Fourth year project report: Building a library foarallel simulation of networking
protocols

Abstract:

Recognizing the need for a network simulator, tkatapable of handling large
network simulations running over large simulatione spans, requiring a multitude of
resources to achieve the desired state of accudaeyto the scale and heterogeneity of
the topologies under consideration. And to allowletter assessment of real life threats
to network architecture from various events suchmasiral disasters, and man caused
events. A network simulator based upon the DEV&&dism was proposed to fill the
need for such a tool. The formalism is based omddheoretical grounds, allowing for
an abstract design of models that would be indep@ndrom the implementation
platform and running conditions. It will also enalthe simulator to maximize resource
use by means of distributing the load of the sithaita

CD++ was chosen as the tool for implementing theaty models, providing the
ground bases for the simulator. Furthermore, tbéftlows the theoretical bases of the
DEVS formalism, allowing the models to be run imparallel distributed environment,
which would result in a decreased simulation tinge aawhole and better resource

management schemes.

The models are built in a modular fashion to mamégahigh degree of flexibility
and customizability for future development of thelt Further more, the models are built
to be as generic as possible, so as to leave & $pacdevelopment of other network

devices and protocols using the existing modetemplates and guidelines.

Page 1 of 87

Fourth year project report: Building a library foarallel simulation of networking

protocols
AB ST R A C T .ttt e et e e e et a —eee e e e e e et ettt e e e e e e e e e e e e e nra e araereeees 1
1.0 INTRODUCTION ..ottt ettt e e e e e e e e e e e s nnees 5
2.0 BACKGROUND......uuttiiiiiiiiiiiie e ettt e e e e e e e e e e e e e s 7
2.1 The DEVS formalism and the CD++ toOIKit ..o 8..
2.2 LIbrary MOEISccooo i 16
FZ 0 R 0] USSR TUPPPPPRPRRR 16
2.2.2 INter-netwWorking GEVICESuuuueiiiue e e smene e 22
2.3 TrAMfIC FOIMAL. ... uutiiiiiiiiiiiiiiiteiet ettt e memne e e e e e e e e e eeeeees 25
3.0 DESIGN AND IMPLEMENTATIONottitiiiiiiiaas ceiiaea e e e ae e e eeeeeeeeeeeneienes 27
L HOST. e 27
3.1.1 The APPIICALION [AYENeueiiiiieieeeemeeieiieeitiii i mmmeme e e e e 27
3.1.1 The Transport [aYer.......cccoo oo 29
3.1.3 The NEetWOIK [ayercccoo i 36
3.1.4 The Data lINK [AYEI..........ccooiiiiis ettt e e e e e e e e e e 39
3.1.5 The PhySiCal [aYEr.......ccoo oot e 43
I FZ (0 1 T PO PPPR 45
3.2.1 ROULET INTEITACEo e 46
3.2.2 ROULET PIOCESSON ... ittt e e e ettt e e e e e e ee e e e s 53
3.2.3 ROULET TaADIE....ueiiiiiiiiiiiiiit ettt e e e e e e e e e 59
B B HUD bbb aranae 63
A TESTING L.ttt e e e e e e e e e e e s sttt b e st e s e eeeeaaeens 65
I [0S 0 1 1[0 Lo [PP 65
4.2 ROULET MO ...t e e 73
4.2.1 ROUEr'S COMPONENTS TESTS e et eeettias s e e e e e eeeeati e e e e e eeneeeneesnens 73
4.2.2 Router coupled model testcoooeeeieieiii 79
5 CONCLUSION. ...ttt ettt e e e e e et e e e e e e e e e e e e n e e e 83
6 RECOMMENDATIONS ..ottt et e e 84
T REFERENCES ..ottt e e e e e e e e e e et nenaaaaaeeeeasan e e e 86
8.0 APPENDIX LIST .iiiieieee ettt ettt e e e e e e e e e e e s s e e e e e e e e e eeeeaesananans 87

Page 2 of 87

Fourth year project report: Building a library foarallel simulation of networking

protocols

Appendix A: network simulation TOOIKItS SUIVEYcccooeiieiiiiiiieiee e 7.8
Appendix B: Parallel simulation Researches SUIVeY..............ueuuveeeeiiiiimiiiiminnininnnnnns 87
Appendix C: model fileSo e 87
Appendix D: MOdel SOUICE COUR.......uuuuuiiiuiiiiiiiiiiiiiiiiieeieiereeerrierrrerrrererrreer e 87
Appendix E: Parallel simulation notes (PCD++)cccoviiiiiiiiiiiiiiiiiiiieieeeeeeeeeeee 87.
Appendix F: General Networking NOLESuuiceeiiiiiiiiiiiiiiiiiiciieiieeeeeeeeeeeeeeeeeaeeeees 87
Figure 1: Atomic model’s port defiNitioNeue.eeeeererrmiuiiiiiiiieiiiiine . 10
Figure 2: Atomic model port regiStration ... e «...eeeeereuereremimerrnrrrnenrneren.. 10
Figure 3: reistering a new atomic MOdel.....cooe oo, 12
Figure 4: Makefile Changes............uuuuiiimmeem e 13
Figure 5: Simulator activation command........cccc...ooooiiiiiiiiiiiin 13
Figure 6: the RouterOut model file........... e 14
Figure 7: event file @Xample e 15
Figure 8: TCP/IP protocol Stackccooviiiiiiiiiiieeeee 16
Figure 9: Data LinK SUD [aYerS........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieniiniennnnnssennnnseeeeeeeeeees 18
FIGUIE 10: LLC PUD ..ottt e e e e e e 19
FIGUIE 11: CSIMA . .o rmmmm e e e e e e e e e e e et et et e et e et e ettt et et e e e e aa e e e e aaaaaeaaaaans 21
FIQUIE 12: MAC framMIe. .. ittt 21
Figure 13 IP headers FOrMAaL..........ooiiiiieeeeeeeiiiiiiiiiiiiiiii e e e e 25
Figure 14: Application logical DeSigNccovuviiiiiiiiiii e 27
Figure 15: Application Layer otput data format............ooeeeeeiiiiiiiiiiiiiiiiiiiiiieieeieeeeen. 28
Figure 16: TCP logical deSigNcccviiiiiiiiiiiiiiiiiiiiiiiee e 30
Figure 17: TCP Packet fOrMALutm e eeeeeeeeee e 30
Figure 18: Receiver FIOW Of EVENTS...........cummmmererrrriirieiiiiiiiiiiiienrnnrrnrneeee. 31
Figure 19: Creator SIgNATUIEmummmmmseereeseeseseseaaaesasaasseassssasessssssssssssssssssnsnns 35
Figure 20: checksum method SIgNaturecceeeeeeveiiiiiiiii e, 35
Figure 21: checksum Validator...............ueeieeeeiiiiiiiceceee e 36
Figure 22: Stripper method SIgNature ..o 36
Figure 23: 1P 10QiCal ESIGNcvviiiiiiiieeeee et 37
Figure 24: header maker SIGNAUI..........ccueameerurummimriiiiiiiiiiiiiiiiieeneeneeneeeeeeeees 38
Figure 25: Verify method..........cooooioio 39
Figure 26: Frame message fOrmMat............cooieereiiiiiiiiiiiiiiiiiiiiiiiiieiieeieneiesiereeee e eees 43
Figure 27: Physical layer Logical VIEW ... oo 43
Figure 28: the router's coupled model diagram e ...oeeveeeeiiiiiiiiiiiiiiiiiiiiieeiieieeeeen. 45
Figure 29:The Routerinterface coupled model ..., 46
Figure 30: the RouterIn atomic MOdel........ceeeeeieiiiee e 48
Figure 31: packet receiving state MaChINe.. o .vvvvviviviiiiiiiiiiieeeee 48
Figure 32: the RouterOut atomiC MOdelceeeeeviiiiiiiiiiiieeeee, 50
Figure 33: receiving packets state diagram foRbaterOut modelo... 53

Page 3 of 87

Fourth year project report: Building a library foarallel simulation of networking

protocols

Figure 34: the RouterProcessor model diagram..ueeee..oooeeieeeeiiiiiiieeee, 54

Figure 35: the queue atomiC MOEl..........ccooioiiiiiiiiiiiie e 54
Figure 36: the PacketProcessor atomic Model e ee.ooovviiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeee, 55

Figure 37: Router table entry formatcocceeiiiiiiiiiiiiiiiiiiiiiiiie e 59
Figure 38: the RIPTable atomic Model........coiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 60
Figure 39: HUD LOQICal AESIQNuvuiiiiiiiiieeeeee e 63
Figure 40: Application OULPUL fill@..........ui e, 65
Figure 42: Application event fileccccoeeeeeiiiiii e 66
Figure 43: Transport layer eVent fileuuuuveiiiiiiiiii e 66
Figure 44: Transport layer OULPULiccccccree e 67
Figure 45: Transport layer [0g file ... 67
Figure 46: Network Layer eVent fil€...........cceeeuvrriiiiiiiiiiiiiiiiiiiiiiiiiiiiiinineniereeeeeeeeees 68
Figure 48: Network layer log file showing output..............ccoooeeiiiii e, 69

Figure 49: network layer output file VIEW........coooeeiiiiiiiii s 69
Figure 50: Data Link ayer test model ... 70
Figure 51: Data Link Layer event file........ocao i 70
FIQUIre 53: HOSE SOUICE IP ...ttt ettt e e 71
Figure 54: HOSt @Vent file ... e e e 71
Figure 55: Host output file SECHION..........cceeeeiiieeeeee e 72
Figure 56: host 10g file SECHON...........ci e 72
Figure 57:log file illustrating data link interadti.cccoeeiiiiiiiiiiieiiieecce e, 72

Figure 58: ROULEIN @VENT fIl€.........eeviet e ee e 74
Figure 59: RouterOut OULPUL fil€...........oi e et 74
Figure 60: the RouterOut event file ... 75
Figure 61: the RouterOut outpuUL file.........coeeeeriiiiiiiiii e 75
Figure 62: PacketProcessor eVent file.... ..o eeeeeieiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeees 76
Figure 63: PacketProcessor outpUL file ..., 76
Figure 64: RIPTable event file...... ..o oo 77
Figure 65: RIP Table QUtPUL fil€ e e 79
Figure 66: Router @VeNt fileooiiiiii e 80
Figure 67: Router OULPUL fil@...........eiiii e 82

Page 4 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

1.0 Introduction

The fourth year project report submitted by MohaeAlnt El-Salam, Khalil
Yonis and, Abdul-Rahman Elsahfei, titl&duilding a library for parallel simulation of
networking protocols"aims at shedding the light on the details of thesigh,
implementation, and testing of the DEVS models cesimy the library. The library
facilitates the simulation of complex network atebtures, built on the TCP/IP protocol
stack. This document, in addition to being requii@dthe successful competition of our
fourth year project, is also necessary, for prgjeaiming to continue working on
extending the model library in particular, and ding a network simulator tool based on

the DEVS formalism in general.

Rapid diffusion of internetworking technology brentyvo major sources of stress
to the underlying protocol mechanisms and assatiaesign methods: scale, and
heterogeneity. Scale, affects both the correctaesisthe performance of a network in
general. On the other hand, Heterogeneity of agijitins translates into a large number

of interacting protocols, each with a certain reguients and traffic pattern [1].

The dynamic behaviour of networking protocols iclEt-switched data networks
must be examined to determine if current protoesigh and engineering practices are

critically adequate, to produce robust and evokaigtwork technology in the future.

To be able to handle large-scale simulations, aarét simulator based on the
DEVS formalism was proposed. The simulator showddchpable of simulating user-
defined topologies to assess network functionalitye simulator should be built upon a
modular library of models defining the behavioumadll-known protocol stacks (such as
TCP/IP), and common widely used inter-networkingides. Also, the library modular
design should allow for the addition of hew modedsily and the models themselves

should be flexible enough to allow future enhanaeisie

Page 5 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

Although various network simulators are readily ilde (both academic and
commercial such as OPNET, OMNet++, and NS-2), i iglt that a new simulation
library based on the DEVS formalism, would add #iality to interface models
simulating non-network entities, that affect netkvoperation to a network topology, to
assess their effect on network operation, thus iegrap with more realistic results from

the simulation.

The rest of the report will go through a backgroehdpter explaining the bases
on which the library models were designed, withriafliexplanation of the tool used. The
background, shall then explain what the main fuumality of each model, and the packet
format used as traffic in the network. After thtise design and implementation chapter
will show the DEVS model specification for eachréity device and show the
implementation of the each of the devices. To priinefunctionality of the library, the
testing chapter will explain some of he tests @wdrify the behaviour of the models,

and the integration tests performed.

Finally, the report will provide a recommendaticetsapter outlining steps that
should be taken for future extensions. The recondaigons aim at getting the project

closer to becoming a complete network simulatoetias the DEVS formalism.

Page 6 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

2.0 Background

The background section will present some detailgeming the tool used in the
project. The chapter also define the componentspasing the library, giving an
overview of the functionality of each model. Fomgpiicity, each set of models was
grouped together to assemble a specific deviceeNthe less, the models in general
were built to be generic, meaning models from oseia could be used in another
according to the designer’'s needs. And the ladioseof this chapter will discuss the

choices made in creating the packet that will regné out network traffic.

The library consists of two major units, data gatars and inter-networking
devices. Data generators are modeled with the hmxtel. The model is based on
emulating the TCP/IP protocol stack. Inter-netwogkdevices models are a router and a
hub, which gives the library the initial depth ieeded to simulate fairly complex

topologies.

Before the project went under way, it was felt thaurvey about field of parallel
simulation was necessary, to acquaint our selvéstiwe latest developments in the field.
The research documentations are provided in appeAdi We also studied currently
available network modeling and simulation tools;using on OPNET, OMNet++, and
NS-2. The research in particular was very helpiuthoosing what devices to include in
this project, so as to serve as a starting pointafo ongoing project. The surveys
compiled can also be found in appendix “A”.

The remaining of this chapter will introduce the \B&formalism, and the main
features of the tool that our work was based on+€D CD++ is a modular based
simulation tools, built on the DEVS formalism. Tto®l allows for building event driven
models to simulate complicated systems. Finally ¢hapter intends to explain the

functionality of each model in the library, and thaffic format.

