
  

 

Verification of DEVS Models 
for Reconfigurable Systems 

  

  
 Diploma Thesis  
  

 
 
 
 
 
 
 
 
  
 
 
 
 

 

Julia Weingart 
 
 

Advisor: Prof. Dr.–Ing. Sorin A. Huss 
 

Tutor: Dipl.–Inf. Felix Madlener 
 
 

 
 
 
 

Darmstadt, the 14th September 2009 

 
 
 
 
 
 
 
 



Ehrenwörtliche Erklärung 
 

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit ohne Hilfe Dritter und nur mit den 

angegebenen Quellen und Hilfsmitteln angefertigt habe. Ich habe alle Stellen, die ich aus den Quellen 

wörtlich oder inhaltlich entnommen habe, als solche kenntlich gemacht. Diese Arbeit hat in gleicher 

oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen. 

 

 

Darmstadt, am 14.09.09. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  i 



Acknowledgments 
 

This page is devoted to those, who encouraged me over the whole period of my study and especially to 

those, who supported developing and preparing this diploma thesis.  

 

This diploma thesis was done at the Department of Integrated Circuits and Systems at the Technical 

University of Darmstadt. First of all I would like to thank my tutor Dipl.-Inf. Felix Madlener for his 

valuable suggestions and observations as well as for constructive criticism during my work under his 

supervision. 

  

I owe special thanks to Roman Mertyn for his fruitful discussions, which helped me to solidify my 

ideas, when no doubt he had more important things to do and for offered access for necessary 

information. 

 

Great thanks to my tutor, George Khujadge and Kasia Heller, who read my thesis very carefully. 

 

Of course, I am indebted to my friends and to my chief Dipl.-Bib. Silvia Röpke-Dönges who supported 

me during this time. 

 

Especially, I want to thank my parents: Lilia and Anatoli Weingart, and my sister Natalia Derugin for 

their love, understanding and endless support in my life. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  ii 



Index of contents 
 

1......Introduction 1

1.1. Motivation 1

1.2. Goals 3

1.3. Overview 4

2......Verification 5

2.1. Model Checking 6

2.1.1. Explicit Model Checking 7

2.1.2. Symbolic Model Checking 8

2.2. Model Checking Tools 8

2.2.1. SMV  8

2.2.2. RAVEN 9

2.2.3. VCEGAR 10

2.2.4. UPPAAL 10

2.2.5. Summary 12

2.3. UPPAAL in details 12

2.3.1. Structure 12

2.3.2. Types of locations 13

2.3.3. Guard expression 14

2.3.4. Synchronization channels 15

2.3.5. Update labels 15

2.3.6. Multiple Structure 16

3......DEVS Models and UPPAAL tool 18

3.1. Parallel DEVS 18

3.2. Design of parallel DEVS in UPPAAL 20

3.2.1. Timeout representation 20

3.2.2. Representation of the internal transition function 22

3.2.3. Representation of the external transition function 22

3.2.4. Representation of the confluent transition function 23

3.2.5. Representation of the multiple message transition 23

4......Example 25

4.1. ROI Component 27

4.2. Contrast Component 28

4.3. Taillight Component 30

4.4. Shape Component 31

4.5. Timed Behavior 32

4.6. Request detection and information transmission 33

4.7. Activation and deleting process (of model components) 34

4.8. Internal, external and confluent transition functions 34

4.9. Restrictions 35

5......Verification of DEVS Models 36

  iii 



  iv 

5.1. Requirement specification language 36

5.2. Verification results 39

6......Conclusions 41

7......Appendix 42

List of Illustrations 44

Index of Tables 44

List of Literature 45



1. Introduction  
 

1.1. Motivation 
 

Usually talking about reconfigurable computing systems means to talk about reconfigurable hardware 

systems, like field-programmable gate arrays (FPGA). Reconfigurable computing systems are a 

disruptive innovation currently going to complete the most important breakthrough after introduction 

von Neumann paradigm. They exploit reconfigurable devices, including truly revolutionary field-

programmable gate arrays (FPGAs) device and benefits of both hardware and software advantages, 

providing huge power, area and performance [21]. FPGA contains an array of computational elements, 

whose functionality is determined by multiple programmable configuration bits. These elements, 

sometimes known as logical blocks, are connected using a set of routing resources that are also 

programmable. In this way, custom digital circuits may be mapped to the reconfigurable hardware by 

computing the logic functions of the circuit within the logic blocks, and using the configurable routing 

to connect the blocks together to form the necessary circuit [14].

 

Reconfigurable systems involve the manipulation of the logic within the FPGA at the run-time of the 

system, i.e. that the hardware design may be changed in response to the specifications placed upon the 

system while it is running. Hence, reconfigurable systems enable a dynamic and flexible adaptation of 

hardware structure to support different application tasks. In this case, the FPGA operates as an 

execution engine for a variety of different hardware functions. This means that FPGA-based systems 

can be programmed and reprogrammed many times implementing a wide range of tasks [21]. 

Bondalapati and Prasanna [4] defined in their research three main classes of reconfiguration for 

hardware resources: statically, partially and dynamically reconfigurable architectures. In the statically 

reconfigurable architectures a hardware system is configured just once following the execution 

requirements and can be reshaped as a whole. A partial reconfigurable architecture permits 

reconfiguration of smaller parts of the whole chip, while the remaining part of the chip preserves its 

functionality. As a consequence, a new dimension is added to the hardware design space in this kind of 

reconfiguration. The dynamic reconfiguration like partial reconfiguration permits reconfiguration of 

some part of the chip and in opposite to partial reconfiguration the other part of the components 

continues their execution.  

 

Consequentially, this uniqueness of the FPGAs devices allows the engineers to execute more hardware 

than they have gates to conform. This functionality can be exploited especially well when there are 

parts of the hardware that are occasionally idle. Thus, by using reconfigurable computing systems it is 

possible to achieve greater functionality with the simplest hardware resources compared to classical 

hardware solutions. Furthermore, FPGAs cost less and have shorter design and implementation cycle, 

i.e. reduced time-to-market. 

 

To sum up the facts given above, hardware systems are continuously growing in functionality and 

changing in their structure. This leads to an increased level of complexity in current hardware systems. 

As a result of this design complexity also increases the probability of substantial design errors. To 

achieve the development of reliable configurable systems despite their complexity, formal methods can 

be used due to the fact that extensive testing or simulation can easily miss significant errors when the 
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system is too large or just due to the fact that methods mentioned above are not sufficient enough for 

determining the hardware design correctness. Formal verification has been demonstrated to work 

reasonably well in practice [6]. The success of the formal verification method has attracted a fair deal 

of attention from both sides: the researchers’ side and the industry, with existing progress being made 

on many fronts [19, 25]. 

 

Formal methods are mathematically-based languages, techniques and tools for modeling, specification 

and verification of the systems that can reliably operate despite the systems’ growing complexity and 

functionality. Therefore, a formal verification is a proof that the designed model follows a supposed or 

asserted system behavior is true. The method of formal verification is an exhaustive process compared 

to the existing testing techniques, because it examines the whole dynamic behavior of a system when 

simple testing techniques explore only a particular execution. 

  

Unlike most programming languages, formal methods offer strict defined semantics, i.e. a 

mathematical description of a property. This specification of semantics allows formal analyzing of the 

system model before the actual implementation and to find out potential nonconformities at the early 

design stages. 

Formal methods can be applied and integrated in any stage of system’s development. The main goals 

of the formal methods defined by Wing [40] are: 

- To specify and assure non-functional behavior such as safety, reliability, performance, real-time 

and human-factors. 

- To built more usable and more robust tools. 

- To demonstrate that existing techniques scale up to handle real-world problems and to scale up 

the techniques themselves. 

The use of formal methods reveals ambiguities, incompleteness and inconsistencies in the system. 

To allow the application of formal verification onto real-world problems, foremost formal systems 

models must be developed. Examples for modeling real-time systems are frequently used Timed 

Automata [10], I/O-interval structures [38], Statecharts [20, 18] and Discrete Event System 

Specification (DEVS) formalisms [41] that provide excellent modeling facilities. These well known 

approaches suitable for automatic verification are based on the theory of the conventional finite state 

machines.  

For a formal description of reconfigurable systems as a part of the real-time systems the formalism of 

parallel DEVS was taken as the basis in this diploma thesis. This Model of Computation was extended 

towards reconfigurability and is denoted as RecDEVS [28].  RecDEVS as a novel formal method of 

computation allows the formal description of the dynamically reconfigurable hardware systems 

especially.   

