
Methodology

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

1–21

� The Author(s) 2023

DOI: 10.1177/00375497231177123

journals.sagepub.com/home/sim

Knowledge-based and data-driven
behavioral modeling techniques
in engagement simulation

Zhi Zhu1 , Tao Wang1, Hessam Sarjoughian2 , Weiping Wang1

and Yuehua Zhao3

Abstract
As knowledge and data increase in scale and complexity, it is more difficult to apply these two key assets to achieve opti-
mal effectiveness in engagement simulation. The aim of this study was to investigate the techniques of knowledge and
data integration with respect to the development of smart agents to predict accurate behaviors in tactical engagements.
To reduce the complexity of combat behavior representation, with respect to the functions, we represented subject
matter expert operational knowledge by proposing multiple levels of cascaded hierarchical structure, namely, the func-
tion decision tree, to increase the readability and maintainability of the behavioral model. For decision points in a beha-
vioral model, smart agents can be trained based on data samples collected from rounds of constructive simulations
which provide validated physical models and tactical principles. As a proof of concept, we constructed a simulation
testbed of multi-warhead ballistic missile penetration, which generated 129,600 constructive simulations over a total of
84 h. Thereafter, we selected 5817 data samples (i.e. ~4.5% of the simulations) using an operational metric of total
rewards exceeding 100. The data samples are used to train an artificial neural network and then this network is used to
develop a deep reinforcement learning agent. The results revealed that the training process iterated nearly 17,000
epochs until the policy loss decreased to an acceptable low value. The smart agent increased the ratio of ballistic missile
target hits by 18.96%, a significant increase when compared with the traditional rule-based behavioral model.

Keywords
Agent-based systems, artificial intelligence, defense systems, deep reinforcement learning

1. Introduction

Over the past several decades, the capacity of artificial

intelligence (AI) has steadily progressed to levels that

match and outperform professional humans, as trained

AI agents have succeeded in the games of chess, Go, and

StarCraft II.1,2 This trend is of significance to the mili-

tary modeling and simulation (M&S) community, as

games share numerous characteristics with combat simu-

lations. Several commonly used combat simulations fall

into three categories known as virtual, live, and con-

structive.3 Constructive simulations are defined based on

model granularity to campaign, mission, engagement,

and engineering levels.4 For the engagement simulation,

models are tailored at a functional level of abstraction

instead of using a set of hypothetical probabilities to rep-

resent input parameters in a mission-level simulation or

processing signal-level information in an engineering-

level simulation.5

In recent years, some researchers have used AI algo-

rithms to develop engagement simulations to predict rea-

listic behaviors. In June 2016, for example, an air combat

agent referred to as Alpha AI defeated an experienced

human pilot and demonstrated a significant advantage.6

Similarly, in the final of the AlphaDogfight trials orga-

nized in August 2020, Heron systems outperformed seven

competitors and won the championship; thereafter, it

1College of Systems Engineering, National University of Defense

Technology, China
2School of Computing, Informatics, and Decision Systems Engineering,

Arizona State University, USA
3College of Information Management, Nanjing University, China

Corresponding author:

Tao Wang, College of Systems Engineering, National University of

Defense Technology, Changsha 410073, Hunan, China.

Email: wangtao1976@nudt.edu.cn

https://doi.org/10.1177/00375497231177123
https://journals.sagepub.com/home/sim
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00375497231177123&domain=pdf&date_stamp=2023-06-12

readily defeated the fighter pilot in all five rounds of vir-

tual battle.7

Modeling the dynamic behavior of the smart agent is

among the challenges facing the development of engage-

ment simulations. This includes the formulation of simula-

tion and data modeling techniques requiring domain

knowledge and observed data. Simulation modeling is a

classical knowledge-based method for the development of

causal relationships between a set of controlled factors and

the corresponding set of responses.8 This method is of sig-

nificance and indispensable with respect to evaluating the

effectiveness of combat engagements, given that actual

battle scenarios are rarely observed in practice, as indi-

cated by the low availability of historical data. Moreover,

most of the military training data are classified or unob-

tainable due to unrealistic conditions such as hazardous

test environments, high costs of trials, and limited avail-

ability of opposing platforms. It should be noted that simu-

lation modeling may not have feasible physical principles

or behavioral models under our current knowledge sys-

tem.9 It is also common knowledge, especially in the

M&S community, that a simulation model is a certain

aspect of representation for a given set of problems. Thus,

it is generally influenced by various ideal assumptions or

subjective factors and may omit critical factors when con-

sidering the ability and preference of different simulation

modeling personnel.

As an alternative, establishing a data model based on

observed data and optimizing the model through continu-

ous iterations and training can gradually create a model

that approaches the behavior of the actual system.

Different from simulation modeling, the data model repre-

sents correlation relationships between a set of features

and a set of tags. Although data modeling techniques can

bypass domain knowledge to directly provide solutions to

problems, they are not always capable of providing com-

plete solutions due to their interpolative nature, and the

validation and training data sets are typically randomly

selected from the same data envelope. Furthermore, it can

present challenges to developers, especially with respect

to the design of systems with high safety and high accu-

racy and precision, as this method does not provide signif-

icant insight into physical systems.10,11 Consequently, the

data model cannot adapt to policy interventions and unex-

pected events, resulting in predictions that are generally

inconsistent with some actual scenarios.

The main contribution of this study is the investigation

of the application of the data-driven data modeling method

to the prediction of smart behavior while providing

insights into the knowledge-based simulation modeling

method. A behavioral modeling approach referred to as the

function decision tree (FDT) was designed and developed

to represent behaviors in the form of a multi-cascaded hier-

archical structure. Based on the behavioral model devel-

oped using FDT, smart agents can be trained using the data

collected from constructive simulations of combat scenar-

ios, thus allowing the agents to better select a policy to

complete assigned missions. In addition, this study pro-

vides an experimental framework based on simulations

with higher fidelity, which allows for fewer simulation

runs and shorter time periods for model training via subject

matter expert knowledge. Compared with most of the stud-

ies conducted by either simulation modeling or data mod-

eling, the proposed knowledge-based and data-driven

behavioral modeling method combines the knowledge and

data domains. This provides a hybrid driving mode that

benefits from both, which will play a significant role in

future engagement simulations.

The remainder of this paper is organized as follows.

Section 2 presents an investigation of the history of

engagement simulation modeling development via a series

of typical modeling paradigms, simulation platforms, and

optimization algorithms. Section 3 details the proposed

methodology with respect to the modeling architecture,

FDT, and experimental framework. A case study of multi-

warhead ballistic missile penetration is illustrated in

Section 4, and the results and analysis are presented in

Section 5, followed by the conclusions and scope of future

research in Section 6.

2. Related work

In recent years, two well-known categories that are com-

monly accepted and widely used in the community are

knowledge-based simulation modeling and data-driven

data modeling, which led to various emerging methodolo-

gies and supporting technologies. These two modeling

methods have been gradually combined to form a novel

modeling paradigm, in addition to the rapid development

of AI and big data, which is referred to in this paper as

hybrid modeling using knowledge and data. A brief over-

view of these three categories of modeling techniques used

in engagement simulation is shown in Figure 1.

2.1. Knowledge-based simulation modeling

With reference to the available literature, the knowledge-

based simulation modeling method has undergone two

main phases, that is, the standard specification-based phase

and specific domain-oriented phase, as described below.

2.1.1. The standard specification-based phase. This phase is

mainly focused on building standard specifications to tech-

nologically address the syntactical heterogeneity of differ-

ent simulation modeling languages. The objective of

building a standard specification is the development of a

commonly accepted specification or formalism to promote

structural model composability at the syntactical level

with well-defined execution protocols (e.g. operational

2 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

semantics) but without domain-specific behavioral seman-

tic. This phase comprises two main types of simulation

modeling concepts:

� The first is with respect to the representation of the

model static structure, which emphasizes the modu-

larization and componentization of the model, with

an aim to define open standard specifications in

support of combining and reuse of existing simula-

tion model libraries. Typically, there are common

model specifications such as the High Level

Architecture (HLA) proposed by Defense Modeling

and Simulation Office in 1995,12 Base Object

Model (BOM) proposed by the Simulation

Interoperability Standards Organization (SISO) in

1998,13 and Simulation Model Portability proposed

by European Space Agency in the mid-1990s,

which was updated in 2011 and renamed the

Simulation Modeling Platform 2.0 (SMP2).14

� The second is with respect to the model dynamic

behavior, with a focus on the continuity between

the conceptual model and the executable model in

the life cycle of model development. In general, it

applies formal and graphical modeling techniques

to build behavioral models that can be simultane-

ously understood by humans and executed by com-

puters. There are currently several formal

approaches with respect to behavioral modeling,

such as Petri nets,15 finite-state machine,16 and par-

allel functional decision tree.17

2.1.2. The specific domain-oriented phase. This phase speci-

fies model elements and relationships based on semantics,

which comprises two types of modeling concepts in sup-

port of model composability. They are the domain- and

application-level model framework:

� The first involves the development of a domain

level of the model framework representing the

domain invariant knowledge (DIK) for a given sys-

tem. Such widely used systems include the

Extended Air Defense System,18 System

Effectiveness Analysis Simulation,19 and Joint

Theater Level Simulation.20 In these systems, a

model framework represents the model commonal-

ity and model generality at a high level of abstrac-

tion, prescribing the development of related

subsystems or components.
� Second, based on a general simulation platform, an

application level of the model framework repre-

senting Application Variant Knowledge is designed

for a specific application problem. Such frame-

works include the model framework of KD-HLA in

the application of joint operation21 and the model

framework based on SMP2 in the sea warfare

application.22

2.2. Data-driven data modeling

The above two mentioned phases of simulation modeling

techniques are knowledge-based. However, with an

increase in the capacity to collect, store, transmit, and pro-

cess data in recent years, data have accumulated exponen-

tially. Thus, it is necessary to investigate techniques for the

effective analysis and mining of data. Unlike knowledge-

based simulation modeling, such techniques are data-based

and can be classified into two categories.

2.2.1. Data processing and analysis. The first is the tradi-

tional technology of data processing and analysis such as

data farming and data mining. Data farming was proposed

by the Marine Corps Combat Development Command in

199823 and has attracted significant attention from the

worldwide military domain. In addition, multiple relative

techniques have been updated and rapidly improved. It is

the general consensus that data farming mainly includes

five steps, namely, fertilization, cultivation, planting, har-

vesting, and regeneration.24 Compared with data farming,

data mining is a significantly more popular method of mass

data processing with advanced theories and applications. It

originated from the knowledge discovery in databases and

was first reported at the 11th International Conference on

Artificial Intelligence held in Detroit in August 1989. Data

mining, which is referred to as knowledge discovery in

Figure 1. Three categories of modeling techniques used in engagement simulation.

Zhu et al. 3

databases, is a complex process of extracting and mining

unknown patterns from a large amount of data.25,26

2.2.2. Machine learning algorithms. The second aspect

includes a series of machine learning algorithms used for

data analysis. Unlike traditional data modeling techniques,

machine learning is concurrent with the rapid development

of AI and big data, thus providing innovative means for

data analysis. It mainly involves techniques for extracting

patterns and models from structured data, that is, learning

algorithms. In particular, numerous methods in data

mining originate from machine learning, such as linear

discriminative analysis,27 decision tree,28 artificial neural

networks,29 support vector machine,30 deep learning,31

and reinforcement learning,32 among others.

In a survey of reinforcement learning, it models a given

problem as the Markov process.33 Based on dynamic pro-

gramming and temporal-difference (TD) learning, many

reinforcement learning algorithms have been developed,

such as Deep Q-Network (DQN)34 and Deep Deterministic

Policy Gradient (DDPG).35 DQN will inevitably lead to

the overestimation of the real action value of Q network

during training due to the limitations of TD learning.

Hence, Double DQN36 is proposed to alleviate the prob-

lem. Based on the Actor-Critic framework, DDPG per-

forms not only well in continuous action space, but also

faster than DQN in discrete action space. Many in-depth

reinforcement learning algorithms with superior perfor-

mance such as A3C (Asynchronous Advantage Actor-

Critic),37 TRPO (Trust Region Policy Optimization),38 and

SAC (Soft Actor-Critic)39 have been proposed.

2.3. Hybrid modeling using knowledge and data

As previously alluded to, this type of modeling technique

involves an attempt to build a smart agent based on knowl-

edge and data. It is, therefore, critical to design a two-

wheel hybrid-driven mechanism for the appropriate inte-

gration of knowledge and data. In particular, this concept

emerged at the start of the big data era. For example, the

theme of the Winter Simulation Conference (WSC) in

2014 was ‘‘Exploring big data through Simulation.’’40 As

in other scientific domains, modeling and simulation are

anticipated to benefit from big data and deep learning.41

Moreover, with reference to the available literature, simi-

lar hybrid-driven concepts include gray box modeling,42

hybrid modeling,43 complementary collaborative model-

ing,44 and knowledge computing,45 and data assimila-

tion.46,47 Regarding both knowledge and data as the basis

of behavioral modeling, these modeling techniques make

three significant contributions to the open literature.48

2.3.1. Incorporating data into knowledge-based modeling. Data

facilitate knowledge-based modeling with respect to the

reduction of input samples, estimation of unknown model

parameters, and analysis of simulation results. The subjec-

tivity of simulation models can be reduced to a significant

extent while improving the accuracy of the system beha-

vior prediction. This is highly suitable for systems that

have accumulated rich domain knowledge over a long time

period and are the preferred alternative for most advanced

simulation systems. Typical studies include the hybrid

application of simulation modeling and data analysis in the

field of manufacturing and logistics,49 and the integration

of machine learning in the Discrete Event System

Specification simulator to optimize the simulation execu-

tion time.50

2.3.2. Integrating knowledge into data-driven
modeling. Knowledge assists data-driven modeling by pro-

viding simulation data sets. The main advantage is reduc-

ing the cost of data collection, and this method is

appropriate for systems with a large amount of data, espe-

cially systems that require expensive or indirect data col-

lection. Several published methods revealed that

simulations are considered as the pre-processing stage of

machine learning,51,52 and simulations are used to generate

a data stream for diagnosis analysis.53

2.3.3. Emphasizing the interoperation of knowledge and
data. A common approach is referred to as digital twins.54

It combines physical entities with their simulated (digital)

counterparts. A digital model evolves in real time by con-

tinuously accepting data to achieve consistency with phys-

ical objects over the entire life cycle of model products.

An example is a digital model for future aircraft proposed

by the U.S. Air Force Laboratory.55 Modeling and simula-

tion techniques support the development of digital twins

for analyses, predictions, diagnoses, and training important

to the development, operation, optimization, and decision-

making of their physical object counterparts.

2.4. Summary

In summary, based on these studies, it can be concluded

that knowledge-based and data-driven modeling tech-

niques serve as a technical foundation for the behavioral

modeling of engagement simulations. However, it should

be noted that the sole use of one or the other cannot accu-

rately predict behaviors due to the increasing complexity

of knowledge and data. Knowledge-based simulation mod-

eling led to the development of numerous unified model

specifications, modeling formalisms, and simulation proto-

cols. In addition, multiple, extensively used composable

modeling frameworks were established for various simula-

tion systems. These methods solved the syntactical hetero-

geneity and semantic composability of models; however,

there were several problems such as weak model

4 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

extensibility and maintainability, low degrees of model

engineering, and a lack of intelligent modeling capability.

Data-driven data modeling allows for intelligent model-

ing using big data and AI. However, due to the complexity

and unavailability of observed data in military simulations,

such methods generally do not play an improved role.

Hence, knowledge-based and data-driven behavioral mod-

eling, as a combined means of using knowledge and data,

is attracting significant attention across various research

fields. This type of hybrid knowledge and data stands to

provide superior advantages compared to the use of either

knowledge or data. However, there are challenges associ-

ated with their combined use, and only a few systematic

theoretical methods and technologies were developed for

engagement simulations with reference to the available

literature.

3. Methodology

This section presents a description of knowledge-based

and data-driven behavioral modeling architecture in

engagement simulations. Thereafter, the FDT method for

behavioral modeling is detailed with respect to its defini-

tion, metamodel, and execution. For validation, an experi-

mental framework is provided for comparative simulation

experiments between the traditional experienced rule-

based and the intelligent smart agent-based behavioral

models.

3.1. Modeling architecture

The representation of a combat system is generally decom-

posed into physical knowledge and behavioral knowledge

to reduce its analytic complexity.56 Due to the different

characteristics between these two types of knowledge,

each involves unique modeling formalisms and

programming languages. For example, physical knowledge

generally involves the static structure and inherent

dynamics of the system. In general, it is the most stable

part and is readily manageable. At present, there are

numerous modeling formalisms adopted to capture physi-

cal knowledge, such as class diagrams, static or dynamic

data flow, discrete event, and differential equations, among

others.

In contrast, behavioral knowledge is in the cognitive

domain, where humans play an important role. Behaviors

of systems are multifaceted and not simple to extract and

share. Nevertheless, most modelers document it under tac-

tical principles or if–then rules according to the decision-

maker’s needs and preferences. These understandings are

captured for use in inference engines. It should be noted

that this study was focused on the representation of beha-

vioral knowledge based on the premise that physical

knowledge was appropriately implemented and was pack-

aged as a collection of available dynamic link libraries.

