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Abstract
The development and popularization of new energy vehicles have become a global consensus. The shortage and unrea-
sonable layout of electric vehicle charging infrastructure (EVCI) have severely restricted the development of electric
vehicles. In the literature, many methods can be used to optimize the layout of charging stations (CSs) for producing
good layout designs. However, more realistic evaluation and validation should be used to assess and validate these layout
options. This study suggested an agent-based simulation (ABS) model to evaluate the layout designs of EVCI and simulate
the driving and charging behaviors of electric taxis (ETs). In the case study of Shenzhen, China, geographical positioning
system (GPS) trajectory data were used to extract the temporal and spatial patterns of ETs, which were then used to
calibrate and validate the actions of ETs in the simulation. The ABS model was developed in a geographic information
system (GIS) context of an urban road network with traveling speeds of 24 h to account for the effects of traffic condi-
tions. After the high-resolution simulation, evaluation results of the performance of EVCI and the behaviors of ETs can
be provided in detail and in summary. Sensitivity analysis demonstrates the accuracy of simulation implementation and
aids in understanding the effect of model parameters on system performance. Maximizing the time satisfaction of ET
users and reducing the workload variance of EVCI were the two goals of a multiobjective layout optimization technique
based on the Pareto frontier. The location plans for the new CS based on Pareto analysis can significantly enhance both
metrics through simulation evaluation.
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1. Introduction

The popularization of electric vehicles (EVs) is important

to upgrade the automotive industry, reduce the reliance on

fossil fuels, and improve the eco-environmental quality.1,2

The global EV sales doubled in 2021 from the previous

year to a new record of 6.6 million, with China accounting

for half of the growth.3 However, the shortage and unrea-

sonable layout of electric vehicle charging infrastructure

(EVCI) have severely restricted the development of

China’s new energy car industry.4 Shenzhen, as the

largest-scale and widest application of pure electric buses

and taxis in China, had approximately 20,000 electric taxis

(ETs) in 2019, but the ratio to the EVCI is only 1:3. Some

public charging stations (CSs) have serious queuing prob-

lems due to the improper layout of public EVCI, while

some other stations have low utilization rates.5,6 Other cit-

ies, such as Beijing,7 New York,8 and Valencia,9 have

similar problems. In the meantime, good planning and

configuration of EVCI can improve charging service effi-

ciency, increase EV users’ satisfaction, reduce the distance

anxiety of potential EV purchasers, and thus accelerate the

popularity of the EV industry.10,11

The location problem of EVCI involves transportation,

urban planning, energy, operation research, and other

fields. The problem is of great complexity and has become

a major research area in recent years. The affecting factors

of the layout planning of EVCI can be classified into three
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categories: (a) charging facility factors (e.g., private charg-

ing piles or public stations and fast or slow charging), (b)

EV factors (e.g., EV types, battery types, driving and

charging behaviors), and (c) external environmental fac-

tors (e.g., traffic conditions, land usage, power grids, and

financial costs).12 The EV types studied in the literature

include electric buses,13 taxies,7 private cars,14 and

trucks,15 while most research focuses on the planning of

public fast CSs in urban environments. From the perspec-

tive of operation research, the EVCI location problem can

be regarded as selecting the appropriate points in the can-

didate set to optimize certain objectives, which usually

include one or more of the following goals: (a) reducing

the overall cost (e.g., constructure cost, operation cost,

electricity cost, and environmental cost),2,16 (b) increasing

EV user satisfaction (service range and distance, search

time, and queuing time),4,6,9 (c) improving EVCI utiliza-

tion,17,18 and (d) optimizing power grid performance (e.g.,

peak-load shifting and reduction in power losses).19,20

With the rapid development of mobile Internet, Internet of

Things and Intelligent Transportation Systems, EV trajec-

tory, traffic, and geographic information system (GIS) data

have been increasingly used in the application of mathe-

matical optimization methodologies to EVCI location

problems.6,21,22

The classic mathematical programming approaches

may provide good EVCI layout plans with certain objec-

tives from different perspectives. However, these algo-

rithms might still stay at a theoretical level due to the

complexity and uncertainty of this interdisciplinary prob-

lem.23 The effectiveness of these approaches should be

verified in environments close to reality (e.g., through

simulation in large-scale vehicle movement scenarios).9

Under such motivation, several agent-based simulation

(ABS) models have been developed to evaluate and opti-

mize the EVCI layout.9,24–26 In these ABS models, poten-

tial EV purchasers, existing EV users, passengers, and fleet

managers are modeled as different types of agents with a

certain level of intelligence. Complex agents’ behaviors,

such as traveling, searching, queuing, and charging beha-

viors, are implemented in a GIS environment (e.g., road

network, traffic conditions, and Points of interest (POI)

that is close to reality in a resolution of 1 s. The EV’s tra-

veling demand is typically generated by a synthetic popu-

lation, such as those who want to call ETs, current private

EV users who have to commute or go shopping, or those

who need to deliver goods. Then, the EV movements and

charging behaviors are simulated in the GIS environment.

Detailed information for each traveling and charging beha-

vior is recorded, and system performance metrics such as

EVCI utilization, operating cost, and EV user satisfaction

can be calculated after the simulation ends.

These ABS models provide an effective way to access

EVCI layout designs. However, the generation of EV

movements and corresponding charging demand involves

the implementation of some subprocedures with many

assumptions and parameters. For instance, in the ABS

model proposed by Jordan et al.,9 the dispatchment of ETs

is based on the negotiation process between passengers

and ET drivers. Model parameters of the negotiation pro-

cess, such as agents’ different types of negotiation strate-

gies and proportions of different subpopulations, have to

be estimated and calibrated very well, or the generated tra-

veling and charging demand might not reflect reality. In

addition, each trip’s origin and destination (OD) are deter-

mined by a weighted score of model factors that are related

to the population, traffic, and social network activities of

urban areas, with the weights being configured in a subjec-

tive manner. Again, these model parameters must be care-

fully chosen to reflect the actual circumstances.

On the basis of the abovementioned discussion, this

study focuses on the layout design of public fast CSs for

ETs in urban environments. An ABS model is developed

in which geographical positioning system (GPS) trajectory

data are used to simulate and validate the traveling and

charging behaviors of ETs. The ABS model can be used

for the evaluation and optimization of EVCI layout

designs, with ET drivers’ satisfaction and EVCI utilization

rates as the main measures of EVCI layout designs.

Compared with existing ABS studies, the main innova-

tions and contributions of this work are as follows:

(a) Instead of using synthetic population and agents’

negotiation to generate ET traveling behaviors

and charging demand, the ET trajectory data are

used to extract the spatial and temporal pattern of

ET movements (e.g., OD transition probabilities

for ETs’ idle and busy states, interarrival time

distribution, and passenger-pickup frequencies

during 24 h). Based on the pattern extracted, the

traveling trips and charging demand can be gener-

ated in a more direct and accurate manner.

(b) In the ABS model, the ETs search the CSs in a

smarter way. Rather than simply choosing the

nearest CS, EV drivers first check the availability

of CS nearby (e.g., 10 km) with the help of

mobile phone applications and then attempt to

choose the nearest station with free charging

piles. If none of the stations nearby have free

piles, then the driver will head for the station with

the shortest queue to reduce the waiting time.

Therefore, the ET agents can make decisions

based on the real-time environment, and their

decisions can interact with others in this complex

adaptive system. This implementation is more in

line with the actual drivers’ habits, which makes

the queuing statistics generated by the simulation

more reliable.