 

In general, DEVS formalism [42] is an abstract basis for model specification due to its system 

theoretical basis and its undependability of any particular simulation implementation. It fits best the 
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timed behavior of reconfigurable systems. Furthermore, DEVS formalism provides hierarchical and 

modular composition, universality and uniqueness that support development of simulation models and 

integration of the diverse kinds of models needed in the different phases of hardware design process 

respectively. It is not only capable of hierarchical and modular modeling, but it is also widely used for 

verification methods too [15, 39]. 

 

1.2. Goals 
 

The main goal of this diploma thesis is to develop and evaluate solutions which permit the verification 

of DEVS models for reconfigurable systems with the help of the formal verification methods, especially 

by using Model Checking technique. Therefore, the theoretical background of Model Checking is 

explained as well as the basic concept of DEVS. More precisely the fundamentals of parallel DEVS are 

explained and the applicability of the Model Checking technique on DEVS models is demonstrated.   

 

One important task is to find a convenient tool for formal verification of DEVS models used in this 

work and to test its practicability on some examples including not only an elementary implementation 

of the DEVS model but also a complex one.  

 

To make the right decision among a big variety of the existing verification tools used in industry for 

different purposes and to choose only one of them is a comprehensive and time-consuming task. One 

should properly know the theoretical background of the subject plus up-to-date knowledge in this field. 

The following criteria that are given by Clarke and Wing [12] characterize tools to be attractive for 

engineers. Here are some relevant criteria which select the most appropriate Model Checking tool for 

the defined task: 

 

- Early payback. Methods and tools should provide significant benefits almost as soon as people 

begin to use them. 

- Ease of use. Tools should be easy to use as compilers, and their output should be as easy to 

understand. 

- Efficiency. Tools should make efficient use of a developer’s time.  

- Ease of learning. Notations and tools should provide a starting point for writing formal 

specification for developers who would not otherwise write them. The knowledge of formal 

specification needed to start realizing benefits should be minimal. 

- Error detection oriented. Methods and tools should be optimized for finding errors, not only for 

certifying correctness. They should support generating counterexample as a means of 

debugging. 

- Evolutionary development. Methods and tools should support evolutionary system development 

by allowing partial specification and analysis of selected aspects of a system. 

The second task of this thesis is to explain mapping of the DEVS formalism into a Model Checking tool 

specific representation. This representation can then be used for verification in this Model Checker. 

The model mapping is exemplified with a complex DEVS example. 
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1.3. Overview 
 

Chapter 1 includes introductionary material of reconfigurable hardware systems, an overview of this 

diploma thesis and defines main goals of the research. Chapter 2 gives a short review of the notions of 

the verification techniques including detailed description of the Model Checking approach. The most 

qualified Model Checking tools with full information about their advantages and disadvantages are 

briefly introduced in the same chapter.  

  

Chapter 3 specifies DEVS formalism and transformation of DEVS models into the UPPAAL Model 

Checker in general.  Exemplified transformation of the AutoVision example system [13, 29] and its 

detailed description is introduced in Chapter 4. 

 

Chapter 5 defines the requirement specification language of the UPPAAL Model Checker, illustrates a 

verification process of the given example and gives an overview of the evaluated results. Finally, 

Chapter 6 closes the paper with conclusions and future prospects. 
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2. Verification 

 

Formal verification [19, 25] is an important technique that is increasingly used nowadays in the 

hardware design establishing its correctness, i.e. establishing a relationship between an implemented 

model and a specification. The main goal of formal verification is revealing design errors by enhancing 

observability and exhaustive checking of the system model. The process of formal verification 

facilitates debugging process in the hardware design and reveals an incompleteness and inconsistence 

of the designed model as well. Hence, with the help of formal verification it is possible to prove 

whether the implementation satisfies a desired specification or not.  

 

Formal verification requires usage of some kind of formalism to express the implementation of the 

model, specification and the relationship between them. The DEVS formalism that is used throughout 

this work to describe the implementation of the system model will be introduced in Chapter 3.1 as well 

as its usability in the performed study. To describe the specification requirements on the model, 

temporal logic is used in this paper due to its reasoning explicitly about the time [19]. 

 

In the meantime, some of the commonly encountered forms of proof methods are available for formal 

verification. Two general approaches for formal verification are highlighted in the theory: Logical 

Inference (theorem proving) and Model Checking. 

 

Logical Inference is based on a formal version of mathematical reasoning about the system, usually 

using theorem proving approach. Theorem proving is a technique to verify an implemented model by 

finding a proof of proposed properties from the mathematical logic of the system. The model 

implementation and its properties are expressed as formulas in some mathematical logic. Primarily, 

theorem proving uses Higher Order Logic as a specification and describing language. This logic 

contains a set of axioms and a set of inference rules, i.e. theorem proving is a deductive process. The 

process of theorem proving establishes the proof of a property from the axioms of the system. The 

decision problem of the theorem may vary from trivial to insoluble depending on the underlying logic. 

 

The proofs can be constructed by hand or with the help of automatic theorem proving (ATP) programs. 

Theorem proving tools rely on the techniques like structural induction and they deal with the infinite 

state spaces. Automated theorem provers require some form of manual intervention to control the 

proof process. The theorem proving process is a time-consuming and often error-prone process. 

 

Another alternative of the formal verification technique, Model Checking, was developed in the 1980s 

independently by Clarke and Emerson [30] in the United States and by Queille and Sifakis [33] in 

France. In their approach a system is modeled as a state-transition graph and specifications are 

typically expressed in the propositional logic. Furthermore, with its’ growing popularity many studies 

were done to use the Model Checking process for real-time systems [27]. Consequently, this implies 

the extension of propositional logic to temporal logic, which is proved to be useful for specifying 

concurrent systems and making statements about their behavior over time.  

 

The advantage of Model Checking in contrast to theorem proving is that this approach is completely 

automatic and fast efficient according the used algorithms to examine complex and large systems. In 
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addition, it produces a counterexample when the implemented model does not satisfy the required 

specifications. Thus, the user can determines whether a failure is a design fault or whether it was 

caused by an illegal input. The disadvantage of this technique is that Model Checking is less powerful 

than theorem proving, because structural induction is not explicitly facilitated in this technique. 

 

Actually, Model Checking is used to verifying finite state spaces, because it uses no Higher Order Logic. 

But in some cases, it can be used for verifying infinite state systems in combination with various 

abstraction and induction principles [10]. The Model Checking approach is extensively described in the 

next section. 

 

2.1. Model Checking  
 

Model Checking [10] is a well established formal method for the automatical verification of finite state 

concurrent systems, e.g. sequential designs and communication protocols, and also for automatically 

proving the correctness of these systems. Model Checking is an efficient technique that is usually 

implemented using highly optimized data structure and algorithms [34]. The advantage of Model 

Checking over traditional approaches based on simulation, testing and deductive reasoning is that it is 

based on exploration of the whole state space of the model and exhaustive exploration of all possible 

behaviors of the system, while other approaches explore only some of the possible variants of systems’ 

behavior. The main goal of Model Checking is to prove if a given property specified as a propositional 

temporal logic formula satisfies the given state-transition graph of a system or not.  

 

Figure 1 shows the execution of the system verification via Model Checking tool. So, Model Checking 

tool gets a model to be verified as an input. Further, Model Checker gets a specification to be verified 

in regard to the correctness on the input model. Model Checker delivers the result of the verification as 

an output. Hence, if the model satisfies the designed specification, it returns “ok!” or “true” and 

otherwise it returns “false”, i.e. it checks whether the specification is fulfilled by the input model or 

not. If the property fails, the Model Checking tool explains via counterexample why a system is not 

correct detecting the source of the error, what is not possible by the logical inference.  

 

 

Figure 1: Verification process via Model Checking tool 
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Of great importance is the fact that Model Checking can be applied in the early stages of a design 

process. Therewith, Model Checking can be used to detect errors of the abstract model of the system or 

to prove their absence. Primarily, Model Checking is applied to the verification of the real-time systems 

and it is successfully used in practice to verify real industry designs [8].  The usage of the Model 

Checking tools increases the efficiency of the validation of the real-time systems and helps to generate 

systems with higher reliability. 

 

The two main representatives of Model Checking algorithm are explicit Model Checking and symbolic 

Model Checking. These methods will be defined and explained in the next subsections giving significant 

information about their features. 

