passivate 
  Default: continue 
  
}   
δext(s, e, x) 
{ 
 Case msg.port 
  Type: 
   Save msg.value as link type 
  In: 

Save msg.value as data to transfer, to other side (hence output on 
out1) 

  In1: 
Save msg.value as data to transfer, to other side (hence output on 
out) 

  sensingPort: 
   check the state of the link. 
} 
λ{s} 
{ 
 If data from in, then output data on out1 
 If data from in1, then output data on out 
 If request for sensing, then output state on signal port 
} 
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3.2 Router 
 

we needed to model to model the router to connect network devises and segments 

together. To be able to simplify simulating the behavior of the router, we needed to take 

an abstracted look at the routing processes. In doing so we were able to abstract the 

router's behavior to three main functionalities; receiving and forwarding traffic, 

processing IP packets, and maintaining a routing table (discussed in section 2.2.2). 

 

To simulate the three functions, three models were created; the interfaceingCard, 

the routerProcessor, and the RIPTable model. The router’s model is shown with its three 

inner components in below in figure 20. 
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Figure 28: the router's coupled model diagram 

 

 

The interfaceCard model will be responsible of receiving incoming traffic to the router 

and forwarding traffic out of the router. The routerProcessor model will take care of 
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processing the received packets, and the decision-making related to the packet. And 

the last model, the RIPTable, will maintain the router's routing table and will be 

responsible for accessing its data. Detailed description of the three models and their 

specifications will be provided in the following sections. 

 

3.2.1 Router Interface 
 

Every router has a number of interfacing cards or network cards that receive and 

forward traffic from and to the network. The number of interface cards that a router will 

have varies according to the router's design. The interface models that we have developed 

receive and send packets in the format discussed in section 2.3 of this report.  

 

 To handle traffic going in and out of the router through the interfaceCard model, 

we broke it into two separate atomic models; one for receiving packets from the network, 

and the other to forward packets out of the router to the network. The models are called 

RouterIn and RouterOut, respectively. 

 

Figure 29:The RouterInterface coupled model 
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The RouterIn atomic model (shown in figure 20) was defined to receive the 

defined IP packets from the net and forward it to the RouterProcessor model. The 

model’s specification is: 

M=<I, X, S, Y, δint, δext, λ, D> 

Where: 

I:  
in: receives the IP packet. 
ready: receives the router processor’s signal requesting the ready packet. 
to_RPU: for sending the packet to the router processor unit. 
flag: to signal that a packet is ready. 
interfaceNum: for sending the models ID number to the RouterOut model. 
 

X: ∈{  IP packet ∈ N , ready signal ∈ N } 
S:  {Sigma, X, Preparation Time} 
Y: ∈ {IP packet ∈  N }  ∪ { flag ∈ N } ∪ { ID  ∈ N } 
δint (e, s):  

{ 
 case phase: 
  busy: passivat, receiving state = nothing, output_flag = 0. 
  passive /* never happens */ 
} 

δext(e,s,x): 
{ 
 case msg.port: 
  in:  
   case receive state: 

nothing: store value1,set receiving state to got1, continue 
got1: store 2nd value, set receiving state to got2, continue 

    got2: store 3rd value, set receiving state to got3, continue 
got3: store 4th value, outputFlage = 1, sigma= preparation, 

S = active 
  ready: 
   prepare packet, outputFlag = 2, sigma = preparation, S =active 
} 

  
λ (s): 

{ 
 case outputFlage: 
  0: send ID to RouterOut 
  1: send flag to RouterProcessor 
  2: send packet to RouterProcessor 
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} 
 

 

RouterIn
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ready

flag

to_RPU

interfaceNum

 
Figure 30: the RouterIn atomic model 

 

The model has 2 input ports and 3 output ports to communicate with both the 

routers components and the network components. The "in" port is used to receive packets 

from the net in its externalFunction using the state machine described in the following 

state diagram. 

 

Figure 31: packet receiving state machine 
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 Once the model is started, its receiving state is set to state S1 (received nothing). 

The model stays in this state until a packet starts to arrive at its input port "in". the first 

value of the packet triggers the transition V1 from state S1 to state S2 where the value 

gets stored and the model held in its passive state. The second value of the packet triggers 

V2 going from state S2 to S3 and the second value is stored. The same happens with the 

3rd value in state S4. when the last value in the packet arrives at port "in", the transition 

V4 happens and we enter the state S5. In this state the model stores the last packet value, 

create a single packet using the 4 received valued, and stores the packet in its internal 

queue. In S5 the model sets is atomic state to active for the period of its preparation time 

which causes the model to execute its outputFunction and sends a flag signal to the 

RouterProcessor, notifying it that a packet has been received and is ready for processing. 

After flagging the RouterProcessor, the receiving state is set back to its default state S1. 

 

 The models second input port is called "ready". This port is used by the model to 

receive ready signals from the RouterProcessor as a notification that it is ready to 

processes the received packet. Since the ready signal is sent to all the routers interfaces, 

the interface will check the ready signal's value, and compare it to it ID. Only the 

interface with the ID matching to the ready signal will respond by forwarding its packet 

for processing. 

 

 As for the models output ports, each model has three of them, "flag", "to_RPU", 

and "interfaceNum". The "flag" port is used to output the flag signal to the 

RouterProcessor model with a value equal to the routerIn model's processes ID. The 

model's processes ID is a unique ID assigned to each model upon starting the simulation, 

and can be obtained by simply calling the function id(). This flag signal is used by the 

RouterProcessor to order the packet for processing. 

 

 To forward the packet out of this model to the RouterProcessor model, the 

"to_RPU" output port is defined. The RPU in the ports name stands for the Router 

Processing Unit, which refers to the RouterProcessor model. Through this port, the 

routerIn model sends the packet from its internal queue to the RouterProcessor. the 
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packet is taken out of  the model's internal queue and sent as received in four successive 

messages.  

 

 The last port in the model is the "interfaceNum" output port. The port is 

exclusively used to send the model's ID to the RouterOut model once the simulation 

starts. We wanted to send the models ID number to the RouterOut model, so the two 

models can use the same ID value since together they make the RouterInterface model. 

Having a unified ID number for the two components of the RouterInterface model 

enables as of keeping track of where each network is connected. The ID, which is used in 

flagging the RouterProcessor, becomes a tag for the packet the as long as it is in the 

router. This tag helps the router in identifying the port that it needs to replay to in case of 

a request packet, or the output interface number that should be stored in the routing table 

if the packet turns out to be an update packet. 

 

The second atomic model that makes up the RouterInterface model is the 

RouterOut. This model was designed to simply forward packets out of the router to the 

network.  

 

Figure 32: the RouterOut atomic model 
 

 The RouterOut specification is: 

M=<I, X, S, Y, δint, δext, λ, D> 

Where: 

I:  
interfaceNum: receives the interface ID. 

RouterOut
out

interfaceNum

from_RPU
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From_RPU: receives the packet to be sent out of the router. 
out: for sending the packet. 
 