(c) The model is built in a GIS environment includ-

ing an urban road network with a traveling speed
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of 24 h for each road segment, which affects the

ETs’ traveling and charging activities. The

dynamic patterns of traffic conditions for 24 h

and ET behaviors interact with each other and are

validated and calibrated based on trajectory data.

These factors are considered in the layout evalua-

tion in a way that is closer to reality.

2. Literature review
2.1. Mathematical optimization approaches

The location optimization problem is a classic operation

research problem that covers many aspects of public infra-

structures, such as the siting of hospitals, fire stations, and

shopping malls. In the earliest study by Weber27 of loca-

tion theory, the location of a warehouse is determined by

minimizing the total distance from the warehouse to cus-

tomers. Classic approaches to solve location problems

include p-median,28 p-center,29 and maximum coverage30

methods. With the rapid development of EVs in the 1990s,

the demand for locating EVCIs has been increasingly

growing. Relevant approaches can be classified into meth-

ods based on point demand,31 methods based on flow

demand,32 and mixed models.33 Typically, EVCI layout

optimization is modeled as a mathematical programming

problem with objectives and constraints. After the problem

is defined in mathematical form, optimization algorithms

such as mixed integer programming34 are applied to obtain

optimal layout solutions. Owing to the complexity of the

EVCI location optimization problem, heuristic algorithms,

such as the genetic algorithm (GA)16 and particle swarm

optimization (PSO),2 have been used to solve this NP-hard

problem in recent studies. However, as mentioned above,

these mathematical optimization approaches may remain

at a theoretical level.23 The effectiveness of these algo-

rithms should be validated in environments close to

reality.9

2.2. Trajectory data-driven approaches

Currently, GPS-enabled trajectory data have been increas-

ingly used to study the EVCI location problem because

they can efficiently describe the traveling and charging

behaviors of EV drivers. Most research focused on

China’s cities as research zones, such as Shenzhen,6,35,36

Wuhan,22,37 Chengdu,38 Tianjin,39 and Changsha.40 In

these studies, GPS trajectory data were mainly collected

from ETs,6,35,37,38,40 electric buses,22 and freight vehicles36

while some were from mobile phone users.21,39 In ET’s

case, the GPS trajectory data are usually collected every

5–60 s and contain data fields of vehicle ID, timestamp,

longitude, latitude, speed, direction, and passenger load

indicator. The operational and charging patterns of the ET

can be extracted based on the trajectory data.41 The ET tra-

jectory can be further divided into three subtrajectories:

searching, charging, and traveling based on the proposed

definition by Li et al.35 Hu et al.6 estimated the travel time

between adjacent map grids based on the traveling subtra-

jectory, while the charging demand was measured by

counting the start points of the searching subtrajectory.

These estimated variables were then used to formulate the

optimization problem, and heuristic algorithms were used

to maximize the ET drivers’ satisfaction, which is corre-

lated to waiting and charging times. Liu et al.38 used ET

trajectory data to identify parking and charging events,

based on which ET traveling patterns were obtained. The

PSO algorithm was then applied to minimize the CO2

emissions. In summary, the model variables estimated

based on GPS trajectory data are more accurate and reli-

able, but the solution to the mathematical optimization

problem still needs careful validation.

2.3. ABS approaches

The EVCI layout design is a complex problem with many

dynamic and stochastic factors involved, such as traffic

conditions and EV drivers’ traveling, searching, and

charging behaviors. In addition, these factors and beha-

viors interact with each other and with the environment,

which causes difficulty for mathematical equations to rep-

resent them. Therefore, the real effect of the solutions pro-

vided by optimization algorithms needs to be evaluated.

However, conducting actual tests in the real world to ver-

ify the EVCI layout performance is nearly impossible due

to the high social risk and financial cost. Under such cir-

cumstances, simulation, especially ABS, can reproduce

real-world scenarios in virtual settings to evaluate the

effectiveness and rationality of different layout schemes

while reducing the cost of analysis and decision-making.

However, the ABS model can capture the behaviors of

agents in an environment through the use of decision rules,

which govern the interactions between agents in the simu-

lation. The commonly used ABS platforms and frame-

works are SimFleet,9,42 MATSim,14,43 EnerPol,24 Repast

Symphony,44–47 and AnyLogic.7

Jordan et al.9 proposed a simulation-optimization

approach for layout designs of ET CS. An ABS model

was built to simulate the negation between ET drivers and

passengers, the dispatchment of fleet managers, and ETs’

traveling, searching, and charging behaviors through

SimFleet in the GIS environment. A GA was applied to

find the optimal EVCI layout for reducing the queuing

time of ETs in CSs. The model simulated the full process

of ET drivers’ daily work, but the generation of pickup

orders contained too many details, and the model para-

meters involved in the process should be set and validated

with great caution. For instance, the ET movements in the

simulation were generated by a weighted score of popula-

tion, traffic, and social network activities, while these

weights were determined in a subjective way. More focus
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should be placed on capturing ETs’ traveling and charging

patterns, which are more relevant to the EVCI location

problem. GPS trajectory data would definitely help if they

(it) were available. In addition, ET drivers would simply

choose the nearest CS when they had charging demand in

the simulation. However, in reality, these drivers might

search for the station with free charging piles or select the

station with the shortest queue length with the help of

mobile phone applications. The implementation of such

searching logic might affect the evaluation accuracy of

queuing statistics such as queue length and waiting time.

Pagani et al.24 developed an ABS model to study the

EVCI layout and private EV users’ behaviors given differ-

ent EV penetration levels from the perspective of profit-

ability through the EnerPol simulation platform. In the

ABS model, private EVs’ traveling demand was generated

based on a synthetic population’s daily activities, such as

commuting between dwellings and workplaces and going

to schools and shops. Different charging strategies, such

as price- and comfort-driven charging behaviors, were

implemented and compared in the study. A stepwise opti-

mizer was applied to locate CS sequentially with the goal

of minimizing the queuing time of EV users and maximiz-

ing the utilization of EVCI. Similar to Jordan’s ABS

model,9 the generation of EVs’ traveling demand depends

on a complex process with many assumptions and para-

meters, which need to be validated and calibrated by com-

parison with the actual situation. Other ABS studies

include Márquez et al.’s model25 in a long-distance cross-

city transportation scenario, Zhao and Ma’s47 model to

optimize the initial CS layout from the perspective of EV

diffusion, and Bischoff’s ABS model26 for ET fleets.

While the focus of this study is on the EVCI location

problem, it is worth noting that the GIS-based simulation

methods have found utility in other disciplines. For

instance, Davidson et al.48 developed a discrete-event spa-

tial model to simulate disease spread within a pandemic,

demonstrating its adaptability and ability to provide deter-

ministic predictions for multiple regions simultaneously.