2.1.1. Explicit Model Checking  

The first well established Model Checking approach is explicit Model Checking [10]. In some papers and 

books it is also known as on-the-fly Model Checking [3, 7]. By explicit Model Checking the global state 

transition graph of the verified system will be explicitly constructed in the memory. Thus, every state 

and every transition of the graph is checked individually for the compliance of the specification 

requirement given by the user.  The search of the state space requires the storage of every single 

system state in efficient way. The storage of visited nodes of the graph is also necessary for recognizing 

those already inspected. Hereby, visited nodes can be stored in the already inspected table. If the data 

set entry is found in this table, the node will be well-defined at a particular time as visited one. The 

stored states can be efficiently recognized using hash techniques. 

From the explicit inspection of all system-states according to the size of the system results problems 

about required computing time and therefore required memory capacity. Different attempts are 

meanwhile made to extend the explicit Model Checking. The amount of algorithms are introduced to 

decrease respectively minimize the required memory capacity. All well known Model Checkers, which 

are based on the explicit Model Checking technique, employ search algorithms to traversal the state 

transition graph and therefore do not combine well with BDD-based methods [7, 3]. These Model 

Checkers usually include following algorithms: 

1) Depth-First Search (DFS) 

2) Breadth-First Search (BFS) 

3) Depth-First Iterative Search (DFIS) 

Explicit Model Checking should be applied for verification of small and practice-orientated models due 

to its’ on-the-fly structure. 

 

The advantage of this approach is particularly obvious. If the model does not fulfill the specified 

properties, the violation may be faster detected. For instance, if violated property is at very beginning 

in the hierarchy of the generated states’ space in the cache then the technique of the explicit Model 

Checking must be clever and efficient used.  
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2.1.2. Symbolic Model Checking 

 

The main disadvantage in Model Checking is that this approach suffers from the widely known 

problem of state explosion, i.e. an exponential increase of the verified system in the number of global 

states with an increasing number of components. This usually occurs in systems with many interacting 

components or systems that use data structure, which can assume many different values. Taking this 

fact into consideration, some efforts are made by researchers in order to alleviate the problem of state 

explosion. Some of these attempts rely upon variations in the logic and methodology, other use 

effective techniques such as symbolic manipulation in order to explore the state space implicitly [19]. 
 

Among these alternatives the primary Model Checking algorithm dealing with state explosion problem 

is symbolic Model Checking. Symbolic Model Checking [10] is an efficient approach that is based on the 

manipulation of Boolean formulas. Boolean expressions describe the verified system and its behavior 

symbolically. Symbolic Model Checker avoids building of a state transition graph by using these 

Boolean formulas and uses OBDD (Ordered Binary Decision Diagram, data structure for representing 

Boolean functions) [10] representation to perform Model Checking process and to explore the state 

space implicitly. The behavior of a system is preserved in OBDD while the size of memory requirement 

can be reduced. Compared to a global state transition graph the Ordered Binary Decision Diagrams 

permit an efficient handling of the complex systems. 

 

Most Model Checkers like the symbolic Model Checking attempt to reduce memory capacity through 

the applicable usage of encoding for efficient storage of the systems states. 
 

2.2. Model Checking Tools 
 

There are many Model Checking tools available. These Model Checking tools can be used for the 

verification of different types of systems, such as hybrid, real-time and probabilistic systems. In 

addition, they can also verify system models described in different programming languages. For 

instance, SMV Model Checker can verify real-time systems described in its own specification language 

SV. VCEGAR Model Checker can be used also for verifying real-time systems given in the Verilog code, 

Java PathFinder is a convenient Model Checker tool for verification system models implemented in 

Java programming language.  

 

This section will give an introduction to some existing Model Checking tools that can be applied in 

order to verify DEVS systems and which are based on temporal logic to describe the required 

specifications on the system. Temporal logic is classified into Computational Tree Logic (CTL) and 

Linear Tree Logic (LTL) according to the fact whether the time is assumed to have a branching or a 

linear structure [10]. Thus, the most well-known Model Checkers re defined in the next subsections in 

order to their practical feasibility by the verification of the real-time systems. 
 

2.2.1. SMV 
 

The Symbolic Model Verifier (SMV) [31] is a verification system for hardware design. SMV Model 

Checker was developed in 1992 by McMillan as part of his doctoral dissertation. The SMV system uses 

a symbolic Model Checking technique to verify automatically if a hardware design satisfies 

Verification of DEVS Models for reconfigurable Systems  8 



specification for a given system [30]. A specification for SMV is a collection of properties that are 

described in temporal logic: CTL and LTL [42]. 

 

The input language of SMV is Synchronous Verilog (SV) and syntactically only a slight variation of the 

Verilog language. It was actually developed to describe sequential circuits and protocols at various 

levels of abstraction. Synchronous Verilog is designed to allow the user description of finite state 

systems that range from synchronous to asynchronous and from detailed to the abstract. It supports 

interleaving processes with shared variables and allows nondeterminism. SV programming language 

also provides possibilities for modular hierarchical description and for definition of reusable 

components.  

 

The SMV Model Checker implements a variety of techniques for compositional methods, allowing the 

user verification of large and complex systems by reducing the verification problem in small finite state 

problems that can be solved automatically by the Model Checker. SMV Model Checker provides 

refinement verification, symmetry reduction, data type reduction and temporal case splitting. 

 

This Symbolic Model Checking tool includes an easy-to-use graphical user interface and source level 

debugging capabilities. 

 

2.2.2. RAVEN 
 

RAVEN [36, 37] is a real-time verification tool, which is extended by the analysis algorithm. The 

RAVEN model checker was developed by Jürgen Ruf at the University of Tübingen in 1999 to verify 

timed systems on various levels of abstraction. The RAVEN system models are described as an I/O-

interval structure [38] (time-extended finite state machine). The requirement specifications which 

have to be checked over a given interval structure are formulated in a temporal logic CCTL (clocked 

CTL, a time extended version of CTL). Defined properties may be verified automatically by RAVEN 

Model Checking tool. 

I/O-interval structures and CCTL formulas are specified in an input language RIL (RAVEN Input 

Language). The RIL specification [24] includes: 

1) Global definitions, for example some fixed time constants and frequently used formulas. 

2) I/O-interval specification in parallel executed modules. 

3) CCTL formula that describes certain model properties. 

To enable the execution of the Model Checking processes in RAVEN the I/O-interval structures are 

represented as MTBDD (Multi Terminal Binary Decision Diagrams) [36]. 

 

This Model Checker provides some pre-defined algorithms [35] for analyzing the specified system: for 

dead- and live-lock detection, for event occurrences, for inspecting data values, for analyzing critical 

delay times and for quantitative analysis of the system. By the way, the analyzer of RAVEN permits to 

find out for example the minimal and maximal assignment of permitted variables without violation of 

the property.  
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Simulation and verification results of the Model Checking process are represented in an integrated 

wave-form browser.  If the given systems do not hold on the specified properties, the counterexample 

generator provides helpful information for error recovering by printing an execution trace of a failed 

specification in the wave-form browser.  

 

2.2.3. VCEGAR 
 

VCEGAR (Verilog Counter Example Guided Abstraction and Refinement) [22] is a Model Checking tool 

for hardware designs. VCEGAR realizes verification at the RTL (register transfer language) level 

directly using software verification techniques such as word level predicate abstraction and a 

refinement loop [11, 23]. The predicate abstraction is employed in the VCEGAR tool in order to reduce 

the state space explosion during verification process. This is a key technique of the SLAM software 

verification project [2]. The VCEGAR Model Checker also provides various options for balancing the 

precision of abstraction and the time required for abstraction computation. 

 

VCEGAR checks safety properties of the given hardware design. The input for this Model Checking tool 

is a Verilog program and it requires specifications of the given system. If the property of given program 

is violated a counterexample will be automatically generated showing the execution path, which leads 

to the properly violation and the right variable assignment. 

 

2.2.4. UPPAAL 
 

UPPAAL [26] is a tool for modeling, simulation and verification of real-time systems. It is based on the 

constraint-solving and explicit verification techniques. The UPPAAL Model Checker is suitable for the 

verification of systems that can be designed as a collection of nondeterministic processes with finite 

control structures and real-valued clocks (i.e. Timed Automata). It supports communication of the 

designed processes through the channels and shared data structures.  