X: ∈{  forward data from router processor ∈ N , interface ID ∈ N } 
S:  {Sigma, X, Preparation Time} 
Y: ∈ {IP packet ∈  N } 
δint (e, s):  

{  
 case phase: 
  busy: passivat, receiving state = nothing. 
  passive /* never happens */ 
} 

δext(e,s,x): 
{ 
 case msg.port: 
  in:  
   case receive state: 

nothing: store value1,set receiving state to got1, continue 
got1: store 2nd value, set receiving state to got2, continue 

    got2: store 3rd value, set receiving state to got3, continue 
got3: store 4th value, receiveState = needPortNum, 

continue 
needPortNum:  
 if msg.value = ID: sigma= preparation, S = active 
 else: receiveState = gotNothing, continue. 

  interfaceNum: 
   ID = msg.value.continue. 
} 

  
λ (s): 

{ 
 output the packet. 
} 

 

 

as seen in the model’s specifications, three ports were defined; "interfaceNum", 

"from_RPU", and "out". The "interfaceNum" port is the input port that gets connected 

with the RouterIn model to receive the interface number (the ID) that the model will use 

to identify its self. Since this ID is not the actual ID number for this model –which can be 

obtained by calling the function id()- , we will simply store the received ID value in an 

attribute and refer to it when needed. This way we can guarantee that both components 

making out the RouterInterface model will respond to the same Id number.  
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 The "from_RPU" input port is the port that is the one responsible of receiving the 

packets from the RouterProcessor model. The receiving of a packet is handled the in a six 

state mechanism as shown in figure 25. The first five states and their activities are the 

same as described in the RouterIn model's state diagram and the only difference is in the 

last state S6. In S6 the models receive a value indicating the interface that should output 

the packet. We added this value to the set of outputs from the RouterProcessor, due to the 

desire of making the adding of new interfaces to the router as generic as possible. This 

last value enables us to add interfaces to the RouterProcessor without having to modify 

the source code of the RouterProcessor's models to add a new set of input and output 

ports corresponding to every new interface we add. It also allows the RouterProcessor to 

send a message through more than one interface at the same time in the case a broadcast 

of a request is needed. In this state S6, and after receiving the last signal from the 

RouterProcessor (the ID value), the model checks the received ID to see if the packet is 

to be forwarded or dropped. We designed the RouterOut model so it will output the 

packet only if the last message value is equal to its own ID, or if it is a negative value that 

does not equal the negative of its own ID. The last condition was added in particular to 

exclude an interface from a broadcasted update, in case the update happed due to 

information coming through that particular port. This technique is known as the Poisoned 

return, and is discussed in RIP2 (RFC # 2453). 
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Figure 33: receiving packets state diagram for the RouterOut model 
 

 

The only output port that this model have is the "out". It simply used to output the 

packet in its defined format once the ID value's was checked and the interface was 

selected for forwarding the packet. 

 

3.2.2 Router Processor 
 
After packet are received by the RouterInterface, they need to be processed to see if they 

are messages to the router (requests or updates), or if they are just data packets that needs 

to be forwarded to their destinations. To be able to handle the incoming packets, the 

RouterProcessor model was broken to two Atomic models, a queue and a 

PacketProcessor model. 
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Figure 34: the RouterProcessor model diagram 
 
 

The queue is a temporary storage device that uses the FIFO (first in first out) 

mechanism. This particular model was not created by any of the group members, but was 

adopted since its functionality is required for out project. The queue logical design is 

shown in the following figure: 

 

Figure 35: the queue atomic model 
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port, the model eliminates the last sent element from its queue, and prepares and sends 

the next element (if any exists). The "stop" port is used as a regulator, a stop_send port. 

Using this port will trigger the model to output elements from its queue upon receiving 

requests, or simply ignoring requests and just storing received values until the model is 

toggled again by a signal on the "stop" port.  

 

 The queue model was used in the RouterProcessor to hold flag signals coming 

from the routers different interfaces. This is required, since multiple packets can arrive at 

different interfaces while the RouterProcessor is busy. Using the queue prevents losing 

any of the flag signals sent by the interfaceses, and allows the RouterProcessor to process 

packets in the order they arrived in at the different interfaces. 

 
The PacketProcessor model represents the heart of the RouterProcessor. This 

model will be responsible for reading in the packets from the interfaces, processing the 

packets, and making routing decisions regarding their destinations.  

 

Figure 36: the PacketProcessor atomic model 
 
 
 
The PacketProcessor specification is: 
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M=<I, X, S, Y, δint, δext, λ, D> 

Where: 

I:  
in: receives the interface ID from queue. 
packet: receives the packet. 
outInterface: to get the interface from the routing table 
cont: get a signal to continue from the table 
next: get next ID from queue 
getPacket: request packet from interface 
requ: send request data to table 
updateTable: send update data to table 
destination: send address to get output interface  
out: for sending the packet. 
 

X: ∈{  flag ∈ N , output interface ID ∈ N , packet ∈ N , continue signal ∈ N } 
S:  {Sigma, X, Preparation Time} 
Y: ∈ {IP packet ∈  N } ∪ { request data ∈ N } ∪ {  update data∈ N } ∪ { destination 
address ∈ N } ∪ { next ∈ N } ∪ {  get packet signal∈ N } 
δint (e, s):  

{ 
 case phase: 
  active: passivat, reset receiving state and output state. 
  passive /* never happens */ 
} 

δext(e,s,x): 
{  
 case msg.port: 
  in: get the packet from interface 

packet:  
   case receive state: 

nothing: store value1,set receiving state to got1, continue 
got1: store 2nd value, set receiving state to got2, continue 

    got2: store 3rd value, set receiving state to got3, continue 
got3: store 4th value, receiveState = needPortNum, outState 

if packet data: outState = data. 
If packet request: outState =request. 
If packet update: outState = respond. 
sigma= preparation, S = active 

  
  outputInterface: 

outID = msg.value, outState = forward, sigma= 
preparation, S = active 

  cont: signal for next packet 
} 
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λ (s): 
{ 
 case outState: 
  data: send destianation to get out interface. 
  Request: send requist data to table. 
  Update: send update information to table 
  Forward: send packet. 
} 

 
 

The PacketProcessor starts its packet processing cycle upon receiving an event on 

its “in” input port. The received event will carry the flag value sent by the 

RouterInterface and stored in the queue model. Once the value is received the, the 

PacketProcessor will send it through its “get_packet” output port, that is connected to the 

“ready” input port of all the interfaces. Only the interface with the matching ID number 

to the sent value –as discussed previously in the router’s interface section (3.2.1)-, will 

respond by outputting the ready packet to RouterProcessor model, which in turn ends up 

at the PacketProcessor model. The packet processor receives the packet through its 

“packet” input port, using the same state mechanism used by the RouterIn model to 

receive packets. 