Other studies using simulation to investigate the spread of

infectious diseases can be found in the work by Abadeer

et al.,49 as well as the review article by Ayadi et al.50

Iskandar et al.51 developed an agent-based model that

incorporates realistic human behavior and urban condi-

tions to simulate pedestrian evacuation during earthquakes

at the city scale, revealing the impact of debris and human

behavior on population safety and the limited capacity of

open spaces to provide shelters in Beirut, Lebanon. Risco-

Martin et al.52 introduced a discrete-event simulation for

real-time monitoring and management of harmful algal

and cyanobacterial blooms (HABs), addressing the need

for efficient detection and response to HABs threatening

water quality in dynamic environments. The application of

simulation-based methodology in emergency healthcare

can be seen in the review article by Sahlaoui et al.53

Similar to the EVCI location problem in this paper, these

studies use simulation methods to explore real-world

issues in urban environments from temporal and spatial

perspectives. In these simulation models, some studies

employ deterministic mathematical formulas to represent

the relationships between key factors, while others utilize

agent-based approaches to simulate complex systems

through rules governing interactions between agents and

the environment to make predictions. These methods pro-

vide inspiration for the research on EVCI layout optimiza-

tion in this paper.

3. Simulation implementation and
validation

3.1. Introduction of case study

Shenzhen is one of the largest cities in China, and it covers

an area of 1997.47 km2. It was designated by the Ministry

of Transport as one of the earliest pilot areas for develop-

ing powerful transportation in China. In 2019, Shenzhen

had a total of 20,000 pure ETs, and this situation fully rea-

lizes the pure electrification of ET in the city.5 However,

the lagging of EVCI construction and unreasonable layout

design make shortages and idleness of EVCI coexist in

most regions.5,6 The mainstream model of ETs in

Shenzhen is BYD e6, which usually needs approximately

2 h to charge from zero power to full charge in 4060 kW

DC fast charging piles. The urban public power grid

mainly undertakes the charging function of ETs while con-

sidering the occasional charging needs of other types of

EVs.5 Approximately half of the ETs use a single-shift

mode, with the operation time mainly between 9:00 and

24:00, whereas the other half of the ETs use a double-shift

mode with handover times of 3:00–5:00 and 15:00–18:00

when charging peaks are more likely to occur.5 This case

study focuses on the location problem of public fast CSs

for ETs in Shenzhen. An ABS model was built to simulate

the traveling and charging behaviors of ETs in a GIS envi-

ronment based on GPS trajectory data. The simulation

model was then applied to evaluate EVCI layout perfor-

mance, such as EV users’ satisfaction and EVCI’s utiliza-

tion. The ABS model was implemented using Repast

Symphony,44 which is an open-source, agent-based model-

ing and simulation platform. It is an object-oriented model

with a source library for the creation and running of simu-

lations, as well as for displaying and collecting data from

the simulations. Geographic data, such as the data in sha-

pefile format, can be imported into the Repast Symphony

model, which can be used to control the behaviors and

movements of the agents based on rule sets that exploit

these data.

The ABS model in this study was built as an extension

of Malleson’s RepastCity prototype,45 and its visualization

snapshot can be found in Figure 1. As shown in Figure 1,
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the study region includes the Futian, Nanshan, and Luohu

districts in Shenzhen, which are divided into 1280 grids

with sides of 1000 m. Roads are shown in different colors,

with green color indicating normal driving and red color

representing slow driving, which is probably due to traffic

congestion. Circles in different colors represent ETs in dif-

ferent states. White and black circles indicate whether ETs

are in idle or busy status, respectively, while blue circles

represent ETs with charging demand. In the simulation,

EVs can read the speed of the current road segment and

move along it at that speed. The Dijkstra algorithm was

implemented in the simulation such that ETs would select

the routes that minimize the traveling time based on the

OD in the road network. In this way, the traffic conditions,

especially congestion’s influence on ETs’ moving beha-

viors, can be considered in the EVCI location problem.

The logic of the traveling and charging behaviors of ETs

can be validated through the animation of high temporal

resolution in the simulation visualization.

The EVCI layout to be evaluated, which is composed

of 21 public CSs, is represented by red squares in Figure 1.

The exact locations of stations in Figure 1 are based on the

actual situation18 when trajectory data were collected in

2014. Based on the trajectory data of ETs, the temporal

and spatial patterns of the traveling and charging behaviors

are extracted and then used to generate stochastic events

and movements of ETs in the simulation. The ETs con-

sume battery power while traveling, and they search for

CSs nearby based on a set of predefined rules when they

demand charging. Detailed information on all the trips and

charging events of ETs can be recorded in the simulation.

After the simulation is completed, the layout’s overall per-

formances, such as queue statistics and EVCI utilization

rates, can be obtained.

As shown in Figure 2, the input of the ABS model can

be classified into GIS-related features, ET patterns

extracted from trajectory data, and logic and rules based

on reality, such as rules of ET searching behaviors, logic

of power consumption, and charging time. Simulation out-

put includes detailed information on each single event,

such as passenger-pickup and charging events, based on

which EV users’ satisfaction and EVCI utilization mea-

sures can be calculated. Details of the implementation,

validation, and analysis are explained in the following

subsections.

3.2. Road network and traffic conditions

The road networks of the Futian, Nanshan, and Luohu dis-

tricts in Shenzhen were obtained from OpenStreetMaps,

which includes primary, secondary, motorway, and high-

way road segments. ArcGIS10.8 processing tools, such as

merging, buffering, vectorization, and breaking intersec-

tion lines, were applied to the road network. In this way,

multiple lanes in the road were merged, and the original

complex road network was simplified, especially the

entrances and exits of highways. Some errors in the shape-

files, such as unconnected road endpoints, were corrected

to guarantee the connectivity of the road network. Such

operations capture the major characteristics of city road

networks, reduce the potential EVs’ routing errors in simu-

lation, and save computation resources for this high-

resolution simulation.

The traveling speed for 24 h of each road segment was

collected from the Amap (Gaode Map) API to simulate

the actual traffic conditions. For each road segment, the

two endpoints took turns serving as the starting and ending

points of the trip, which were entered into the Amap API

Figure 1. Visualization of agent-based simulation of electric taxis in partial districts in Shenzhen.
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to obtain the estimated trip time. The road speed was cal-

culated based on the road length and the average of the

two-way trip times. As shown in Figure 1, different colors

of roads represent different levels of traveling speed. As

the simulation processes, these speeds are updated hourly

for roads based on the data collected. Vehicles read the

speed of the current road and travel using that speed. A

validation test was conducted based on 47 locations ran-

domly selected from the study region to guarantee that the

traveling time between any two locations in the simulation

was close to the estimated traveling time in Amap. Linear

regression was applied to compare 2162 trip traveling

times in the simulation map and those estimated in Amap.

According to the results in Figure 3, the R2 of the linear

model is 0.83, which indicates a strong linear relationship

between the two estimation methods. The average absolute

error of traveling time is only 3.52 min. The difference

might be due to the simplification of the road structure

and Amap’s time estimation of traffic light delays. The

adjusted road structure in the ABS model gives a similar

estimation of traveling times as Amap’s.

3.3. GPS trajectory data

The GPS trajectory data used in this study consist of two

parts: an ET dataset and a fuel taxi (FT) dataset, which are

from the published dataset used in Wang et al.’s54 and

Zhang et al.’s55 research, respectively. The ET dataset con-

tains 1,155,654 GPS records for 664 ETs in Shenzhen in

October 2014, with data fields of vehicle ID, longitude,

latitude, time, and speed. After being spatially joined with

map grids, 83% (964,625 records) of the original GPS

records remained, which suggests that the research area of

the three core districts accounted for the majority of the

ET activities in Shenzhen in 2014. Based on the staying

events extracted from the dataset, along with the CS loca-

tions in 2014,41 the charging events of ETs were identified,

which were used to obtain the temporal and spatial patterns

of charging behaviors of ETs. Given that the data field of

the passenger load indicator was unavailable in this ET tra-

jectory dataset, the FT trajectory dataset was used as a sup-

plement to the ET dataset. In addition to the occupancy

status, all data fields in the ET dataset are also included in

the FT dataset, which contains 46,927,855 GPS records of

14,728 FTs in Shenzhen in October 2013. Based on the FT

dataset, the traveling patterns, such as the tempo-spatial

distribution of passenger-pickup events and drop-off

events, the OD transition matrixes in busy and idle status,

Figure 2. Input and output of the agent-based simulation model.
ET: Electric taxis

Figure 3. Comparison of traveling times between simulation
and Amap estimation.
ABS: Agent-based simulation
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and the interarrival time distributions, were extracted.