 

The first prototype of the UPPAAL Model Checker, TAB was developed at the University of Uppsala in 

Sweden in 1993. This tool allowed the verification of simple system properties such as safety and 

bounded liveness properties. These properties can easily be represented through the state-reachability 

analysis in a network of Timed Automata. The requirement specification language in UPPAAL is a 

simplified subset of computational tree logic TCTL (Timed CTL). 

 

In 1995 the Department of Information Technology of the University Uppsala in Sweden in 

cooperation with the Department of Computer Science and Mathematics of the University Aalborg in 

Denmark developed a new tool UPPAAL that was extended with a Simulation and Modeling 

environment. Thus, the UPPAAL Model Checker consists of a model checking engine and graphical user 

interface [5], the screenshot of the graphical user interface of the UPPAAL Model Checker is given 

below in Figure 2. 
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Figure 2: Overview of UPPAAL 

 

This extension allows the user to design abstract models of real-time systems (this approach will be 

discussed in Chapter 3.2) in a graphical interface and to validate the generated models in the 

simulator immediately. The simulator shows a graphic representation of all of the automata that 

compose the system model, their control nodes and enabled transitions. It also gives full information 

about the values and intervals of possible values of all global and local variables and clocks. The 

simulator allows the user to examine the dynamic behavior of a system model during early design 

stages from any intermediate point in an interactive fashion, i.e. the simulator explores only a 

particular execution trace.  

 

In opposite to the simulator in the UPPAAL tool, the verifier checks the whole reachable state space of 

a system, i.e. it covers the exhaustive dynamic behavior of the system to be verified.  

 

Even more, the UPPAAL Model Checker offers the user to verify arbitrary user defined properties of the 

system. This Model Checking tool generates automatically a diagnostic trace explaining why a given 

property is satisfied or why this property is violated from the system description, when verification 

Verification of DEVS Models for reconfigurable Systems  11 



fails. The generated diagnostic trace is visualized in the simulator window and it facilitates modeling 

and debugging processes allowing user to detect easily and to correct founded errors. 

 

Since 1995 the UPPAAL Model Checking tool has been developed permanently. Multiple improvements 

have been achieved including partial order reduction, symmetry reduction, state space reduction, state 

space representation, user defined functions, search order and extrapolation. Up the version UPPAAL 

4.0 this Model Checker supports XML format for modeling. All features of the UPPAAL Model Checker 

are perfectly displayed in this format, such elements like templates, locations, edges and labels are 

described in XML format using tags. The current version of the tool is 4.0.7. 

 

The UPPAAL Model Checker has been successfully used in a number of industrial case studies [6]: 

Audio/Video Protocol developed by Bang and Olufsen, Collision Avoidance Protocol, Gear-Box 

Controller, Mutual Exclusion Protocol and some others. 

 

2.2.5. Summary 

 

After time-consuming testing and careful examination it has been observed that SMV Model Checker, 

RAVEN Model Checker and VCEGAR Model Checker are less convenient for the verification of DEVS 

models than UPPAAL Model Checker. Primary reason is that the previously mentioned Model Checking 

tools have a bad availability of the documentation and programs. Another reason is that the modeling 

process is not well supported in this Model Checking tools and the text presentation of automata 

templates is less intuitive.  

 

All these aspects and facts were taken into account and concerning individual decision, the UPPAAL 

Model Checking tool is going to be used for the verification of DEVS models for reconfigurable 

systems, because of its’ practical feasibility, efficiency and ease of usage. The next section represents 

UPPAAL Model Checker more detailed describing specific features and essential prospects for the 

implementation in this Model Checking tool. 

 

2.3. UPPAAL in details 
 

With the respect to the selection criteria given in Chapter 1.2, UPPAAL Model Checker is the most 

convenient tool for verification of DEVS models. The later investigation resolving the problem of the 

verification of DEVS models has been done completely with the UPPAAL tool. This attempt is based on 

the theory of the formal verification performed with Timed Automata and DEVS models as well as the 

possibility of transformation of Timed Automata into DEVS models and DEVS models into Timed 

Automata respectively [16, 17]. 

 

The complete functional presentation of the UPPAAL Model Checking tool is needed to review the 

DEVS models in the proposed Model Checker.  

 

2.3.1. Structure 
 

The real-time systems are described in the UPPAAL tool as a network of nondeterministic sequential 

processes [32], which will be explained in Section 2.3.2 more in detail. The processes themselves are 
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specified as Timed Automata. A Timed Automaton developed by Alur and Dill [1] is an extension of 

the finite state machines with clocks and data variables. Clocks are represented as real numbers which 

progress synchronously. The Timed Automaton in UPPAAL consists of a set of clocks, invariants, 

variables, guards, synchronization channels, transitions, urgent and committed locations. In other words 

Timed Automaton is considered to a finite directed graph annotated with conditions over transitions 

and locations and resets of non-negative real valued clocks. Locations are represented as vertices in 

this graph. Exactly one location in the graph is marked as initial node which is pictured by a double 

circle as it is shown in Figure 3. Locations in the graph may be additionally labeled with invariants. 

These invariants express constraints on the clock values in order to remain in a particular node. Hence, 

an invariant is a conjunction of the form x const or x const , where x is a clock and const is an 

integer number. An automaton example with three possible dispositions of the invariants expressions is 

demonstrated in Figure 3. The state S0 and S1 are annotated with invariants of the form mentioned 

above and the state S2 has no invariant expression. An invariant condition must hold whenever the 

node belongs to the current state and this must be true throughout the execution. The BNF form of 

constraints represented by the expressions is given in Figure 26, see Appendix. 

 

 

Figure 3: Invariants template 

 

2.3.2. Types of locations  
 

There are three different types of locations in UPPAAL: normal (with or without invariants), urgent (u) 

and committed (c) locations without invariants. To illustrate the differences we depict two examples in 

Figure 4 where x denotes the local clocks and x in P0 is different from x in P1. A normal location P0.S0 

(state S0 in process P0) with an invariant can be left as long as this invariant expression is true and 

there are possible transitions that can proceed. If multiple transitions can proceed at the same point of 

time, then the UPPAAL Model Checking tool completes the execution nondeterministically. Unlike to 

the locations with invariants, the locations without time expressions can be left only if the expression 

labeled on the outgoing edge becomes true. If both, invariant and transition expression are present, 

both have to be true. 
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Figure 4: Automata with normal, urgent and committed locations 

 

Time passing is not allowed when a process is in urgent location (e.g. P1.S1), i.e. the location must be 

immediately left as soon as one probable outgoing transition can execute. In other words transitions 

that are available to this moment can fire, i.e. an interleaving with normal states is allowed. An 

example in Figure 4 above shows that being in the state P1.S1 all active transitions can proceed.   

 

A committed location is more restrictive than the urgent location. If any process is in a control node 

labeled as being committed this node must be left immediately by invoking an outgoing edge from this 

location, i.e. no delay is allowed to occur. For example, if the state P2.S1 is active the only possible 

transition that can be fired is the outgoing edge to its successor state P2.S2. 

 

Control nodes in the automata template are connected by edges. Each edge in the automaton is 

annotated with four types of labels: selections, guards, synchronization and updates. All these types of 

labels are optional [5]. In the following a short description of the most important and useful UPPAAL 

elements for DEVS representation is given in the next subsections. 

 

2.3.3. Guard expression 
 

A guard is similar to an invariant, i.e. a guard is a particular expression referring to clocks and integer 

variables that must be satisfied in order for the transition to be taken. It is not obligatory that the 

transitions must be fired. Assuming that clocks of the system start at 0 and the time proceed at the 

same rate and at any time an invariant condition of some automata template is true (if available) as 

well as the guard expression on the value of particular clock must be true then the outgoing edge can 

be fired. But if at the same time the guard expression on the integer variable in any other or just in the 

same automata template is also becoming true, then the first one can be canceled.  An example of 

automata using guard expressions is given in Figure 5. Transitions without synchronization channel 

can proceed, when the guard expression is true and as long as none of the invariants of the successor 

nodes are violated. The abstract syntax of guard expressions in BNF form is given in Figure 26, see 

Appendix. 
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Figure 5: Template with guards’ expressions 

 

2.3.4. Synchronization channels 
 

A synchronization label is either of the form channel! or channel?, where channel! is on the emitting 

side and channel? is on the receiving side. Actually, a channel fires when its transition labeled with 

channel! is taken. In both cases channel! and channel? represents an arbitrary name. The expression on 

the transitions labeled with synchronization channel must be side-effect-free, evaluate to a channel 

and refers to integer numbers, constants and the channel itself. Synchronization channels are used to 

enable the communication between the processes in the system composed of them. Transition t1 

labeled with synchronization channel channel! can be fired if there exists another transition t2 with the 

complementary labeled channel? and the guards of both are true as well as successor invariants are not 

violated after execution. Thus, the transition from channel1.S1 to channel1.S2 is fired as shown in 

Figure 6, because there exists a complementary labeled transition from S0 to S1 in the process 

channel2.  