 
After receiving the last value of the packet, the Packetprocessor checks the three 

most significant digits of the first value to determine its type. If the value is 1 then the 

packet is a request packet, if it is 2 the it is an update packet, other than that the packet is 

a data packet and the value represents the packet identification number (see section 2.3 

for packet format). If the packet turns out to be a request packet (type 1), the 

PacketProcessor will extract the address field from the packet and forward it along with 

the ID of the interface that the packet arrived on through its “requ” port to the ripTable 

model. This data will be used by the ripTable model to respond to the request, as will be 

explained later in the Router Table section (section 3.2.3). The PacketProcessor will wait 

until it receives a confirmation from the ripTable model on its “cont” port, telling it that 

the request was answered and it can go ahead and get the next packet for processing.  
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The second type of packets received by the PacketProcessor is the update packets 

(type 2). For this packet type, the model will forward three values to the ripTable model 

through its “updateTable” port. The values that are forwarded are the interface ID, the 

destination address, and the metric value associated with that destination. The metric 

value is the three least significant digits in the first value of the packet (see section 2.3) 

After preparing the three values, the model holds it self in the active state for the 

predefined preparation time, and then executes the output function and send the three 

values –the address, followed by the metric then the interface ID number- using the 

“updateTable” output port. The model then - like in the case of a request packet-, waits 

for a signal from the ripTable model on its "cont" port before it request the next value in 

the queue.  

 

The last type is data packets. For this type of packets, the PacketProcessor sends 

the destination address of the packet to the ripTable through the "address" port, 

requesting the number of the interface that will be used to forward the packet. The model 

then waits for the interface number on its "outInterface" port, and then forwards the 

packet followed by the interface ID number to the RouterInterface models. After 

receivint the output interface number, the packet is forwarded by sending the packets 

values followed by the interface number through its "out" port to the RouterInterface 

models. 

 

To indicate that the destination address was not found in the routing table,The 

value 0 was assigned as a special signal from the ripTable model to the PacketProcessor. 

When the PacketProcessor sees this value, it issues a request packet through all interfaces 

except the one that the packet was received through, requesting an update on that 

destination. The PacketProcessor uses the "out" packet to send the request. 
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3.2.3 Router Table 
 

The model’s main functionality is to maintain the routing information that the 

router needs to forward packets to there destinations. The simple format that we used for 

entries in the table is: 

 

Address Metric Interface 

Figure 37: Router table entry format 

Where the address is destination that the packet wants to get to, the metric is a value that 

represents the cost of getting to that destination, and the output interface is the number of 

the interface that the router must forward the packet through to get it to its destination or 

at least one hop closer in the right direction. 

According to the RIP2 protocol, the routing table can have other entries in the 

table such as the subnet mask and a set of flags associated with each entry in the table. In 

the RIP2 protocol RFC, it is stated that the router table must send updates to its neighbor 

routers every 30sec. Although the CD++ uses a time value with its messages, the time 

doesn’t represent real time values that can be used to set delays or trigger an action with a 

predefined time value. For that reason, we could not set a timer for the updates, and 

updates are not sent every 30sec. this functionality can be implemented using the real 

time version of the tool, and is left for future work.  

To compensate for not sending periodic updates, and for keeping all routers 

updated on various topology changes occurring. We had the table model send an update 

packet every time it updates its routing table. When the model sends an update, it 

forwards it through all interface ports, except the one it who originated the update, this is 

to simulate poisened return criteria to control amount of traffic dedicated to router 

updates. 
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The ripTable model was created as a single atomic model. The model will be 

receiving events on one of its 3 input ports; address, update, or request. Each port of the 

three will be receiving events related to a specific packet type. Depending on the event 

the model will send out events using its output ports "out", "outInterface", and "done". 

The model is shown below. 

 
Figure 38: the RIPTable atomic model 

The model’s specification is: 

M=<I, X, S, Y, δint, δext, λ, D> 

Where: 

I:  
address: receives the destination address. 
updtae: receives the update data. 
request: receives request data. 
done: signal end of operation 
outInterface: sends the output interface for the packet 
out: for sending response packets. 
 

X: ∈{  destination address ∈ N , update data ID ∈ N , request data ∈ N } 
S:  {Sigma, X, Preparation Time} 
Y: ∈ {response packets ∈  N } ∪ { output interace ∈ N } ∪ {  done signal∈ N } 
δint (e, s):  

{ 
 case phase: 
  active: passivat, reset receiving state and output state. 
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  passive /* never happens */ 
} 

δext(e,s,x): 
{ 
 case msg.port: 

address: get the packet from interface, outState = forwardPort, sigma= 
preparation, S = active 

update:  receive update data. 
If we update table, sigma = preparation, outState = respond_1, S 
= active 

   If no update needed, continue. 
  

  request: 
`   get request data,  

if address filed = address, outState respond_1, 
else if address == 0, outState = respond_all 

sigma= preparation, S = active 
} 

  
λ (s): 

{ 
 case outState: 
  forwardPort: send outinterface from table. 
  Respond_1: send 1 update packet. 
  Respond_all: send all table entries. 
} 

 

The "address" is the port that the model will receive the packets destination 

address on, from the router processor. After receiving the address, the model will search 

through its table for the received address. After the table look up, the model outputs the 

interface that should be used by the RouterProcessor to forward the packet on, this 

message is outputted through the “outInterface” port. 

In case the received destination is not found in the table, the model will send the 

value '0' instead of the interface ID, which will be handled by the processor by requesting 

an update on that address.  

Updates are passed to the table through the "update" port. The updates are 

received as three values; the address, the metric, and the interface ID. Once the three 

values are received, the table will iterate through its entries looking for the address and if 
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not found, the new information is added to the table. If the table already contained an 

entry for this destination address, the table will compare that entry's metric value with the 

new received metric after incrementing it by 1. The increment is done to follow the RIP 

standards where it says that for every hop adds 1 to the metric up to a value of 16 – as 16 

is the maximum number of hops allowed-. If the new metric value is less that the existing 

one in the table, the old entry is removed and the table is updated with the new values. 

After updating the table, a packet is sent out trough the "out" port to update adjacent 

routers of the new change. The update is sent through all interfaces except the one that 

the update message arrived from. Following the update signal, the model sends a 

confirmation to the routers processor using its "done" port. 

The last set of events is requests for updates, which arrives on the models 

"request" port. The request message is two values carrying the address that the requesting 

router wants to be updated about, and the interface to be used to forward the update 

information through. The address can be either an IP address, or the value 0. If the value 

0 was used, then the table will send all of its information as updates as the RIP2 protocol 

states. The tables information will be sent as update packets through the model's "out" 

port, and as in the case of receiving updates, the model will send a signal to the router's 

processor on the "done" port to indicate that it has finished its work.  

