Introduction to Omnet++ and its Services

Abdul-Rahman Elshafei

ID# 238652

1. Introduction

OMNeT++ stands for Objective Modular Network Testbed in C++. It is a discrete event simulation tool designed to simulate computer networks, multi-processors and other distributed systems. Its applications can be extended for modelling other systems as well. It has become a popular network simulation tool in the scientific community as well as in industry over the years. The principal author is András Varga, with occasional contributions from a number of people. [1]

2. Components of Omnet++[1]:

· simulation kernel library

· compiler for the NED topology description language (nedc)

· graphical network editor for NED files (GNED)

· GUI for simulation execution, links into simulation executable (Tkenv)

· command-line user interface for simulation execution (Cmdenv)

· graphical output vector plotting tool (Plove)

· utilities (random number seed generation tool, makefile creation tool, etc.)

· documentation, sample simulations, contributed material, etc.

3. Platforms of Omnet++[1]:

OMNeT++ works well on multiple platforms. It was first developed on Linux. Omnet++ runs on most Unix systems and Windows platforms (works best on NT4.0, W2K or XP).

The best platforms used are:

· Solaris, Linux (or other Unix-like systems) with GNU tools

· Win32 and Cygwin32 (Win32 port of gcc)

· Win32 and Microsoft Visual C++
4. Licensing for Omnet++:

OMNeT++ is free for any non-profit use. The author must be contacted if it is used in a commercial project. The GNU General Public License can be chosen on Omnet++. [1]

5. Simulation Modeling in Omnet++[1]
The following are types of modeling that can be used:

· communication protocols

· computer networks and traffic modeling

· multi-processor and distributed systems

· administrative systems

· ... and any other system where the discrete event approach is suitable. “

5.1 Library Modules[1]
Object libraries can be made using simple modules. The best simple modules to be used for library modules are the ones that implement:

· Physical/Data-link protocols: Ethernet, Token Ring, FDDI, LAPB etc.

· Higher layer protocols: IP, TCP, X.25 L2/L3, etc.

· Network application types: E-mail, NFS, X, audio etc.

· Basic elements: message generator, sink, concentrator/simple hub, queue etc.

· Modules that implement routing algorithms in a multiprocessor or network

· ...

5.2 Network Moduling

A model network consists of “nodes” connected by “links. The nodes representing blocks, entities, modules, etc, while the link representing channels, connections, etc. The structure of how fixed elements (i.e nodes) in a network are interconnected together is called topology. [1]

Omnet++ uses NED language, thus allowing for a more user friendly and accessible environment for creation and editing. It can be created with any text-processing tool (perl, awk, etc). It has a human-readable textual topology. It also uses the same format as that of a graphical editor. It also supports submodule testing. Omnet++ allows for the creation of a driver entity to build a network at run-time by program. [1]

Organization of Network Simulation[1]:

Omnet++ follows a hierarchical module structure allowing for different levels of organization.

· Physical Layer:

1. Top-level network

2. Subnetwork (site)

3. LAN

4. node

· Topology within a node:

1. OSI layers. The Data-Link, Network, Transport, Application layers are of greater importance.

2. Applications/protocols within a layer.

5.3 Network Description (NED)
Modular description of networks is given in NED language. The network description consists of a number of component descriptions such as channels, simple and compound module types. These component descriptions can be used in various network descriptions. Thus, it is possible for the user to customize his or her personal library of network descriptions.