 

 

Figure 6: Two automata with a synchronization channel 

 

2.3.5. Update labels 
 

An update label in UPPAAL is a comma separated list of expressions on the transitions, e.g. a reset of 

clocks or an assignment of the form i:=expr, where i is an integer variable or an element of array 

and the right side of assignment is an integer expression. A very important detail of the assignments is 

that they do not evaluate concurrently, i.e. on the synchronization edges the assignment on the 

sending side (channel!) evaluates before the receiving side (channel?). The example in Figure 7 shows 

: 0x
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possible usage of the update labels in the automata template update1 and update2 respectively. Being 

in the state S0 in the process update1 it proceeds to its successor state S1 if the guard expression on 

the taken transition and invariant expression of the state S1 are true. If the transition from update1.S0 

to update1.S1 is taken the clock value will be updated and reset to 0: x=0. Further, the state S1 in the 

process update1 transits to the state S2 taking a transition labeled with synchronization channel 

increment!, at the same point of time the integer variable n is updated and increased. After taking this 

transition the synchronization channel increment fires and the complementary edge annotated with 

increment? is activated. Consequently, the state S0 in the process update2 changes to the state S1 

receiving updated integer variable n with the current assigned value. If n is less than 3 (n<3) the 

guard condition on the transition from S1 to S0 is true and the state update2.S1 proceeds to 

update2.S2. If integer variable n is greater or equal than 3 the state update2.S1 transits to update2.S2. 

When the state S2 in the process update2 is left, n is reset to 0: n=0. 

 

 

Figure 7: Automata with update labels 

 

2.3.6. Multiple Structure 
 

As it was mentioned above, UPPAAL enables the user to model reconfigurable hardware systems as a 

network of timed finite state automata with global or local clocks and variables. Practically it is also 

possible to declare global synchronization channels. Global variables can be modified by any instance 

of any automaton in the model. Global clocks can be reset or assigned to any natural number by any 

automaton. In contrast to global clocks, local clocks can be reset or assigned to any natural number by 

related automaton. In general, these clocks are aligned to each other and progress synchronously, i.e. 

all clocks of a system start at the same instant from their initial value and they proceed at the same 

rate. The value of the clocks can be compared to natural numbers during the system execution.  

 

Figure 8 depicts timing behavior of a system defined by two processes A and B with control nodes {A0, 

A1, A2, A3} and {B0, B1, B2, B3} respectively. The system model contains two clocks a and b, a global 

integer variable n and one synchronization channel ab. Automaton A has local a clock a and emits on 

the synchronization channel via ab!. The initial node A0 of the automaton A is annotated with the 

invariant: a<=6. The outgoing edge is marked with the guard expression: a>=3. In consequence the 
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control node A0 can remain as long as the time a is not greater than 6 and the edge from A0 to A1 can 

be fired if a is greater or equal 3. This means that this state will be left somewhere in the time range 

. Automaton B has local a clock b and receives the synchronization channel ab?. The initial 

node B0 in the automaton B is annotated with the invariant: b<=4. The outgoing edge is marked with 

the guard expression: b>=2. Thus, B can remain in B0 as long as the value of b is not more than 4 and 

the edge from B0 to B1 can be fired if b is greater or equal 2. As long as none of the invariants of the 

control nodes in the current state are violated, time may progress without affecting the control nodes 

vector and with all clock values incremented with the elapsed duration of time. In Figure 8, from the 

initial state ((A0, B0), a=0, b=0, n=0) time may elapse for a minimum 3 time units leading to the 

state ((A0, B0), a=3, b=3, n=0). However, time cannot elapse 5 time units as this would violate the 

invariant of B0. 

3 a 6

 

 

Figure 8: System model composed from two automata templates 

 

The process A is synchronized with process B via the synchronization channel ab. This means that two 

edges of two different components, which are enabled in a state can synchronize. Here the process A is 

synchronized with the process B via synchronization channel ab and the edge from A0 to A1 in the 

process A is complementary to the edge between B0 and B1 in the template B. It follows that in the 

state ((A0, B0), a=3, b=3, n=0) the processes synchronize through channel ab leading to the new 

state ((A1, B1), a=0, b=0, n=5), clocks and variable n have been appropriately updated: clocks are 

reset to 0 after taking appropriate edges and integer variable n is assigned with 5, see Figure 8. The 

process B has an internal edge from B1 to B2 enabled, the edge can be taken without any 

synchronization, notice that the state B1 is marked as a committed location. Thus, in the state ((A1, 

B1), a=0, b=0, n=5) the component B leads to the state ((A1, B2), a=0, b=0, n=6) without any time 

delay. The integer variable n is accordingly incremented when the edge between B1 and B2 is taken. 

 

 

 

 

 

 

 



3. DEVS Models and UPPAAL tool 
 

Formal representation of the specifications and models is needed to facilitate the verification process. 

The DEVS formalism [42] was first introduced by Zeigler as a foundation for a high-technology 

systems design methodology. This formalism is well established and represents behavior of real-time 

systems. Reconfigurable systems are supported with the RecDEVS extensions [28].  

 

This chapter starts with recalling the basic notions of the DEVS formalism. After detailed definition of 

parallel DEVS this chapter continues with describing the transformation of DEVS models into UPPAAL 

representation. 
 

3.1. Parallel DEVS 
 

Parallel Discrete Event System Specification (DEVS) [42] is one of the discrete types of the system 

specification formalism that is used by engineers to build an abstract simulation model of the system. 

The formalism of parallel DEVS is the most convenient one for a possible extension towards 

reconfigurable systems employing reconfigurable devices such as FPGAs, which basic idea is reusing 

the computational components for independent computations and using multiplexers to control the 

routing between these components [14]. 

 

The parallel DEVS formalism is an extension of the classical DEVS. This extension allows to describe 

hierarchical composition of the system defying it through multiple parallel modules and it also permits 

the concurrent execution of these modules. Basic parallel DEVS models unlike classical DEVS have a 

bag of inputs on the external transition function. Xb is a set of bag over elements in X with their 

multiple occurrence, e.g. {a, b, c, a, b} is a bag. In the following a short review of the most important 

elements of DEVS that are relevant for design of reconfigurable systems is given. 
 

Thus, a basic parallel Discrete Event System Specification is a structure of DEVS system specification N 

and a set of model hierarchy M. 
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Elems is a set of hierarchical DEVS system specifications and/or atomic DEVS components. This DEVS 

components can be linked together by the port coupling Conns, which is a set of tuples ( , )x y . It 

connects ports from the set of input ports Mx X with corresponding output ports My Y , respectively 

with the global ports extX and . extY

Three types of the state transition functions are described in DEVS formalism: internal transition 

function ( )int s , external transition function ( , , )ext s x e and confluent transition function ( , , )con s x e . 

Internal transition: if the timeout ( )s  is elapsed, i.e. the time has arranged up to the timeout defined 

by ( )s , the internal transition ( )int s will proceeded, i.e. the state  transit to '  at the time s s ( )s . 

The state  denotes the next state after execution of an internal transition function, i.e. 's ( )int : 's s . 

The elapsed time will be reset to 0 and an output event ( )s  is generated. 

External transition: iff the timeout ( )s  of the state does not occur and the component receives an 

input event, the external state transition ( , , )ext s x e  will be executed. Here e is an amount of time that 

has been elapsed since the last input event, where 0 e s( )  and the state will transit from  to . 

The next state when an external transition is executed is denoted by , i.e. 

s

's

''s

''s ( , , ) : 'ext s x e .  The 

output function ( )s  is not generated by an external transition. 

Confluent transition: proceeds iff the state receives an external event at the time of its internal 

transition (the timeout ( )s  is occurred), i.e. ( , , )con s x e  evaluate to some next state . Where 

denotes the next state when the confluent transition function proceeds, i.e. 