Figure 2 presents the knowledge-based and data-driven

behavioral modeling architecture in engagement simula-

tion. As can be seen from this architecture, physical knowl-

edge is represented as physical models that are finally

implemented by C++, whereas behavioral knowledge is

represented as cognitive models that are implemented in

Python and PyTorch scripts.

On the right side of this figure, for example, the physi-

cal model is based on a set of basic modeling elements and

relationships using Unified Modeling Language (UML),

such as platform, sensor, weapon, and countermeasures.

All of these elements are inherited by a common abstract

element denoted as entity. Moreover, elements may be

related, for example, a platform can be equipped with con-

crete sensors, weapons, and countermeasures.

On the left side, the behavioral model is mainly based

on a tree structure and implemented into a list of scripts.

Figure 2. The knowledge-based and data-driven behavioral modeling architecture.

Zhu et al. 5

This tree structure receives data as inputs for internal com-

puting in data nodes, utilizes a set of cascaded decision

points to determine an output, and then translates the out-

put to a concrete control action. In particular, a smart agent

can provide appropriate control for each decision point, for

example, an artificial neural network, a heuristic algorithm,

or a fuzzy logic system.

Regarding interactions between the physical and beha-

vioral blocks in this architecture, a set of pre-defined inter-

faces were developed to be called at appropriate instances.

For example, the behavioral model uses the state informa-

tion from the physical model and then provides the action

instruction after a series of internal decision logic

processes.

3.2. Function decision tree

Considering the complexity and uncertainty of behavioral

modeling, it is difficult for traditional simulation modeling

methods such as a rule-based system and state diagram to

accurately reflect the actual combat behavior. As detailed

in this section, the FDT was designed with respect to the

function, including its basic definition, prescribed metamo-

del, and mechanism of execution. Using this novel method,

simulation modelers are only required to consider the input

and output of each decision node, and not the internal deci-

sion logic.

3.2.1. Definition. Different from decision tree in machine

learning, the FDT organizes decision nodes according to

the business process principle, whereas the decision tree

considers attributes as nodes and divides them using a

metric referred to as information gain. Moreover, decision

tree is a type of machine learning algorithm that is gener-

ally used to solve classification problems, whereas FDT is

focused on a concrete function that transforms inputs to

outputs. The formal definition of FDT is presented below:

Definition 1: FDT is defined as a five-tuple, that is,

FDT=(T ,Ndata, Naction, Ndecision, j, d, l), where T is

the time set, Ndata represents the set of data nodes, Naction

represents the set of action nodes, Ndecision represents the

set of decision nodes, j : Ndata ! Ndecision represents the

input function of data, d : Ndecision 3 Ndata ! Ndecision rep-

resents the controlling flow or the decision-making func-

tion, and l : Ndecision 3 Ndata ! Naction represents the

action output function.

The design concept of FDT mainly considers three fac-

tors. First, most current simulation modeling methods con-

sider the state and event as two critical elements, whereas

FDT defines models with respect to the function. Hence,

simulation modelers are not required to maintain a large

number of states and events, among other variables, which

can effectively alleviate the explosion problem of the state

space.

Second, FDT adopts a hierarchical structure to describe

the causal relationship and data flow between decision

points. Thus, simulation modelers can promptly locate a

node and change nodes, which leads to improved model

maintainability and extensibility. Third, the nodes of FDT

are abstracted at a higher level. In particular, the nodes

can be considered black in capable of internal computing,

as modelers do not require detailed knowledge of their

operations.

3.2.2. Metamodeling. Based on the abovementioned FDT

concept, a UML class diagram was developed to define its

metamodel, as shown in Figure 3. In this diagram, the root

denoted as Tree aggregates sets of Node and Edge ele-

ments. There are a total of three main types of tree nodes:

DataNode, DecisionNode, and ActionNode. Note the Tree,

Node, and CompositeNode are abstract and the latter two

have a composition relationship. A generalization set

{complete, disjoint} is used to constrain the relationships

between the Node and the ActionNode and

CompositeNode. For example, the node list is complete

with only three types of nodes, so a {complete} constraint

is added. Usually, there is no overlapping in these nodes.

Therefore, the generalization set is also defined to have

the {disjoint} constraint. For link relationships between

nodes, a node has multiple incoming or outgoing edges,

but an edge must have one source node and one target

node.

3.2.3. Execution. After the design of the metamodel, the

following step was to develop effective algorithms to

ensure that the computation or execution of model ele-

ments is in accordance with the factual causal relation-

ships in the physical world. In particular, the node causing

the change of other nodes should be executed before the

influenced node.

The FDT simulation execution algorithm is mainly

divided into the decision logic control and data transmis-

sion processing parts (see Figure 4). The decision logic

control is responsible for controlling the logic conforming

to the causal relationship defined by the real world. For

instance, as shown in Figure 4(a), an available decision

logic is R to D2, D2 to D3, and D3 to A4 in the order

given, where R represents the root node, D represents a

decision node, and A represents an action node. The data

transmission processing is responsible for sorting the data

nodes to ensure that the data nodes as input are calculated

before the data nodes as output. For instance, an available

topological sorting should be A or B or C or G is calcu-

lated first, then D or E is calculated, F is calculated, and

finally H is calculated as shown in Figure 4(b).

6 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

The decision logic control is shown in Algorithm 1. The

initialization is responsible for the construction of FDT,

which is mainly used to construct the parent–child relation-

ships among nodes. The decision node accepts the data

output from data nodes and then generates the subsequent

decision or action node to be executed based on the

internal decision logic. The action node directly executes

concrete actions.

A data node is mainly responsible for computing data

and transmitting the data to other nodes. In this process,

the input–output relationship of data nodes is in the form

of forward computing, to ensure accurate causal

Figure 4. Two instances of the FDTexecution for (a) decision logic control and (b) data transmission processing.

Figure 3. The FDT metamodel.

Zhu et al. 7

relationships. Hence, all nodes should be topologically

sorted, as expressed by Algorithm 2; thus, the final result

can be obtained by scanning each node in the sorted

nodes.

3.3. Experimental framework

After the appropriate preparation of the physical and beha-

vioral models, experiment design can be conducted to gen-

erate data samples based on Monte Carlo simulation runs.

The data samples are then used to train a smart agent based

on a specific intelligent algorithm, and this trained smart

agent can be called in the same simulation scenario, thus

forming a closed loop of the experimental framework. As

shown in Figure 5, the experimental framework of intelli-

gent training and testing mainly includes four workflows.

First, the workflow of the initial experiment demon-

strates the development of a simulation application based

on several general steps, each of which has a correspond-

ing tool. For example, we used a tool referred to as

DataManager to manage a large amount of prototype data,

adopted MagicDraw to design a conceptual behavioral

model, and applied PyCharm to implement the conceptual

model into executable codes. The prototype data and beha-

vioral model are integrated into the ScnEditor to automati-

cally instantiate and compose relevant model components.

When a scenario is developed, an experiment can be

designed in the ExperimentManager. This step involves

the selection of factors and responses for the generation of

experimental alternatives by a specific experiment design

method such as comprehensive design, orthogonal design,

and Latin hypercube design. Thereafter, Monte Carlo

simulation runs can be executed to generate data for statis-

tical analysis and visual display using the SimAnalysis and

SimDisplay tools, respectively.

Second, the data generated from the previous step are

collected and pre-processed in the workflow of machine

learning (ML) with the objective of training a smart

agent. In general, the generated simulation data typically

contain invalid data, despite the employment of an

appropriate experiment design method that allows for

fewer simulation runs. Hence, it is necessary to remove

invalid data items or translate the cyclical features into

sine and cosine components to increase model perfor-

mance and allow for the faster training of agents. Before

training, data samples are classified into training, valida-

tion, and test sets, as follows. In particular, a larger part

is allocated for training and less for validation using a

cross-validation technique. The remaining data are then

used for testing. Once the loss function converges to an

accepted value, we terminate the training process, and

the trained model is saved for the following deep rein-

forcement learning (DRL) workflow.

Third, the DRL process loads the initial policy network

trained from ML and continuously interacts with the com-

bat environment to learn an improved policy. A policy rep-

resents the basis upon which an agent selects an action in a

given state. Based on this policy, an agent can produce an

action to change the outside environment and simultane-

ously receive a reward, thus constructing a connection

between the state, action, and reward as a form of memory

for future decision reference.

Forth, several comparative experiments were designed

to evaluate the performance of the trained agent by con-

structing a basic scenario for the same initial setting. The

only difference was the decision models to be called. The

first was the best rule-based decision model analyzed from

the simulation results of the initial experiment. The second

was the smart agent learned from the filtered data samples

Algorithm 1. Decision logic control.