Page 7 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

2.1 The DEVS formalism and the CD++ toolKit

DEVS (DiscreteEvent systemSpecifications) was developed as a theoretical
approach, which allows the definition of hierar@iimodels that can be easily integrated
and reused [2]. Any system modeled with DEVS iscdbed as a composite of sub-

models, each being an Atomic or a coupled model.

DEVS Atomic models are formally defined as follows:

M:<I1 Xy Sa Ya 6iﬂt! Sext, Aa D>

Where:

I: set of model interfaces

X: the input events set.

S: the state set.

Y: the output event set.

dint: the internal transition function.
dex: the external transition function.
A: the output function.

D: the duration function.

Each atomic model is provided with a set of unidimnal ports (input and
output) to interact and communicate with other ned&he input event set and the
output event set are made of all possible evemtisritight occur on the input or output
ports respectively. The external function is invibkehen an event occur on any of the
model input ports. In the external function (ddsed later on) the event gets processed
and the model executes by changing variables atidgstates if needed as a result of

the event.

Page 8 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

The model stays in its current state for a periefingéd by the duration function.
When the duration function time expires, the outfuriction is invoked. The output
function sends events from the output event seutfit specific output ports, defined in
the model's set of outputs, according to the modeient state.

After the output function execution, the internaantsition function will be
invoked to determine the new state of the modet diration function is invoked before
every execution of the external and the internacfion, since every state must be
associated with a unique timing value.

A coupled DEVS model is a set of interconnectedichasodels (atomic or
coupled). The coupled model is defined formally by:

CM <|, Xa Y; D, {M i}’ {I i}! {Zij}>

Where:

[: the models interface.

X the input event set;

Y the output event set;

D the index of the components of the coupled maated] i [0 D,

M; is the a basic DEVS (an atomic or coupled model);

li is the set of influences of model i (that is thed®l that can be influenced by model
i); andO j O I,

Zj; is the i to j translation function.

DEVS coupled models are defined by a set of intemected atomic or coupled
models. The influencees of a model determine wieesend the outputs. The translation
function is in charge of converting one model'spatg into another model’s inputs. To
do so, an index of influencees) (is kept to determine which outputs of modelsave

connected to inputs of model Mj, where | is an elatrof |.

Page 9 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

CD++ is a toolkit for modeling and simulation basad the DEVS formalism.
The tool is built as a set of independent softwaezes running on different platforms
[3]. The toolkit depends on the concept of sepagathe modeling process from the
simulation. Atomic models are built in C++, and ptad models are defined using a
specification language. The language provides waéxepresentation independent from

any tool and development environment [3].

Atomic models are created using C++ classes, difiven the clas#&tomic The
new class representing a model must overwrite foumctions inherited from class
Atomig to define the behavior of the model. Coupled ngden the other hand are a
combination of models either Atomic or coupled,hniihe addition of the Top-level port
connections added.

For each atomic model two sets of ports are defiaext of input ports to receive
incoming events, and a set of output ports to serigoing event. Input and output ports

are defined first in the model header file, asoiol

private:
const Port ∈ // defining input port “in”

Port &out; /l defining output port “out”

Figure 1: Atomic model’'s port definition

After a port has been defined in the header filés registered with the tool by
calling on the add port method as shown below.

modelName :: modelNam&{nststring &name):Atomic(name)/ Constructor
,in(addIinputPort ("in")) /Il register Input port "in"

,out(addOutputPort ("out’)) I/ register Output port "out"

{...}

Figure 2: Atomic model port registration

Page 10 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

As mentioned earlier, each model must overwrite fanctions, which represents

the DEVS specification in the CD++ toolkit. The tlions are:

initFunction : this function starts executing with the starttloé simulation. In this
function the initial values for the model variablae set, and the state is normally set
to passive.

externalFunction: this function is invoked every time an externatmt is detected at
any of the model's input ports. Normally each pait have an associated action to
perform.

outputFunction: this function is invoked after the duration funathas expired. This
is the only place where the model should interaith wther models by means of
outputting messages, to conform to the DEVS sptitins.

internalFunction: this function is invoked upon expiry of the duwat function and
after the outputFunction has finished execution.

The four previously mentioned functions could malse of a set of methods

defined in the tool, to manipulate simulation tiered state, including:

holdin (state, time) instructs the model to hold in the specifigdte for certain
amount oftime. The expiration of tha@ime invokes the outputFunction and the
internalFunction.

passivate() sets the atomics model state to the passive. $Egigivalent to calling
holdIn(passive, infinity).

sendOutput(time, port, value) this function is called from the model's
outputFunction to send out events. In this functioe outputport that will be used
and thevalue for the event, and the event time are specifidtk Vialue must be a
double.

state() returns the current state of the atomic model.

After building a new model, we must incorporateiith the rest of the tool. In order

to do that we must change the file “register.cfiyy’adding a call to the

Page 11 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

singleModelAdm::regisrteAtomic method from withimet MainSimulator class

registerNewAtomics method. This is shown in fig8re

#include "modelHeaderfile.h"
void MainSimulator::registerNewAtomics()

SingleModelAdm::Instance().registerAtomic(NewAtomic Function< nodel Nanme>()
," nodel Nane");

}

Figure 3: reistering a new atomic model

As we need the new model to be part of the toel,cbmpiler must be instructed
to compile the new model’s code files (header andce code files) as an integral part of
the simulator. The compilation of the simulator dene by means of the "make"
command, which searches for a "makefile". The mbkefill instruct the compiler
which files to use to create the simulator exedetdite. To make the tool compile the
new model files, the models must be added to thak&file”. Changes to the makefile

are shown below.

Page 12 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

DEFINES_C=

If we are compiling for Unix
INCLUDES_CPP=-I/usr/include

or if we are compiling for Windows 95
#NCLUDES_CPP=

INCLUDES_C=

DEBUGFLAGS =
LDFLAGS +=-L. g

EXAMPLESOBJS=MyModel.0 queue.o main.o generat.o cpu.o transduc.o trafico.o distri.o com.o
linpack.o debug.o register.o

LIBNAME =simu
LIBS=-Isimu

ALLOBJS =${EXAMPLESOBJS } ${SIMOBJS}
INIOBJS =initest.0ini.o
ALLSRCS=${ALLOBJS :.0=.cpp} gram.y

Without Optimization
MyModel.o: MyModel.cpp
${CPP} -c ${INCLUDES_CPP} ${DEFINES_CPP} ${DEBUGFLA GS} ${CPPFLAGS} $<

generat .0: generat .cpp
${CPP} -c ${INCLUDES_CPP} ${DEFINES_CPP} ${DEBUGFLAGS } ${CPPFLAGS} $<

queue .o: queue .cpp
${CPP} -c ${INCLUDES_CPP} ${DEFINES_CPP} ${DEBUGFLAGS } ${CPPFLAGS} $<

0CDPP 0: toCDPP cpp
${CPP} -c ${INCLUDES_CPP} ${DEFINES_CPP} {DEBUGFLAGS } ${CPPFLAGS} $<

mainsimu.o: mainsimu.cpp
${CPP} -c ${INCLUDES_CPP} ${DEFINES_CPP} {DEBUGFLAGS } ${CPPFLAGS} $<

Uncomment these lines only for Windows
#Macroexp .0; Macroexp.cpp

${CPP} -c ${INCLUDES_CPP} ${DEFINES_CPP} §{DEBUGFLAGS } ${CPPFLAGS} $<
#

#latcoup .o flatcoup .cpp

${CPP} -c {INCLUDES_CPP} ${DEFINES_CPP} ${DEBUGFLAGS } ${CPPFLAGS} $<

Figure 4: Makefile changes

Once the model is integrated with the simulatosjraulation can be executed.
The simulator receives a set of inputs to execatmgdel file and an optional external
event file), an output and a log file (used to shtbe simulation outputs, and in case of

errors the log file can be viewed to determine wltae fault occurred).

The simulator is activated by

Jsimu —-mMyModel.ma —eMyModel.ev —oMyModel.out —IMgdel.log

Figure 5: Simulator activation command

Page 13 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

After compiling the models, the new models canrstantiated and used within
the model file (*.ma). In the model file coupled dabs are created by linking atomic

models together. A simple example of model filshewn below.

[top]

components : router_out@RouterOutput

out : out

in : from_RPU interfaceNum

link : out@router_out out

link : interfaceNum interfaceNum@router_out
link : from_RPU from_RPU@router_out

[router_out]
preparation : 00:00:00:050

Figure 6: the RouterOut model file

The model file is made up of at lest one compogahéd thetop. Components in
the model file are defined between two square latgcknd follow a specific format in
there definition. After the name of the componendpecified, a list of sub-components is
defined after the key worcbomponents:every sub-component is either an instance of an
atomic model or another component. The format &mihg sub-components is:

Instatnce_name@atomic_model _namefor instances of atomic models,
or

component_namefor components that are other coupled model imibdel file.

Once listing the models components is done, thefignput and output ports for
the model is defined, each after its keywardsandout: respectively. Once the models
ports are defined, the linking of models beginsubing the keyword link: followed by
the port that will output the event then the phbettwill receive the event as shown in the
example below.

Link : source_port@instance_name destination_port@tber_instance_name

If any of the ports used belongs directly to thedeloand not to one of its
components, the identifier part (@instatnce_narm#)esyntax is dropped.

Page 14 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

Link : source_port @instance_nanaestination_port

Link : source_port destination_port @instance_name

The event file is used to input events to the &wten at specific times. Values
coming from the event file are used to excite ty&esm, to observe its behaviour. Event
files are simply a list of time variables that def the event time, followed by the port
that the event must arrive at, then the value efebent. Something to note here is that
event file’s can only support double values foiirtleeents. The format for the event file
is shown in the figure below.

time(h:m:s:ms) port event
00:00:06:002 in 2.3
00:00:06:003 in 2.4
00:00:07:000 ready 3

Figure 7: event file example

After this brief introduction about the tool argtformalism used in the course of
this project, the remaining of the background chapmtescribes the behaviour of the

various models of each of the library devices.

Page 15 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

2.2 Library models

Models comprising the library where chosen veryeftdly. The criteria was to
choose models, which will enable the creation afyffacomplex network topologies, and
in the same time to function as a starting pointofither projects, aiming at incrementing
the functionality of the library, to achieve theagof creating a network simulator based
on the DEVS formalism. It must be noted, that fhitly of the models was of great
importance, the models where designed to be agigesepossible, to allow each model

to be reused in many devices if needed.

As mentioned earlier in this chapter, the librasgnsists of a Host as a
representation of a data generator and a coupiete&fnetworking devices (the router
and the hub). The remaining of this section wibd&e the function of each one of these

models.

2.2.1 Host

The Host emulates the behaviour of the TCP/IP padtstack. This specific stack
was chosen for its wide use, and abundance ofnirefion related to it. The Stack is

divided into five layers, outlined in the followirfgyure:

Application

HTTP FTP SMTP SNMP TelNet
Layer

Transport

L Transport Control Protocol
ayer

Network

Internet Protocol
Layer

Data Link

CSMA
Layer

Physical

I Fibre, Optical, Ethernet
ayer

Figure 8: TCP/IP protocol stack

Page 16 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

The application layer is the top layer of the rmtw protocol stack. It is

concerned with the semantics of work, and how poagent that data [4].

The transport Layer transport data streams frommoarce application to a
destination application reliably, and with integritThe layer is capable of handling
multiple connections and multiple applications. Tiransport layer isolates lower layers

from application programmers.

The transport layer could implement one of twot@cols: Transport Control
Protocol (TCP) or the user datagram protocol (UD#}his project the emphasis was on
TCP, which is a connection oriented protocol thalvwles a reliable data transmission
via end-to-end error detection and correction. T&Rrantees that the data is transferred
across a network accurately and in the proper ofidex protocol retransmits any data not
received by the destination node, it also guarantegainst data duplication between
sending and receiving nodes. Finally TCP suppoesét, FTP, SMTP, and POP [5].
TCP is discussed in RFC# 793[6]

The network protocol is the heart of the TCP/IPteerol stack. The protocol
“IPV4” was chosen as the network protocol, formesavy use in both the commercial and
industrial sectors, making it the most widely usetwork protocol the Internet is made
of. Another reason for this choice is the developimad “IPV6” which having the same
architecture of “IPV4” adds more quality of serviparameters and more addressing
space. By having a model of “IPV4” this allows #imulation of current packet switched
networks, with the ability to create an “IPV6”, daton, to complement the protocol
library.

“IPV4” is a classless addressing protocol (meanihg protocol header carries
its full addressing parameters such as source estihdtion addresses), the protocol also
holds Quality of service (QOS) parameters for mgifpurposes such as time to live and

identification field to allow for fragmentation abuters. In addition, it includes error

Page 17 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

control parameters (Header checksum field). Findhg protocol provides full-duplex

communications of the network.

The Data Link layer is associated with logical ifaee between an end system
and a network. It is responsible for providing timeans to activate, maintain, and
deactivate the link. It also provides servicesh® higher layers of the TCP/IP protocol
architecture such as error detection and contiod Structure of the data link control is
divided into two sub-layers; the Logical Link Casltiand the Medium Access Control

outlined in the following figure. [7]

Application

Transport

Network
LLC
sublayer
Data Link
MAC
sublayer

Physical

Figure 9: Data Link sub layers

The Logical Link Control provides an interface tmher layers and performs
error detection and control. On the other hand, Nteglium Access Control sub-layer
provides controlling access to the transmissioniomdn order to give an orderly and

efficient use of that capacity.

Whenever higher-level data is sent to the dataillykr, the Logical link control
creates a Protocol Data Unit (PDU) with controlomhation appended to the data as a
header. The LLC then keeps track of the PDU’s liza®e been successfully received and

retransmits unsuccessful frames [7:437]. The PDh&b is shown in figure 8.

Page 18 of 87

Fourth year project report: Building a library foarallel simulation of networking

protocols
e 70ctects—sle—1—ole 6 D6 e 2 e 46101500 octets—sl—4 Octets—!
Preamble | SFD | DA SA |Length| LiLCdata |Pad | FCS

Figure 10: LLC PUD

The fields of the PDU are:

I/G: Individual/Group

DSAP: destination service access points

C/R: Command/Response

SSAP: Source service access points

LLC control: specifies the type of frame

Information: can either be control information or the Packeeieed from the
internet layer.