We have also included a more complete version of Dijkstra in Appendix “X”   

the essence of the algorithm is stated as follows, “Given a network of nodes connected by 

bidirectional links, where each link has a cost associated with it in each direction, define 

the cost of a path between two nodes as the sum of the costs of the links traversed. For 

each pair of nodes, find the path with the least cost” [13:342]. 
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3.3 Hub 
 
 The hub is a simple atomic model; it has also served as our test bed for converting 

the library models into a parallel environment. The model logical design is as follows 

 

Connected 
Device

Connected 
Device

Data coming from 
previous Hub

Data going 
to next Hub

In out

 
Figure 39: Hub Logical design 

 
The Hub formal specification is 
 
I(interface):  

Ingress: input port to receive data from interconnected devices on 
Setter: input port to set hub specific information from 
Egress1: output port to 1st connected device 
Egress2: output port to 2nd  connected device 
Egress3: output port to 3rd connected device 
Egress4: output port to 4th connected device 
Egress5: output port to 5th connected device 
Egress6: output port to 6th connected device 
Egress7: output port to 7th connected device 
Egress8: output port to 8th connected device 
Egress9: output port to inter-networking device 
 
 

X: ∈{  data ∈ N , setting information ∈ N }; 
S:  {Sigma, X, Preparation Time} 
Y: ∈ {regenerated data ∈  N };  
δint (e, s):  

{  
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 case phase: 
  active: passivat 
  passive /* never happens */ 
} 

δext(s, e, x): 
{ 
 case msg.port: 
  ingress: set localvalue to msg.value 

setter: set local data field (hub identifier) to msg.value  
} 
  
λ (s): 
{ 

 Output data to all egrees ports 
} 
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4 Testing 

 
In order to show the functionality of the library models, we have included some of 

the major tests, concerning the more complicated models worked on. This chapter will 

walkthrough most of the models in comprising the library device. Model, event, log and 

out files for all the tests are included in Appendix "X".  

 

4.1 Host model 

 The host testing section aims at proving that the models comprising the host are 

functioning correctly. The remaining of the section will trace data originating at one point 

to the end of the host models. 

 

4.1.1 Application layer 
   

 The application layer is a simple atomic model, hence chosen to acquaint the 

reader with the terms and methodology of testing. The functionality of the layer is to 

parse the data, with the port value and forward the newly created value to the transport 

layer.  

 

 The following section of the event file shows data inputted from various ports 

simulating various applications interacting with the simulation. 

 

00:00:15:000 outtotransport 1180  //Application data sent on HTTP Port 
00:00:21:000 outtotransport 1280 
00:00:27:000 outtotransport 1380 
00:00:33:000 outtotransport 1480 
00:00:40:000 outtotransport 1580 

. 
00:02:55:000 outtotransport 1125   // Application data sent on Port 25 
00:03:05:000 outtotransport 1325 
00:03:15:000 outtotransport 1425 
00:03:25:000 outtotransport 1525  

Figure 40: Application Output file 
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The values are outputted, after the time advance function defined in the model file 

elapses 

 

 

 

The model's event file shows the inputed data to be 

 

00:00:10:00 infromHTTPuser 11   // data inputted on HTTP input port  
00:00:16:00 infromHTTPuser 12 
00:00:22:00 infromHTTPuser 13 
00:00:28:00 infromHTTPuser 14 
00:00:35:00 infromHTTPuser 15 

. 
00:02:50:00 infromSMTPuser 11 
00:02:60:00 infromSMTPuser 12 
00:03:00:00 infromSMTPuser 13 
00:03:10:00 infromSMTPuser 14 
00:03:20:00 infromSMTPuser 15  

Figure 42: Application event file 
 

The event file shows the discrete inputs, while the output file illustrated earlier shows the 

output from the layer. 

 

4.1.2 Transport layer 
  

 Data outputted from the application layer is received by the transport layer. Thus 

the following event file for the transport layer shows inputs in the output format of the 

application layer. 

00:00:10:00 infromApplication 1280 
00:00:16:00 infromApplication 1280 
00:01:22:00 infromApplication 1380 
00:02:28:00 infromApplication 1480 
00:03:35:00 infromApplication 1580  

Figure 43: Transport layer event file 
 
The event file shows data coming from an HTTP port, with different values. The 
transport layer responds also by parsing the data in the appropriate format discussed in 
section 2.3 (Header format). 

[application] 
preparation : 00:00:05:000  

Figure 41: preparation Time 
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00:00:10:015 outtonetwork 1.2e+12 
00:00:16:015 outtonetwork 1.2e+12 
00:01:22:015 outtonetwork 1.3e+12 
00:02:28:015 outtonetwork 1.4e+12 
00:03:35:015 outtonetwork 1.5e+12  

Figure 44: Transport layer output 
 
The transport layer output, doesn’t give mush explanation to what happened, due to 

deficiencies in the tool, however the log file shows the exact values outputted by the 

model, this is illustrated below 

 
Mensaje X / 00:00:10:000 / Root(00) / infromapplica tion /   1280.00000 
para top(01) 
Mensaje X / 00:00:10:000 / top(01) / in /   1280.00 000 para 
datagramcreator1(02) 
Mensaje D / 00:00:10:000 / datagramcreator1(02) / 0 0:00:00:005 para 
top(01) 
Mensaje D / 00:00:10:000 / top(01) / 00:00:00:005 p ara Root(00) 
Mensaje * / 00:00:10:005 / Root(00) para top(01) 
Mensaje * / 00:00:10:005 / top(01) para datagramcre ator1(02) 
Mensaje Y / 00:00:10:005 / datagramcreator1(02) / g ocheck / 
1200000000080.00000 para top(01) 
Mensaje D / 00:00:10:005 / datagramcreator1(02) / . .. para top(01) 
Mensaje X / 00:00:10:005 / top(01) / in / 120000000 0080.00000 para 
checksumcreator1(04) 
Mensaje D / 00:00:10:005 / checksumcreator1(04) / 0 0:00:00:005 para 
top(01) 
Mensaje D / 00:00:10:005 / top(01) / 00:00:00:005 p ara Root(00) 
Mensaje * / 00:00:10:010 / Root(00) para top(01) 
Mensaje * / 00:00:10:010 / top(01) para checksumcre ator1(04) 
Mensaje Y / 00:00:10:010 / checksumcreator1(04) / c hecksumcreatorout / 
1200000009280.00000 para top(01) 
Mensaje D / 00:00:10:010 / checksumcreator1(04) / . .. para top(01) 
Mensaje X / 00:00:10:010 / top(01) / checkin / 1200 000009280.00000 para 
datagramcreator1(02) 
Mensaje D / 00:00:10:010 / datagramcreator1(02) / 0 0:00:00:005 para 
top(01) 
Mensaje D / 00:00:10:010 / top(01) / 00:00:00:005 p ara Root(00) 
Mensaje * / 00:00:10:015 / Root(00) para top(01) 
Mensaje * / 00:00:10:015 / top(01) para datagramcre ator1(02) 
Mensaje Y / 00:00:10:015 / datagramcreator1(02) / d atagramcreatorout / 
1200000009280.00000 para top(01) 

 
Figure 45: Transport layer log file 

 
 

 

The log file shows at time "00:00:10:000" inputted data to the transport layer. The 

data is then passed down to the "datagramCreator" through the top. At time 
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"00:00:10:005"  the datagramcCreator sends the initial packet created, to the checksum 

creator model. The checksum creator responds at time "00:00:10:010" with the same 

packet sent to it, with the addition of the checksu m values, 

highlighted in green.  The data is then returned back to the datagramCreator through 

the checkin port highlighted in yellow, where it is sent to the network layer through the 

datagramCreatorOut port at time "00:00:10:015" . The output file shows the first two 

digits of the data being sent. 

 

4.1.3  Network layer 
 

The third layer is the network layer. This layer carries the information of the 

sending party as well as the destination; Since the IP is a connection-less protocol. 