1 # Initialization of the FDT
2 define a node with its list of inputs
3 for node in inputs do
4 append self into the outputs of node
5 end
6 # Execution of the FDT
7 get the root of FDT
8 if root is a decision node then
9 if conditions are satisfied then
10 iterate and scan the sub-tree
11 else return
12 else if an action node then
13 do corresponding actions
14 else throw an error of ‘‘unknown type of node’’

FDT: function decision tree.

Algorithm 2. Data transmission processing.

1 # Initialization of the list of sorted nodes
2 define a tree as a given FDT dictionary
3 while tree is not none do
4 obtain all nodes with outputs o
5 obtain all nodes with inputs i
6 list A = o� i # nodes that have only outputs but with no

inputs
7 list B = i� o # nodes that have only inputs but with no

outputs
8 if list A is not empty then

append a random node in A into list S
9 delete the random node from the FDT dictionary
10 for node in A output nodes do
11 if node is in list B and not in list S then
12 append it to list S
13 else throw an error ‘‘FDT contains circular structure’’
14 return list S
15 end while

FDT: function decision tree.

8 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

using the ML method, and the third was the trained policy

based on the DRL.

4. Case study

This section details the combat scenario, presents the bal-

listic missile model, and specifies the smart DRL agent

used for the intelligent target assignment problem.

4.1. Scenario description

To develop a simulation application, it is necessary to

apply a simulation system with a high fidelity and extensi-

ble model. In this study, we applied Weapon Effectiveness

Simulation System (WESS)56 to conduct simulations and

demonstrate the integration of smart agents.

4.1.1. Combat configuration. In the simulation scenario, the

red side considers six important blue side cities as its tar-

gets to destroy by launching a ballistic missile with six

intelligent warheads. The goal of the blue side is to pre-

vent ballistic missile attacks on the cities. Hence, the blue

defense systems are required to identify and locate the

incoming enemy missiles within a minimal time period

and realize early interception. The forces on both sides are

listed in Table 1. The blue side has a relatively complete

defense system composed of multiple cross-domain

Figure 5. The experimental framework of intelligent training and testing.

Table 1. Force composition of both sides.

Side Entity Number Description

RED Launching silo 1 A launching base that contains ballistic missiles
Ballistic missile 1 A booster rocket that contains six warheads

BLUE C2 center 1 A center of command and control for battle management
Forward radar 2 Two forward radars that provide early warning information
GBI base 1 An intercepting base equipped with 44 air defense missiles
Warship 1 A warship equipped with 36 surface-to-air missiles
Satellite 3 Three geostationary earth orbit satellites
Cities 6 Six important targets with high value

GBI: ground-based interceptor.

Zhu et al. 9

defense devices such as satellites, radars, warships,

ground-based interceptor (GBI) base, and center of com-

mand and control (C2).

Figure 6 presents the combat process of the simulation

scenario. As can be seen from this figure, the scenario

considers several classical tactics of attack and defense

engagement. For example, the red side mainly includes

cooperative detection, threat assessment, orbit maneuver,

target assignment, and return to orbit. The blue side

mainly includes defense devices composed of a System of

Systems with the objective of protecting assets from

incoming threats.

At the start, the launching silo launches a ballistic mis-

sile. After the booster stage, the loaded warheads are

released. Each warhead has a sensor, which is turned on

when approaching some pre-defined location. Based on

the detected information, the warhead may maneuver to

change its orbit.

In the booster stage of the ballistic missile, the early

warning satellite captures the infrared radiation and reports

to the C2 center of the defense side. After acquiring the

flight trajectory information of the incoming missile, the

C2 center transmits it to the early warning radar for further

detection and tracking. Using the data from early warning

radars, the fire and control radar maintains tracking using

more accurate data. When the predicted interception point

accuracy exceeds the pre-determined threshold, the air

defense base launches missiles to intercept the incoming

threats.

After launching interceptors from blue-side defense sys-

tems, on-board sensors from red-side warheads may iden-

tify them via intelligent cooperative detection. Thereafter,

the warhead performs threat assessments according to its

own state and the detected interceptor status. When the

most threatening target is identified, the warhead makes

decisions with respect to several aspects such as the

timing, duration, and direction of maneuverability. If the

penetration succeeds, it will re-allocate the targets for those

successful warheads, return along the original orbit, and

finally destroy the designated targets.

4.1.2. Physical computation. As this is within the scope of

the physical domain, and not considered as the focus of

this study, a brief overview of the physical aspects of the

ballistic missile model is presented. In the launching coor-

dinate system, a three-degree-of-freedom ballistic missile

model is expressed by equation 1

mv0=R+G +P+FECI +FKI +Fm

x0= v

�
ð1Þ

where v and x represent the vectors of the velocity and

position, m represents the mass, P represents the thrust, R

represents the aerodynamic force, G represents the gravity,

FECI represents the centrifugal inertial force, FKI repre-

sents the Coriolis force, and Fm represents the control

force related to the current state of the missile.

The aerodynamic force Rv(� D, L, 0) in the velocity

coordinate system requires translation to R in the launch-

ing coordinate system

Q= 0:53 r 3 V 2

D=CD 3 Q 3 ArREF

L=CL 3 a 3 Q 3 ArREF

8<
: ð2Þ

where r represents the air density, V represents the speed,

CD represents the drag coefficient, CL represents the lift

coefficient, a represents the attack angle, and ArREF repre-

sents the reference area.

The gravity G(0, �G, 0) in the NUE (North, Up, East)

coordinate system requires translation to G in the launch-

ing coordinate system

Figure 6. The combat process of ballistic missile penetration.

10 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

G=
mGC

(RE+ h)2
ð3Þ

where GC = 3:9863 1014 (m3=s2), h (m) is the height,

and RE (m) is the earth radius.

The thrust P(ph, 0, 0) in the body coordinate system

requires translation to P in the launching coordinate

system

Pn =
P0 + Sn(p0 � ph) n= 1

P0 � Snph n= 2, 3

�
ð4Þ

where P0 represents the pure thrust, Pn represents the n-

stage vacuum thrust, Sn represents the n-stage nozzle area,

p0 represents the surface standard atmospheric pressure,

and ph represents the h-height atmospheric pressure.

The centrifugal inertial force FECI in the Earth-

Centered, Earth Fixed (ECEF) coordinate system requires

translation to the launching coordinate system

F 0ECI =� mW 0
EE

W 0
EE =v 3 (v 3 v)= (v � r)v� v2r

�
ð5Þ

where r is the geocentric vector diameter of missile, and v

is the rotational acceleration of the earth.

The Coriolis force FKI in the ECEF coordinate system

requires translation to the launching coordinate system

F 0KI =� mW 0
KE

W 0
KE = 2vv

�
ð6Þ

where v is the rotational acceleration of the earth, and v

represents the velocity of the missile.

4.1.3. Behavioral representation. Based on the proposed

FDT method, the behavioral model of the ballistic missile

was developed using the mechanism of the UML profile,

as shown in Figure 7.

In particular, there are three types of stereotypes with

respect to three key modeling elements of the FDT meta-

model (see Figure 3), including �DataNode�,

�DecisionNode�, and �ActionNode�. Moreover, this

profile defines two types of stereotypes, that is,

�DataEdge� and �DecisionEdge�, which represent

data transmission and decision control, respectively.

Concretely, data transmission is represented by a dashed

line with a hollow triangle as an arrowhead, and decision

control is represented by a solid line with a solid

arrowhead.

The root of the behavioral model is the

CombatDecision node, which applies the

�DecisionNode�stereotype. This node is used to deter-

mine the decision path that the model selects based on the

current battle scenario, in addition to the performance of

the ballistic missile. Hence, it receives five data nodes as

its inputs, namely, RemainingFuel, WarheadVelocity,

RelativeHeading, RelativeDistance, and DeflectionAngle,

and two decision nodes as its outputs, that is,

RuleDecision and NetDecision. If this model selects the

rule decision process, it uses a priori knowledge as its

inputs, such as the optimal distance and optimal time to

Figure 7. The behavioral model of the ballistic missile developed using the FDT method.

Zhu et al. 11

initiate the maneuvering action, in addition to the pre-

defined scheme of target assignment. Thereafter, this

model performs definite actions such as automatic maneu-

vering or inertial flight. In contrast, if the net decision is

selected, the model integrates a deep neural network

(DNN), which is a data node. Based on the data node, the

model further determines an improved distance and time

of maneuvering, or an improved scheme for target assign-

ment. Furthermore, this model parses the net outputs and

then performs relevant actions.