These extracted patterns were used to generate and validate

ETs’ traveling behaviors in simulation under the assump-

tion that ETs and FTs had similar traveling patterns. The

details of these behavioral patterns extracted from trajec-

tory data are explained in the following subsections.

3.4. Behaviors of ETs during implementation

The flowchart of key events, status, and decisions of ETs

in the ABS model is shown in Figure 4, with each module

represented by a circled number for ease of description in

the following parts.

3.4.1. Traveling behaviors of ETs. The initial positions of

ETs are randomly chosen at the beginning of the simula-

tion. Each ET is assumed to be fully charged and is in

cruising status (Module CR). The destination of the cruis-

ing trip or the passenger-pickup event (Module PP) loca-

tion is randomly generated based on the OD transition

probability matrix ODDP (Drop-off ! Pickup), which is

estimated from all cruising processes in the trajectory data-

set. Similarly, once an ET picks up a passenger, the desti-

nation of the operating trip or the passenger-drop-off

location is determined by the OD transition probability

matrix ODPD (Pickup ! Drop-off). In Equations 1 and 2,

m refers to the number of mapping grids. Pij refers to the

conditional probability of dropping the current passenger

at grid j if the passenger-pickup location is grid i, while Qij

refers to the conditional probability of picking up the next

passenger at grid j if ET drops off the current passenger at

grid i. For example, subplots (a) and (b) in Figure 5 show

two rows of ODPD, P685� and P303�, respectively, which
represent the probability of selecting each map grid as the

destination of the trip, given that the starting grid index is

685 or 303. The borders of the starting grids are high-

lighted in green. As shown in Figure 5, the spatial distribu-

tion of possible destinations for different origins varies

significantly, and the probability of selecting destination

grids near the origin grid is much higher than that of the

distant ones. In this study, ODPD and ODDP were

Figure 4. Flowchart of electric taxis’ traveling and charging behaviors in the ABS model.

Figure 5. Heat maps of OD transition probabilities for different starting locations: (a) Transition probabilities when the starting
grid index is 685. (b) Transition probabilities when the starting grid index is 303.
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estimated using data points from all 24 h at an aggregated

level due to limited data volume. If sufficient data are pro-

vided, then the elements in ODPD and ODDP can be fur-

ther extended to Pijt and Qijt , respectively, where t is the

hour index. In this way, hourly OD transition probability

matrixes estimated from trajectory data can better charac-

terize tempo-spatial patterns of ETs’ traveling behaviors.

ODPD =
P11 � � � P1m

� � � Pij � � �
Pm1 � � � Pmm

2
4

3
5with Pm

j= 1

Pij = 1, 04Pij 4 1

ð1Þ

ODDP =
Q11 � � � Q1m

� � � Qij � � �
Qm1 � � � Qmm

2
4

3
5 with

Pm
j= 1

Qij = 1, 04Qij 4 1

ð2Þ

In fact, an ET is intermittently in a stationary state

rather than always moving. The implementation of the

cruising state (Module CR) is extended to several subcom-

ponents, which is shown in Figure 6. After dropping off

the passenger, a decision module (Module NC) is available

for the driver to decide whether to go to CS, which is

described in detail in the following subsection. If charging

is unnecessary, then the ET will reach a staying place to

rest. The selection of the staying grid follows the spatial

probabilities in ODDP. The staying time is randomly gen-

erated based on an hourly updated normal distribution with

mean (mstay in Equation 3) and standard deviation (sstay in

Equation 3) estimated from staying events in the trajectory

dataset. After the current staying process ends, a probabil-

ity array PBusy is used to randomly decide whether the ET

goes to pick up the next passenger or find another place to

stay at the current hour. In Module CC, if the ET decides

to cruise, then the process returns to Module CS and

repeats the staying process, or the ET starts a trip to pick

up the next passenger (Module CP), whose destination grid

is randomly determined by ODDP :

mstay = ½m0 � � �mh � � � m23� sstay = ½s0 � � �sh � � � s23 �
ð3Þ

PBusy = ½B0 � � �Bh � � � B23� with 04Bh 4 1 ð4Þ

3.4.2. Charging Behaviors of ETs. Figure 4 shows that, after

the passenger is dropped off, a decision procedure

(Module NC) is available for the ET driver to decide

whether to go to CS. The rules in Module NC are listed as

follows:

(a) If the ET’s current battery level is less than

SOCthr1 (e.g., 30%), then the process will go to

Module SLC, in which the ET will select a CS.

(b) If the ET’s current battery level is between

SOCthr1 and SOCthr2 (e.g., between 30% and

50%), then a probability Ch that the ET will go to

Module SLC to select a CS exists. Ch is an

hourly updated probability based on the array

PChar, which is defined in Equation 5.

(c) If the ET’s current battery level is greater than

SOCthr2 (e.g., 50%), then the process will go to

Module CR, and the ET will start another cruising

trip.

PChar = ½C0 � � �Ch � � � C23� with 04Ch 4 1 ð5Þ

Based on the rules of Module NC, if the ET driver decides

to charge the vehicle, then the ET will go through a

Figure 6. Flowchart of subprocesses in cruising status (Module CR in Figure 4).
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searching procedure of CS, which is Module SLC in

Figure 4. The searching rules of ETs are described as

follows:

(a) The set of CSs S is obtained within a prespecified

search radius R0.

(b) The subset Sfree is obtained from S, which has

free charging piles at the searching time.

(c) If Sfree is not empty, then the ET will select the

nearest one as CS.

(d) If Sfree is empty, which implies that all stations in

S have queues, then the ET will select the station

with the shortest queuing length as the CS.

(e) If S is empty, then the search radius is increased

by Rstep and the same procedure is repeated.

In this way, instead of simply selecting the nearest station

implemented by other ABS models, the logic and rules in

this study have a certain level of intelligence with cell

phone applications sharing the real-time state of CSs

nearby, which is closer to the habits of ET drivers.

After the CS is selected in Module SLC, ET will take

the fastest route to the CS (Module TC). Upon arrival

(Module AC), the ET checks the actual line state of the

station (Module IQ), which is due to that a queue may

form while traveling in this direction. If a queue is formed

in the station, then the ET will start queuing (Module SQ).

Each station has multiple charging piles, and ET arrivals

form a single queue with unlimited queuing capacity. The

corresponding queuing model is M/M/c/‘ in Kendall’s

notation, which indicates the arrival process follows a

Markovian (Poisson) distribution, the service time follows

a Markovian (exponential) distribution, c servers are avail-

able, and the queue capacity is infinite. The waiting time

in Module QU depends on the actual queuing status in the

simulation, such as the number of vehicles in front of the

queue and their charging time. If no queue is formed in

the station, then the ET will start charging (Module STC),

and the charging time in Module CH is a linear function

of the percentage of battery to be fully charged. The empty

battery takes approximately 2 h to be fully charged, which

is consistent with reality. After charging is completed, the

ET will be in a cruising status, which is Module CR in

Figure 4.