'''s

, ,s x'''s ( ) : '''con e s . 

Confluent transition resolves the collision problem of the two transition functions: int  and ext  that 
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are possible at the same point of time, i.e. confluent transition function decides which of the possible 

transition functions will execute if they occur at the same time. 

 

3.2. Design of parallel DEVS in UPPAAL 
 

This section presents the exhaustive transformation and design of parallel DEVS models defined in 

Chapter 3.1 above into UPPAAL tool.  

 

Each Model  from the formal DEVS definition is mapped to one UPPAAL model. The set of states  

of DEVS is graphically reflected in UPPAAL as a set of states of the finite directed graphs, where  is 

the initial node. Each node can have an optional name, i.e. this can be a consecutive enumeration or 

explicit name due to the performing task. Consider the UPPAAL model of Figure 8 introduced in 

Section 2.3.2, where {A0, A1, A2, A3} is a set of states and A0 is an initial node in the finite directed 

graph A.  

S

0s

 

3.2.1. Timeout representation 

 

For the representation of three main types of DEVS functions: int , ext  and con , primarily the 

representation and explanation of the timeout execution in UPPAAL is of note. Before starting with the 

representation of these main types of DEVS functions, foremost, the timeout function in UPPAAL must 

be represented and explained. Figure 9 illustrates the representation of the timeout function ( )s  in 

the UPPAAL Model Checking tool. Assuming that ( 1)S ta  time units, it works as follows: the state 

S1 is annotated with the invariant  x ta , where x is local clock and is an upper bound (at least 

after  time units the state S1 must be left);  the transition from S1 to S2 has a guard expression 

ta

ta

x ta , when the guard condition is true the edge is taken and the timeout ( 1S )  is occurred, 

meaning that  the timeout occurs not before and not after when the guard condition is true and the 

edge is taken. The syntax of the invariant expression in UPPAAL is very strict; only two possibilities of 

the time expressions are allowed to be used to influence the behavior of the system, see Section 2.3.1.  

Thus, an invariant of the form x ta  is disallowed to be used. That’s why the execution of the timeout 

function is represented as combination of the invariant and guard expressions. 

 

 

Figure 9: Timeout representation 

 

The UPPAAL tool facilitates the implementation of the indeterminism of equal timeouts in different 

models. This proceeds automatically. The UPPAAL selects one of the possible transitions in the 

simulation phase, either the transition in the process P0 from S1 to S2 or the transition in the process 

P1 from S1 to S2, see Figure 10. 

 



 

Figure 10: Indeterminism of equal timeouts in different automata templates 

 

At this point it might be helpful to analyze two special variants of the timeout: what happens if the 

lifetime of a state is 0? And what happens when the timeout is equal infinity? If ( ) 0s  then the 

location must be explicitly marked as committed one symbolizing that no time delay is allowed. In this 

case an internal transition is immediately taken when entering this state. In Figure 11 the state S2 is 

marked as committed location and its timeout is equal 0, whereas the timeout of the state S1 is: 

( )s ta . 

 

 

Figure 11: Timeout of S2 is equal 0: (S2)=0 

 

The initial node can be also marked as committed one, see Figure 12. The number of committed 

locations in an UPPAAL model is not restricted, but it has to be proved if it is worthwhile in the 

investigated implementation. 

 

 

Figure 12: Committed initial node 

 

If the lifetime of a state is he model stays in its current state until an external event occurs. This 

example is shown in Figure 13 below. The process P0 stays in the state S1 as long as the 

synchronization channel input? is not activated through a related edge between the states S5 and S6 in 

the process P1. 
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Figure 13: Timeout is equal infinity ( (S1)=  

 

Knowing how to achieve the execution of the timeout function in the UPPAAL Model Checking tool, 

the representation of major DEVS functions can be further introduced.  

 

3.2.2. Representation of the internal transition function 
 

Figure 14 illustrates the transformation of the DEVS internal transition int  with ( ) 10s  defined in 

Chapter 3.1 into the UPPAAL tool. According to the DEVS definition the internal transition proceeds 

when the timeout ( )s  occurs, so the execution of an internal transition function is identical to the 

timeout execution. If the guard condition 10x  is true and the upper bound of the invariant of the 

state  is 10, then timeout s ( ) 10s  is occurred and the state  transits to the next state , i.e. s 's

( ) : 'int s s . 

 

 

Figure 14: Internal transition function 

 

A design sample of the internal transition with an output function ( )s  is given in Figure 15. When 

the edge from  to  labeled with input! is fired, the output function s 's ( )s  transmits some 

information to another automata, e.g. 5msg  - transmitted information.  

 

 

Figure 15: Internal transition function with output function (S) 

 

3.2.3. Representation of the external transition function 
 

The design of the external transition function in the UPPAAL Model Checking tool is coherent with the 

usage of synchronization channels, see Figure 13. The timeout of the states remains the same, 

( ) 10s . If the timeout is not elapsed, i.e. ( ) 10s  and the state  receives an external event, then s
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the external transition triggers, i.e. ( , , ) : ''ext s x e s . It is evident that the guard condition must be less 

than the timeout , more precisely less than the state invariant: 10x 10x , as an internal transition 

has to proceed for  see Section 3.2.2. Figure 16 represents the design of the external transition 

function in UPPAAL. When the guard is true and the state  becomes an external event through 

synchronization channel input?, which is activated by the transition with a complementary label input!, 

then the external transition is occurred and the state  transits to , where it will remain either to 

the next external event or 

10x

s

s ''s

( '')s . Disadvantage of this construction is that it is impossible to determine 

in UPPAAL the elapsed time e from the last input event.  

 

 

Figure 16: External transition function 

 

3.2.4. Representation of the confluent transition function 
 

With the knowledge of the implementation of the execution construction of internal and external 

transitions it is not difficult to construct the confluent transition function. The confluent transition 

occurs iff the state  receives an external event signalized by input? at the time of its internal 

transition. So, if the timeout 

s

( ) 10s

'''s

 in the state , as shown in the Figure 17 below, elapsed and 

the guard conditions on both outgoing edges from  becomes true , it seems that the 

transition from  to  can actually be fired as well as the transition from  to . But the edge from 

 to  labeled with the synchronization channel input? has priority over the edge from  to '  

without synchronization channel. Thus, the external event is activated by the synchronization channel 

input? and then the state  changes to , see Figure 17. This implementation of the confluent 

function in the UPPAAL tool allows to check the local time of the system model by means of guard 

conditions on the appropriate edges. According to this time it can differ whether a timeout is elapsed 

or not. 

s

s (x

s

10)

'''ss 's

s '''s s s

s

 

 

Figure 17: Confluent transition function 

 

3.2.5. Representation of the multiple message transition 
 

Another significant construction is visualized in Figure 18 that explains how to transmit multiple 

messages in the network of multiple automata composing the system model. Assume for the moment 
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that a certain model component is going to concurrently communicate with two other automata 

components, so it sends some piece of information to both components. To enable the implementation 

of this transmission additional transitive states are required, because UPPAAL supports only one 

synchronization channel on each transition. These transitive states should be marked as committed 

locations. Consider the given pattern state  changes to , while sending the message information to 

another model components via the synchronization channels input1! and input2! respectively. Started 

in the node  one of the possible two edges can be fired, this proceeds nondeterministically in the 

UPPAAL Model Checker. If the edge labeled with input1! is taken first, then  proceeds to . The 

state '  is marked as committed location where no time delay is allowed to occur, i.e. the state '  will 

be left immediately taking the outgoing transition labeled with input2!. If taking the edge labeled with 

input2! first, state  transit to  and leaves it immediately by taking the outgoing edge with the 

synchronization channel input1! without any time delay. This construction can be applied into any 

model with multiple automata components using an appropriate number of intermediate states and 

synchronization channels.  

s '''s

s

s 's

ss

s ''s

 

 

Figure 18: Multiple message transmission 

 

So far, the most essential and fundamental features of parallel DEVS models were introduced as well 

as the exemplified implementation of these features in the UPPAAL Model Checking tool. Relying on 

the proposed features a complex application based on the AutoVision example, which is going to be 

used for the verification, is presented in the next section. 
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4. Example 
 

For a better comprehension and demonstration of the verification capabilities of DEVS models within 

UPPAAL, a complex application was implemented, which is based on the AutoVision example [13]. 