4.2. Smart agent
4.2.1. Target assignment. In multi-warhead ballistic missile

penetration, if a ballistic missile carries m warheads fight-

ing against n targets, the target assignment matrix is

X = ½xij�, where 04 i \ m, 04 j \ n, and xij = 0 or 1.

When xij = 1, this indicates that Target tj is assigned to

Warhead wi; otherwise, it is unassigned. In the phase of

target assignment, each target should be assigned a mini-

mum of one warhead, and each warhead should have one

target to attack; thus,
Pn�1

j= 0 xij ø 1 and
Pm�1

i= 0 xij = 1. If

rij is set as the reward for an attack of Warhead wi on

Target tj, and the maximization of total rewards is consid-

ered as the assignment goal, the target assignment model

is established as follows

max
Pm�1

i= 0

Pn�1
j= 0

rij � xij

s:t:

Pm�1
i= 0

xij = 1

Pn�1
j= 0

xij ø 1

xij 2 f0, 1g

8>>>>><
>>>>>:

ð7Þ

Consider the reward rij where target tj is assigned to war-

head wi. Its design should be in accordance with the fol-

lowing principle: different schemes of target assignment

have a significant influence on the final result of engage-

ment. That is, the result of target assignment should be

sensitive to the RTH (Ratio of Target Hits) index and an

executable goal function that is translated from the com-

mander’s intent.57,58

Before the target assignment, whether to perform suc-

cessful penetrations for a ballistic missile when facing

rounds of interceptions is another factor that should be

considered. Therefore, the final reward is composed of

two phases of rewards, that is, the penetration phase and

the mission completion phase.

In the penetration phase, there are two scenarios, as

expressed by equation 8. If a warhead penetrates success-

fully (p= 1), the reward is dependent on the consumed

energy, the number of successful penetrations, and the

miss distance. Otherwise (p= 0), the reward is directly

assigned a relatively large penalty of 250 based on the

operational knowledge of subject matter experts

Rp =
renergy + rstage + kn � riKillRadius

diMissDist
p= 1

�50 p= 0

�
ð8Þ

where renergy = km � (mmax � m)=mmax represents the

reward of consumed energy, where km is the relative coef-

ficient of energy consumption; mmax represents the maxi-

mum amount of carrying energy; m represents the

available energy; rstage represents the number of successful

penetration events; kn represents the relative coefficient of

miss distance; riKillRadius represents the kill radius; and

diMissDist represents the miss distance.

At the phase of mission completion, two scenarios

should be considered. The first is that wherein a warhead

hits the target successfully, and the second is that wherein

a warhead misses the target. Similar to the variable p

defined at the phase of penetration, we set m= 1 to repre-

sent the first scenario, and m= 0 to represent the second

scenario. This phase reward is then computed as follows

Rm =
5+ 5 � rwKillRadius

dwMissDist
m= 0

40+ 10 � kimp 1� dwMissDist

rwKillRadius

� �
m= 1

(
ð9Þ

where rwKillRadius represents the kill radius of the warhead,

dwMissDist represents the miss distance of the warhead, and

kimp is a coefficient that represents the importance of dif-

ferent targets within a range of [0, 1].

Note that this coefficient and constants 250, 40, 10,

and 5 are determined based on subject matter experts input

to improve the influence of target assignment on the final

RTH index.

4.2.2. DNN architecture. Consider the state space, a set of

input parameters used for the neural network, consisting

of the remaining fuel of the warhead, the relative distance

between the warhead and target, the velocity of the war-

head, the relative heading angle, and the deflection angle

between the warhead and target.

These parameters are selected based on subject matter

expert operational knowledge. The remaining fuel is

directly related to the energy available to the ballistic mis-

sile. The relative distance determines whether the warhead

has sufficient energy to maneuver. In particular, the velo-

city of warhead can increase or decrease the warhead

effectiveness of penetration, depending on the relative

heading angle. However, the relative heading angle cannot

provide a complete account with respect to positioning, as

it is dependent on the deflection angle to determine

whether the warhead is approaching or far away from the

target. It is noteworthy that the RTH index is defined as a

probability of success, ranging from 0% to 100%, for the

success of the ballistic missile on penetration missions and

12 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

destroying as many targets as possible. This is implemen-

ted by maneuvering to defend the warheads from opposing

interception.

In addition, the DNN model is formed by eight layers

of nodes (six hidden layers), and its structure is shown in

Figure 8. All of the nodes have a rectified linear activation,

for example, the ReLU59 function.

To increase the model performance, feature engineering

techniques are employed to pre-process these parameters

before model training, as detailed in Table 2. A common

technique is feature scaling, which is performed to equally

distribute the importance of each feature in the DNN

learning process. This is realized via the scaling and trans-

lating of all features within the range of 0–1, thus decreas-

ing the influence due to different units and different scales

between different features. In addition, to better handle

cyclical features, the angles related to heading and

deflection are directly encoded into their sine and cosine

components.

For the action space, we consider a ballistic missile car-

rying six warheads to six targets. Hence, there are a total

of 720 schemes for target assignment, and each scheme is

encoded into a number ranging from 1 to 720 in sequence,

as detailed in Table 3. For example, No. 1 represents the

assignment scheme ‘‘123456,’’ which is decoded into the

following commands when the trained model is called:

‘‘Target A is assigned to Warhead 1, Target B is assigned

to Warhead 2, etc.’’

In the DNN architecture, the network outputs an avail-

able prediction of target assignments, tags are the factual

assignment schemes of simulation data samples, and the

supervision signal is the cross entropy of probability distri-

butions between the predicted and the sampled schemes,

as shown in Figure 9.

Figure 8. The DNN architecture.

Table 2. The parameters considered in the state space.

Name Variable Min Max Unit Scaling

Remaining fuel f 0 60 kg f/60
Warhead velocity v 500 1000 m/s (v – 500)/500
Relative distance r 0 1500 km r/1500
Heading angle phi − 180 +180 � sin(phi)
Deflection angle theta − 180 +180 � cos(theta)

Zhu et al. 13

Different from binary classification, the supervised

learning framework for multiple classification is used. In

binary classification, the loss function is computed as

follows

L=� 1

N

XN

i= 1

½yi log (pi)+ (1� yi) log (1� pi)� ð10Þ

where N is the number of data samples, yi is the tag value

of the ith data item, and pi is the predicted value of the ith

data item through a run of feedforward propagation. In par-

ticular, it is the result of a network activated by the sig-

moid function.

In the multi-classification problem, the loss function is

computed as follows

L=� 1

N

XN

i= 1

XK

c= 1

yic log (pic) ð11Þ

where N is the number of data samples, K is the number

of classifications, and pic is the probability that the ith data

item belongs to the cth classification, which is subjected toPK
c= 1 pic = 1, i= 1, 2, :::,N .

Unlike binary classification, it is the result of that net-

work that is performed by the Softmax function. In addi-

tion, yic is the result of the tag value performed by one-hot

encoding.60 If the tag value of the ith data item is equal to

the cth classification, the corresponding position is 1; oth-

erwise, it is 0.

4.2.3. DDPG algorithm. Deep Deterministic Policy

Gradient is a model-free off-policy algorithm based on

DNNs and actor-critic policy, as shown in Figure 10. As it

uses a policy network to generate a deterministic action

instead of sampling based on the probability distribution

of actions, it is a type of deterministic policy. Similar to

the actor-critic method, it involves two networks. The first

is the actor, which proposes an action given a state. The

second is the critic, which predicts if the action is accepta-

ble or unacceptable.

To improve the training stability, it uses two target net-

works to slowly update the policy. It finds the action that

maximizes Q(st, at) before back propagation and does not

use its maximum value directly, thus rendering the esti-

mated targets more stable. In addition, it uses experience

replay by storing a list of tuples (state, action, reward, and

next state). Instead of learning only from recent experi-

ence, the model learns from sampling all the accumulated

experience. To implement the improved exploration by

the actor network, noisy perturbations, that is, at + n, are

used, especially an Ornstein–Uhlenbeck process for gener-

ating noise.61

On one hand, for the update mechanism, this algorithm

defines the critic loss based on the cross entropy, as previ-

ously mentioned, where rt + 1 +Q(st + 1, at + 1) is the

expected return obtained by the target network, and

Q(st, at) is the action value predicted by the critic net-

work. On the other hand, it defines the actor loss as com-

puted using the value provided by the critic network for

the actions performed by the actor network, which maxi-

mizes this quantity.

After training is complete, the model is selected as the

initial policy of the next reinforcement learning. When cal-

culating the state value function, a measure of entropy is

Table 3. The parameters considered in the action space.

Name Variable Min Max Unit Parsing

Assignment scheme s 1 720 N/A A6
6 = 720 schemes

N/A: not applicable.