FCS: Frame check Sequence for CRC error detection

oghwhE

™~

DSAP and SSAP are addresses given to LLC usersCii&and LLC control are
services that are mainly based on the High-levehDank Control standards [7:437].
Most of these services are not discussed in thisosebecause they are not a major
concern, for this project. On the other hand, HDil@v control mechanisms were

already modeled in another protocol layer.

Error detection in the LLC was our main interesbrder to discard any frames
that are in error. One of the most common erroedwtg techniques used in data link
protocols is the Cyclic Redundancy Check [7:202he TCRC can be described as

follows:

“Given a k-bit block of bits, or message, the traiter generates an n-bit
sequence, known as a frame check sequence (FCiBgtdbe resulting frame, consisting
of k + n bits, is exactly divisible by some predetmed number” [7:202]. Hence, an
error can be detected in an incoming frame by digidhe frame by the predetermined
number and examine if the remainder is greater tiean. These predetermined numbers,

P(X) are usually expressed as polynomials with tyicaefficients that correspond to the

Page 19 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

bits in a binary number. One version of P(X) tisatisually used in wide area networks is
the CRC-16 [7:204]. A mathematical presentationtltd CRC-16 process can be

described as:

CRC-16: P(X) = X®+ X' + X? + 1 = (110000000000001Q13 (98309)

Let, M = original message or data

M = the message or data received

OFCS = M/ P(X)

Yes, if (M - FCS) mod P(X) =0

O Discard fram No. otherwise

The Medium Access Control (MAC) sub layer uses ¢herier sense multiple
access with collision detection (CSMA/CD) contrettinique, which is the basis for the
IEEE 802.3 standard [7:470]. Based on this techigfta device wishes to transmit data,
it first senses the carrier to find out if anothewice is transmitting data over the link. If
the medium is busy, the device must wait, otherwisenay transmit data. After
transmission of data, the device senses the caggn if there has been a collision just
in case if another device was sending data at éneestime. If a collision has been
detected, the device sends out a 32-bit jammingasigto the transmission link that

informs all connected devices that a collision besurred [8].

As a result of the jamming signal, all devices thave sent data over the
transmission link during the collision would resetheé data again but after a random
delay. The random delay ensures that the retrasgemif data from the connected
devices does not occur at the same time to avaidlgineous collisions [8]. A flow
chart describing the CSMA/CD algorithm is in thédwing figure.

Page 20 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

v

Sense 1
Carrier NO
Stop
sending

!

Transmit Send
Data jamming
h 4 h 4
Sense Random
Carrier Delay
I_’A_ I
<

Figure 11: CSMA

Besides the CSMA/CD operation, receives a PDU ftbenLLC and appends a
header to create a MAC frame. The MAC frame shawfigure 12 has the following
fields:

preamblepattern of alternating ones and zeros and 1's hgedceiver for
synchronization

» Start frame delimiter (SEDJjo locate first bit of rest of frame

+ Pad:octets added to ensure that the frame is longgintar proper operation
+ Source Address (SAjhe station that sent the frame

« Destination Address (DA}he physical address of the destination

« Length/Type length of the LLC PDU

+ LLC: the PDU sent from the LLC sub-layer

e 7o0ctects—»le—1— e 6 e & e 2 i 46101500 octets—»le—4 Octets—!
Preamble | SFD | DA SA [Length | LLCdata | Pad | FCS

Figure 12: MAC frame

The FCS in the MAC frame is provided by the LLC dayer, which was
discussed earlier. Similar to the LLC, the othenanifunctions used in the MAC frame

Page 21 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

are based on bit-operations and it is difficulbtodel in CD++, since message passing in
CD++ are of double variables. Details of this pewblis discussed in the problems

encountered section

The physical layer is the lowest layer of both I8®/OSI and TCP/IP protocol
stacks. Consists of the cables, connectors andiatswh hardware such as driver chips to
implement a network such as Ethernet or Token @hd-or the purpose of this project,
the physical layer will be limited to three of thdely used implementations Fibre
optics, T1, and Ethernet.

T1 is known to be "a digital transmission link evitapacity of 1.544 Mbps. T1
uses two pairs of twisted pairs of normal twistedes; the same found in most
residences. T1 normally handles 24 voice convensstieach one digitized at 64 Kbps.
But, with more advanced digital voice encoding teghbes, it can handle more voice
channels. T1 is a standard for digital transmisgiothhe United States. T1 lines are used
to connect networks across remote distances. Hutbsoaiters are used to connect LANs

over T1 networks."[10]

Fibre optics on the other hand, is "the technologyhich communication signals
in the form of modulated light beams are transmittwer a glass fibre transmission
medium. Fibre optic technology offers high bandWwjdtmall space needs and protection

from electromagnetic interference, eavesdroppirtgradioactivity"[11].

The last physical layer implementation we are gdg#d in, is the Ethernet Link,
which is "a very common method of networking congpsitin a LAN. Ethernet will
handle about 10 Mbits-per-second. And can be usé&th almost any kind of
computer"[12].

2.2.2 Inter-networking devices

Page 22 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

To be able to create and simulate network topekgie needed to include inter-

networking devices to the library. The devices weided to add are a router and a hub.

The router ighe device that determines the next network panwhich a data
packet should be forwarded. Routers route informmatbased on traffic’'s layer-three
information (IP address). Routers maintain a taifl¢he available routes and use this
information to determine the best route for a gidata packet [13]. The router extracts
the packets destination IP address and compatiethié entries in its routing table, which

contains the needed information for routing packets

An Internet routing protocol enables exchangingrmfation about reachability of
destinations in the network. To dynamically upd#te routing information, special
routing protocols are used. One of the first ragigomotocols used in (DARPA internet)

was the Routing Information Protocol (RIRJ].

RIP is a n interior routing protocol designed torkvavith IP-based moderate
sized networks using a reasonably homogenous tehn@l4]. RIP uses the distance
vector algorithm to find the best route with theadlest metric size for each destination.

There for, keeping a table with an entry for eveogsible destination is necessary.

In order to gather the necessary information alim@itnetwork topology, routers
send two main messages to its neighbouring nodeg€st command to ask for routing
information and to make sure that they are stifictioning, and Response commands to

respond on received requests from neighbours.

According to RIP, the request command is sent eB€rysec. to ensure that
neighbour nods are still connected, and to gathairg information. If a neighbour node

did not respond within 180 sec. the router will sider this nod to be disconnected.

Page 23 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

As for the hub, it is a simple network device tjoatts multiple clients by means
of a single link to the rest of the LAN. A hub hsesseral ports to which clients are
connected directly, and one or more ports thatoeansed to connect the hub to the
backbone or to other active network components.hthes operates as a multi-port
repeater; signals received on any port are immelgtiaétransmitted to all other ports of
the hub. Hubs function at the physical layer ofrigference model [15].

Page 24 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

2.3 Traffic Format

The headers for the Internet Protocol are baseRF@ # 791[6]. They contain
the full addressing information (source and destnalP) as well as other Quality of
Service parameters such as Time to live (TTL), tifieation field, and finally a
checksum. The choice of these parameters was dbe fact that CD++ can only handle
primitive types for the time being. This choice pdrameters will enable us to create
simple Service level Agreements (SLA) for a moralistic simulation of the Core
network. However, a more complete version of thénéfdder is provided in Appendix
“E”. This version offers bit level manipulation ofetrheader allowing the model to

provide the full functionality of the protocol.

The traffic packets are made of four values; eitheroption or the update field
followed by the source address, the destinatiomessd and the TCP field. The options in
each field chosen from the IPV4 packet format aes@nted in the following figure.

. Command n .
Update Field 1: Request Version Metric For
2 Response 1:RIP12:RIP 2 RIP max = 16
Onptions Field N Time To Live Header
p Identification (1T S
Source IP, Classless
Addressing scheme IPV 4
Destination IP, Classless
Addressing scheme IPV4
TCP Field Sotien | sewemer | wimsize | g
Port Acknowledgement#| Checksum

Figure 13 IP headers Format

Page 25 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

Where:

« Command; Defines the update type either requegtsponse, more on that.

» Version; Used for the RIP protocol, to identify freol version (1 for RIP 1 and 2
for RIP 2).

» Metric; specifies the cost (number of hop) for metto the specified destination
(maximum of 16).

» Time to live; represent the maximum number of hiblespacket is allowed to take
before it gets discarded.

» Ildentification; A field to identify packets belomg to the same transfer.

» Header checksum; a mathematical calculation toragmcket integrity.

» Source IP address; the IP address of the packetises host.

» Destination IP address; the IP address of therdsgin of the packet.

» Source & destination ports; value identifying whagbplication sent the data. And
where it should be received

* Sequence number: The sequence number of the ditstodtet in this segment
(except when SYN is present). If SYN is presentsbguence number is the
initial sequence number (ISN) and the first datiziois ISN+1 [16].

» Acknowledgment number; value of the next sequemnicebr the sender of the
segment is expecting to receive. Once a conneiestablished this is always
sent [16].

* Window size; The number of data octets beginninfy Wie one indicated in the
acknowledgment field which the sender of this sagnsewilling to accept[16].

* Checksum; addition of the values in the packet

» Data; data portion to send.

Page 26 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

3.0 Design and implementation

This chapter will show each model's DEVS specifmatand explain the

behaviour and functionality of each of the models.

The three devices explained are the Host, the Raarte the Hub.

3.1 Host

The host is comprised of five models. The modedshaiilt to be reusable, in any
other device as need arises. The five models repréke host’s application layer, the

transport layer, network layer, the data link layerd physical layer.

3.1.1 The Application layer

The front end of the host model is the applicateyer according to the TCP/IP

protocol stack, illustrated in figure 8. It is dgsed as a simple atomic model as follows:

User Input FTP

User Input SNMP
User Input SMTP

ﬂou(pu(to user (Output file)

Figure 14: Application logical Design

Data from the
Event file

Page 27 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

The layer manipulates the data received from ther,us a way to identify
application type sending the data. This step isedmnfacilitate creating a connection

manager. The data specifications is shown here

2 digits_| 2 digits
Data Input

Value port

Figure 15: Application Layer otput data format

The layer formal specification is as follows:

M:<I, Xa Sa Ya5int! BGXI’ A’ D>
Where:

I(interface):
HTTP_In: input port simulating HTTP traffic
FTP_In: input port simulating FTP traffic
TelNet_In: input port simulating TelNet traffic
SMTP_In: input port simulating mail protocols tiaff
SNMP_In: input port to simulate the simple networainagement protocol.
ApplicationOut: output port to display receivedalat
in: input port to receive data coming from the gport layer
X O{HTTP data O N , FTP datd] N, TelNet datad N, SMTP datal N, SNMP
datald N, transport layer data N };
S : {Sigma, X, Preparation Time}
Y [{ parsed application layer dafia N };

Oexi(S,€,X)

{
If passive
Case msg.port

HTTP_In
Identify protocol port and save data, signal oufpattion to send
to transport

FTP_In

Page 28 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

Identify protocol port and save data, signal oufpattion to send
to transport

SMTP_In
Identify protocol port and save data, signal oufpattion to send
to transport

SNMP_In
Identify protocol port and save data, signal oufpattion to send
to transport

TelNet_In
Identify protocol port and save data, signal oufpattion to send
to transport

In
Signal output function to output to user
Else
continue
}
dini(S,€)
{
Case phase
active: passivate
Default: continue
}
A(s)
{
Send application value to application out
}

3.1.1 The Transport layer

The second layer in the host is the transport layke layer is responsible for
reliable, end-to-end data transfer through out nbevork. There are many protocols
functioning in this layer, however as a startingnpolT CP was chosen since it provides a

solid base to build upon.

TCP model was broken into a set of two models; wWas to facilitate full-duplex

communications over the network. A complete ovenid the model is shown below.

Page 29 of 87

Fourth year project report: Building a library foarallel simulation of networking

protocols
A Connection between
the two models to TranSPOYtLayel’
signal Acks on
Transmitter Receiver
checksumCreator Checksum Verifie
APP _|
. ey ‘ A 4—4-‘ * ? (1P {

L datagramCreator 4—| daatagramStrippeJ

Y (P Ou y (PP Ou)

Figure 16: TCP logical design

The Transmitter module is responsible for receivitaga from the application
layer model; the data is then parsed in the forshatvn in figure 17, refereeing back to
section 2.3 Traffic Format), it is seen that thésket is shown at the very bottom of the
data sent out by the host models, before the Dea lLayer. This is to conform to the

concept of layered protocols (where each layedswh the one before it)

(i 4 digits L - i
L 2 digits »L - 4 digits »L 2 digits »‘

Sequence# 8
Window #
Port # Qcknowledge Checksum # Data

Figure 17: TCP Packet format

Parsing is done in steps, to accommodate theianeatt the checksum. The event

flow can be seen in the following diagram

Page 30 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

Receive data
from
Application
layer

Parse data

Sate Packet in case of
resend request

Create TCP

Packet

Send Packet

Send Parsed data
checksum Creator

Received data from
checksum creator

Signal
checksum
Creator

Figure 18: Receiver Flow of events

Parsing behaviour is split between two atomic mgidédatagramCreator” and
"checksumCreator". Data is received from the apgibn layer in the "datagramCreator”,
the creator will create an initial packet and forvét to the "checksumCreator”. The
checksum creator will create the appropriate chaoksiccording to the received packet
and forward the completed packet to the "datagraa©r”. The packet is then sent to
the next layer in the protocol stack. However befibre packet is sent, it is saved in the
model, to accommodate the connection manager, whiltlhesend packets in case they

are not received

The formal specification of the datagreamCreator is

M:<I, x; S) Y|6th1 aext,)\) D>
Where:

I(interface):
in: general model input to receive application layetadan.
Checkin:input port to receive packet on after checksumbeen created in the
checksumCreator model
ackPortinput port to receive acknowledgments on from gtagram Stripper
model

Page 31 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

ackSenderan input port to receive requests to send acknagvieghts on, the
received data is the acknowledgment to send.
gocheckan output port to send data (packet, with check&ela set to 0) to the
checksum creator, to signal the model to createcheeksum
datagramCreatorOumodel general output port to the network layer

X [f application layerdata //N , acknowldgment/N, request to send a¢kN, parsed

TCP packet with checksufmN };

S : {Sigma, X, Preparation Time}

Y [7{ parsed TCP packet with checksum set f@ 0l } //{ parsed packet to sendN };

dini(S,€)
{
Case phase
active: passivate
Default: continue
}
Oex(S,€,X)
{
If passive
Case msg.port
In:
Create packet, and signal checksum creator tatera checksum
Checkin:
Packet received after checksum has been added tg¢he network layer
ackPort:
check acknowledgement, to verify it is correct
if yes: delete saved packet
else: resend saved packet
ackSender:
send received data as an acknowledgment.
}
A(s)
{

If received message is data from application laged checksum hasn't been
created yet
Send packet with checksum field = 0 to checkseatar
If received message is data and checksum hasdoeated
send data on the datagramOut port to the netvpork
If received message is an ack, check ack to becbor not.
If not correct discard ack and resend the packet.
If received message is a request to send an ack
Send received message on the resend port tetherk layer.

