Syed Faraz Khalid

281509

Modeling and Simulation in OPNET

A commercial tool by MIL3, Inc., OPNET (Optimized Network Engineering Tools) is an engineering system capable of simulating large communication networks with detailed protocol modeling and performance analysis. It’s features include graphical specification of models, a dynamic, event-scheduled Simulation Kernel, integrated data analysis tools and hierarchical, object based modeling. “It is a network simulation tool that allows the definition of a network topology, the nodes, and the links that go towards making up a network. The processes that may happen in a particular node can be user defined, as can the properties of the transmission links. A simulation can then be executed, and the results analyzed for any network element in the simulated network” [3].

· Key features

The key features of OPNET are that, it provides powerful tools that assist the user in the design phase of a modeling and simulation project, i.e., the building of models, the execution of a simulation and the analysis of the output data. OPNET employs a hierarchical structure to modeling, that is, each level of the hierarchy describes different aspects of the complete model being simulated. It has a detailed library of models that provide support for existing protocols and allow researchers and developers to either modify these existing models or develop new models of their own. Furthermore, OPNET models can be compiled into executable code. An executable discrete-event simulation can be debugged or simply executed, resulting in output data. OPNET has three main types of tools - the Model Development tool, the Simulation Execution tool and the Results Analysis tool. These three types of tools are used together to model, simulate and analyze a network.

· The Model Development Tool

The model development tools consist of the Network Editor, the Node Editor, the Process Editor and the Parameter Editor. The Network Editor is used to design the network models, with different nodes connected by point-to-point links, radio links, etc., and may consist of none or more subnets. The Node Editor is used to place the models of the nodes used into the network. A node in OPNET consists of modules, such as a packet generator, connected to other modules such as processors and packet sinks, by packet streams and statistic lines. The Process Editor is used to define the processes that run inside these modules. The processes themselves are designed using State Transition Diagrams along with some textual specifications using Proto-C, an OPNET variant on the C language. The Parameter Editor allows the definition of parameters used in the input for the node modules and process models, such as the packet format, probability density functions, etc [1].

· The Simulation Execution Tool

The simulation execution tools consist of the Probe Editor and the Simulation Tool. The Probe Editor is used to place probes at various points of interest in the network model. These probes can be used to monitor any of the statistics computed during simulation. The Simulation Tool allows the user to specify a sequence of simulations, along with any input and output options, and many different runtime options.

· The Results Analysis Tool

 The results analysis tools consist of the Analysis Tool and the Filter Editor. The Analysis Tool will display the results from a simulation or series of simulations as graphs. The Filter Editor is used to define filters to mathematically process, reduce, or combine statistical data [1].

· Model design Methodology

OPNET defines a model using a hierarchical structure - at the top there is the network level, which is constructed from the node level, which in turn is made from the process level. The network level, node level and process level designs are implemented using the Network Editor, Node Editor and Process Editor respectively. The Network level contains one Top Level Network. This Top Level Network may consist of none or more subnets, and into these subnets there may be any number of further subnets. In this way OPNET can easily represent the hierarchical structure of network such as routing networks, which may consist of Tier-1 network, inside which there is the Tier-2 network of nodes, inside which Tier-3 nodes are connected and so on.

In the Node level the processes that happen inside a node such as a packet is generated and received by a process, which does error checking on the packet and then forwards it to other processes, which may do their own processing on it or discard it. The Process level allows the designer to create the processes required for use in the process models. The processes are defined using state transition diagrams along with some additional textual specifications using Proto-C which is a version of C specialized for protocols and distributed algorithms [2]. Both the state diagrams and the Proto-C code together form what OPNET terms a 'Finite State Machine'. A process model can also spawn other, child process models [2].

· The Network Editor

The Network Editor is used to specify the physical topology of a communications network, which defines the position and interconnection of communicating entities, i.e., nodes and links [1]. The specific capabilities of each node are defined in the underlying node and process models. Each model consists of a set of parameters that can be set to customize the node's behavior and the nodes can be fixed, mobile or satellite. Data can be transferred between the nodes using Simplex or duplex links that connect them. There can also be a bus link that provides a broadcast medium for an arbitrary number of attached devices [2]. Links can also be customized to simulate the actual communication channels. The network models can be very complex due to their size. This complexity is eliminated by an abstraction known as a subnet work as described earlier.

· The Node Editor

Communication devices created and interconnected at the network level need to be specified in the node domain using the Node Editor. Node models are expressed as interconnected modules. These modules can be grouped into two distinct categories [1]. The first set is modules that have predefined characteristics and built-in parameter, for example, packet generators and links, etc. The second group consists of programmable modules, which rely on process model specifications, for example, processors and queues. All nodes are defined via block structured data flow diagrams. Each programmable block in a Node Model has its functionality defined by a Process Model. Packets are transferred between modules using packet streams. Statistic wires could be used to convey numeric signals [2].