Figure 9. The supervised learning framework of multiple classification.

14 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

added. The objective function for obtaining the optimal

strategy is formulated as follows

p�=argmax
p

E
t;p

X‘

t = 0

gt R(st, at, st+1)+aH(p(� stj)ð Þ
" #

ð12Þ

where a is a regularization coefficient used to control the

importance of entropy, which is a trade-off between explo-

ration and exploitation. The greater the a, it is more likely

for the algorithm to obtain the optimal strategy, but also

more difficult for it to converge. Conversely, the algorithm

tends to use the current optimal strategy for decision-mak-

ing, reducing the proportion of random exploration to

quickly converge at the risk of easily falling into local

optimal solutions.

5. Simulation and analysis

This section presents the design of a set of experimental

schemes to conduct simulations. Moreover, the model

training process is presented, followed by an investigation

of the exploratory data analysis.

5.1. Experimental design

To conduct simulation more efficiently, we set four experi-

mental modes that represent four types of experimental

schemes, each with its individual experimental require-

ments based on different simulation objectives, as listed in

Table 4.

For example, when the experimental mode is set as 0,

the behavioral script selects the rule-based decision pro-

cess, and this mode does not generate data samples. This

Figure 10. The model structure of DDPG-based multi-target assignment decision.

Zhu et al. 15

mode is mainly used to validate simulation models by con-

ducting a simulation; thus, it is not required to call the net-

work and generate unnecessary data samples.

Consequently, the computing resources are minimized.

After one simulation is validated, the objective of the sec-

ond mode is network initialization. In this mode, the rule

decision is used, and data samples are generated by con-

ducting numerous Monte Carlo simulations. The data sam-

ples with a high RTH index are then selected to train an

initial network via supervised learning technologies.

Based on the initial network, the third mode starts iterative

training via reinforcement learning. In this mode, data

samples are dynamically generated and saved. Finally, the

fourth mode calls the trained network to conduct simula-

tions, and the performance of the network decision is ana-

lyzed in comparison with the rule decision.

Considering each experiment, the factors used as inputs

include the longitude and latitude of the blue warship, in

addition to the pre-defined target assignment scheme. On

one hand, the longitude ranged from 2142 to 2137, and

the latitude ranged from 45 to 50, each of which was

divided into six levels. On the other hand, there are 720

possible target assignment schemes since the experiment

was set as six warheads versus six targets. Five rounds of

Monte Carlo simulations were run for each experiment. In

particular, there were 25,920 experimental schemes and

129,600 simulations in total, as we selected a full factorial

experimental method. In addition, we recorded the RTH

index as the experimental response.

After creating the input batch experimental files, simu-

lations were run using two Intel (R) Core (TM) i7-7700

Central Processing Units with 3.6 GHz and 16 GB of

Random Access Memory. It required 84 h to execute all

the simulations, which generated an output file containing

the RTH index for the respective input conditions and tar-

get assignment schemes. Based on the RTH index, we

obtained improved target assignment schemes valued at

{85, 124, 223, 271, 432, 689}, with each representing the

order number in full permutation combination. Moreover,

each simulation generated a database file containing four

data tables, including the final state, final action, current

state, and reward, which correspond to one state transition

fs, a, s0, rg of the Markov decision process. The data

samples were selected if the total reward exceeded 100,

and the database name was stored in a text file. The results

revealed that 5817 databases were selected, which were

used to train a supervised learning network in the follow-

ing step.

5.2. Model training

Before training the network, a train–validate–test split was

performed, which allocated 80% of the data to the training

set. Subsequently, validation using a 10-fold cross-

validation technique62 was performed to address the over-

fitting problem after considering the trade-off between

computational cost and generalization capability, and 20%

of the allocated data were used for the test set. To realize

a network with higher accuracy, we applied several widely

used supervised learning algorithms to train the same

selected databases, including an Artificial Neural Network

(ANN), Support Vector Classifier (SVC), Gaussian Naive

Bayes (NB), Classification and Regression Tree (CART),

k-Nearest Neighbors (KNN), Linear Discriminative

Analysis (LDA), and Logistic Regression (LR).

Figure 11 presents the boxplots of the above algorithms

and their respective means and standard deviations (std.).

As can be seen from this figure, the ANN demonstrated

the highest mean score of 0.975 and the lowest standard

deviation of 0.038. In the process of ANN training, the

network state was saved in intervals of 1000 episodes, and

each episode represented the scanning of a database, given

that each complete simulation generated a database. The

adaptive moment estimation (Adam)63 optimizer, which is

an extremely popular training algorithm for ANN, was

employed.

It is necessary for the model to have sufficient capacity

to successfully fit the training set. However, overfitting

should be avoided. In any case, note that the training loss

is less than the validation loss, although not by a large

order of magnitude. It is expected that the model would

perform better on the training set since the model para-

meters are being shaped by the training set. However, the

main goal is to also reduce both training and validation

losses. Although, ideally, both losses would be roughly the

same value, as long as the losses are reasonably close,

there is still room for the model to improve generalization

capability. The training results showed that the training

Table 4. Experimental schemes.

Mode Name Decision type Data samples Description

0 RULE_NO_SAMPLE Rule No Simulation test
1 RULE_SAMPLE Rule Yes Initialization
2 NN_TRANING Network Yes Iterative training
3 NN_APPLICATION Network No Network application

16 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

and validation losses have different absolute values but

similar trends, indicating that overfitting is under control

and early training and validation termination is

acceptable.

This training process required approximately 3.5 h.

Moreover, the curve abruptly shifted downward at the start

and then stabilized. In addition, the mean training loss

value reached the minimum of 0.156 when running 20

epochs. The training process stopped early at 10 epochs

with a validation loss of 0.323. It should be noted that we

computed a mean loss after each epoch, and the learning

rate was set as 0.0001.

When the ANN model was initialized, the iterative

training of the subsequent reinforcement learning agent

was initiated. This process required approximately 8 h

when the policy loss dropped to almost 0, and at this

instant, almost 17,000 iterations were conducted, as shown

in Figure 12.

In addition, the reward oscillated between 50 and 100.

This is because the reinforcement learning agent was per-

formed based on a machine learning agent that was previ-

ously trained, so there is little room for additional training.

Several critical hyperparameter settings are presented in

Table 5.

Figure 11. Boxplots of applied supervised learning algorithms.

Figure 12. The training state of reinforcement learning.

Zhu et al. 17

5.3. Exploratory data analysis

Regarding the difference between the rule-based and the

net-based decisions, exploratory data analysis was initiated

with the verification of the main descriptive statistics of

their respective RTH indexes, as listed in Table 6. In the

case of the rule-based decision, the RTH index ranged

from 0.333 to 0.5, with a mean of 0.415 and a median of

0.333. In the case of the net-based decision, the variable

ranged from 0.45 to 1, with a mean of 0.605 and a median

of 0.567. These results are satisfactory since the RTH

index increased with respect to the abovementioned statis-

tics when the net-based decision was used in the same sce-

nario of the engagement simulation. For example, the

mean RTH index increased by 18.96% for the net-based

decision when compared with the rule-based decision.

A histogram was generated to visualize the distributions

of rule-based and net-based decisions, as shown in Figure

13. For the rule-based decision, the data of the RTH index

were mainly distributed around the average value of 0.415,

whereas the data of the net-based decision were distributed

from 0.4 to 1, which is approximately a half normal distri-

bution around the average value of 0.605. Although several

simulation experiments in the rule-based case may have

better performance than the net-based decision, these occur

rarely. For the same number of total simulation runs, the

net-based decision has better results statistically than the

rule-based decision with respect to the RTH index.

6. Conclusions

There are numerous challenges associated with the appli-

cation of knowledge-based or data-driven methods to the

representation of complex behaviors in current combat

systems. Notably, due to the confidentiality of the military

domain, the collection of high-quality data is complicated

or otherwise inaccessible, thus limiting the validation and

guidance of intelligent algorithms. It is, therefore, a com-

mon practice in the military modeling and simulation com-

munity to conduct simulations as an effective method for

understanding the system behavior or accumulating data

samples. Hence, it is critical for simulation modelers to

improve the fidelity of knowledge-based models while

developing data-driven methods.

In this study, the literature on current modeling tech-

niques used in constructing engagement simulations was

investigated in detail. Traditionally, these methods can be

roughly classified into two categories, that is, knowledge-

based simulation modeling and data-driven data modeling.

It should be noted that this does not represent a strict clas-

sification. In practice, there is no absolute boundary, given

the increasing number of advanced models that use both

methods and the rapid development of AI and big data

technologies. Beyond the methods described above, the

domain knowledge and observed or simulated data can be

used synergistically to train intelligent models, that is, the

third method of intelligent modeling using the knowledge-

based and data-driven methods cooperatively.