The model of the AutoVision system consists of several distinct components for vision enhancement 

and for automated recognition aimed to a driving assistance scenario. Figure 19 gives an overview over 

the following components and their interaction: Sensor, Shape, Contrast and Taillight. 

 

 

Figure 19: Object Diagram of the AutoVision Example 

 

ROI: provides pictures to all requesting components: Shape and Contrast. 

 

Shape: performs picture requests and scans the result for important shapes. If the shape of a tunnel 

entrance is found, then the Contrast component is invoked. 

 

Contrast: enhances the Sensor picture and recognizes, when the car enters or leaves a tunnel, in which 

case it activates or suspends other components: Shape or Taillight. If the car is in the tunnel and the 

picture is dark, Contrast suspends the Shape component and activates Taillight. When the car is in 

tunnel and the picture is bright meaning the end of the tunnel, Contrast component resolves the 

Taillight, if this was active before and invokes the Shape component. 

 

Taillight: provides object information to the driver based on taillight traces. It operates when the car is 

inside the tunnel where it is too dark for the Shape component to operate properly. 

 

All four components run concurrently allowing the evaluation of the parallel execution behavior inside 

UPPAAL. By using different request intervals for Shape and Contrast components, the situation of 

multiple competing request arriving at the same time can be modeled, which is a very interesting 

aspect for verification. 
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Through the brightness of the picture the Contrast component recognizes if a tunnel is left or not. 

When the car has left the tunnel, Contrast deletes the Taillight component, activates a new Shape and 

finally deletes itself. 

 

Another additional component, the Testbench was designed enabling the AutoVision simulation process 

in UPPAAL. In some sense, the Testbench simulates the behavior of the real-time environment for the 

designed model, so that manual control of the components falls into disuse. The Testbench is an 

independent and self-consistent entity, whose execution is not addicted on other components. The 

Testbench component replicates car driving inside and outside the tunnel and passes information to the 

ROI component about external environment. Configuration and performance of the Testbench 

component are represented in Figure 20. 

 

 

Figure 20: Testbench component in the AutoVision Example 

 

All four components from the AutoVision system model are represented as single DEVS structure. The 

following subsections give a formal definition of these components and afterword their graphical 

representation in the UPPAAL tool. 
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4.1. ROI Component 
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The graphical UPPAAL representation of the ROI component from the AutoVision example is depicted 

in Figure 21. 

 

Figure 21: UPPAAL representation of the ROI component 
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4.2. Contrast Component 
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Figure 22 shows the design of the Contrast component in UPPAAL.
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Figure 22: UPPAAL representation of the Contrast component
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4.3. Taillight Component 
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The UPPAAL representation of the Taillight component is given in Figure 23. 
 

 

Figure 23: UPPAAL representation of the Taillight component 

 
 
 
 
 
 



4.4. Shape Component 
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The graphical representation of the Shape component in the UPPAAL Model Checker is shown in 

Figure 24. 
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Figure 24: UPPAAL representation of the Shape component 

 

4.5. Timed Behavior 
 

The time-dependent behavior is of great concern in the model implementation of the AutoVision 

system as well as in DEVS models in general. This has been achieved as a consequence of feasible types 

of the states contributed in the UPPAAL Model Checking tool in Chapter 3.2. The states marked in the 

model as committed stand for the life time of a state when it is equal 0. An internal transition is 

immediately taken when entering, if the life time of the state is 0. States without time invariants 

denote a performance of the model states if their life time is ! . In this case the model stays in the 

same state until an external event occurs. Finally, the states annotated with time invariants represent 

the execution process of the internal, external and confluent transition functions respectively, see also 

Chapter 3.2.  

 

Being in the state shape.confluent as shown in the Figure 24, the Shape component will immediately 

proceed into shape.deleted, shape.entrance or shape.idle, executing the transition according to the 

contained message information. If the msg_s==6 (meaning that the current Shape component must be 

deleted), then the Shape transits shape.deleted; if msg_s==3 (meaning that the current environment 

information must be updated), then shape.confluent changes to shape.entrance and otherwise moves 

shape.confluent to shape.idle. Thereby, the elapsed time e is evaluated using two implemented 

functions. As an example, the code of the implementation of evaluation methods for the Shape 

component is given in the Figure 25.  
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Figure 25: Time evaluation methods in the Shape component 

 

The methods implementation for the evaluation of the expired time for other components is just the 

same applying appropriate variables and is given in Appendix. These functions help to determine the 

remained time for the node to stay in after fulfillment of int , ext  or con . This effort was done due to 

the lack of automatic time passing functions, for example such as wait_time that is used in C++. 

 

4.6. Request detection and information transmission 
 

A DEVS Model is represented in the UPPAAL Model Checking tool as a network of processes. Each 

process is defined as a single automaton with locations, edges and local declarations respectively. 

These automata can communicate with each other via synchronization channels and transmit 

information in both directions. This is enabled by annotating edges with synchronization labels of the 

form channel! and channel?, see Chapter 2.3.  In such a manner the two processes are synchronized 

when two edges from different processes are fired at the same time, i.e. the guards of both edges are 

satisfied and the edges have synchronization labels that evaluate to the same channel.   

 

Requests from the components about an external environment and information transmission in the 

given DEVS model of the AutoVision example are enabled by using synchronization channels. The 

names of these synchronization channels are defined as a direction from one component to another, 

e.g. roi_shape (from ROI to Shape component), roi_contrast (from ROI to Contrast component), 

contrast_roi (from Contrast to ROI), taillight_contrast (from Taillight to Contrast) or shape_contrast 

(from Shape to Contrast). 

 

For example, if the Shape component in the Figure 24 wants to get current information about the 

external environment to act according to the situation, it sends a request to ROI component and the 

edge with shape_roi channel (in this case Shape is an initiator and ROI is a receiver) is fired. In its turn, 

the ROI component establishes the picture of the external environment by using the synchronization 

channel testbench_roi between Testbench and itself (Testbench is a sender and ROI, the other way 

around, is receiver). Thereafter, ROI replies with appropriate information to the Shape via roi_shape 

channel, where ROI component is the sender and Shape component is a receiver. Information 
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transmission between the components in the model and the request’s detection about the external 

environment for the Contrast component executes in exact the same manner sending received data 

through synchronization channels in both directions. 

 

4.7. Activation and deleting process (of model components) 
 

The activation and termination of the components in the model is also achieved by means of 

synchronization channels. Figure 24 depicts an example, where the shape of the tunnel entrance is 

found: pic=2 by the Shape component, then Shape moves from the state “action” to “entrance” 

updating the following content: msg_c=7, meaning that a new Contrast component can be generated 

and shape_tunnel=1, denoting that the car is before the tunnel. After this the Shape sends the 

determined information through the shape_contrast synchronization channel to the Contrast unit. 

Contrast compares on the synchronized edge if the message information about activation of a new 

Contrast component is true, i.e. msg_c==7 and shape_tunnel==1. If the guard expression is satisfied, 

a new component will be initiated, if not then this will be recognized by the “action” state of the Shape 

component. Another outgoing edge from this state is annotated with the guard expression which 

checks whether the picture information is wrong pic!=2 or there is no tunnel shape_tunnel!=0 found, 

in this case Shape changes to the state “idle” again. 

 

The execution order of activation and deleting processes is the main point of the implementation. In 

this particular case the user can independently decide, which sequence he desires: activation of the 

new components as first or deleting of unusable processes. Taking the AutoVision example into 

consideration, activation of the Contrast component occurs before the Shape process is deleted. The 

reason is that both components can be enabled at the same time due to the given description above 

sending request to the ROI element.  

 

Another illustrative example is when the Contrast process is in the state “entrance”, which can proceed 

with two alternatives: creating a new Taillight process or deleting the Shape component 

simultaneously.  The choice will be taken nondeterministically by the Model Checking tool. This is 

realized by using committed locations and two outgoing edges annotated with corresponding 

synchronization channels. If the component ever enters the “deleted” state once, it remains in this 

location until an external event activates it again, see Figure 22 and Chapter 3.2 for general 

information. 

 

4.8. Internal, external and confluent transition functions 
 

To distinguish the basic DEVS relation functions in the model is not difficult. According to the 

transformation rules given in Chapter 3.2 the distinctive features of these constructions are clock 

expressions on the guards and synchronization labels. 

 

Figure 24 illustrates all three DEVS relation transitions in the Shape component of the given system. 