And for the checksumCreatoer model:
M:<|’ Xl 81 Y,Sint, 6ext,)\’ D>

Page 32 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

Where:

I(interface):
In: input port for the model to receive data, to creeltecksum an
checksumcreatorOubutput port to send data with checksum value othdo
datagram creator, to be forwarded to the networela

X [f parsed TCP packet with checksum set {G19 };

S : {Sigma, X, Preparation Time}

Y [f parsed TCP packet with checksum SeN };

dini(S,€)
{
Case phase

active: passivate
Default: continue

}

Oext (S,€,X)

{

If msg.port = in
Create the checksum

Send packet with checksum out on the checksumGrgtanodel

On the receiver side of the transport layer, aivecanodule is used to receive
data from the network layer. The module is made twb atomic models a
"datgramsStripper" and a "checksumValidator". ThatégramsStripper" receives the data,
from the network layer, which is also sent to thieécksumValidator". The validator will
check the checksum field of the packet. If the &em field is valid then the
"datagramStripper" is notified, that the packenat corrupted. Once the confirmation
message is received the "datagramStripper” wiltkhbe packet type, to see if it is data
or an acknowledgement. In case of data the padckaddrs are striped, and the data is
forwarded to the application layer. The "datagraiper" will also request the
"datagramCreator” to send an Acknowledgment, testhece of the packet. On the other
hand if the data is an Acknowledgement (data figld), the datagram stripper forwards

the acknowledgment message to the datagramCreatbhretk if the acknowledgment is

Page 33 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

expected, to either delete the saved packet ondeself the checksum is incorrect, the

packet is simply discarded.

The datagramStripper formal specification is:
M:<I) x! S) Y|6int, Sext,)\) D>
Where:

I(interface):
in: an input pot to receive data coming from the netwayer.
Checkin:an input port to receive confirmation of checksaum
receiveAck:an output port to send the datagram creator ackedgments on.
sendAck:an output port to signal the datagram creator ¢ém@ acknowledgments.
The message sent from here is the ack.
datagramstripperOutiutput port to the application layer.

X [X data from the network layet/N , checksum validatiofVN };

S:{Sigma, X, Preparation Time}

Y [7{application data/7 N} /7{ request to send ack/N } /7{ ack signal/7boolean };

dint(S,€)
{
Case phase

active: passivate
Default: continue

}

Oexi(S,€,X)

{

Case msg.port

In
Save msg.value() as received TCP data. Setflantb false

Checkin
Check type of message
if data, and ack is correct set send flag to trasignal the output
function to send the message to the applicatioarlay
else if data and the ack is corrupted request rds#rthe packet
else if ack, forward the message to the datagraatorenodel

A(S)

If flag to send data to application layer is true

Send data to the application layer through theadeamStripper out port
If flag to send request for an ack

Send message to send to the datagram creatdreoseindAck port
If flag that we received an ack is true

Page 34 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

Send the acknowledgment received to the datagraat@reon the
receiveAck port

Methods used by the model to create the headerth@asgnature

Doubl e dat agranCreator::creator(doubl e appData)

double datagramCreator::creator(double appData)

Figure 19: Creator signature

And the method used to create the checksum is

double checksumCreator::checksum(double Data)

Figure 20: checksum method signature

And for the checksumValidator model:
M:<Il Xl S’ Y,Sinh Sext, A! D>

Where:

I(interface):
in: input port to receive data from the network layar o
checksumvalidatorOututput port to signal the datagramstripper modehi
data is corrupted or not or if its an ack.

X [7{ packetin //N , frameln /N, status /7N };

S : {Sigma, X, Preparation Time}

Y [7 {frameOut/7 N} [7{ packetOut/7/N } /7{ senseCarrier//boolean },

dini(S, €)
{
Case phase
active: passivate
Default: continue
}
6ext (Sl e! X)
{
save incoming message data, to verify the cheksum
}
A(s)
{

Page 35 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

Verfity the checksum

Send the result of the verification process todatagramsStripper through the
checksumvalidatorOut port

The method used to verify the checksum has theagiga

int checksumValidator::validator (double Data)

Figure 21: checksum Validator

While the method used to strip the headers hasigimature

double datagramStripper::stripper (double Data)

Figure 22: Stripper method signature

3.1.3 The Network layer

The third layer in the TCP/IP stack is the netwiarfer. This layer is modeled by
the Internet protocols. The network layer is resige for end-to-end communication

through out the network; it simulates a connectess network protocol, which is the
Internet Protocol (IP).

The layer is divided into two coupled models; aereer module and a transmitter
module. The logical (Coupled model illustration)tioé layer is shown below.

Page 36 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

* [Network Laver

Output to
»| Receiver | ——] Transport
Layer
Source
P Output
Network 1 to Data

- transmitter

f 1

Destination pData
P

link layer

Figure 23: IP logical design

The models comprising the network layer are thevoek transmitter and the
receiver. The network Transmitter receives datenftbe transport layer. The data is then
parsed in the format illustrated earlier. The nekwvtransmitter would also save the

destination IP in case of a resend request.

The model formal specification is:
M:<Ia Xl Sa Y15int! 8F)Xt’ A’ D>
Where:

I(interface):
ingress:General Model input port to receive transport lagita on.
resendport to receives resend requests on from the trardayer.
SIP:Input port to receive source IP on.
DIP: input port to receive destination IP (IP of machime would like to send
data to) on
Egressoutput port to the data link layer.
X O transport layer message to seiddN , request for resend’N, source ip//N,
destination ip /N };
S :{Sigma, X, Preparation Time}
Y O { parsed Network layer datd N };
Sini(S, €)
{
Case phase
active: passivate

Page 37 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

Default: continue

}
dex(S; €, X)
{
Case msg.port
SID
Save msg.value as source IP
DIP
Save msg.value as destination ip, and set resdnd @
msg.value.
Ingress
Create IP headers. Save msg.value as local walsend
Resend
Save msg.value() as local value to resend data
Set destination Ip to the resend ip value
}
A(s)
{
If send
Send the four messages shown in section 2.3 TFadfimat) on the
networkTransmitter egress port
If resend
Create the ip headers and send the received vahoaigh the
networktransmitter output port.
}

The network transmitter methods used are headeemaith the signature

double networkTransmitter::headerMaker ()

Figure 24: header maker signature

The receiver's coupled model receives data from Braga Link layer and
forwards it to the transport layer. The model reemull IP headers associated with the

packet.

The model formal specification is as follows

M:<I1 x; Sl Y)8int1 SGXU)\1 D>

Page 38 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

Where:

| (interface):
Ingress:General Model input port to receive data from tlaadlink layer on.
SIP:Input port to receive source IP on.
EgressGeneral Output port to output data to the transgdayter

X O { data link layer messagél N };
S : {Sigma, X, Preparation Time}
Y O { message stripped of IP headers, to be sentnept layef] N};

Oint(S, €)
{
Case phase
active: passivate
Default: continue
}
{Bext (s, €, X)

Case msg.port
Ingress
Save msg.value as datalink layer data

SIP
Save msg.value as source ip

}
A(s)
{

Strip data of headers, verify checksum

Send message on the receiver egress port toahsgort layer.
}

The receiver also makes use of the verifier metidtth, the signature

bool Receiver::verify (double Data)

Figure 25: Verify method

3.1.4 The Data link layer

Page 39 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

Modeling the data link required dividing it into awparts; coding the CRC
operations of the LLC sub-layer and modeling th&/@8CD algorithm of the MAC sub-
layer. However, the designs of both of these pamtscombined into one atomic model
called “dataLink”.

The DEVS specification of the ‘data Link’ model:

M=<I, X, S, Y, 8int, Oexts A, D>
Where:
I: Model Interface,
getPacketreceives packet from higher layer for transmission
sendPackesends a packet received from another device tinteenet layer
getFramethis port receives frames from another device Wigsical layer
sendFramesends a frame to the physical layer
senseCarrierport connected to the physical layer model to séss&atus
statusinput port from physical model that indicates tietss of carrier
X O{ packetin ON ,frameln 0N, status O N},
S : {Sigma, X, Preparation Time}
Y O {frameOutld N} O { packetOutld N} [{ senseCarriet] boolean };
6int: {
if(carrier is busy)
send 0 at senseCarrier output @dter 5 miliseconds
else
phase = passive;
}
Bext: {
case port
getPacket:
case packet count
0: other.push_back(msg.value());
increment pcount;
1: destination.push_back(msg.value());
increment pcount;
2: source.push_back(msg.value());
increment pcount;
3: data.push_back(msg.value());
reset pcount;
sigma = preparationTime;
phase = active;
sense carrier is true;
getFrame:
case frame count
0: temp.other = msg.value();
increment fcount;

Page 40 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

A

1: temp.destination = msg.value();
increment fcount;
2: temp.source = msg.value();
increment fcount;
3: temp.data = msg.value();
increment fcount;
4: temp.fcs = msg.value();
reset fcount;
check for errors in frame using CRC function
if(no error)
sigma = preparationTime;
phase = active;
send packet is true;
status:
if(status is idle)
if(there was a collision)
resend previous frame sent
else
if(frame was sent) go to next element in gueu
send frame = true;
sigma = preparationTime;
phase = active;
if(status is a jam)
jamming is true;
sigma = preparationTime;
phase = active;
if(status is busy)
busy carrier is true;
sigma = preparationTime;
phase = active;
if(status is collision)
collision is true;
sigma = preparationTime;
phase = active;

}

if(send frame)
send all frame fields in the sendFrame output por
if(send carrier)
send 0 in the senseCarrier output port
if(send packet)
send all packet fields from the frame received thtosendFrame output
port
if(jamming is true)
send 0 in the senseCarrier output port after mmdime
if(collision)

Page 41 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

send -1 in the senseCarrier output port

}
D: defined by the preparation time

The CRC operations are constructed in a header(dileh) included in the
“datalink” atomic model. The CRC operations involealculating the frame check
sequence field before sending a frame, and detefdmerrors when a frame is received.
These operations are implemented similarly to treghematical representation of the

CRC-16 as shown eatrlier in this section.

The second part is modeling the carrier sense phelltaccess with collision
detection algorithm. When a packet is received fitagher-level protocol such as the
‘networkTransmitter’ model in the host, the CRC dtian appends a FCS field into the
packet in order to create a frame. The framesateateady to be sent are first pushed into
a queue. Yet, before transmitting a frame the datakenses the carrier by sending a
senseCarrier port message to the physical layenwaitd for a response. Eventually, the
physical layer would send its current status, widobld be either one of the four: idle,
busy, jammed or a collision. If the carrier weresyuthe dataLink would send another
senseCarrier message and wait for another resjaoiisg would repeat this process until
the carrier is idle and then outputs the frameth@équeue. However, after every frame
sent, the dataLink sends a senseCarrier messdlge piysical layer again to ensure that
from the status of the carrier there is no colhisit there was a collision the dataLink
sends a jamming signal to the physical layer vea gshnseCarrier port with a message
value of —1 and waits for a response from the earilihe carrier responds by sending a
jamming signal to all connected devices. Upon raogithis response the device that had
their frames lost, will resend the frame that wiasesl in the queue after a random delay
of 0 to 10 milliseconds. This random delay is deieed by getting the first ‘double’
message of the frame that the device wishes to aeddve divide that number by 10.

The remainder is the random delay which is addetheéomsg.time() during output. In

Page 42 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

contrast, if there was no collision after the frawes sent, the frame stored in the queue

is deleted and the same scenario is applied fanéReframe.

Besides sending frames into the physical layerditalink model also receives
frames sent by other devices through the physagedrl Upon receiving these frames, the
frame is first checked for any errors by the cycédundancy check result. If there was
no error the FCS field is stripped off the frameal dhe packet is sent directly to the
network layer, namely the ‘Receiver’ model. Theniat of the frame sent and received
over the physical layer is shown below. Each fielafresponds to a single double

variable and is sent sequentially.

OPTIONS SOURCE DESTINATION DATA FCS

Figure 26: Frame message format

3.1.5 The Physical layer

The last of the TCP stack is the physical layee physical layer is modeled as a

simple atomic model, with the following logical we

Sensing signal Response to
request sensing signal

Physical Layer

Data from Data Link Data to Data Link Layer
Layer

Figure 27: Physical layer Logical view

And its formal specification is
M:<I1 X’ Sa Y’Sint, 5exta)\1 D>

Page 43 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

Where:
I(Interface)
in: input port to receive data from physical layer ehtl
inl:input port to receive data from physical layer énhd
Out: output port to output data to the physical layed éti
Outl:output port to output data to the physical layed &n2
type:an input port to set the the type of the link
signal:an output port to notify the data link layer of thi@rent state of the link.
sensingPortan input port to receive sensing requests fronddte link layer on.
X O { request for sensind] N , data to send on either ends of the lihN, type of
linkON};
S : {Sigma, X, Preparation Time}
Y O { state of the linkl N} 0O { message passed through the link from one end to
another] N };

Oint(S, €)
{
Case phase

active: passivate
Default: continue

}

Oex(S, €, X)

{

Case msg.port

Type:
Save msg.value as link type

In:
Save msg.value as data to transfer, to other $idade output on
outl)

In1:
Save msg.value as data to transfer, to other $idade output on
out)

sensingPort:
check the state of the link.