For an adequate integration of knowledge and data, this

paper presents a discussion on a knowledge-based and

data-driven behavioral modeling architecture for engage-

ment simulations. In this architecture, the knowledge of

combat systems is loosely decoupled into physical and

behavioral parts, such that behavioral models that are

developed with Python scripts can be readily re-used, mod-

ified, and integrated into physical models. Moreover, the

simulations of physical models generate data samples,

including data sets for the state, action, and reward, which

are then used for the training of smart agents using certain

intelligent algorithms. In essence, a smart agent can be

viewed as a black box or function with an internal comput-

ing logic that does not require physics-based equations. In

particular, only the inputs and outputs require consider-

ation. For example, it represents a decision point of the

overall process of behavior, and the decision logic is hid-

den and inexplicable. It should be noted that this proposed

Table 5. Hyperparameter settings.

Parameter Value Description

alpha 0.0003 Learning rate
gamma_actor 0.99 Discount factor_actor
gamma_critic 0.99 Discount factor_critic
tau 0.005 Soft update parameter
size 256 Batch size

Table 6. Descriptive statistics of the Ratio of Target Hits
index.

Statistics Rule Net

Average 0.414985 0.604537
Median 0.333 0.567
Minimum 0.333 0.45
Maximum 0.5 1

Figure 13. Histogram for rule-based and net-based decision.

18 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

architecture is a method for intelligent behavioral model-

ing benefiting from the two-fold application of knowledge-

based and data-driven abstractions. Additional methods are

discussed in the related work section.

We then developed a novel modeling formalism

referred to as the FDT. The objective was to enhance the

degree of modularity of behavioral models, thus decreas-

ing their complexity. Hence, behavioral models built by

FDT are represented in the form of a cascaded tree struc-

ture, such that the decision process can be decoupled at

different levels of decision points. In particular, several

decision points that are described by rules can be conveni-

ently replaced with off-line trained smart agents. In addi-

tion, we detailed an experimental framework for how to

carry out the tasks of model training and test, including

several workflows such as the initial experiment, ML,

DRL, and comparative experiments. A benefit of using

this framework is that the DRL agent is trained on the ML

agent; thus, fewer iterations are required for DRL training.

As a proof of concept, we illustrated a target assignment

case of ballistic missile penetration. Based on the proposed

methodology, we described the combat environment and

detailed the ballistic missile model, including the static

structure, physical computation, and behavioral representa-

tion using FDT. A smart DRL agent was designed for the

target assignment decision, including the DNN architecture

and the applied DDPG algorithm. Simulation results

revealed that the smart agent-based decision demonstrated

superior engagement effectiveness to the traditional rule-

based decision. This case study can serve as a reference for

projects aimed at the development of intelligent capabil-

ities in various engagement simulation systems. However,

some effort for tailoring should be required.

Future research should focus on the investigation of

improved mechanisms for the use of knowledge and data

in the context of engagement simulation. In addition,

improvements in the architecture used for the DNN should

be investigated with respect to improving the results and

efficiency, that is, with a lower computational cost in the

training process. To further validate and enhance the

adaptability of a smart agent, more combat scenarios with

different initial conditions are required to achieve desired

warfighting mission effects under the guidance of mission

engineering.64 Also, more advanced simulation models of

ballistic missiles may be used in the future to increase the

reliability of results.

Acknowledgements

The authors would like to acknowledge the anonymous referees

for their reviews and all the volunteers who provided helpful

comments on previous versions of this document. Special thanks

to the Weapon Effectiveness Simulation System (WESS) team

which is directed by Prof. Yonglin Lei for providing the simula-

tion platform.

Funding

This work was supported by the National Natural Science

Foundation of China (grant number 62003359) and the National

Defense Pre-Research Foundation of China (grant number

80901020104).

ORCID iDs

Zhi Zhu https://orcid.org/0000-0003-3758-8568

Hessam Sarjoughian https://orcid.org/0000-0002-1326-9485

References

1. Cao L. A new age of AI: features and futures. IEEE Intell

Syst 2022; 37: 25–37.

2. Gill SS, Xu MX, Ottaviani C, et al. AI for next generation

computing: emerging trends and future directions. Internet

Things J 2022; 19: 1–34.

3. Abdelmegid MA, O’Sullivan M, González VA, et al. A case

study on the use of a conceptual modeling framework for

construction simulation. Simulation 2022; 98: 433–460.

4. Seo KM, Choi C, Kim TG, et al. DEVS-based combat mod-

eling for engagement-level simulation. Simulation 2014; 90:

759–781.

5. McGraw RM and MacDonald RA. Abstract modeling for engi-

neering and engagement level simulations. In: Proceedings of

the 2000 winter simulation conference, Orlando, FL, 10–13

December 2000, pp. 326–334. New York: IEEE.

6. Ernest N, Carroll D, Schumacher C, et al. Genetic fuzzy

based artificial intelligence for unmanned combat aerial

vehicle control in simulated air combat missions. J Def

Manag 2016; 06: 1–7.

7. Pope AP, Ide JS, Mićović D, et al. Hierarchical reinforce-

ment learning for air combat at DARPA’s AlphaDogfight

Trials. IEEE Trans Artif Intell 2022; 1: 1–15.

8. Kim BS, Kang BG, Choi SH, et al. Data modeling versus

simulation modeling in the big data era: case study of a

greenhouse control system. Simulation 2017; 93: 579–594.

9. Bocciarelli P, D’Ambrogio A, Falcone A, et al. A model-

driven approach to enable the simulation of complex sys-

tems on distributed architectures. Simulation 2019; 95:

1185–1211.

10. Finegan DP, Zhu J, Feng XN, et al. The application of data-

driven methods and physics-based learning for improving

battery safety. Joule 2021; 5: 316–329.

11. Ng MF, Zhao J, Yan QY, et al. Predicting the state of charge

and health of batteries using data-driven machine learning.

Nat Mach Intell 2020; 2: 161–170.

12. IEEE Computer Society. 1516-2010 —IEEE standard for

modeling and simulation (M&S) high level architecture

(HLA)—framework and rules, http://ieeexplore.ieee.org/

servlet/opac?punumber=5553438 (2010, accessed 21

November 2022).

13. He Q, Zhang M and Gong J. An introduction of BOMmodel-

ing framework. IJMLC 2011; 1: 353–358.

14. ESA. SMP 2.0 handbook (issue 1 revision 2) EGOS-SIM-

GEN-TN-0099, https://taste.tuxfamily.org/wiki/images/9/9a/

SMP_2.0_Handbook_-_1.2.pdf (2011, accessed 21 November

2022).

Zhu et al. 19

15. Peterson JL. Petri net theory and the modeling of systems.

1st ed. Upper Saddle River, NJ: Prentice Hall, 1981.

16. Gill A. Introduction to the theory of finite-state machines.

Math Comput 1962; 92: 63–74.

17. Schaad R. Parallel functional decision trees for situated agent

control. Dr. Dobb’s J 1999; 24: 62–70.

18. Azar MC. Assessing the treatment of airborne tactical high

energy lasers in combat simulations. Master’s Dissertation,

Air Force Institute of Technology, Dayton, OH, 2003.

19. Miller JO, Jason L and Honabarger B. Modeling and measur-

ing network centric warfare (NCW) with the system effec-

tiveness analysis simulation (SEAS). In: Proceedings of the

11th ICCRTS coalition command and control in the net-

worked era, Dayton, OH, March 2006, pp. 1–20.

20. Chen YZ and Zhang P. Modeling and simulation oriented to

the multi-military mission of U.S. army. J Comm Control

2018; 4: 89–94.

21. Huang J, Zhao X, Hao JG, et al. Brief introduction of KD-

HLA: an integrated environment to support M&S based on

HLA. In: Proceedings of the second international conference

on computer modeling & simulation, Sanya, China, 22–24

January 2010, pp. 281–283. New York: IEEE.

22. Zhu Z, Lei YL and Zhu YF. Model-driven combat effective-

ness simulation systems engineering. Defence SCI J 2020;

70: 54–59.

23. Brandstein A and Horne G. Data farming: a meta-technique

for research in the 21st century (Maneuver Warfare Science).

Technical report, Naval War College, Newport, RI, 1998.

24. Sanchez SM. Data farming: methods for the present, oppor-

tunities for the future. ACM Trans Model Comput Simul

2020; 30: 1–30.

25. Feldkamp N, Bergmann S and Strassburger S. Knowledge

discovery in simulation data. ACM Trans Model Comput

Simul 2020; 30: 1–25.