3.5. Model calibration and validation

This simulation model includes many configuration para-

meters, some of which can independently determine the

overall system performance, such as the temporal and spa-

tial patterns of pickup and charging demand. For example,

the parameters ODPD and ODDP directly determine the

spatial distribution of ET destinations given a specific ori-

gin for busy or idle states, respectively. However, some

system metrics are not solely determined by an individual

set of parameters but are influenced by multiple groups of

parameters that interact with each other. In addition, these

system metrics themselves have mutual influences and

need to be consistent with the real-world situation, which

makes model calibration and validation challenging tasks.

For example, the system performances, such as the average

number of pickup tasks completed by each ET per day and

the average number of charging times of each ET per day,

need to be collected after a simulation run. The two system

statistics represent the overall demand level for ET pickup

and charging events and need to be consistent with the

actual situation. They are not independent but influence

each other. If fewer daily charging events occur, then more

time would be available for ETs to complete additional

pickup events. The goal of the calibration procedure is that

not only the overall levels of the two system statistics but

also the hourly proportional trends of incident counts are

consistent with the real-world scenario. In this way, using

the calibrated model is meaningful for further evaluation

and optimization of EVCI. The level and hourly proportion

trend of pickup times are mainly determined by PBusy and

mstay, while the main influencing factors of charging times

are PChar and other charging parameters such as the capac-

ity of the ET battery and the search distance. These input

and spatial parameters jointly affect the two system statis-

tics due to the complexity of the simulation system.

In the calibration process, some parameters such as

mstay, sstay, the charging capacity and the searching dis-

tances are fixed at a certain level, while PBusy and PChar

are adjusted using an iterative trial-and-error method to

achieve the calibration goal. PChar and PBusy are initially

set based on the empirical data. After a simulation is com-

pleted, the averages of daily pickup and charging times

between empirical data and simulation output are com-

pared. The means of PBusy and PChar are adjusted in new

simulations until the two metrics match the level in empiri-

cal data. Then, each element in the parameter array of

PBusy and PChar is adjusted to ensure that the hourly trends

of the pickup and charging times from the simulation out-

put are close to those calculated based on empirical data.

In each iteration of the calibration process, a prespecified

step size is applied to the relevant hourly parameters of

PBusy and PChar to reduce the gap between the simulation

statistics and the actual level at that hour. The iterative

calibration procedure can be implemented using program-

ming language and conducted automatically.

A validation test needs to be conducted to ensure that

the calibration method mentioned above does not result in

model overfitting. Performing an out-of-time test is chal-

lenging due to the limited time span of the trajectory data

collected. Therefore, an out-of-sample validation method

is employed. The taxis in the trajectory data are randomly

divided into two groups in a 2/3 and 1/3 ratio, and the cor-

responding trajectory data are then split into training and

testing datasets. In the training phase, the parameters of
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ODTrain
PD , ODTrain

DP , mTrain
stay , and sTrain

stay are first estimated and

obtained. The initial values of PBusy and PChar are set as

PTrain
Busy and PTrain

Char , respectively, which are also estimated

from training data. These parameters are input into the

simulation model, and other parameters are set to be at the

average level. For example, the number of ETs is set to

600. Then, PBusy and PChar are fine-tuned iteratively until a

good fitting of the hourly proportional trends is realized

between the simulation outputs and those from the training

data (Figure 7). Table 1 shows that the mean absolute error

percentages for pickup and charging events are only 0.07%

and 0.36%, respectively. Finally, the optimized parameters

of P�Busy and P�Char are recorded for future tests.

In the validation phase, the parameters of ODTest
PD ,

ODTest
DP , mTest

stay , and sTest
stay are estimated based on testing data.

They are input into the simulation model along with P�Busy

and P�Char obtained from the training phase. The remaining

parameters are set to the same values as those defined dur-

ing the training phase. The ET count parameter is set at

four levels, namely, 400, 600, 800, and 1000, to verify the

performance of the optimized parameters under different

levels of pickup and charging demand. The validation tests

are conducted four times under each ET count level. The

simulation results show that the average pickup times per

ET per day are 27.3–27.9 for all simulations in the training

and testing phases. The average charging times per ET per

day are 3.2–3.3 for all simulations in both phases. This

result indicates that the current simulation implementation,

combined with the optimized parameters, can maintain a

relatively stable level of pickup and charging demand for

each ET. However, the overall demand for the system var-

ies with the total number of ETs. Figure 8 and Table 1

show that the fittings of the hourly proportional trend of

pickup and charging events are slightly worse than those

in the training tests, but the absolute error still remains at a

relatively low level. Overall, the simulation model can

effectively reflect the demand level of pickup and charg-

ing after changes in parameters such as ODPD, ODDP,

PBusy, and mstay. The trends throughout the 24 h of the day

are very close to the real scenario.

Similar hourly trends can be found in other literature,

such as Wang et al.54 and Tian et al.41 In particular, the

characteristics of four charging peaks per day in the hourly

trend of charging events, as shown in Figures 7 and 8, have

persisted in Shenzhen for several years from 2013 to 2017.

On the basis of their study of Shenzhen ETs, the first and

third charging peaks in Figure 8 are probably due to full

charge between shifting and preparation for the rush hours

of picking up passengers. The second and fourth peaks are

around drivers’ lunch and dinner times. Drivers tend to

have lunch and dinner while charging the vehicles simulta-

neously even if the current power is not yet to the point

Figure 8. Comparison of proportional trends between simulation and testing data.

Figure 7. Comparison of proportional trends between simulation and training data.
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where it must be charged. Validation results show that

such charging patterns are modeled well by the simulation

rules and parameters.

3.6. Evaluation of one EVCI layout plan

On the basis of the calibration and validation methods

proposed in Section 3.5, the use of the simulation model

to evaluate an EVCI layout plan is explained in this sec-

tion, along with the relevant input parameter setup, out-

put measurements, and tests for convergence,

repeatability, and stability. The EVCI layout to be evalu-

ated by the ABS model is shown in Figure 9, which is

based on actual conditions in Shenzhen when the trajec-

tory data were collected, including one large station with

100 charging piles (the blue box), 2 median stations with

40 charging piles (green circles), and 18 small stations

with 6 charging piles in each station (yellow triangles).

The number around each CS in Figure 9 is the map grid

index where the station lies, which can be considered the

ID of the CS. The heatmap of the passenger-pickup inci-

dents is also shown in Figure 9. Most CSs are located in

areas with a relatively high pickup density. The settings

of the other model parameters are listed as follows. The

means of large matrix parameters are provided due to

space constraints.

� Simulation length: 7,000,000 ticks (equivalent to

34 days in real time; one tick stands for 0.42 s in

real time)
� Number of ETs: 600
� SOCthr1: 20%
� SOCthr1: 80%
� Mileage with full power Mfp: 300 km
� Search radius R0: 6 km
� Average of PBusy: 0.540
� Average of PChar: 0.042
� Average of mstay: 10.02 min
� Average road speed: 29.23 km/h

In simulation and modeling, random events are generated

using the ‘‘Random()’’ class in Java Repast. A predeter-

mined seed dictates the sequence of random numbers gen-

erated during the simulation. Before evaluating the layout

plan, experiments were conducted to ensure that running

different simulations with the same seed produced consis-

tent results. The initial values of some parameters in the

simulation, such as the initial position of each ET, were

randomly generated at the start of the simulation run. A

repeatability test was conducted to demonstrate the stabi-

lity and robustness of the model to ensure that the ran-

domly generated initial parameters have little effect on the

final evaluation of the EVCI layout model. The model was

Table 2. Statistics of the output summary variables and simulation evaluation results.