Addressing information, is supplied to the models through the event file as such 

 

00:00:00:010 infromTransport 1122334455580  // data  to send 
00:00:00:020 DestinationIP 192168111223     // dest ination IP value 

 

Figure 46: Network Layer event file 
 
 It should be noted that the layer did not get a source IP; this is because we have 

sent the IP through the model file. This was done to facilitate creating a tool that would 

automatically create host units 

 

 

 

 

 

The information sent to the network layer is used to create a checksum value, which is 

used to verify the data sent over the network 

 

The model outputs the required four fields specified in section 2.3 traffic format 

 

[networkTransmitter1] 
IP : 111222333 

 
Figure 47: Source IP field 
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Mensaje Y / 00:00:13:020 / networktransmitter1(02) / egress / 
485000015500.00000 para top(01) 
Mensaje Y / 00:00:13:020 / networktransmitter1(02) / egress / 
192168116224.00000 para top(01) 
Mensaje Y / 00:00:13:020 / networktransmitter1(02) / egress / 
192168116224.00000 para top(01) 
Mensaje Y / 00:00:13:020 / networktransmitter1(02) / egress / 
12223334318080.00000 para top(01)  

Figure 48: Network layer log file showing output 
 

Again the log file is used to show the values outputted by the model, since the 

output file only shoes portions of the actual data as seen in the following figure 

 
00:00:13:020 outtodatalink 4.85e+11 
00:00:13:020 outtodatalink 1.92168e+11 
00:00:13:020 outtodatalink 1.92168e+11 
00:00:13:020 outtodatalink 1.22233e+13  

Figure 49: network layer output file view 
 

 

4.1.4 Data link layer 
 

In order to test the dataLink model, another atomic model called ‘test2’ was made 

that would interact with the dataLink as if it is the physical layer. The sole purpose of the 

‘test2’ model is to send to the dataLink the different possibilities of the connection link 

status. However, frames sent and received are via the input and output interface of the   

simulator in order to ensure that the packets/frames are sent and received accordingly. 

The coupled model interface for testing is shown in figure 50.  
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sendFrame

sendPacket

dataLink

ripTabe3

status

getPacket

getFrame

Data Link Layer

test2

test2

status

senseCarrierpoll

 
Figure 50: Data Link ayer test model 

 

The event file is shown in figure 51, the simulated output is in figure 52. The 

event file tests the dataLink by sending it a frame with no errors and an IP packet. The 

output file displays the packet that was part of the frame received. The output file also 

shows displays the frame created when the packet was received at 20 seconds. Note that 

the preparation time was made 00:00:00:00 because there would be no processing delay 

so that there is a clear relationship between the input events and the output. Thus, the 

operation of the dataLink can be proven to be correct. 

  

 

 

 

 

 

 

 

 

 

 

 

00:00:10:00 frameIn 101 
00:00:10:00 frameIn 102 
00:00:10:00 frameIn 103 
00:00:10:00 frameIn 104 
00:00:10:00 frameIn 410 
00:00:20:00 packetIn 201 
00:00:20:00 packetIn 202 
00:00:20:00 packetIn 203 
00:00:20:00 packetIn 204 
 

Figure 51: Data Link Layer event file 
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00:00:10:000 packetout 101 
00:00:10:000 packetout 102 
00:00:10:000 packetout 103 
00:00:10:000 packetout 104 
00:00:20:000 frameout 201 
00:00:20:000 frameout 202 
00:00:20:000 frameout 203 
00:00:20:000 frameout 204 
00:00:20:000 frameout 810 

 

 

 

 

 

 

 
 
 

Finally an integration test for all models comprising the host was made. The test will 

show the input of the IP through the model file, as follows 

 
[networkTransmitter1]  
ip : 111222333 

Figure 53: Host source IP 
  
This step was taken to facilitate building a tool that would create instances of the host 

model. The model receives user input through an event file, as follows 

00:00:10:00 FTP_In 11 
00:00:10:00 Destination 192168111 
00:00:10:01 statusCarrier 1 
00:00:40:02 FTP_In 1001214 
00:00:40:02 Destination 192168001 
00:00:40:03 statusCarrier 1 
00:00:80:04 FTP_In 1001215 
00:00:80:04 Destination 192168001 
00:00:80:06 statusCarrier 1 
00:01:90:07 Telnet_In 1001216 
00:01:90:07 Destination 192168001 
00:01:90:11 statusCarrier 1 

 
Figure 54: Host event file 

   
The event file shows FTP data from the host to another end on the network. Simple 

values where chosen here, so as to ease the process of reviewing the results. 

 

The host reacted to the entries, shown in the event file, by creating the necessary headers, 

this is seen in the host output file. 

 
00:00:25:000 sensecarrier 0 
00:00:45:003 hout 6.72016e+08 
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00:00:45:003 hout 1.11222e+08 
00:00:45:003 hout 1.92168e+08  

Figure 55: Host output file section 
 
However, as mentioned earlier, output files truncate the data, for that sections of the log 

file are shown here, to illustrate the host activities. 

 
Mensaje Y / 00:00:49:010 / networktransmitter1(02) / egress / 
2000000000.00000 para top(01) 
Mensaje Y / 00:00:49:010 / networktransmitter1(02) / egress / 
111222333.00000 para top(01) 
Mensaje Y / 00:00:49:010 / networktransmitter1(02) / egress /      
0.00000 para top(01) 
Mensaje Y / 00:00:49:010 / networktransmitter1(02) / egress /      
0.00000 para top(01) 
Mensaje D / 00:00:49:010 / networktransmitter1(02) / ... para top(01) 
Mensaje Y / 00:00:49:010 / top(01) / outtodatalink / 2000000000.00000 
para Root(00) 
Mensaje Y / 00:00:49:010 / top(01) / outtodatalink / 111222333.00000 
para Root(00) 
Mensaje Y / 00:00:49:010 / top(01) / outtodatalink /      0.00000 para 
Root(00) 
Mensaje Y / 00:00:49:010 / top(01) / outtodatalink /      0.00000 para 
Root(00) 

 
Figure 56: host log file section 

 
This section of the host log file shows two events, the first being the host sending the 

received data, through out the network , after adding the appropriate headers, and that the 

datalink layer has actually responded as in the following figure 

 
Mensaje Y / 00:00:06:000 / internet(09) / outtodata link /  20000.00000 
para top(01) 
Mensaje Y / 00:00:06:000 / internet(09) / outtodata link / 
192168116224.00000 para top(01) 
Mensaje Y / 00:00:06:000 / internet(09) / outtodata link /      0.00000 
para top(01) 
Mensaje Y / 00:00:06:000 / internet(09) / outtodata link /      0.00000 
para top(01) 
Mensaje D / 00:00:06:000 / internet(09) / ... para top(01) 
Mensaje X / 00:00:06:000 / top(01) / getpacket /  2 0000.00000 para 
datalink(02) 
Mensaje X / 00:00:06:000 / top(01) / getpacket / 19 2168116224.00000 
para datalink(02) 
Mensaje X / 00:00:06:000 / top(01) / getpacket /      0.00000 para 
datalink(02) 
Mensaje X / 00:00:06:000 / top(01) / getpacket /      0.00000 para 
datalink(02) 

 
Figure 57:log file illustrating data link interacti on. 
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Figure 57, shows the output of data from the network layer to the datalink layer, it also 

shows that the data link layer has actually stored the data, until it checks the physical 

layer. As the response arrives from the physical layer, data is sent to the other host. 