· The Process Editor

Process models, created using the Process Editor, are used to describe the logic flow and behavior of processor and queue modules. Communication between processes is supported by interrupts, which are a part of the library kernels available for proto–C. The OPNET Process Editor uses a powerful state-transition diagram approach to support specification of any type of protocol, resource, application, algorithm, or queuing policy. States and transitions graphically define the progression of a process in response to events. Within each state, general logic can be specified using a library of predefined functions and even the full flexibility of the C language. Even process themselves may create child processes to perform sub-tasks [2].
· Running a simulation

After defining all the models of the network system, we can run a simulation in order to study system performance and behavior using the simulation execution tools described earlier. OPNET simulations are obtained by executing a simulation program, which is an executable file in the host computer's file system. In fact, OPNET provides a number of options for running simulations, including internal and external execution, and the ability to configure attributes that affect the simulation's behavior [2]. OPNET simulations can be run independently from the OPNET graphical tool by using the op_runsim utility program. However, you can also run simulations from the Simulation Tool within OPNET, which offers the convenience of a graphical interface. The Simulation Tool provides the following services [2]:

· Specification of simulation sequences consisting of an ordered list of simulations and associated attribute values

· Execution of simulation sequences

· Storage of simulation sequences in files for later use.

The Probe Editor that is a part of the simulation execution tools as mentioned earlier, is used to specify which data to collect. Most OPNET models contain objects that are capable of generating vast amounts of output data during simulations. The output can be statistical or animated by pre-defined or user-customized animations. The selection of the various types of output formats can be done using the probed editor. A probe is defined for each source of data that the user wishes to enable. Probes are grouped into a probe list which, allowing them to be collectively applied to a model when a simulation is executed [2]. Several different probe types are provided by OPNET in order to capture different types of output data [1]. The statistic probe can be applied to predefined, standard statistics sometimes application-specific visualization monitoring characteristics such as bit error rates or throughput. TheAutomatic Animation Probe is used to generate animation sequences for a simulation. TheCustom Animation Probe supports the creation of custom animations. The actual specification of the animation's characteristics is defined within the user's code. Coupled Statistic Probe generates output data as the statistic probe does but, in addition, a primary module and a coupled module need to be defined. Some statistical data is generated at the primary module. This data is only generated when changes to the statistic are due to interactions with the coupled module [1].
· Data observation and collection

After the simulations have been executed, the Results Analysis tools that consist of the Analysis tool and Filter tool are used to observe and collect the data. Simulations can be used to generate a number of different forms of output, as described above. These forms include several types of numerical data, animation, and detailed traces provided by the OPNET debugger [2]. OPNET simulations support open interfaces to the C language, and the host computer's operating system, therefore simulation developers may generate proprietary forms of output ranging from messages printed in the console window, to generation of ASCII or binary files, and even live interactions with other programs [2]. However, the most commonly used forms of output data are those that are directly supported by Simulation Kernel interfaces for collection, and by existing tools for viewing and analysis. These include animation data and numerical statistics [2]. Animation data is generated either by using automatic animation probes or by developing custom animations with the kernel procedures of the Simulation Kernel's Anim package, as well as to view the animations [1]. Similarly, statistic data is generated by setting statistic probes, and/or by the kernel procedures of the Kernel's Stat package. OPNET's Analysis Tool can then be used to view and manipulate the statistical data [1].

The service provided by the Analysis Tool is to display information in the form of graphs. Graphs are presented within rectangular areas called analysis panels. A number of different operations can be used to create analysis panels, all of which have as their basic purpose to display a new set of data, or to transform an existing one [1]. An analysis panel consists of a plotting area, with two numbered axes, generally referred to as the abscissa axis (horizontal), and the ordinate axis (vertical) [1]. The user can also extract data from simulation output files and display this data in various forms. The Analysis Tool also supports several mechanisms for numerically processing the data and generating new data sets that can also be plotted such as computing probability density functions and cumulative distribution functions, as well as generating histograms. The data presented in the Analysis Tool, can also come in use by filters that are constructed from a pre-defined set of filter elements in the Filter Editor [2].

Filter models are represented as block diagrams consisting of interconnected filter elements. Filter elements may be either built-in numeric processing elements, or references to other filter models. Thus, filter models are hierarchical, in that they may be composed of other filter models [1].

· The Graphical User Interface

The GUI for OPNET first presents several options to the user, such as a new project model, node model, process model etc. For example, the user can create a new project model or edit an existing one. The GUI then brings up a world atlas, where they can view the existing network model, add new node models to the existing network or create a new network. There are several options to run existing project models, and options for the different kinds of output as described above. By double-clicking on a node model inside the network model, the user can access the process model inside that node. Inside the node model, there are options for creating packet streams, processors, servers, queues, sinks etc. These are basically, process models, which can be user-defined via state-machines. The properties for each of these models can be set or the user can also pick models from an existing library. Inside the process models, there are state-machines, which consist of proto-c code, which can be edited in order to change their functionality.

· Conclusion

OPNET is a powerful discrete-event simulation tool that is widely used in the industry because of it’s features and the huge set of options embedded in it, that assist in the simulation and modeling of large networks. It consists of libraries of existing simulated models of real-life equipment used in communication networking such as routers, switches and those used in wireless networks. These libraries are used to implement different protocols with varying input, output and behavior. OPNET has a broad portfolio for modeling, design, simulation and real-time assurance in context with detailed insight into infrastructure requirements and is an ideal tool for modeling and simulation.
Reference:

[1] OPNET online manual

[2] Network Simulations with OPNET, Chang

[3] http://www.ee.ucl.ac.uk/dcs/commercial/opnet/opnet.html