26. Barry P, Zhang JP and McDonald MM. Architecting a

knowledge discovery engine for military commander utiliz-

ing massive runs of simulations. In: Proceedings of the ninth

ACM SIGKDD international conference on knowledge dis-

covery and data mining, Washington, DC, August 2003, pp.

699–704.

27. Fisher RA. The use of multiple measurements in taxonomic

problems. Ann Eugen 1936; 7: 179–188.

28. Quinlan JR. Introduction of decision trees. Mach Learn

1986; 1: 81–106.

29. Pineda FJ. Generalization of back-propagation to recurrent

neural networks. Phys Rev Lett 1987; 59: 2229–2232.

30. Burges CJC. A tutorial on support vector machines for pat-

tern recognition. ACM T Intel Syst Tec 1998; 2: 121–167.

31. Li D. A tutorial survey of architectures, algorithms and appli-

cations for deep learning. APSIPA Signal Inf Process 2014;

3: 1–29.

32. Paternina-Arboleda CD and Das TK. A multi-agent reinfor-

cement learning approach to obtaining dynamic control poli-

cies for stochastic lot scheduling problem. Simul Model

Pract Theory 2005; 13: 389–406.

33. Kessler C, Capocchi L, Santucci JF, et al. Hierarchical

Markov decision process based on DEVS formalism. In:

Proceedings of 2017 winter simulation conference, Las

Vegas, NV, 3–6 December 2017, pp. 1001–1012. New York:

IEEE.

34. Mnih V, Kavukcuoglu K, Silver D, et al. Human-level con-

trol through deep reinforcement learning. Nature 2015; 518:

529–533.

35. Lillicrap TP, Hunt JJ, Pritzel A, et al. Continuous control

with deep reinforcement learning. In: Proceedings of 4th

international conference on learning representations, San

Juan, Puerto Rico, May 2016, pp. 1–14.

36. Hasselt VN, Guez A and Silver D. Deep reinforcement learn-

ing with double Q-learning. In: Proceedings of the thirtieth

AAAI conference on artificial intelligence, Phoenix, AZ,

2016, pp. 2094–2100.

37. Mnih V, Badia AP, Mirza M, et al. Asynchronous methods

for deep reinforcement learning. In: Proceedings of the 33rd

international conference on machine learning, New York,

2016, pp. 1928–1937.

38. Schulman J, Levine S, Moritz P, et al. Trust region policy

optimization. In: Proceedings of the 32nd international

conference on machine learning, Lille, France, 2015, pp.

1889–1897.

39. Harrnoja T, Zhou A, Abbeel P, et al. Soft actor-critic: off-policy

maximum entropy deep reinforcement learning with a stochastic

actor. In: Proceedings of the 35th international conference on

machine learning, Stockholm, 2018, pp. 1861–1870.

40. WSC. Exploring big data through simulation, https://pubson

line.informs.org/do/10.1287/LYTX.2014.05.12/full (2014,

accessed 21 November 2022).

41. Tolk A. The next generation of modeling & simulation: inte-

grating big data and deep learning. In: Proceedings of the

conference on summer computer simulation, San Diego, CA,

July 2015, pp. 1–8.

42. Afram A and Shari F. Review of modeling methods for

HVAC systems. Appl Therm Eng 2014; 67: 507–519.

43. Thierry AS, Bastien P, Vittori E, et al. ‘‘Smart entity’’-

how to build DEVS models from large amount of data and

small amount of knowledge. In: Proceedings of simula-

tion tools and techniques, Chengdu, China, August 2019,

pp. 615–626.

44. Bae KH, Mustafee N, Lazarova-Molnar S, et al. Hybrid mod-

eling of collaborative freight transportation planning using

agent-based simulation, auction-based mechanisms, and opti-

mization. Simulation 2022; 98: 753–771.

45. Cristea A and Okamoto T. Knowledge computing method

for enhancing the effectiveness of a WWW distance educa-

tion system. In: Brusilovsky P, Stock O and Strapparava C

(eds) Adaptive hypermedia and adaptive web-based systems.

Berlin: Springer, 2000, pp. 2–5.

46. Routray A, Osuri KK, Pattanayak S, et al. Introduction to

data assimilation techniques and ensemble Kalman filter.

In: Mohanty UC and Gopalakrishnan SG (eds) Advanced

numerical modeling and data assimilation techniques

for tropical cyclone prediction. Berlin: Springer, 2016,

pp. 307–330.

47. Xie X. Data assimilation in discrete event simulations. PhD

Thesis, Delft University of Technology, Delft, 2018.

20 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)

48. Zhu Z and Lei YL. Model & data hybrid driven smart

modeling for combat systems. In: Proceedings of the

2020 summer simulation conference, San Diego, CA,

November 2020, pp. 1–12.

49. Laroque C, Skoogh A and Gopalakrishnan M. Functional

interaction of simulation and data analytics-potentials and

existing use-cases. In: Proceedings of simulation in produk-

tion und logistik, Kassel, 2017, pp. 403–412.

50. Saadawi H, Wainer G and Pliego G. DEVS execution accel-

eration with machine learning. In: Proceedings of the sympo-

sium on theory of modeling & simulation, Pasadena, CA,

April 2016, pp. 1–6.

51. Deist T, Patti A, Wang Z, et al. Simulation assisted machine

learning. Bioinformatics 2018; 35: 1–11.

52. Zhang HX, He BS, Lu GY, et al. A simulation and machine

learning based optimization method for integrated pedestrian

facilities planning and staff assignment problem in the multi-

mode rail transit transfer station. Simul Model Pract Theory

2022; 115: 102–449.

53. Shao G, Shin SJ and Jain S. Data analytics using simula-

tion for smart manufacturing. In: Proceedings of the

2014 winter simulation conference, Savannah, GA,

December 2014, pp. 2192–2203.

54. Grieves MW. Product lifecycle management: the new para-

digm for enterprises. Int J Prod Dev 2005; 2: 71–84.

55. Glaessgen E and Stargel D. The digital twin paradigm for

future NASA and U.S. Air Force vehicles. In: Proceedings of

the 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural

dynamics and materials conference, Honolulu, HI, April

2012, pp. 1818–1832.

56. Zhu Z, Lei YL, Sarjoughian H, et al. UML-based combat

effectiveness simulation system modeling within MDE. J

Syst Eng Electron 2018; 29: 1180–1196.

57. Schadd M, Sternheim AM, Blankendaal R, et al. How a

machine can understand the command intent. JDMS. Epub

ahead of print 5 August 2022.

58. Strembeck M and Zdun U. An approach for the systematic

development of domain-specific languages. Software Pract

Exper 2010; 39: 1253–1292.

59. Goodfellow I, Bengio Y and Courville A. Deep learning.

Cambridge, MA: MIT press, 2016.

60. Cohen J, Cohen P, West SG, et al. Applied multiple regres-

sion/correlation analysis for the behavioral sciences.

London: Routledge, 2013.

61. Liu CS. Ornstein–Uhlenbeck process, Cauchy process, and

Ornstein–Uhlenbeck–Cauchy process on a circle. Appl Math

Lett 2013; 26: 957–962.

62. Hyndman RJ and Koehler AB. Another look at measures of

forecast accuracy. Int J Forecast 2006; 22: 679–688.

63. Kingma DP and Ba JL. Adam: a method for stochastic opti-

mization. In: Proceedings of the 3rd international conference

on learning representations, San Diego, CA, May 2015, pp.

1–15.

64. Garrett RK, Fairbanks JP, Loper ML, et al. The application

of applied category theory to quantify mission success.

Simulation 2023; 99: 201–220.

Author biographies

Zhi Zhu is an Assistant Professor at the National

University of Defense Technology, China. He was a visit-

ing PhD student at Arizona State University from 2016 to

2017. His research interests are model-driven engineering,

systems simulation, and machine learning.

Tao Wang is an Associate Professor at the National

University of Defense Technology. He is the director of

the Department of Strategy Management Engineering. His

research interests include strategy planning, multi-agent

simulation, and data mining.

Hessam Sarjoughian is an Associate Professor at the

School of Computing, Informatics, and Decision Systems

Engineering at Arizona State University, USA. He is the

co-director of the Arizona Center for Integrative Modeling

and Simulation. His research interests are model composa-

bility, simulation-based design, and agent-based

simulation.

Weiping Wang is a Professor at the National University

of Defense Technology. He is a senior fellow of China

Simulation Federation. His research interests are simula-

tion optimization, intelligent decision, and knowledge

computing.

Yuehua Zhao is an Associate Professor at the Nanjing

University, China. She received her PhD degree from

the University of Wisconsin–Milwaukee, USA. Her

research interests are data mining, knowledge manage-

ment, scientometrics.

Zhu et al. 21