Simulation output variables Average Standard deviation Variation coefficient

Ave. charging times per ET per day 3.253 0.007 0.23%
Ave. pickup times per ET per day 27.863 0.027 0.10%
Ave. running distance per ET per day (km) 337.580 0.199 0.06%
Ave. running time per ET per day (hours) 13.185 0.007 0.05%
Ave. queuing time per ET per day (min) 19.189 0.518 2.70%
Ave. time traveling to CS per ET per day (min) 31.507 0.131 0.42%
Stdev. of charging times proportions for all charging stations 2.90% 0.02% 0.79%
Stdev. of queuing times proportions for all charging stations 6.53% 0.05% 0.76%
Ave. of utilization rates for all charging stations 35.74% 0.07% 0.19%

ET: Electric taxis; CS: Charging station

Table 1. The mean absolute error% of proportional trends of pickup and charging events between simulation and training/testing
datasets.

Event type Validation type The number of ETs The mean absolute error%

Passenger-pickup events Sim. output vs. training data 600 0.07%
Sim. output vs. testing data 400 0.11%

600 0.11%
800 0.12%
1000 0.11%

ETs’ charging events Sim. output vs. training data 600 0.36%
Sim. output vs. testing data 400 0.37%

600 0.47%
800 0.51%
1000 0.59%

ET: Electric taxis
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run 30 times under the same parameters using different

seeds, and the variation in the model’s output variables

was analyzed. Table 2 shows that the variation coefficient

of most model outputs is less than 1%, which indicates a

relatively low level of variation. The variation coefficient

of the average queuing time is 2.7%, which is slightly

higher than those of other output variables. However, its

standard deviation is only 0.52 min, which is at a low

level. Therefore, the randomness of the initial parameters

has a minimal effect on the evaluation of the EVCI layout,

which implies a high level of robustness and stability of

the simulation model.

Given that the ABS model is a tick-by-tick high-

resolution simulation model, the computational resources

to execute the computer program are relatively high.

Usually, obtaining a stable system performance evaluation

on a normal computer takes several hours in the real

world. Table 2 shows the statistics of pickup and charging

events of ETs, the traveling and queuing time of ETs, and

the performance metrics of CSs. Most of these variables

tend to converge as the simulation progresses. Figure 10

shows the convergence of two summary variables of the

ABS model. They fluctuate at the beginning of the simula-

tion and tend to become stable when an increasing number

of samples are accumulated. The stabilized values of these

variables can be used to evaluate the system performances,

such as the average queuing time and traveling time to CS

as measures of ET users’ time satisfaction and the average

utilization rates for all CSs as a measure of EVCI usage

efficiency. Each plan only needs to be simulated once

when evaluating a large number of EVCI layout plans due

to the stability of the simulation model. Moreover, the

simulation length can be appropriately selected based on

the convergence of the layout evaluation metrics to

improve efficiency.

The performances of each CS can be evaluated by the

ABS model as well. The statistics of each station’s charg-

ing, queuing, and utilization situation are shown in

Table 3. The utilization rates vary widely from 76% as the

highest to 1.6% as the lowest. CS No. 321 and No. 591,

Figure 10. Convergence of simulation output variables.

Figure 9. Heatmap of passenger-pickup events and locations of charging stations.
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which had more charging piles than other stations, had the

lowest utilization rates of only 2.6% and 1.6%, respec-

tively. Improper location might explain this result given

that the two stations were not centrally located but on the

fringes of the hot zone of pickup events. Some other sta-

tions were not far from the two stations, which further

reduced the workloads. However, another median-level

CS No. 852 had a higher utilization rate of 16.2%, which

is probably due to that it was closer to the hotspot region

and the surrounding CSs were not very close to it. CS No.

611 was located in the center of the hotspot zone. Given

that it had only six charging piles, it had the highest utili-

zation rate of all CSs. The relationship of event count pro-

portions between charging and queuing can be found in

Figure 11. A piecewise positive linear relation exists

between the two. Stations with higher charging

Table 4. Model parameters and levels in sensitivity analysis.

Model parameters Levels Description

The number of ETs [200, 400, 600, 800, 1000] The number of electric taxis in the simulation
The capacity of ET battery [100, 150, 200, 250, 300, 350, 400, 450, 500] The mileage with full power
The charging pile volume [low, mid, high, veryHigh] The type and number of piles for each level:

low (mini:3, median:20, large:50); mid (mini:6,
median:40, large:100); high (mini:9, median:60,
large:150); veryHigh (mini:12, median:80,
large:200)

The searching distance of ETs [1, 2, 3, 4, 5, 6] The initial searching radius of electric taxis

ET: Electric taxis

Table 3. The ABS model’s evaluation of each charging station.

CS ID Number of
charging piles

Number of
charging events

Proportion in all
charging events

Number of
queueing events

Proportion in all
queuing events

Queuing ratio in
charging events

Utilization
rates

321 100 (Large) 3225 4.8% 0 0.0% 0.0% 2.6%
591 40 (Median) 841 1.3% 0 0.0% 0.0% 1.6%
852 7940 11.9% 25 0.2% 0.3% 16.2%
117 6 (Mini) 748 1.1% 0 0.0% 0.0% 10.1%
711 826 1.2% 1 0.0% 0.1% 12.1%
570 1232 1.8% 9 0.1% 0.7% 16.9%
425 1484 2.2% 6 0.0% 0.4% 19.9%
65 1727 2.6% 35 0.2% 2.0% 23.5%
217 1990 3.0% 40 0.3% 2.0% 26.1%
262 2117 3.2% 55 0.4% 2.6% 28.0%
411 2373 3.5% 137 0.9% 5.8% 32.0%
413 2603 3.9% 150 1.0% 5.8% 34.9%
175 2674 4.0% 159 1.0% 5.9% 35.8%
600 3116 4.7% 628 4.1% 20.2% 41.7%
727 3674 5.5% 1164 7.6% 31.7% 48.9%
377 3864 5.8% 1206 7.9% 31.2% 51.3%
453 5045 7.5% 1980 13.0% 39.2% 66.0%
233 5212 7.8% 2152 14.1% 41.3% 68.5%
618 5247 7.8% 2340 15.3% 44.6% 68.6%
488 5333 8.0% 2206 14.5% 41.4% 69.9%
611 5732 8.6% 2960 19.4% 51.6% 76.0%

ABS: agent-based simulation CS: Charging station; ET: Electric taxis.

Figure 11. Piecewise linear relation between charging and
queuing proportions.
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proportions are more likely to have more queuing propor-

tions. However, when the charging incident proportion is

less than 4%, the queuing incident proportions are kept at

a low level, with a slight increasing trend such that charg-

ing activities are becoming more active. Stations No. 321

and No. 852 with red circles in Figure 11 are the outliers

of this relationship because they are large and median sta-

tions with many more charging piles than others. Thus,

they have difficulty forming queues.