}
A{s}
{
If data from in, then output data on outl
If data from inl, then output data on out
If request for sensing, then output state on digoat
}

Page 44 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

3.2 Router

we needed to model to model the router to connetwtark devises and segments
together. To be able to simplify simulating the &abr of the router, we needed to take
an abstracted look at the routing processes. Ingded we were able to abstract the
router's behavior to three main functionalitiesceiging and forwarding traffic,

processing IP packets, and maintaining a routibtpt@discussed in section 2.2.2).

To simulate the three functions, three models weeated; the interfaceingCard,
the routerProcessor, and the RIPTable model. Tikers model is shown with its three

inner components in below in figure 20.

Router

=)
o
I
=

ou RouterInterface

i

RouterProcessor

dist

=]
o
c
=

:t RouterInterface nterface

c
—

o]

A
-

update

out| out

ripTable

request_
>

processingUnit

_tableData

in out

—

ou i Routerinterface

E—Rk

Figure 28: the router's coupled model diagram

The interfaceCard model will be responsible of ndog incoming traffic to the router

and forwarding traffic out of the router. The rattecessor model will take care of

Page 45 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

processing the received packets, and the decisakingn related to the packet. And
the last model, the RIPTable, will maintain the tesls routing table and will be
responsible for accessing its data. Detailed desen of the three models and their

specifications will be provided in the followingct®ns.

3.2.1 Router Interface

Every router has a number of interfacing cardsedwork cards that receive and
forward traffic from and to the network. The numioéiinterface cards that a router will
have varies according to the router's design. mtezface models that we have developed

receive and send packets in the format discussselciion 2.3 of this report.

To handle traffic going in and out of the routerough the interfaceCard model,
we broke it into two separate atomic models; omgdoeiving packets from the network,
and the other to forward packets out of the rotaghe network. The models are called

Routerln and RouterOut, respectively.

RouterInterface

_ ready < ready
. : to_RP to_RPU
n | n_, Routerin P lé fl
v fl a
ag g>
1S
>
z
[}
Q
8
o)
<« JE
<OUt <out RouterOut
f?om_RPU4 from_RPU

Figure 29:The RouterInterface coupled model

Page 46 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

The Routerin atomic model (shown in figure 20) wiefined to receive the
defined IP packets from the net and forward it he RouterProcessor model. The
model’s specification is:

M=<I, X, S, Y, dint, dexts A, D>
Where:

I:
in: receives the IP packet
ready:receives the router processor’s signal requestirgready packet.
to_RPU:for sending the packet to the router processor.unit
flag: to signal that a packet is ready.
interfaceNumfor sending the models ID number to the RouterCadeh

X: T IP packetl] N , ready signall N }
S: {Sigma, X, Preparatlon Time}
Y: O{IP packetd N} O{flagON} O{ID ON}

dint (e, S):
{
case phase:
busy: passivat, receiving state = nothing, outfilag = 0.
passive /* never happens */
}
dexi(€,S,X):
{
case msg.port:
in:
case receive state:
nothing: store valuel,set receiving state to gothtinue
gotl: store 2 value, set receiving state to got2, continue
got2: store § value, set receiving state to got3, continue
got3: store 4 value, outputFlage = 1, sigma= preparation,
S = active
ready:
prepare packet, outputFlag = 2, sigma = prep&at S =active
}
A (s):
{

case outputFlage:
0: send ID to RouterOut
1: send flag to RouterProcessor
2: send packet to RouterProcessor

Page 47 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

ready

-

. to RPU
in >
—> Routerin

| flag
| interfacgNum

Figure 30: the RouterIn atomic model

The model has 2 input ports and 3 output portsoimmunicate with both the
routers components and the network components’iithgort is used to receive packets

from the net in its externalFunction using the estatachine described in the following
state diagram.

S2

(Got value 1)

S1

no values received

S3

(got value 2)

S4

(got value 3)

S
(got vgrue 4,
Hold active,

Figure 31: packet receiving state machine

Page 48 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

Once the model is started, its receiving statetgo state S1 (received nothing).
The model stays in this state until a packet stari@rive at its input port “in". the first
value of the packet triggers the transition V1 fretate S1 to state S2 where the value
gets stored and the model held in its passive.sStat second value of the packet triggers
V2 going from state S2 to S3 and the second valistored. The same happens with the
3 value in state S4. when the last value in the @aakives at port "in", the transition
V4 happens and we enter the state S5. In this $tatmodel stores the last packet value,
create a single packet using the 4 received valaed,stores the packet in its internal
queue. In S5 the model sets is atomic state teeafiir the period of its preparation time
which causes the model to execute its outputFumctiod sends a flag signal to the
RouterProcessor, notifying it that a packet haslveeeived and is ready for processing.

After flagging the RouterProcessor, the receivitagesis set back to its default state S1.

The models second input port is called "ready'lsort is used by the model to
receive ready signals from the RouterProcessor astification that it is ready to
processes the received packet. Since the readgl sgyaent to all the routers interfaces,
the interface will check the ready signal's valaad compare it to it ID. Only the
interface with the ID matching to the ready sigwél respond by forwarding its packet

for processing.

As for the models output ports, each model hasetlof them, "flag”, "to_ RPU",
and "interfaceNum". The "flag" port is used to autpthe flag signal to the
RouterProcessor model with a value equal to théerbu model's processes ID. The
model's processes ID is a unique ID assigned to eaxlel upon starting the simulation,
and can be obtained by simply calling the funcid). This flag signal is used by the
RouterProcessor to order the packet for processing.

To forward the packet out of this model to the ®oBrocessor model, the
"to_RPU" output port is defined. The RPU in the tpaname stands for the Router
Processing Unit, which refers to the RouterProgessodel. Through this port, the

routerlin model sends the packet from its interna¢ug to the RouterProcessor. the

Page 49 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

packet is taken out of the model's internal quemek sent as received in four successive

messages.

The last port in the model is the "interfaceNumitput port. The port is
exclusively used to send the model's ID to the Bt model once the simulation
starts. We wanted to send the models ID numbeha&oRouterOut model, so the two
models can use the same ID value since togethgrntiade the Routerinterface model.
Having a unified ID number for the two componenfstioe Routerinterface model
enables as of keeping track of where each netvgockinected. The ID, which is used in
flagging the RouterProcessor, becomes a tag fop#uoket the as long as it is in the
router. This tag helps the router in identifying {hort that it needs to replay to in case of
a request packet, or the output interface numtardimould be stored in the routing table

if the packet turns out to be an update packet.

The second atomic model that makes up the Routefhee model is the
RouterOut. This model was designed to simply fodvaackets out of the router to the

network.

i interfaceNum
- RouterOut
-
from_RPU

Figure 32: the RouterOut atomic model

The RouterOut specification is:
M:<I1 X! Sl Y)8int1 SGXU)\1 D>
Where:

I:
interfaceNumreceives the interface ID.

Page 50 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

From_RPUreceives the packet to be sent out of the router.
out: for sending the packet.

X: I{ forward data from router processar , interface IDLJ N }
S: {Sigma, X, Preparation Time}
Y: O{IP packetl N}

dint (€, S):
{
case phase:
busy: passivat, receiving state = nothing.
passive /* never happens */
}
dext(€,S,X):
{
case msg.port:
in:
case receive state:
nothing: store valuel,set receiving state to gothtinue
gotl: store 2% value, set receiving state to got2, continue
got2: store § value, set receiving state to got3, continue
got3: store 4 value, receiveState = needPortNum,
continue
needPortNum:
if msg.value = ID: sigma= preparation, S = active
else: receiveState = gotNothing, continue.
interfaceNum:
ID = msg.value.continue.
}
A (S):
{
output the packet.
}

as seen in the model’s specifications, three peee defined; "interfaceNum®,
"from_RPU", and "out". The "interfaceNum" port isetinput port that gets connected
with the Routerln model to receive the interfacenber (the ID) that the model will use
to identify its self. Since this ID is not the agtlD number for this model —which can be
obtained by calling the function id()- , we willngply store the received ID value in an
attribute and refer to it when needed. This waycae guarantee that both components

making out the Routerinterface model will respomthte same Id number.

Page 51 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

The "from_RPU" input port is the port that is e responsible of receiving the
packets from the RouterProcessor model. The regeni a packet is handled the in a six
state mechanism as shown in figure 25. The fikat fitates and their activities are the
same as described in the Routerin model's staggatimand the only difference is in the
last state S6. In S6 the models receive a valuedtidg the interface that should output
the packet. We added this value to the set of dsifipom the RouterProcessor, due to the
desire of making the adding of new interfaces t® ributer as generic as possible. This
last value enables us to add interfaces to thedRBrgcessor without having to modify
the source code of the RouterProcessor's modasidoa new set of input and output
ports corresponding to every new interface we #dalso allows the RouterProcessor to
send a message through more than one interfabe aame time in the case a broadcast
of a request is needed. In this state S6, and afieFiving the last signal from the
RouterProcessor (the ID value), the model checksédheived ID to see if the packet is
to be forwarded or dropped. We designed the Router@del so it will output the
packet only if the last message value is equdbktown ID, or if it is a negative value that
does not equal the negative of its own ID. The tastdition was added in particular to
exclude an interface from a broadcasted update;ase the update happed due to
information coming through that particular port.igtechnique is known as the Poisoned
return, and is discussed in RIP2 (RFC # 2453).

Page 52 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

S2
(Got value 1)

S1

0 values received

S3

(got value 2)

S6
(got ID,
Hold active)

S4
(got value 3)

S5

(got value 4)

Figure 33: receiving packets state diagram for th&outerOut model

The only output port that this model have is thet™olt simply used to output the

packet in its defined format once the ID value'sswhecked and the interface was
selected for forwarding the packet.

3.2.2 Router Processor

After packet are received by the Routerinterfaloey theed to be processed to see if they
are messages to the router (requests or updates)hey are just data packets that needs
to be forwarded to their destinations. To be abldandle the incoming packets, the

RouterProcessor model was broken to two Atomic ndspdaa queue and a
PacketProcessor model.

Page 53 of 87

Fourth year project report: Building a library foarallel simulation of networking

protocols
RouterProcessor
in_, out in= requ
queue q
=P :oneneXt updateTable
destination
out PacketProcessor >
_outnterface
packet _
___cont

Figure 34: the RouterProcessor model diagram

The queue is a temporary storage device that lee$IFO (first in first out)
mechanism. This particular model was not createdryyof the group members, but was
adopted since its functionality is required for gubject. The queue logical design is

shown in the following figure:

in out
—» —
ueue
stop q done
—>

Figure 35: the queue atomic model

The queue is an atomic model that follows the DE®I®nalism. It defines an
input port "in" and an output port "out" to recewaues that will be stored, and to output
the data at a later time. To so, to extra inputpaere defined in the model; "done" and
"stop". Port "done" is used to signal the quew the sent value was received, and that

the model is asking for the next value in the quélpon receiving a signal on the "done”

Page 54 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

port, the model eliminates the last sent elemenmnfits queue, and prepares and sends
the next element (if any exists). The "stop" perused as a regulator, a stop_send port.
Using this port will trigger the model to outpuerients from its queue upon receiving
requests, or simply ignoring requests and jusirgjareceived values until the model is

toggled again by a signal on the "stop" port.

The queue model was used in the RouterProcesdwmoldoflag signals coming
from the routers different interfaces. This is rieggd, since multiple packets can arrive at
different interfaces while the RouterProcessorusyb Using the queue prevents losing
any of the flag signals sent by the interfacesed,alows the RouterProcessor to process
packets in the order they arrived in at the diff¢iaterfaces.

The PacketProcessor model represents the heatieoRouterProcessor. This
model will be responsible for reading in the paskisom the interfaces, processing the

packets, and making routing decisions regarding tfestinations.

in requ
updateTable
< next
destination
PacketProcessor >
_out
- __outinterface
packet

cont

A

Figure 36: the PacketProcessor atomic model

The PacketProcessor specification is:

Page 55 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

M:<Ia X, Sa Y’Sinh 8ext, Al D>
Where:

I:
in: receives the interface ID from queue.
packetrreceives the packet.
outinterfaceto get the interface from the routing table
cont:get a signal to continue from the table
next:get next ID from queue
getPacketrequest packet from interface
requ:send request data to table
updateTablesend update data to table
destinationsend address to get output interface
out: for sending the packet.

X: I flag O N, output interface IDJ N, packet] N, continue signdll N }

S: {Sigma, X, Preparation Time}

Y: O{IP packetdd N} O{requestdatal N} O { update datal N} 0 { destination
addressIN} O{nextdON} O{ get packet signél N }

dint (e, S):
{
case phase:
active: passivat, reset receiving state and ougpate.
passive /* never happens */
}
dext(€,S,X):
{

case msg.port:
in: get the packet from interface
packet:
case receive state:
nothing: store valuel,set receiving state to gothtinue
gotl: store 2% value, set receiving state to got2, continue
got2: store § value, set receiving state to got3, continue
got3: store 4 value, receiveState = needPortNum, outState
if packet data: outState = data.
If packet request: outState =request.
If packet update: outState = respond.
sigma= preparation, S = active

outputinterface:
outlD = msg.value, outState = forward, sigma=
preparation, S = active

cont: signal for next packet

Page 56 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

A (S):
{

case outState:
data: send destianation to get out interface.
Request: send requist data to table.
Update: send update information to table
Forward: send packet.

The PacketProcessor starts its packet processatg ggon receiving an event on

[11ye 1]

its “in” input port. The received event will carrthe flag value sent by the
Routerinterface and stored in the queue model. Qheevalue is received the, the
PacketProcessor will send it through its “get_p#oketput port, that is connected to the
“ready” input port of all the interfaces. Only thrgerface with the matching ID number
to the sent value —as discussed previously in dbger's interface section (3.2.1)-, will
respond by outputting the ready packet to Route&ddsor model, which in turn ends up
at the PacketProcessor model. The packet processeives the packet through its
“packet” input port, using the same state mechanised by the Routerin model to

receive packets.