 

 

4.2 Router model 
 

The router model is made of three separate models, two of which are coupled 

models. To test the router, we tested the atomic model that formulates the router and its 

components first, and then we tested the router as a whole. 

 

4.2.1 Router’s components tests 
 

the router -when broken down- is made of five atomic models; the RouterIn and the  

RouterOut (constructing the RouterInterface coupled model), The queue and the 

PacketProcesor (constructing the RouterProcessor), and finally the RIPTable atomic 

model. 

 

Testing the RouterInterface model 

 

 The testing process for this model was done through testing each one of its two 

components on its own. We started by testing the RouterIn model by creating a model file 

to link the models ports as defined by the DEVS formalism (see section 2.1 for the DEVS 

formalism and the CD++ tool). An event file was created in which multiple packets were 

sent to the model through its "in" port. The resulting output file from the simulation 

showed that the model behaved as required. A section of the event file that was used to 

test the model is shown below, along side with the corresponding section of the output 

file. A full cycle of receiving a packet and forwarding it to the RouterProcessor is 

highlighted in the attached file. 



Fourth year project report: Building a library for parallel simulation of networking 
protocols 

 

 
Page 74 of 87 

  
00:00:05:000  in  1.1  // sending the 1 st  packet 
00:00:05:001  in  1.2 
00:00:05:002  in  1.3 
00:00:05:002  in  1.4 
00:00:06:000  in  2.1  // sending the 2 nd packet 
00:00:06:001  in  2.2 
00:00:06:002  in  2.3 
00:00:06:003  in  2.4 
00:00:07:000  ready  3  // requesting a packet from interfqace #3 
00:00:08:000  ready  4  // requesting a packet from interfqace #4 
00:00:09:000  ready  2  // requesting a packet from interfqace #2 
00:00:09:100  ready  2  // requesting a packet from interfqace #2  

Figure 58: RouterIn event file  
 

00:00:00:010 interfacenum 2 // the interface send its ID 
00:00:05:012 flag 2  // the 1 st  packet was recived 
00:00:06:013 flag 2  // the 2 nd packet was received 
00:00:09:010 to_rpu 1.1     // send the 1 st  packet to the processor unit 
00:00:09:010 to_rpu 1.2 
00:00:09:010 to_rpu 1.3 
00:00:09:010 to_rpu 1.4 
00:00:09:110 to_rpu 2.1  // send the 2 nd  
00:00:09:110 to_rpu 2.2 
00:00:09:110 to_rpu 2.3 
00:00:09:110 to_rpu 2.4 

Figure 59: RouterOut output file 
 

We can see from the output file that the first message that the model sends is the 

models ID as discussed in the design. After that, as we inject packets from the event file, 

we see that the model will send its ID after receiving every packet to signal that a packet 

is ready for processing. The last 4 messages that was sent in the event files represent 

values that the interface might receive when the router’s processor is asking for the ready 

packet. We can see from the message time in the output file that the model only outputs 

the packets when it receives its own ID. 

 

As for the RouterOut model, another simulation was ran to test its functionality. An 

event file was created, as before, to feed messages to the model. The messages were a set 

of packets, each followed by a value representing the models ID. As with the RouterIn 

both the event and output file are shown below. 

 

00:00:03:000 interfaceNum 32 // assigning ID 32 to the model 
00:00:05:000 from_RPU 1.1 // sending 1 st  packet followed by ID 30 



Fourth year project report: Building a library for parallel simulation of networking 
protocols 

 

 
Page 75 of 87 

00:00:05:001 from_RPU 1.2 
00:00:05:002 from_RPU 1.3 
00:00:05:003 from_RPU 1.4 
00:00:05:004 from_RPU 30 
00:00:06:000 from_RPU 2.1 // sending 2 nd packet followed by ID 32 
00:00:06:001 from_RPU 2.2 
00:00:06:002 from_RPU 2.3 
00:00:06:003 from_RPU 2.4 
00:00:06:004 from_RPU 32 

Figure 60: the RouterOut event file 
 

00:00:06:054 out 2.1  // outputting the 2 nd packet 
00:00:06:054 out 2.2 
00:00:06:054 out 2.3 
00:00:06:054 out 2.4 

Figure 61: the RouterOut output file 
 

 

From the output file shown in figure 61 we can see that the RouteOut outputs 

packets after checking the ID value sent after each packet, as desired in the design. 

 

Both models were coupled and tested together, and the same results were obtained 

from their simulation since there is only one message send between the two models.  

 

Testing the RouterProcessor model 

 

To test the model, we only need to test the PacketProcessor model (since the 

queue is part of the CD++ tool and was tested before). To do so, the model file 

"PacketProcessor.ma" was created, and a simulation was run using the event file 

"PacketProcessor.ev"in. The event file simulated the signal coming from the 

RouterProcessor's queue, and the packets that will be sent from the different interfaces. 

Packets with different types were fed to the PacketProcessor model and the output were 

analysed to check if the model behaved ion the desired fashion. Parts of the event file and 

the corresponding output file are shown below. 

 

00:00:00:001  in  1     // send a flag signal 
00:00:00:010  packet  3000000001 // send an data packet 
00:00:00:010  packet  1.2   
00:00:00:010  packet  1.3 
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00:00:00:010  packet  1.4 
00:00:00:050  outInterface  2   // send output interface (as the table 
respond) 
00:00:01:001  in  2    // send a flag signal 
00:00:01:010  packet  3000000002 // send 2 nd data packet 
00:00:01:010  packet  2.2 
00:00:01:010  packet  2.3 
00:00:01:010  packet  2.4 
00:00:01:050  outInterface  0   // table’s respond, address not found 
00:00:02:001  in  3   // send a flag signal 
00:00:03:010  packet  2000000005 // send an update packet 
00:00:03:010  packet  3.2 
00:00:03:010  packet  0 
00:00:03:010  packet  0 
00:00:03:050  cont  0   // confirmation from ripTable 
00:00:04:001  in  4   // send a flag signal 
00:00:04:010  packet  1000000000 // send a request signal 
00:00:04:010  packet  4.2 
00:00:04:010  packet  0 
00:00:04:010  packet  0 
00:00:04:050  cont  0   // confirmation from ripTable  

Figure 62: PacketProcessor event file 
 

 

00:00:00:001  getpacket  1    //requesting a packet from interface 1   
00:00:00:030  destination  1.3   //requesting output interface for destination 

00:00:00:070  out  3e+06    //forwarding packet through interface  
00:00:00:070  out  1.2 
00:00:00:070  out  1.3 
00:00:00:070  out  1.4 
00:00:00:070  out  2 
00:00:00:070  next  0    //request next flag  
00:00:01:001  getpacket  2   //requesting a packet from interface 2  
00:00:01:030  destination  2.3   //requesting output interface for destination 

00:00:01:070  out  1e+06 
00:00:01:070  out  2.3 
00:00:01:070  out  0 
00:00:01:070  out  0 
00:00:01:070  out  -2    
00:00:01:070  next  0     // request next flag 
00:00:02:001  getpacket  3    //requesting a packet from interface 3 
00:00:03:030  updatetable  3.2   // sending update information to table (address) 

00:00:03:030  updatetable  5    // (metric)    
00:00:03:030  updatetable  3    // (interface) 
00:00:03:050  next  0     // request next flag 
00:00:04:001  getpacket  4    //requesting a packet from interface 4 
00:00:04:030  requ  4     //forward request info to table (interface) 

00:00:04:030  requ  4.2          // (address) 
00:00:04:050  next  0     // request next flag  

Figure 63: PacketProcessor output file 
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 The messages in the event file simulated the process of sending flag signals from 

the queue to packetProcessor, and then responding to the processors requests for packets. 