In summary, the ABS model can provide a detailed and

stable evaluation of the layout of EVCI and the traveling

and charging behaviors of ETs. The layout can still be fur-

ther improved in the simulation. The large and median

CSs were not very well located, which led to very low uti-

lization rates. However, some CSs with very high usage

rates had serious queuing problems. This phenomenon is

consistent with the description in the literature. Given that

Shenzhen was in the early stage of developing new energy

vehicles at that time, this EVCI layout design problem

was understandable. Some stations were still under con-

struction and were ignored in the simulation.

4. Sensitivity analysis

A sensitivity analysis was conducted for important vari-

ables in the simulation to determine the effect of model

parameters on the simulation results. One set of simulation

experiments was designed and conducted for different lev-

els of one variable independently while fixing the other

model parameters. The model parameters and their levels

of sensitivity analysis are listed in Table 4, while the

results are elaborated in the following subsections.

4.1. Number of ETs

Similar to the validation test conducted in Section 3.5,

the fluctuations in the average pickup and charging times

per ET per day are minimal, which are maintained at a

consistent level, as illustrated in Figure 12, when the

number of ETs is altered while the other parameters are

fixed. Accordingly, the charging demand, traveling dis-

tance, and time for each car are maintained at the origi-

nal level. However, the total pickup demand of all ETs

increases proportionally with the number of ETs, which

leads to a rise in the total charging demand. On the sup-

ply side, the charging capacity provided by EVCI does

not change. As a result, the average queuing time and

the traveling time to reach the CS increase linearly with

the number of ETs.

4.2. Capacity of the ET battery

As shown in Figure 13, the charging demand decreases with

the increase in ET battery capacity, which results in a

decrease in the queuing time and traveling time to reach the

CS. Based on the simulation implementation of ET’s beha-

vioral logics described in Section 3.4, the model does not

confine the overall pickup service demand from a global per-

spective. Instead, it assumes that each ET decides whether

the next movement after it completes a charging session or a

passenger-pickup will be to pick up another passenger or to

cruise based on the parameter PBusy. Therefore, the decrease

in charging demand allows ETs to have more time available

for picking up passengers, which leads to an increase in

pickup times, traveling mileage, and traveling time.

Figure 12. Sensitivity analysis for the number of ETs in the ABS model. The label of y axis for subplot (a) Ave. pick-up times per ET
per day; (b) Ave. charging Times per ET per day; (c) Ave. running distance per ET per day (kilometers); (d) Ave. queuing time per ET
per day (minutes); (e) Ave. traveling time to CS per ET (minutes); (f) Ave. running time per ET per day (minutes).
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4.3. Charging pile volume of CSs

Figure 14 shows that the ETs’ average queuing time

decreases when a CS increases its number of charging

piles. As the number of charging piles increases evenly,

the queuing time decreases nonlinearly, in which the mag-

nitude of the decline gradually decreases. The traveling

time to reach the CS also decreases. The reason is that

ETs prefer CSs that are farther but do not require queuing.

With the increase in the number of charging piles, the

nearest CSs do not require queueing, which reduces the

driving distance and time. The decrease in queuing time

leads to more time for operation. The pickup and charging

Figure 14. Sensitivity analysis for the charging pile volume in the ABS model. The label of y axis for subplot (a) Ave. pick-up times
per ET per day; (b) Ave. charging Times per ET per day; (c) Ave. running distance per ET per day (kilometers); (d) Ave. queuing time
per ET per day (minutes); (e) Ave. traveling time to CS per ET (minutes); (f) Ave. running time per ET per day (minutes).

Figure 13. Sensitivity analysis for ETs’ battery capacity in the ABS model. The label of y axis for subplot (a) Ave. pick-up times per
ET per day; (b) Ave. charging Times per ET per day; (c) Ave. running distance per ET per day (kilometers); (d) Ave. queuing time per
ET per day (minutes); (e) Ave. traveling time to CS per ET (minutes); (f) Ave. running time per ET per day (minutes).
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times of ETs increase slightly and are maintained at the

original level.

4.4. Search distance of ETs

Finding CSs that are farther but do not require queueing is

easier for ETs as the search distance increases. Therefore,

the queuing time decreases, and the time to travel to the CS

increases (Figure 15). Correspondingly, the reduction in time

spent on charging leads to more time for picking up passen-

gers. With the increase in the volume of pickup activities,

traveling distances and time, as well as charging times, also

increase. Notably, the search distance of 3 km appears to be

a cut-off point. The upward or downward trend of perfor-

mance variables becomes nearly nonexistent if the search

distance is greater than 3 km. The reason is that the study

region, especially the hotspot zone of pickup incidents, is a

long and narrow area. If the search distance is more than

3 km, then the boundaries of the study area will be exceeded.

The additional search radius has little practical effect.

In summary, the results of sensitivity analysis are

unsurprising, which shows the correctness of the model

implementation helps us understand the effect of model

variables on the evaluation of system performance.

5. Optimization of EVCI layout

Considering that the ABS model gives a reasonable evalua-

tion of the EVCI layout, it can be used for the location opti-

mization problem. The layout designs generated by

mathematical optimization methods in the literature, plans

proposed by experts, and randomly generated plans can be

input into the ABS model. After simulation evaluation, the

best layout plan can be chosen based on one or multiple per-

formance variables, such as average queuing time and EVCI

utilization. In this study, a multiobjective optimization

method based on Pareto analysis is proposed to solve the fol-

lowing practical problem: if the number of ETs increases to

1000 and the current EVCI layout shown in Figure 9 is given,

then how can another large CS with 100 charging piles be

located in the city to maximize ET users’ time satisfaction

and the average utilization rate of all CSs simultaneously?

EV users’ time satisfaction can be measured by the sum

of the traveling time to reach the station and the waiting

time in the queue, which should be minimized to achieve

this goal. The average utilization rate of all CSs represents

the usage of the charging facilities, with a higher value indi-

cating better usage and reduced wastage of charging infra-

structure. The optimization objective is set as minimizing

the opposite number of average utilization rates to facilitate

subsequent Pareto analysis, and it is equivalent to maximiz-

ing the utilization rates. Thus, multiobjective optimization

aims to simultaneously minimize both metrics. The possible

locations of the CS to be built can be generated by selecting

the top 100 map grids with the highest densities of pickup

incidents based on the trajectory data of ETs. These 100

layout designs along with the current layout as the base plan

are input into the ABS model for simulation evaluation.

The evaluation results regarding the time satisfaction

and CS utilization percentages of these 101 layout designs

are shown in Figure 16. Among the 101 layout plans, 20

are positioned on the Pareto frontier, as depicted by the

blue dots in Figure 16. Under any weighting of the two

Figure 15. Sensitivity analysis for ETs’ searching distance in the ABS model. The label of y axis for subplot (a) Ave. pick-up times
per ET per day; (b) Ave. charging Times per ET per day; (c) Ave. running distance per ET per day (kilometers); (d) Ave. queuing time
per ET per day (minutes); (e) Ave. traveling time to CS per ET (minutes); (f) Ave. running time per ET per day (minutes).
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measures, the 20 layout plans dominate the others. Five

representative plans were selected from the Pareto frontier.

They are plans with map grids No. 391 (the best layout for

time satisfaction) and No. 394, No. 290, No. 697, and No.