The files containing the network descriptions should end with a .ned suffix. The NEDC compiler translates the network descriptions into C++ code. Then, it is compiled by the C++ compiler and linked into executable simulation. [1]

Components of a NED description[1]

A NED description can contain the following components, in arbitrary number or order:

· import statements

· channel definitions

· simple and compound module declarations

· system module declarations

6. User interfaces

The Omnet++ user interface is used with the simulation execution. Omnet++’s design allows the inside of model to be seen by the user. It also allows the user to initiate and terminate simulations, as well as change variable inside simulation models. These features are handy during the development and debugging phase of modules in a project. Graphical interface is a user friendly option in Omnet++ allows access to the internal workings of the model. [1]

The interaction of the user interface and the simulation kernel is through a well defined interfaces. Without changing the simulation kernel, it is possible to implement several types of user interfaces. Also without changing the model file, the simulation model can run under different interfaces. The user would test and debug the simulation with a powerful graphical user interface, and finally run it with a simple and fast user interface that supports batch execution. [1]

The user interfaces are a form of interchangeable libraries. When linking into a created simulation executable, the user can choose the interface libraries they would like to use. [1]

Currenly, two user interfaces are supported[1]:

· Tkenv: Tk-based graphical, windowing user interface (X-Window, Win95, WinNT etc..)

· Cmdenv: command-line user interface for batch execution

Simulation is tested and debugged under Tkenv, while the Cmdenv is used for actual simulation experiments since it supports batch execution.

6.1 Tkenv

Tkenv is a portable graphical windowing user interface. Tracing, debugging, and simulation execution is supported by Tkenv. It has the ability to provide a detailed picture of the state of the simulation at any point during the execution. This feature makes Tkenv a good candidate in the development stage of a simulation or for presentations. A snapshot of a Tkenv interface is shown in figure 1. [1]

Important feaures in Tkenv[1]:

· separate window for each module's text output

· scheduled messages can be watched in a window as simulation progresses

· event-by-event execution

· execution animation

· labelled breakpoints

· inspector windows to examine and alter objects and variables in the model

· graphical display of simulation results during execution. Results can be displayed as histograms or time-series diagrams.

· simulation can be restarted

· snapshots (detailed report about the model: objects, variables etc.)

It is recommended for testing and debugging when used with gdb or xxgdb. Tkenv provides a good environment for experimenting with the model during executions and verification of the correct operation during the simulation program. This is possible since we are able to display simulation results during execution.

6.2 Cmdenv

Cmdenv is designed primarily for batch execution. It is a portable and small command line interface that is fast. It compiles and runs on all platforms. Cmdenv uses simply executes all simulation runs that are described in the configuration file.

Figure 1. Example of a Tkenv User Interface in Omnet++.

[image: image1.png]OMHeT++/Tkenv [[o1x]
Eile gmuide Irace |nspect View Qptions Help

swp | B> | Fastos | Bavesrs | Uit |

Run #1: token Event #23

0090602936 (9ms) | Mext: #7 token.comp[1]mac

Pox Event #2z, 1=0,0052538180 { ns)., Hodule #7 “token,conp[1].nac’ .
Jox Event #24, T=0.0061202135 { Bns)., Hodule #4 “token,conp[0] gen’.
lgen[01: Generated new msg: "0-->2"

fox Evere w2, T=0_00B122135 ¢ &
IHACLOT: New nsg From higher Laer:
IHACLOT: = adding to send-queue
[ox Event #2€, 1=0,0085533833 { ns). Module #12 “token,conpl2].gen”,
lgen[21: Generated new nsg: "2-->0"

fox Event %27, 1=0,0085533833 (_ 8ns). Hodule #11 “token,conp2].nac”,

IHACL21: New mog From hisher Layers "2—30"

HACL21: - adding to send-queue

Jox Event #2£, 1=0,0030802965 { Sns). Hodule #3 “token,conp[1].gen’. J

dule 2 “token.connC0].nac”.

lgen[11; Generated new nsg: "1-->2"

7. Expected Performance of Omnet++

One of the most important factors in any simulation the is the programming language. The common languages used are C/C++ based. Omnet performance is of a particular interest since it reduces the overhead costs associated with GUI simulation library debugging and tracing. The drawback found in Omnet++ was its simulations were 1.3 slower than it C counterpart.
Reference:

[1] OMNET++ User Manual: http://whale.hit.bme.hu/omnetpp/