We saw from the output file that the model did respond to the three packet types in the 

correct manner. The model requested the output interface every time it received a data 

packet -as in the first two packets sent by the event file-. The model used the interface ID 

to forward the packet, and issued a request to be updated when the interface value 

received was 0. Using the event file we also simulated an update packet (the 3rd packet) 

and a request packet (the 4th packet), and for both types the processor outputted the right 

messages to the ripTable model.  

 

Testing the RIPTable: 

 

The RIP table was model in a top level model and messages were injected into the 

model from an event model RIPTable.ev shown below.  

 

00:00:00:010 update 1.1          //sending update data 
00:00:00:010 update 1             //metric 1 
00:00:00:010 update 5             //interface 5 
00:00:00:011 update 1.2          //sending update data 
00:00:00:011 update 2             //metric 2 
00:00:00:011 update 6             //interface 6 
00:00:00:012 update 1.3          //sending update data 
00:00:00:012 update 3             //metric 3 
00:00:00:012 update 7             //interface 7 
00:00:00:013 update 1.4          //sending update data 
00:00:00:013 update 4             //metric 4 
00:00:00:013 update 8            //interface 8 
00:00:00:100 address 1.3         //requesting interface for address 1.3 
00:00:00:110 address 1.5         //requesting interface for address 1.5 
00:00:00:120 request 1           // request data, address 0 (all table) 
00:00:00:120 request 0 
00:00:01:010 update 1.3          //update data (address 1.3) 
00:00:01:010 update 1            //metric 1    
00:00:01:010 update 3             //interface 3 
00:00:10:000 request 1           //request update address 0 (all table) 
00:00:10:000 request 0 
00:00:11:000 request 1            //request update on address 1.2 
00:00:11:000 request 1.2  

Figure 64: RIPTable event file 
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The event file injected events that represent update, request, and destination 

values. The file started by sending four update value sets, simulating the values that will 

be passed from the routerProcessor model to the RIPTable. To test that the table did in 

fact receive the messages in the right format and stored them in its table, two addresses 

were passed to the model. The first address value was for an address that was passed to 

the table in one of the update messages, and to this address the model did output the right 

interface number that was associated with that address. The second address for an address 

that does not exist in the table, and as expected from the model, the model send the value 

0 for the output interface. 

 

To test that the behavior of the model upon receiving a request for all of its table's 

entries, we send a request with the address filed having the value 0 in it. The model (as 

shown in the output file –figure 2-) sent all of its routing table entries to that interface 

port, and followed it with a done signal to the router processor. 

 

The model also accepted updates for an existing address in its table, and did in fact 

replace the output interface associated with that address, this behavior is seen in the 

outputted messaged that came as a respond on the second request for the table entries.  

 

00:00:00:101 out_interface 7       //out interface 7 
00:00:00:111 out_interface 0       //out interface 0 (unknown) 
00:00:00:121 out 2e+09            //start of response messages. 1 st  entry (option)  
00:00:00:121 out 1.1               //(address) 
00:00:00:121 out 0                      
00:00:00:121 out 0 
00:00:00:121 out 1                // (interface to respond through) 
00:00:00:121 out 2e+09             // 2 nd table entry (option filed) 
00:00:00:121 out 1.2               //(address) 
00:00:00:121 out 0 
00:00:00:121 out 0 
00:00:00:121 out 1 
00:00:00:121 out 2e+09 
00:00:00:121 out 1.3 
00:00:00:121 out 0 
00:00:00:121 out 0 
00:00:00:121 out 1 
00:00:00:121 out 2e+09 
00:00:00:121 out 1.4 
00:00:00:121 out 0 
00:00:00:121 out 0 
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00:00:00:121 out 1 
00:00:00:121 done 0               //responding completed 
00:00:10:001 out 2e+09            //start of response messages  
00:00:10:001 out 1.1 
00:00:10:001 out 0 
00:00:10:001 out 0 
00:00:10:001 out 1 
00:00:10:001 out 2e+09 
00:00:10:001 out 1.2 
00:00:10:001 out 0 
00:00:10:001 out 0 
00:00:10:001 out 1 
00:00:10:001 out 2e+09 
00:00:10:001 out 1.4 
00:00:10:001 out 0 
00:00:10:001 out 0 
00:00:10:001 out 1 
00:00:10:001 out 2e+09 
00:00:10:001 out 1.3 
00:00:10:001 out 0 
00:00:10:001 out 0 
00:00:10:001 out 1 
00:00:10:001 done 0                 //responding completed  
00:00:11:001 out 2e+09              //respond with 1 message.  
00:00:11:001 out 1.2 
00:00:11:001 out 0 
00:00:11:001 out 0 
00:00:11:001 out 1 
00:00:11:001 done 0                 //responding completed  

Figure 65: RIP Table output file 
 

 

4.2.2 Router coupled model test 
 

After successfully testing all the router’s components. We used them to created 

the router’s coupled model (the model file is shown in appendix C and tested it using the 

following event file. 

 
00:00:00:010 in1 2000001                      // update with metric 1 
00:00:00:010 in1 111101101                  // address 
00:00:00:010 in1 0 
00:00:00:010 in1 0 
00:00:00:020 in1 2000002                      // update with metric 2  
00:00:00:020 in1 122202202 
00:00:00:020 in1 0 
00:00:00:020 in1 0 
00:00:00:011 in2 2000003                      // update with metric 3  
00:00:00:011 in2 133303303 
00:00:00:011 in2 0 
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00:00:00:011 in2 0 
00:00:00:030 in2 2000004                      // update with metric 4  
00:00:00:030 in2 145525056 
00:00:00:030 in2 0 
00:00:00:030 in2 0 
00:00:00:040 in1 2000005                      // update with metric 5  
00:00:00:040 in1 115001151 
00:00:00:040 in1 0 
00:00:00:040 in1 0 
00:00:00:100 in1 3010012                      // data, ttl=10, CRC=12  
00:00:00:100 in1 121117001                    // source address 
00:00:00:100 in1 133303303                    // destination address  
00:00:00:100 in1 15 
00:00:01:010 in1 2000000                      // update metric 0  
00:00:01:010 in1 133303303 
00:00:01:010 in1 0 
00:00:01:010 in1 0 
00:00:01:220 in1 1000000                      // request  
00:00:01:220 in1 0 
00:00:01:220 in1 0 
00:00:01:220 in1 0 
00:00:02:000 in1 3008011                      // data, ttl = 8, CRC = 11  
00:00:02:000 in1 114124201 
00:00:02:000 in1 123456789                    // unknown destination 
00:00:02:000 in1 0 
00:00:02:010 in2 2000007                      // update metric 7  
00:00:02:010 in2 122202202 
00:00:02:010 in2 0 
00:00:02:010 in2 0 
00:00:02:010 in1 3000007                      // data, TTL = 0  
00:00:02:010 in1 122202202 
00:00:02:010 in1 0 
00:00:02:010 in1 0 

 
Figure 66: Router event file 

   
The desire was to test the router for all possible types of traffic expected. Going 

through the event file will show that the behavior of the router was as expected.  