515 (the best layout for CS utilization). These plans

demonstrate varying degrees of improvement in two

metrics compared with the original layout plan, which is

shown in black circles in Figure 16. For example, the lay-

out plan with grid No. 391 can increase the time satisfac-

tion by 37.7%, and the plan with grid No. 515 can improve

the average CS utilization by 6.5%. The plan with grid No.

679 can improve the time satisfaction and CS utilization

by 10.5% and 4.4% simultaneously. The newly constructed

CS is more likely to have a significant improvement effect

on ET users’ time satisfaction. The locations of the addi-

tional CSs of the five plans are shown in Figure 17. Grids

No. 391, No. 394, and No. 290 are close to one another,

and they are all located in densely populated areas with

high demand for pickup services in Luohu District (the

darker red areas in Figure 17). These locations fill the gap

in surrounding areas where no CSs are available, which

significantly reduces the time to reach CSs and waiting

time in queues. Grid No. 617 is located on the eastern edge

of Luohu District, which is not far from existing station

No. 618 as one of the most utilized CSs. Therefore, Grid

No. 617 can relieve the queue pressure of nearby CSs and

simultaneously improve the overall average utilization of

CSs. Grid No. 515 is located far from the other alternative

locations on the western edge of Bao’an District, and it

fills the lack of large-scale CSs nearby. Therefore, it can

significantly improve the overall utilization level of CSs.

However, it is far from the core areas of Futian and Luohu

Districts. Thus, it does not contribute to the improvement

in time satisfaction.

6. Discussion and limitations

The innovation of the proposed ABS model in this study is

primarily the modeling and simulation of the traveling,

passenger-pickup, and charging behaviors of ETs in a

more realistic way using the trajectory data of ETs. The

simulation system is then applied to evaluate and optimize

the layout design of EVCI. The closeness between simula-

tion and real-life situations is primarily reflected at the

micro- and macrolevels. The microlevel perspective is

reflected in individual ET agents’ logical behaviors and

decision-making processes, such as adjusting their speed

based on traffic conditions, following specific spatial tra-

veling patterns during busy or idle states, making decisions

on whether to charge at different times of the day and

intelligently searching and selecting CSs. From a macrole-

vel perspective, the model accurately captures the hourly

trends of city-level passenger-pickup and ET charging

incidents. This model, which is based on trajectory data,

allows for a detailed simulation of the complex logic of

Figure 17. Locations of layout plans with map grid No. 290, No. 391, No. 394, No. 679, and No. 515.

Figure 16. Pareto frontier of EVCI layout designs.
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ETs by fitting the overall levels and temporal patterns of

pickup and charging demands in the entire city through a

calibration process. The performance of the model in vali-

dation tests with new data verifies that it does not suffer

from overfitting or excessive training, which proves that

the model can capture the main temporal patterns of the

city using a limited number of parameters and maintain

this feature in simulating new data.

The validation tests of the model show that the current

implementation can ensure that the average pickup and

charging events per ET remain relatively stable when

changing the ET count parameter. However, the overall

demand level of the whole system will change with varia-

tions in the ET count. If the model user requires experi-

ments to be conducted under a constant passenger-pickup

service demand level, then the model’s PBusy and mstay

parameters need to be recalibrated using a trial-and-error

method to achieve the desired level. This iterative calibra-

tion method incurs a certain computational time cost.

However, in the scenario of EVCI layout evaluation, the

performance of CSs and their layouts under higher pickup

and charging service demand intensity often needs to be

tested. From this perspective, the method of adjusting the

overall demand intensity by altering the ET count can also

meet the needs of the model users.

The data used in this study are from 2014 due to the dif-

ficulty in collecting trajectory data. These data are(is) quite

outdated and may not reflect the current situation. They

are also unsuitable for conducting out-of-time dataset split-

ting during the validation test because of the limited time

span of these data. Therefore, this study adopts an out-of-

sample test approach by splitting the data based on ET

IDs. If longer time span data can be collected in the future,

then further validation can be conducted. The main pur-

pose of this study is to introduce a simulation and optimi-

zation methodology based on trajectory data. From this

perspective, even using data from 2014 can achieve this

goal. This data format is typical trajectory data, and the

data source is Shenzhen, China, which is one of the first

cities in China to popularize ETs and is representative and

typical in this regard. Moreover, from the findings of pre-

vious research such as Wang et al.,54 the hourly propor-

tional trend of charging events closely resembles the trends

described in this study. The relatively stable trend of four

charging peaks per day between 2013 and 2017 indicates

that the hourly trend of charging incidents in a city can

remain stable for a considerable period. This description

further demonstrates that the calibration and validation

methods of this model are effective in capturing the basic

trends for future EVCI layout evaluation. However, col-

lecting the most up-to-date data for model calibration is

essential in practical applications. This study mainly

focuses on Shenzhen, while the traveling and charging

tempo-spatial distribution of ETs in different cities will

definitely have distinct characteristics influenced by

factors such as urban traffic, charging facilities, geography,

culture, and travel habits. Therefore, this model can be

applied to other cities, and some considerations need to be

made before using the model in different cities.

7. Conclusions and future work

The proposed ABS model in this study can simulate the

traveling and charging behaviors of ETs based on tempo-

spatial patterns extracted from GPS trajectory data of ETs

in the GIS environment of an urban road network with a

traveling speed of 24 h. Complex and dynamic behaviors

of ETs, such as shortest-path routing, passenger-pickups,

and intelligent search of CSs, were implemented using

rules and logics in the ABS model, through which interac-

tions among agents and their interactions with the environ-

ment were modeled. The simulation was calibrated such

that the dynamic patterns of important events, such as

passenger-pickup and charging incidents, matched those

extracted from trajectory data. The validation test confirms

that the model calibration did not suffer from overtraining

and overfitting problems. Instead, it demonstrates the abil-

ity of the model to capture the primary temporal patterns

of the city using a limited number of parameters while

maintaining this capability in simulating new data. After

simulation execution, detailed and summarized data of ET

behaviors and EVCI performance were obtained. Multiple

simulation experiments were designed and conducted to

test the sensitivity of important model parameters and set-

tings. The results appear reasonable, which shows that the

correctness of the model implementation and the influence

of model variables on system performance can be further

understood. A multiobjective layout optimization proce-

dure based on the Pareto frontier was proposed to maxi-

mize ET users’ time satisfaction and CSs’ utilization. The

location plans for the new CSs based on Pareto analysis

can improve both metrics through simulation evaluation.

The final decision on the location plan should be made

based on practical considerations such as financial cost,

power network, and environmental factors.

The performance measurements of the EVCI layout in

the current ABS model are mainly ET users’ time satisfac-

tion and EVCI’s utilization, which can be further extended

to include other aspects such as construction cost, operat-

ing cost, and power grid performance. Currently, the layout

optimization procedure is mainly based on the simulation

evaluation of a set of layout plans from experts or other

algorithms. Relatively good plans are selected from them,

but a global optimal solution cannot be guaranteed.

Integrating the current ABS model with heuristic optimiza-

tion algorithms such as GAs and simulated annealing is

impractical because the ABS model is a simulation of high

temporal resolution, whose computational and time costs

are relatively high. In the future, discrete-event simulation
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can be developed to fully utilize the major characteristics

of the ABM model and greatly improve the execution effi-

ciency of the simulation model. The discrete-event simula-

tion model can filter out poorly performing solutions

quickly and can be combined with a heuristic optimization

algorithm to generate layout plans for further evaluation of

the ABS model.
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