After receiving the last value of the packet, tlaketprocessor checks the three
most significant digits of the first value to deténe its type. If the value is 1 then the
packet is a request packet, if it is 2 the it isupdate packet, other than that the packet is
a data packet and the value represents the patdatification number (see section 2.3
for packet format). If the packet turns out to beremuest packet (type 1), the
PacketProcessor will extract the address field ftbenpacket and forward it along with
the ID of the interface that the packet arrivedtimmough its “requ” port to the ripTable
model. This data will be used by the ripTable mddealespond to the request, as will be
explained later in the Router Table section (sec8@.3). The PacketProcessor will wait
until it receives a confirmation from the ripTabtedel on its “cont” port, telling it that

the request was answered and it can go ahead atitegeext packet for processing.

Page 57 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

The second type of packets received by the PaaketBsor is the update packets
(type 2). For this packet type, the model will fana three values to the ripTable model
through its “updateTable” port. The values that fmmvarded are the interface 1D, the
destination address, and the metric value assdciaith that destination. The metric
value is the three least significant digits in fist value of the packet (see section 2.3)
After preparing the three values, the model holdseif in the active state for the
predefined preparation time, and then executesthput function and send the three
values —the address, followed by the metric thenititerface ID number- using the
“updateTable” output port. The model then - liketle case of a request packet-, waits
for a signal from the ripTable model on its "coptrt before it request the next value in
the queue.

The last type is data packets. For this type oketsc the PacketProcessor sends
the destination address of the packet to the rigrdbrough the "address" port,
requesting the number of the interface that willked to forward the packet. The model
then waits for the interface number on its "outlfstee” port, and then forwards the
packet followed by the interface ID number to theufrinterface models. After
receivint the output interface number, the packetorwarded by sending the packets
values followed by the interface number through"dsat" port to the Routerinterface
models.

To indicate that the destination address was nohdan the routing table,The
value 0 was assigned as a special signal fromipiable model to the PacketProcessor.
When the PacketProcessor sees this value, it isstegpuest packet through all interfaces
except the one that the packet was received throtgfuesting an update on that

destination. The PacketProcessor uses the "oukep&x send the request.

Page 58 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

3.2.3 Router Table

The model's main functionality is to maintain theuting information that the
router needs to forward packets to there destinstibhe simple format that we used for

entries in the table is:

Address Metric Interface

Figure 37: Router table entry format

Where the address is destination that the packetswa get to, the metric is a value that
represents the cost of getting to that destinatiad,the output interface is the number of
the interface that the router must forward the patkrough to get it to its destination or

at least one hop closer in the right direction.

According to the RIP2 protocol, the routing tablndave other entries in the
table such as the subnet mask and a set of flagsiated with each entry in the table. In
the RIP2 protocol RFC, it is stated that the rotdbte must send updates to its neighbor
routers every 30sec. Although the CD++ uses a tialee with its messages, the time
doesn’t represent real time values that can be tgsset delays or trigger an action with a
predefined time value. For that reason, we couldset a timer for the updates, and
updates are not sent every 30sec. this functignedih be implemented using the real

time version of the tool, and is left for future ko

To compensate for not sending periodic updates, fandkeeping all routers
updated on various topology changes occurring. Atethe table model send an update
packet every time it updates its routing table. Whiee model sends an update, it
forwards it through all interface ports, except tme it who originated the update, this is
to simulate poisened return criteria to control anmtoof traffic dedicated to router

updates.

Page 59 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

The ripTable model was created as a single atonudetn The model will be
receiving events on one of its 3 input ports; agslrepdate, or request. Each port of the
three will be receiving events related to a spegfcket type. Depending on the event
the model will send out events using its outputtgpbout”, "outinterface"”, and "done".

The model is shown below.

address

update

-

S RIPTable

out

[}

outlnterface
-

< done

Figure 38: the RIPTable atomic model

The model’s specification is:
M:<I1 X) Sl Y)8int1 Sext,)\1 D>
Where:

I:
addressreceives the destination address.
updtaereceives the update data.
requestreceives request data
done:signal end of operation
outinterfacesends the output interface for the packet
out: for sending response packets.

X: [{ destination address N , update data IDI N, request datal N }
S: {Sigma, X, Preparation Tlme}
Y: O {response packefs N} [{ output interaceél N} [0 { done signdll N }
dint (€, S):
{
case phase:
active: passivat, reset receiving state and ougpate.

Page 60 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

passive /* never happens */

}

dexd(€,S,X):

{

case msg.port:
address: get the packet from interface, outStat®rwardPort, sigma=
preparation, S = active
update: receive update data.
If we update table, sigma = preparation, outStateespond_1, S
= active
If no update needed, continue.

request:
get request data,
if address filed = address, outState respond_1,
else if address == 0, outState = respond_all
sigma= preparation, S = active

}

A (S):
{

case outState:
forwardPort: send outinterface from table.
Respond_1: send 1 update packet.
Respond_all: send all table entries.

The "address" is the port that the model will reeethe packets destination
address on, from the router processor. After réngithe address, the model will search
through its table for the received address. After table look up, the model outputs the
interface that should be used by the RouterProcessdorward the packet on, this

message is outputted through the “outinterfacet. por

In case the received destination is not found etétble, the model will send the
value '0' instead of the interface ID, which wi bandled by the processor by requesting

an update on that address.

Updates are passed to the table through the "upgeate. The updates are
received as three values; the address, the matrdt,the interface ID. Once the three

values are received, the table will iterate througlentries looking for the address and if

Page 61 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

not found, the new information is added to thedalil the table already contained an
entry for this destination address, the table @alinpare that entry's metric value with the
new received metric after incrementing it by 1. Tinerement is done to follow the RIP

standards where it says that for every hop addstliiet metric up to a value of 16 — as 16
is the maximum number of hops allowed-. If the maetric value is less that the existing
one in the table, the old entry is removed andtaide is updated with the new values.
After updating the table, a packet is sent outglothe "out" port to update adjacent
routers of the new change. The update is sent ghraill interfaces except the one that
the update message arrived from. Following the tgpddgnal, the model sends a

confirmation to the routers processor using itsv&lqort.

The last set of events is requests for updateschwhrrives on the models
"request” port. The request message is two valaeging the address that the requesting
router wants to be updated about, and the inteffadee used to forward the update
information through. The address can be eithePaaddress, or the value 0. If the value
0 was used, then the table will send all of iteinfation as updates as the RIP2 protocol
states. The tables information will be sent as tggackets through the model's "out"
port, and as in the case of receiving updatesieel will send a signal to the router's
processor on the "done" port to indicate that & fi@shed its work.

We have also included a more complete version sBa in Appendix X”
the essence of the algorithm is stated as foll6@ssen a network of nodes connected by
bidirectional links, where each link has a costasated with it in each direction, define
the cost of a path between two nodes as the stime gbsts of the links traversed. For
each pair of nodes, find the path with the least’dd 3:342].

Page 62 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

3.3 Hub

The hub is a simple atomic model; it has alsoex®ias our test bed for converting

the library models into a parallel environment. Thedel logical design is as follows

Connected
Device

Data coming from H ------- H Data going

previous Hub T T T 1] to next Hub

B T

Connected
Device

Figure 39: Hub Logical design
The Hub formal specification is

I(interface):
Ingressinput port to receive data from interconnected desion
Setter:input port to set hub specific information from
Egressloutput port to I connected device
Egress2output port to & connected device
Egress3output port to 3 connected device
Egress4output port to 4 connected device
Egress5output port to & connected device
Egress6putput port to & connected device
Egress7output port to ¥ connected device
Egress8putput port to & connected device
Egress9output port to inter-networking device

X: [{ datal N, setting informatiori] N };
S: {Sigma, X, Preparation Time}

Y: O {regenerated data N};

Sint ({e, S):

Page 63 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

case phase:
active: passivat
passive /* never happens */
}
dex(S, €, X):
{
case msg.port:
ingress: set localvalue to msg.value
setter: set local data field (hub identifier) togngalue

}

A (S):
{

}

Output data to all egrees ports

Page 64 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

4 Testing

In order to show the functionality of the librarpodels, we have included some of
the major tests, concerning the more complicatedatsovorked on. This chapter will
walkthrough most of the models in comprising tthedry device. Model, event, log and

out files for all the tests are included in Appentk".

4.1 Host model

The host testing section aims at proving thantlbeels comprising the host are
functioning correctly. The remaining of the sectwill trace data originating at one point

to the end of the host models.

4.1.1 Application layer

The application layer is a simple atomic modehdeechosen to acquaint the
reader with the terms and methodology of testirige finctionality of the layer is to
parse the data, with the port value and forwarchthely created value to the transport

layer.

The following section of the event file shows diaautted from various ports

simulating various applications interacting witle simulation.

00:00:15:000 outtotransport 1180 //Application data sent on HTTP Port
00:00:21:000 outtotransport 1280
00:00:27:000 outtotransport 1380
00:00:33:000 outtotransport 1480
00:00:40:000 outtotransport 1580

00:02:55:000 outtotransport 1125 /I Application data sent on Port 25
00:03:05:000 outtotransport 1325
00:03:15:000 outtotransport 1425
00:03:25:000 outtotransport 1525

Figure 40: Application Output file

Page 65 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

The values are outputted, after the time advanoetiin defined in the model file
elapses

[application]
preparation : 00:00:05:000

Figure 41: preparation Time

The model's event file shows the inputed data to be

00:00:10:00 infromHTTPuser 11 /I data inputted on HTTP input port
00:00:16:00 infromHTTPuser 12
00:00:22:00 infromHTTPuser 13
00:00:28:00 infromHTTPuser 14
00:00:35:00 infromHTTPuser 15

00:02:50:00 infromSMTPuser 11
00:02:60:00 infromSMTPuser 12
00:03:00:00 infromSMTPuser 13
00:03:10:00 infromSMTPuser 14
00:03:20:00 infromSMTPuser 15

Figure 42: Application event file

The event file shows the discrete inputs, whiledbtput file illustrated earlier shows the

output from the layer.

4.1.2 Transport layer

Data outputted from the application layer is reediby the transport layer. Thus
the following event file for the transport layeros¥s inputs in the output format of the
application layer.

00:00:10:00 infromApplication 1280
00:00:16:00 infromApplication 1280
00:01:22:00 infromApplication 1380
00:02:28:00 infromApplication 1480
00:03:35:00 infromApplication 1580

Figure 43: Transport layer event file

The event file shows data coming from an HTTP paithy different values. The
transport layer responds also by parsing the dataei appropriate format discussed in
section 2.3 (Header format).

Page 66 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

00:00:10:015 outtonetwork 1.2e+12
00:00:16:015 outtonetwork 1.2e+12
00:01:22:015 outtonetwork 1.3e+12
00:02:28:015 outtonetwork 1.4e+12
00:03:35:015 outtonetwork 1.5e+12

Figure 44: Transport layer output

The transport layer output, doesn’t give mush engiian to what happened, due to

deficiencies in the tool, however the log file stsawe exact values outputted by the

model, this is illustrated below

Mensaje X / 00:00:10:000 / Root(00) / infromapplica
para top(01)

Mensaje X / 00:00:10:000 / top(01) /in/ 1280.00
datagramcreator1(02)

Mensaje D / 00:00:10:000 / datagramcreator1(02) / 0
top(01)

Mensaje D / 00:00:10:000 / top(01) / 00:00:00:005 p
Mensaje * / 00:00:10:005 / Root(00) para top(01)
Mensaje * / 00:00:10:005 / top(01) para datagramcre
Mensaje Y / 00:00:10:005 / datagramcreator1(02) / g
1200000000080.00000 para top(01)

Mensaje D / 00:00:10:005 / datagramcreator1(02) / .
Mensaje X / 00:00:10:005 / top(01) / in / 120000000
checksumcreator1(04)

Mensaje D / 00:00:10:005 / checksumcreator1(04) / 0
top(01)

Mensaje D / 00:00:10:005 / top(01) / 00:00:00:005 p
Mensaje * / 00:00:10:010 / Root(00) para top(01)
Mensaje * / 00:00:10:010 / top(01) para checksumcre
Mensaje Y / 00:00:10:010 / checksumcreator1(04) / ¢
1200000009280.00000 para top(01)

Mensaje D / 00:00:10:010 / checksumcreator1(04) / .
Mensaje X / 00:00:10:010 / top(01) / checkin / 1200
datagramcreator1(02)

Mensaje D / 00:00:10:010 / datagramcreator1(02) / 0
top(01)

Mensaje D / 00:00:10:010 / top(01) / 00:00:00:005 p
Mensaje * / 00:00:10:015 / Root(00) para top(01)
Mensaje * / 00:00:10:015 / top(01) para datagramcre
Mensaje Y / 00:00:10:015 / datagramcreator1(02) / d
1200000009280.00000 para top(01)

tion/ 1280.00000
000 para
0:00:00:005 para
ara Root(00)

ator1(02)
ocheck /

.. para top(01)
0080.00000 para

0:00:00:005 para
ara Root(00)

ator1(04)
hecksumcreatorout /

.. para top(01)
000009280.00000 para

0:00:00:005 para
ara Root(00)

ator1(02)
atagramcreatorout /

Figure 45: Transport layer log file

The log file shows at time "00:00:10:000" inputtiatta to the transport layer. The
data is then passed down to the "datagramCredtartiigh the top. At time

Page 67 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

"00:00:10:005" the datagramcCreator sends the initial packetedeto the checksum

creator model. The checksum creator responds at'®0:10:010" with the same

packet sent to it, with the addition of the checksu m values,

highlighted in green. The data is then returned back to the datagran@réaough
the checkin port highlighted in yellow, where isisnt to the network layer through the
datagramCreatorOut port at tine®:00:10:015" . The output file shows the first two
digits of the data being sent.

4.1.3 Network layer

The third layer is the network layer. This layerress the information of the
sending party as well as the destination; SincéRhe a connection-less protocol.