 

The first 5 packets were update packets. The router did pass the related values to 

its table and the table updated it self as tested before. We can see that for every update 

packet, an update the neighbor nodes was sent thought the other router interface. For 

example taking the 1st update message, we can see it arrived at the router from interface 

1, and that a corresponding update message was created and sent through interface 2.  

 

After the update messages, a packet representing a data packet was injected into 

the router. The packet option files shows a TTL value of 10. The router knew the address 
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since it received an update on it before (this shown in the blue highlighted sections in the 

event file). The router did forward the packet using the right output interface as shown in 

the output file below.  

 

After this packet, another update with a smaller metric for an address that the 

router has in its table was sent through interface 1. We can see in the output file that the 

router did update its table with the better metric value and sent an update through 

interface 2 (highlighted in yellow in both event and output file). 

 

A request was sent at time (00:00:01:220) requesting the full routing table, and as 

seen in the output file, the router did send all of its table entries to the requesting nod. 

 

No output was sent in response to the last two packets. The reason is that the first 

one was an update with a metric higher than the existing one in the routing table. The 

second was a data packet with a TTL value of 0 (expired). In both cases the router 

discarded the packets.  

 
 
00:00:00:018 out2 2e+06                      // update  
00:00:00:018 out2 1.11101e+08                // address  
00:00:00:018 out2 0 
00:00:00:018 out2 0 
00:00:00:023 out1 2e+06                      // update  
00:00:00:023 out1 1.33303e+08 
00:00:00:023 out1 0 
00:00:00:023 out1 0 
00:00:00:028 out2 2e+06                      // update  
00:00:00:028 out2 1.22202e+08 
00:00:00:028 out2 0 
00:00:00:028 out2 0 
00:00:00:038 out1 2e+06                      // update  
00:00:00:038 out1 1.45525e+08 
00:00:00:038 out1 0 
00:00:00:038 out1 0 
00:00:00:048 out2 2.00001e+06               // update  
00:00:00:048 out2 1.15001e+08 
00:00:00:048 out2 0 
00:00:00:048 out2 0 
00:00:00:109 out2 3.00901e+06               // data forward  
00:00:00:109 out2 1.21117e+08 
00:00:00:109 out2 1.33303e+08 
00:00:00:109 out2 15 
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00:00:01:018 out2 2e+06                     // updtae  
00:00:01:018 out2 1.33303e+08 
00:00:01:018 out2 0 
00:00:01:018 out2 0 
00:00:01:228 out1 2e+09                      // respond  
00:00:01:228 out1 1.11101e+08 
00:00:01:228 out1 0 
00:00:01:228 out1 0 
00:00:01:229 out1 2e+09                      // respond  
00:00:01:229 out1 1.22202e+08 
00:00:01:229 out1 0 
00:00:01:229 out1 0 
00:00:01:230 out1 2e+09                      // respond  
00:00:01:230 out1 1.45525e+08 
00:00:01:230 out1 0 
00:00:01:230 out1 0 
00:00:01:231 out1 2e+09                      // respond  
00:00:01:231 out1 1.15001e+08 
00:00:01:231 out1 0 
00:00:01:231 out1 0 
00:00:01:232 out1 2e+09                      // respond  
00:00:01:232 out1 1.33303e+08 
00:00:01:232 out1 0 
00:00:01:232 out1 0 
00:00:02:009 out2 1e+06                      // reauest  
00:00:02:009 out2 1.23457e+08 
00:00:02:009 out2 0 
00:00:02:009 out2 0 

 
Figure 67: Router output file 
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5 Conclusion 

In conclusion, the project at hand is building a library for parallel simulation of 

networking protocols. The main protocol of interest is TCP/IP for its wide use and variety 

of applications and magnitude of services provided. The project was successful in 

creating a library of models capable of building simple topologies as a first step for 

building a more complicated library in future projects. The project has surveyed current 

network simulation tools available and deduced an advantage for a network simulator 

based on the DEVS formalism. Some of the models where successfully imported to a 

parallel environment, thus allowing for a parallel simulator to be built on top of the model 

library. Further more; we have managed to survey prominent researchers in the field of 

network and parallel simulation. This helped in the decision process when choosing the 

library models.  

The models chosen are sufficient to create simple network topologies with an 

acceptable level of accuracy in services, and customization in terms of Quality of service 

parameters, and Service level agreements. The models created provide the backbone for a 

larger model library building on top of it, since all components chosen, represented 

different fields and layers of a typical packet switched network.  
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6 Recommendations 
 

 Recommendations for future work are generally based on problems the project 

faced, preventing us from pursuing the development of a DEVS network simulator in a 

parallel environment.  

A major problem facing us, is the Model file size. Size of the files started to get 

larger and larger as models got more complicated, an example of that is the host-coupled 

model. attempts to use the “Macro” function[ 17], proved not to work, since it only lets 

the user have the tool copy a chunk of copy that doesn't change from one file to another, 

although very useful in making model files more readable, but not useful when 

attempting to create instances of let's say the host model file. For that we recommend the 

development of a model file maker according to the specifications of the models in the 

library we require to develop a function inside of the tool to create instances of models 

(I.e: change port names, connection names, and preparation time) to facilitate writing 

large model files of complex topologies, or developing a compiler based on the GCC 

compiler, to have models as classes and facilitate instantiating them.  

It is also apparent that the library must be extensively expanded to allow for a 

more user friendly operation of a case tool that would analyze networks, especially 

elements like ATM switches, DWDM devices [16], DSU/CSU units [16], and other core 

network units. 

Development of such models and enhancing the current models would allow for 

building of larger topologies, and at a certain point an image of the Internet, since the 

Internet is large network of smaller networks. Library expansion should also branch into 

building models for devices such as Voice over IP (VOIP) devices such as phones, for the 

large popularity they are gaining, and to analyze their effect on current network structure 

in terms of load, and to access their credibility. 
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Another recommendation, in order to complete a parallel simulator is of course 

the Conversion of current library models to parallel, as well as building new models in 

the parallel environment, is a must to accomplish the bigger picture of the project, we 

have managed to step into the parallel paradigm, by means of converting some of our 

models into parallel, the research presented in Appendix “B” should shed some light on 

our efforts in this field, and provide a starting point for future work. 

Although not an immediate requirement to build a simulator, however a topology 

reader, meaning a software package capable of reading specific file formats, NS-2[8] 

topologies for an example and converting them into model files based on the library 

models, so as to facilitate the analysis process of currently present networks, being 

studied with some of the currently present tools. 
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