Addressing information, is supplied to the modkietigh the event file as such

00:00:00:010 infromTransport 1122334455580 // data to send
00:00:00:020 DestinationlP 192168111223 // dest ination IP value

Figure 46: Network Layer event file

It should be noted that the layer did not geta@® IP; this is because we have
sent the IP through the model file. This was danfatilitate creating a tool that would

automatically create host units

[networkTransmitterl]
IP: 111222333

Figure 47: Source IP field

The information sent to the network layer is usedreate a checksum value, which is

used to verify the data sent over the network

The model outputs the required four fields spedifiesection 2.3 traffic format

Page 68 of 87

Fourth year project report: Building a library foarallel simulation of networking

protocols

Mensaje Y / 00:00:13:020 / networktransmitter1(02) [egress /
485000015500.00000 para top(01)

Mensaje Y / 00:00:13:020 / networktransmitter1(02) [egress /
192168116224.00000 para top(01)

Mensaje Y / 00:00:13:020 / networktransmitter1(02) / egress /
192168116224.00000 para top(01)

Mensaje Y / 00:00:13:020 / networktransmitter1(02) / egress /
12223334318080.00000 para top(01)

Figure 48: Network layer log file showing output

Again the log file is used to show the values otigzliby the model, since the

output file only shoes portions of the actual detaeen in the following figure

00:00:13:020 outtodatalink 4.85e+11

00:00:13:020 outtodatalink 1.92168e+11
00:00:13:020 outtodatalink 1.92168e+11
00:00:13:020 outtodatalink 1.22233e+13

Figure 49: network layer output file view

4.1.4 Data link layer

In order to test the dataLink model, another atomazlel called ‘test2’ was made
that would interact with the dataLink as if it letphysical layer. The sole purpose of the
‘test2’ model is to send to the datalLink the diéietr possibilities of the connection link
status. However, frames sent and received areheianput and output interface of the
simulator in order to ensure that the packets/feaare sent and received accordingly.

The coupled model interface for testing is showfigare 50.

Page 69 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

Data Link Layer

test? dataLink ~| sendFrame .
.| sendPacket .
status S status >
ripTabe3
test2
- poll - < SenseCarrier B getPacket
- <_getFrame

Figure 50: Data Link ayer test model

The event file is shown in figure 51, the simulatadput is in figure 52. The
event file tests the dataLink by sending it a fram#h no errors and an IP packet. The
output file displays the packet that was part @& ttame received. The output file also
shows displays the frame created when the packeteaeived at 20 seconds. Note that
the preparation time was made 00:00:00:00 becdgse tvould be no processing delay
so that there is a clear relationship between nipati events and the output. Thus, the

operation of the dataLink can be proven to be cbrre

00:00:10:00 frameln 101
00:00:10:00 frameln 102
00:00:10:00 frameln 103
00:00:10:00 frameln 104
00:00:10:00 frameln 410
00:00:20:00 packetin 201
00:00:20:00 packetin 202
00:00:20:00 packetin 203
00:00:20:00 packetin 204

Figure 51: Data Link Layer event file

Page 70 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

00:00:10:000 packetout 101
00:00:10:000 packetout 102
00:00:10:000 packetout 103
00:00:10:000 packetout 104
00:00:20:000 frameout 201
00:00:20:000 frameout 202
00:00:20:000 frameout 203
00:00:20:000 frameout 204
00:00:20:000 frameout 810

Finally an integration test for all models comprgsithe host was made. The test will

show the input of the IP through the model filefad®ws

[networkTransmitterl]
ip: 111222333
Figure 53: Host source IP

This step was taken to facilitate building a td@ttwould create instances of the host

model. The model receives user input through antefile, as follows

00:00:10:00 FTP_In 11

00:00:10:00 Destination 192168111
00:00:10:01 statusCarrier 1
00:00:40:02 FTP_In 1001214
00:00:40:02 Destination 192168001
00:00:40:03 statusCarrier 1
00:00:80:04 FTP_In 1001215
00:00:80:04 Destination 192168001
00:00:80:06 statusCarrier 1
00:01:90:07 Telnet_In 1001216
00:01:90:07 Destination 192168001
00:01:90:11 statusCarrier 1

Figure 54: Host event file

The event file shows FTP data from the host totsratnd on the network. Simple

values where chosen here, so as to ease the padgestewing the results.

The host reacted to the entries, shown in the ditenby creating the necessary headers,

this is seen in the host output file.

00:00:25:000 sensecarrier 0
00:00:45:003 hout 6.72016e+08

Page 71 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

00:00:45:003 hout 1.11222e+08
00:00:45:003 hout 1.92168e+08

Figure 55: Host output file section

However, as mentioned earlier, output files truache data, for that sections of the log

file are shown here, to illustrate the host adtsit

Mensaje Y / 00:00:49:010 / networktransmitter1(02) / egress /
2000000000.00000 para top(01)

Mensaje Y / 00:00:49:010 / networktransmitter1(02) [egress /
111222333.00000 para top(01)

Mensaje Y / 00:00:49:010 / networktransmitter1(02) / egress /

0.00000 para top(01)

Mensaje Y / 00:00:49:010 / networktransmitter1(02) / egress /

0.00000 para top(01)

Mensaje D / 00:00:49:010 / networktransmitter1(02) / ... para top(01)
Mensaje Y / 00:00:49:010 / top(01) / outtodatalink / 2000000000.00000
para Root(00)

Mensaje Y / 00:00:49:010 / top(01) / outtodatalink /111222333.00000
para Root(00)

Mensaje Y / 00:00:49:010 / top(01) / outtodatalink / 0.00000 para
Root(00)

Mensaje Y / 00:00:49:010 / top(01) / outtodatalink / 0.00000 para
Root(00)

Figure 56: host log file section

This section of the host log file shows two evetits, first being the host sending the
received data, through out the network , afterraglthhe appropriate headers, and that the

datalink layer has actually responded as in tHeviahg figure

Mensaje Y / 00:00:06:000 / internet(09) / outtodata
para top(01)

Mensaje Y / 00:00:06:000 / internet(09) / outtodata
192168116224.00000 para top(01)

Mensaje Y / 00:00:06:000 / internet(09) / outtodata
para top(01)

Mensaje Y / 00:00:06:000 / internet(09) / outtodata
para top(01)

Mensaje D / 00:00:06:000 / internet(09) / ... para
Mensaje X / 00:00:06:000 / top(01) / getpacket / 2
datalink(02)

Mensaje X / 00:00:06:000 / top(01) / getpacket / 19
para datalink(02)

Mensaje X / 00:00:06:000 / top(01) / getpacket /
datalink(02)

Mensaje X / 00:00:06:000 / top(01) / getpacket /
datalink(02)

link / 20000.00000

link /

link/ 0.00000
link/ 0.00000
top(01)

0000.00000 para
2168116224.00000
0.00000 para

0.00000 para

Figure 57:log file illustrating data link interacti on.

Page 72 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

Figure 57, shows the output of data from the netwayer to the datalink layer, it also
shows that the data link layer has actually staheddata, until it checks the physical

layer. As the response arrives from the physigadriadata is sent to the other host.

4.2 Router model

The router model is made of three separate moedsof which are coupled
models. To test the router, we tested the atomidainhat formulates the router and its

components first, and then we tested the routarvalsole.

4.2.1 Router's components tests

the router -when broken down- is made of five atomodels; the Routerin and the
RouterOut (constructing the Routerinterface couphedlel), The queue and the
PacketProcesor (constructing the RouterProcessu)finally the RIPTable atomic

model.

Testing the RouterInterface model

The testing process for this model was done thrdegting each one of its two
components on its own. We started by testing th&d&tn model by creating a model file
to link the models ports as defined by the DEV$rfalism (see section 2.1 for the DEVS
formalism and the CD++ tool). An event file wasatezl in which multiple packets were
sent to the model through its "in" port. The rasgltoutput file from the simulation
showed that the model behaved as required. A secfithe event file that was used to
test the model is shown below, along side withcii@esponding section of the output
file. A full cycle of receiving a packet and forwdmg it to the RouterProcessor is
highlighted in the attached file.

Page 73 of 87

Fourth year project report: Building a library foarallel simulation of networking

protocols
00:00:05:000 in 1.1 /I sending the 1 st packet
00:00:05:001 in 1.2
00:00:05:002 in 1.3
00:00:05:002 in 1.4
00:00:06:000 in 2.1 /I sending the 2 nd packet

00:00:06:001 in 2.2
00:00:06:002 in 2.3
00:00:06:003 in 2.4
00:00:07:000 ready 3
00:00:08:000 ready 4
00:00:09:000 ready 2
00:00:09:100 ready 2

/I requesting a packet from interfqace #3
/I requesting a packet from interfqace #4
/I requesting a packet from interfqace #2
/] requesting a packet from interfqace #2

Figure 58: RouterIn event file

00:00:00:010 interfacenum 2
00:00:05:012 flag 2
00:00:06:013 flag 2
00:00:09:010 to_rpu 1.1
00:00:09:010 to_rpu 1.2
00:00:09:010 to_rpu 1.3
00:00:09:010to_rpu 1.4
00:00:09:110to_rpu 2.1
00:00:09:110 to_rpu 2.2
00:00:09:110 to_rpu 2.3
00:00:09:110to_rpu 2.4

/Il the interface send its ID
/lthe1 ' packet was recived
/lthe 2 ™ packet was received
/I send the 1 st packet to the processor unit

// send the 2 nd

Figure 59: RouterOut output file

We can see from the output file that the first ragesthat the model sends is the

models ID as discussed in the design. After treatyainject packets from the event file,

we see that the model will send its ID after recgj\every packet to signal that a packet

is ready for processing. The last 4 messages thasent in the event files represent

values that the interface might receive when thgerts processor is asking for the ready

packet. We can see from the message time in tipaibiiie that the model only outputs

the packets when it receives its own ID.

As for the RouterOut model, another simulation veasto test its functionality. An

event file was created, as before, to feed mesgagbe model. The messages were a set

of packets, each followed by a value representiegitodels ID. As with the Routerin

both the event and output file are shown below.

00:00:03:000 interfaceNum 32
00:00:05:000 from_RPU 1.1

/I assigning 1D 32 to the model
/l sending 1 st packet followed by ID 30

Page 74 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

00:00:05:001 from_RPU 1.2
00:00:05:002 from_RPU 1.3
00:00:05:003 from_RPU 1.4
00:00:05:004 from_RPU 30
00:00:06:000 from_RPU 2.1 /I sending 2 nd packet followed by 1D 32
00:00:06:001 from_RPU 2.2
00:00:06:002 from_RPU 2.3
00:00:06:003 from_RPU 2.4
00:00:06:004 from_RPU 32

Figure 60: the RouterOut event file

00:00:06:054 out 2.1 [/l outputting the 2 "d packet
00:00:06:054 out 2.2
00:00:06:054 out 2.3
00:00:06:054 out 2.4

Figure 61: the RouterOut output file

From the output file shown in figul we can see that the RouteOut outputs

packets after checking the ID value sent after @achet, as desired in the design.

Both models were coupled and tested together,t@ndame results were obtained

from their simulation since there is only one mgsssend between the two models.

Testing the RouterProcessor model

To test the model, we only need to test the PacketBsor model (since the
gueue is part of the CD++ tool and was tested bgfdio do so, the model file
"PacketProcessor.ma" was created, and a simulatigirun using the event file
"PacketProcessor.ev"in. The event file simulatedsignal coming from the
RouterProcessor's queue, and the packets thdievdént from the different interfaces.
Packets with different types were fed to the Pdilatessor model and the output were
analysed to check if the model behaved ion thaeg$ashion. Parts of the event file and

the corresponding output file are shown below.

00:00:00:001 in 1 /I send a flag signal
00:00:00:010 packet 3000000001 /I send an data packet
00:00:00:010 packet 1.2

00:00:00:010 packet 1.3

Page 75 of 87

Fourth year project report: Building a library foarallel simulation of networking

protocols

00:00:00:010 packet 1.4
00:00:00:050 outinterface 2 /I send output interface (as the table
respond)
00:00:01:001 in 2 /I send a flag signal
00:00:01:010 packet 3000000002 /lsend2 ™ data packet
00:00:01:010 packet 2.2
00:00:01:010 packet 2.3
00:00:01:010 packet 2.4
00:00:01:050 outInterface 0 / table’s respond, address not found
00:00:02:001 in 3 /I send a flag signal
00:00:03:010 packet 2000000005 /I send an update packet
00:00:03:010 packet 3.2
00:00:03:010 packet 0
00:00:03:010 packet O
00:00:03:050 cont O /I confirmation from ripTable
00:00:04:001 in 4 /I send a flag signal
00:00:04:010 packet 1000000000 /I send a request signal
00:00:04:010 packet 4.2
00:00:04:010 packet 0
00:00:04:010 packet 0
00:00:04:050 cont O /I confirmation from ripTable

Figure 62: PacketProcessor event file
00:00:00:001 getpacket 1 /Irequesting a packet from interface 1
00:00:00:030 destination 1.3 /lIrequesting output interface for destination
00:00:00:070 out 3e+06 /lforwarding packet through interface
00:00:00:070 out 1.2
00:00:00:070 out 1.3
00:00:00:070 out 1.4
00:00:00:070 out 2
00:00:00:070 next O /lIrequest next flag
00:00:01:001 getpacket 2 /Irequesting a packet from interface 2
00:00:01:030 destination 2.3 Ilrequesting output interface for destination
00:00:01:070 out 1e+06
00:00:01:070 out 2.3
00:00:01:070 out O
00:00:01:070 out O
00:00:01:070 out -2
00:00:01:070 next O Il request next flag
00:00:02:001 getpacket 3 /lrequesting a packet from interface 3
00:00:03:030 updatetable 3.2 // sending update information to table (address)
00:00:03:030 updatetable 5 /I (metric)
00:00:03:030 updatetable 3 /I (interface)
00:00:03:050 next 0 /I request next flag
00:00:04:001 getpacket 4 /lrequesting a packet from interface 4
00:00:04:030 requ 4 /lforward request info to table (interface)
00:00:04:030 requ 4.2 /I (address)
00:00:04:050 next O [l request next flag

Figure 63: PacketProcessor output file

Page 76 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

The messages in the event file simulated the psooksending flag signals from
the queue to packetProcessor, and then resporalthg processors requests for packets.
We saw from the output file that the model did mspto the three packet types in the
correct manner. The model requested the outpufaci every time it received a data
packet -as in the first two packets sent by thenefile-. The model used the interface ID
to forward the packet, and issued a request tgptatad when the interface value
received was 0. Using the event file we also sitedlan update packet (the Backet)
and a request packet (the gacket), and for both types the processor outgutte right

messages to the ripTable model.

Testing the RIPTable:

The RIP table was model in a top level model andsages were injected into the

model from an event model RIPTable.ev shown below.

00:00:00:010 update 1.1 /Isending update data

00:00:00:010 update 1 //metric 1

00:00:00:010 update 5 /linterface 5

00:00:00:011 update 1.2 /Isending update data

00:00:00:011 update 2 /Imetric 2

00:00:00:011 update 6 /linterface 6

00:00:00:012 update 1.3 /Isending update data

00:00:00:012 update 3 /Imetric 3

00:00:00:012 update 7 /linterface 7

00:00:00:013 update 1.4 /Isending update data

00:00:00:013 update 4 /Imetric 4

00:00:00:013 update 8 /linterface 8

00:00:00:100 address 1.3 [/Irequesting interface for address 1.3
00:00:00:110 address 1.5 /lrequesting interface for address 1.5
00:00:00:120 request 1 /I request data, address 0 (all table)
00:00:00:120 request O

00:00:01:010 update 1.3 /lupdate data (address 1.3)
00:00:01:010 update 1 /Imetric 1

00:00:01:010 update 3 /linterface 3

00:00:10:000 request 1 /lrequest update address 0 (all table)
00:00:10:000 request 0

00:00:11:000 request 1 /llrequest update on address 1.2
00:00:11:000 request 1.2

Figure 64: RIPTable event file

Page 77 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

The event file injected events that represent wdaatjuest, and destination
values. The file started by sending four updatee/akts, simulating the values that will
be passed from the routerProcessor model to th€dRIB. To test that the table did in
fact receive the messages in the right format toréd them in its table, two addresses
were passed to the model. The first address vahissfor an address that was passed to
the table in one of the update messages, andstadhiress the model did output the right
interface number that was associated with thatem$diThe second address for an address
that does not exist in the table, and as expecbted the model, the model send the value

0 for the output interface.

To test that the behavior of the model upon reogia request for all of its table's
entries, we send a request with the address faethg the value 0 in it. The model (as
shown in the output file —figure 2-) sent all &f ibuting table entries to that interface

port, and followed it with a done signal to the temprocessor.

The model also accepted updates for an existingeaddn its table, and did in fact
replace the output interface associated with tdtess, this behavior is seen in the

outputted messaged that came as a respond onctiredsequest for the table entries.

00:00:00:101 out_interface 7
00:00:00:111 out_interface 0
00:00:00:121 out 2e+09
00:00:00:121 out 1.1
00:00:00:121 out O
00:00:00:121 out O
00:00:00:121 out 1
00:00:00:121 out 2e+09
00:00:00:121 out 1.2
00:00:00:121 out O
00:00:00:121 out O
00:00:00:121 out 1
00:00:00:121 out 2e+09
00:00:00:121 out 1.3
00:00:00:121 out O
00:00:00:121 out O
00:00:00:121 out 1
00:00:00:121 out 2e+09
00:00:00:121 out 1.4
00:00:00:121 out O
00:00:00:121 out O

/lout interface 7
/lout interface O (unknown)
/Istart of response messages. 1

//(address)

st

entry (option)

/I (interface to respond through)
12 nd table entry (option filed)
/[(address)

Page 78 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

00:00:00:121 out 1

00:00:00:121 done O /lresponding completed
00:00:10:001 out 2e+09 /Istart of response messages
00:00:10:001 out 1.1

00:00:10:001 out O

00:00:10:001 out O

00:00:10:001 out 1

00:00:10:001 out 2e+09

00:00:10:001 out 1.2

00:00:10:001 out O

00:00:10:001 out O

00:00:10:001 out 1

00:00:10:001 out 2e+09

00:00:10:001 out 1.4

00:00:10:001 out O

00:00:10:001 out O

00:00:10:001 out 1

00:00:10:001 out 2e+09

00:00:10:001 out 1.3

00:00:10:001 out O

00:00:10:001 out O

00:00:10:001 out 1

00:00:10:001 done 0 /Iresponding completed
00:00:11:001 out 2e+09 /lIrespond with 1 message.
00:00:11:001 out 1.2

00:00:11:001 out O

00:00:11:001 out O

00:00:11:001 out 1

00:00:11:001 done 0 /Iresponding completed

Figure 65: RIP Table output file

4.2.2 Router coupled model test

After successfully testing all the router's compotse We used them to created
the router’s coupled model (the model file is shawappendix C and tested it using the

following event file.

00:00:00:010 in1 2000001 /I update with metric 1
00:00:00:010in1 111101101 /I address
00:00:00:010in1 0

00:00:00:010in1 0

00:00:00:020 in1 2000002 /I update with metric 2
00:00:00:020 in1 122202202

00:00:00:020 in1 0

00:00:00:020 in1 0

00:00:00:011 in2 2000003 /I update with metric 3
00:00:00:011 in2 133303303

00:00:00:011in2 0

Page 79 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

00:00:00:011in2 0

00:00:00:030 in2 2000004 /I update with metric 4
00:00:00:030 in2 145525056

00:00:00:030in2 0

00:00:00:030in2 0

00:00:00:040 in1 2000005 /I update with metric 5
00:00:00:040 in1 115001151

00:00:00:040in1 0

00:00:00:040in1 0

00:00:00:100 in1 3010012 /l data, ttlI=10, CRC=12
00:00:00:100 in1 121117001 /I source address
00:00:00:100 in1 133303303 /I destination address
00:00:00:100 in1 15

00:00:01:010 in1 2000000 /I update metric O

00:00:01:010 in1 133303303

00:00:01:010in1 O

00:00:01:010in1 O

00:00:01:220 in1 1000000 /I request
00:00:01:220in1 0

00:00:01:220in1 0

00:00:01:220in1 0

00:00:02:000 in1 3008011 /l data, ttl =8, CRC = 11
00:00:02:000 in1 114124201

00:00:02:000 in1 123456789 /I unknown destination
00:00:02:000in1 0

00:00:02:010 in2 2000007 /I update metric 7

00:00:02:010 in2 122202202

00:00:02:010in2 0

00:00:02:010in2 0

00:00:02:010 in1 3000007 /[data, TTL=0
00:00:02:010 in1 122202202

00:00:02:010in1 0

00:00:02:010in1 0

Figure 66: Router event file

The desire was to test the router for all posdipbes of traffic expected. Going

through the event file will show that the behawbthe router was as expected.

The first 5 packets were update packets. The ralitepass the related values to
its table and the table updated it self as teseddre. We can see that for every update
packet, an update the neighbor nodes was sent iholg other router interface. For
example taking the®lupdate message, we can see it arrived at therrvate interface

1, and that a corresponding update message wasd@al sent through interface 2.

After the update messages, a packet representilagaapacket was injected into

the router. The packet option files shows a TTlueadf 10. The router knew the address

Page 80 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

since it received an update on it before (this showthe blue highlighted sections in the
event file). The router did forward the packet gsihe right output interface as shown in

the output file below.

After this packet, another update with a smalletrimdor an address that the
router has in its table was sent through interfacé/e can see in the output file that the
router did update its table with the better metraddue and sent an update through

interface 2 (highlighted in yellow in both eventdaoutput file).

A request was sent at time (00:00:01:220) requgskia full routing table, and as

seen in the output file, the router did send alt®table entries to the requesting nod.

No output was sent in response to the last twogiaclRhe reason is that the first
one was an update with a metric higher than thstiegi one in the routing table. The
second was a data packet with a TTL value of Oifedjp In both cases the router

discarded the packets.

00:00:00:018 out2 2e+06 /I update
00:00:00:018 out2 1.11101e+08 /I address
00:00:00:018 out2 O

00:00:00:018 out2 0

00:00:00:023 outl 2e+06 /I update
00:00:00:023 outl 1.33303e+08

00:00:00:023 outl O

00:00:00:023 outl O

00:00:00:028 out2 2e+06 /I update
00:00:00:028 out2 1.22202e+08

00:00:00:028 out2 0

00:00:00:028 out2 0

00:00:00:038 outl 2e+06 /I update
00:00:00:038 outl 1.45525e+08

00:00:00:038 outl O

00:00:00:038 outl O

00:00:00:048 out2 2.00001e+06 /I update
00:00:00:048 out2 1.15001e+08

00:00:00:048 out2 0

00:00:00:048 out2 0

00:00:00:109 out2 3.00901e+06 /I data forward
00:00:00:109 out2 1.21117e+08

00:00:00:109 out2 1.33303e+08

00:00:00:109 out2 15

Page 81 of 87

Fourth year project report:

Building a library foarallel simulation of networking
protocols

00:00:01:018 out2 2e+06
00:00:01:018 out2 1.33303e+08
00:00:01:018 out2 0
00:00:01:018 out2 0
00:00:01:228 outl 2e+09
00:00:01:228 outl 1.11101e+08
00:00:01:228 outl O
00:00:01:228 outl O
00:00:01:229 outl 2e+09
00:00:01:229 outl 1.22202e+08
00:00:01:229 outl O
00:00:01:229 outl O
00:00:01:230 outl 2e+09
00:00:01:230 outl 1.45525e+08
00:00:01:230 outl O
00:00:01:230 outl O
00:00:01:231 outl 2e+09
00:00:01:231 outl 1.15001e+08
00:00:01:231 outl O
00:00:01:231 outl O
00:00:01:232 outl 2e+09
00:00:01:232 outl 1.33303e+08
00:00:01:232 outl O
00:00:01:232 outl O
00:00:02:009 out2 1e+06
00:00:02:009 out2 1.23457e+08
00:00:02:009 out2 0
00:00:02:009 out2 0

[/l updtae

/I respond

/I respond

/l respond

/l respond

/l respond

/I reauest

Figure 67: Router output file

Page 82 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

5 Conclusion

In conclusion, the project at handhsilding a library for parallel simulation of
networking protocolsThe main protocol of interest is TCP/IP for it&levuse and variety
of applications and magnitude of services providéde project was successful in
creating a library of models capable of buildinghgie topologies as a first step for
building a more complicated library in future prde The project has surveyed current
network simulation tools available and deduced dvaatage for a network simulator
based on the DEVS formalism. Some of the modelsrevBaccessfully imported to a
parallel environment, thus allowing for a parafizhulator to be built on top of the model
library. Further more; we have managed to surveynmment researchers in the field of
network and parallel simulation. This helped in teeision process when choosing the
library models.

The models chosen are sufficient to create simpkvark topologies with an
acceptable level of accuracy in services, and augttion in terms of Quality of service
parameters, and Service level agreements. The morted provide the backbone for a
larger model library building on top of it, sincd aomponents chosen, represented

different fields and layers of a typical packettsived network.

Page 83 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

6 Recommendations

Recommendations for future work are generally tame problems the project
faced, preventing us from pursuing the developnoérat DEVS network simulator in a

parallel environment.

A major problem facing us, is the Model file sifze of the files started to get
larger and larger as models got more complicateégxample of that is the host-coupled
model. attempts to use the “Macro” function[17jpyed not to work, since it only lets
the user have the tool copy a chunk of copy thasd® change from one file to another,
although very useful in making model files more daale, but not useful when
attempting to create instances of let's say thérnoslel file. For that we recommend the
development of a model file maker according to specifications of the models in the
library we require to develop a function insidetloé tool to create instances of models
(l.e: change port names, connection names, andaatn time) to facilitate writing
large model files of complex topologies, or devetgpa compiler based on the GCC

compiler, to have models as classes and facilitatantiating them.

It is also apparent that the library must be extehg expanded to allow for a
more user friendly operation of a case tool thaulocanalyze networks, especially
elements like ATM switches, DWDM devices [16], D8&HU units [16], and other core

network units.

Development of such models and enhancing the dumedels would allow for
building of larger topologies, and at a certainnp@n image of the Internet, since the
Internet is large network of smaller networks. kityr expansion should also branch into
building models for devices such as Voice oveNBIP) devices such as phones, for the
large popularity they are gaining, and to analymerteffect on current network structure

in terms of load, and to access their credibility.

Page 84 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

Another recommendation, in order to complete al@rsimulator is of course
the Conversion of current library models to patakkes well as building new models in
the parallel environment, is a must to accomplish bigger picture of the project, we
have managed to step into the parallel paradigmmbgns of converting some of our
models into parallel, the research presented ineAdx “B” should shed some light on
our efforts in this field, and provide a startingng for future work.

Although not an immediate requirement to buildraldator, however a topology
reader, meaning a software package capable ofngagiecific file formats, NS-2[8]
topologies for an example and converting them imkdel files based on the library
models, so as to facilitate the analysis processuofently present networks, being
studied with some of the currently present tools.

Page 85 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

7 References

[1] VINT project

[2] (Zeigler 1976, Zeigler at al.2000)

[3] CD++ toolkit

[4] www.red.net/glossary/a.php

[5] 4602 notes G&H chapter 8.4, 8.5

[6] RFC editor website

[7] William Stallings,Data and Computer Communicatiotdpper Saddle River, New

Jersey: Prentice-Hall, 2000.

[8] Gorry Fairhurst, “Carrier Sense Multiple Accesgh Collision Detection

(CSMA/CD),” [Online Document], January' 2004 [March 20, 2004]. Available:
http://www.erg.abdn.ac.uk/users/gorry/course/lagesésma-cd.html

[9] [Online document], Availablehttp://www.linux-praxis.de/lpi101/p-glossary.html

[10] [Online document], Availablenttp://www.mminternet.com/dsl/glossary.htm

[11] [Online document], Availablenttp://www.rvcomp.com/ElA/glossary.htm

[12] [Online document], Availablenttp://www.netbenefit.com/support_glossary.html
[13] G. Malkin, “RIP Version 2" Network Working GroupRequest for Comments:
2453, November 1998

[14] C. Hedrick, “Routing information ProtocolNetwork Working GroupRequest for
Comments: 1058, June 1988

[15] [Online document], Availablenttp://www.stallion.com/html/support/glossary.html

[16] [Online document], Availablenttp://www.pace.ch.cours/glossary.htm

[17] [Online document], availabléttp://www.freesoft.org/CIE/Course/Section4/8.htm
[18] PCD++ manual

Page 86 of 87

Fourth year project report: Building a library foarallel simulation of networking
protocols

8.0 Appendix List

Appendix A: network simulation Toolkits survey
Appendix B: Parallel simulation Researches survey
Appendix C: model files

Appendix D: Model source code

Appendix E: Parallel simulation notes (PCD++)

Appendix F: General Networking Notes

Page 87 of 87