Starting from the state shape.idle internal, external or confluent transitions can occur retrieving the 

time of the system. If the timeout of the state shape.idle is not expired two different edges can be taken 

depending on the activated synchronization labels roi_shape? or contrast_shape?. If the timeout is 
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occurred, shape.idle can transit to shape.idle taking a self-loop or to shape.confluent taking the edge 

annotated with synchronization labels contrast_shape? or roi_shape?. To make the construction of the 

confluent function more distinctive a special state “confluent” is created, handling further 

differentiations and actions. For this reason, additional states are implemented in the Taillight 

component too, which are named respectively to their executing functions. 

 

According to the given system specification it may happen that some of DEVS relation functions are 

equal to each other. The specification of the AutoVision example is not an exception thereof. To find 

out the conformity points is left to the reader. 

 

4.9. Restrictions 
 

For additional modification of the synchronization channels it is to mention that urgent and broadcast 

channels are not used in the DEVS to UPPAAL mapping since clock guards are not allowed on the 

edges synchronizing over these channels. Since the timed behavior of DEVS models is an inalienable 

part, this makes no appreciation to use urgent and broadcast synchronization channels without time 

retrieval. The resulting limitation concerning synchronization channels is that the edges can be 

annotated only with one synchronization channel. A multiple annotation with more than one 

synchronization label is not allowed in the UPPAAL Model Checking tool. 

 

Another restriction in UPPAAL is the integer type, meaning that it is only possible to use integer 

variables for defining time units and real numbers are excluded.  

 

An explicit time evaluation of the expired time after executing one of the DEVS relation transitions is 

not permitted in the UPPAAL Model Checker. This problem can be avoided by implementing distinct 

functions as it was shown in Section 4.5. Comprehensive data on declaration of components of the 

AutoVision example are given in the Appendix. 
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5. Verification of DEVS Models 
 

The verification phase in the design process is a variant of logical analysis of the system 

implementation. This phase verifies usually the correctness properties of the system. A variety of 

correctness properties that are often used in the verification process are classified as follows [19]: 

1) functional correctness properties 

2) safety (invariant) and liveness properties 

3) timing properties 

According to the classification of the correctness properties given by A. Gupta, it may be concluded 

that the UPPAAL specification formalism based on the temporal logic fulfils all specification 

requirements. Foremost, temporal logic reasoning explicitly about time and thus, is more suitable than 

a logic that does not provide any special facilities for doing so. 

 

The verification process also checks the operational correctness by means of checking lower-level 

operational specifications against higher-level assertions. The formalism employed for these 

specifications may be the same or different. The UPPAAL verification process is based on a dual 

specification approach where the operational specification expresses the DEVS formalism and is 

checked against assertions described in the temporal logic. The single specification approach is based 

on extended DEVS formalism (C-DEVS) [41]. 

 

5.1. Requirement specification language 
 

The main purpose of the UPPAAL Model Checker is to verify the model with respect to a given 

requirements specification, which are nothing else than the description of intended behavior of a 

hardware design. The query language of UPPAAL consists of path formula and state formula. 

 

A state formula is a side-effect free expression describing an individual state, i.e. a superset of its 

guards where the use of disjunctions is not restricted. In addition it is possible to test whether a 

process is in a particular location using an expression on the form P.l, where P is a process and l is a 

location. 

 

A path formula explores the overall path and traces of the model. UPPAAL supports the following path 

formula: reachability, safety and liveness. 

 

Reachability properties test if some state satisfying  should be reachable using a path form. In the 

UPPAAL Model Checker this property is defined using the syntax E , meaning there exists a path 

where  eventually holds. 

 

Safety properties are on the form “something bad will never happen”, i.e.  should be true in all 

reachable states with the path formula []A . Whereas []E means that there should exists a 

maximal path such that is always true. 
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Liveness properties mean that something will eventually happen. They are expressed in UPPAAL as 

A  and . The first one signifies that  is eventually satisfied and the last one says that 

whenever  is satisfied, and then eventually  will be satisfied. 

 

Beyond these properties it is possible to check the absence of deadlocks in the model. Deadlock is 

expressed in the UPPAA tool using a special formula: . []A not deadlock

 

Questions and requirements upon DEVS models for reconfigurable systems being of the great 

importance and relevance for the verification process in the UPPAAL Model Checking tool are given in 

the Table 1 in the next page. 
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Description UPPAAL notation 

Is the state x 
reachable? 

<> P1.S1 (is the state S1 in the process P1 reachable?) 

Is an edge x used? 

 

<> P1.S1 imply P1.S2 (the automata P1 is in the state S1 and it transits 
directly to state S2 taking the outgoing edge S1S2. In other words, is the state 
P1.S2 reachable from the state P1.S1?) 

Is a synchronization 
channel x used? 

<> P1.S1 imply P3.S2 (the process P1 is in the state S1 and proceeds to 
state S3 in process P3 firing transition with the appropriate synchronization 
channel) 

<> P1.S1 imply (P2.S2 or P3.S3) (inspects if a synchronization channel 
fired in more than one transition. In this form it is possible to prompt if only 
one enabled/possible transition with synchronization label is fired or all of 
them through conjunction declaration) 

Is at least one 
component always 
deleted? 

[] (P1.S1 or P2.S2 or P3.S3) (S1, S2 and S3 denote “deleted” or “exit” 
locations. The number of “deleted” locations is not restricted) 

Is the state in the 
form of (x, y, , , ) 
reachable? (where x 
and y are definite 
states in the 
process) 

 

E[] (P1.S1 and P2.S2 and P .S  and P .S  and P .S ) (is the state in the 

form (x, y, , , ) always reachable? x and y are fixed states in the automata 
template, states marked with  are nonattached) 

E<>  (P1.S1 and P2.S2 and P .S  and P .S  and P .S ) (is the state in the 

form (x, y, , , ) actually reachable? x and y are fixed states in the automata 
template, states marked with  are nonattached) 

If a confluent 
function is 
executed? 

 

<> P1.S1 imply P3.S2 and P3.p3==n (P3 is the automata template of 
interest and S2 is the location symbolizing “confluent state”, p3 – local clock 

in P3 and n has an integer value, whereas time request is optional ) 

 <> P2.S3 (is the state S3 in the process P2 reachable, S3 is defined as 
“confluent”) 

 E<> P1.S1 imply (P1.S2 and P1.S3 and P1.p1==n) (process P1 is in the 
“confluent” state S1, states S2 and S3 are possibilities where to S1 can 
proceed to S2 and S3, p1 – local clock in P1, n – integer number. Time 
specifications is also optional) 

Execution time of 
some transitions 
through certain 
nodes? 

 

E[] (P1.S1 imply P1.S3) and P1.p1<=n (is it always possible to execute a 
transition through a certain node, e.g. P1.S3 in n time units or even less then 
n time units? n is an integer upper time bound) 

E<> (P1.S1 imply P1.S3) and P1.p1<=n (is it eventually possible to 
execute a transition through a certain node, e.g. P1.S3 in n time units or even 
less then n time units? n is an integer upper time bound) 

Is the implemented 
model deadlock 
free? 

A[] not deadlock (This specification requirement checks whether 
implemented model is deadlock free) 

Table 1: Specification requirements 
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5.2. Verification results 
 

In this section the most relevant verification results of the AutoVision example will be presented. This 

includes a definition of the specification requirements on the given systems as well as their essential 

description. 

 

Foremost, the deadlock specification was checked to get information, if the implemented model is 

deadlock free: 

A[] not deadlock – Property is not satisfied 

The deadlock situation may be caused, for instance, when the Contrast component sends a “delete” 

message to the Shape and at the same point of time Shape receives a reply from the ROI process to his 

request sent before.  

 

To find out if a particular state in the automaton of interest is reachable, for a example if the state 

“exit” is ever in the Contrast reachable, describes the following specification: 

E<> contrast.exit - Property is satisfied 

 

It is not less interesting is to find out, if a certain transition is taken. This can be the case if during the 

whole simulation phase this does not stick out. For instance, if the Shape component will be inspected 

being in the state “confluent” to verify if the edge from state “confluent” to “idle” will be ever taken 

results in the specification:  

E<> shape.confluent imply shape.idle - Property is satisfied 

It seems that the synchronization channel taillight_contrast, which connects two automata: Taillight 

and Contrast is absolutely not in use, see Figure 23. This case is determined using the following 

specification:  

E<> taillight.idle imply contrast.S1 - Property is satisfied  

or retrieving time explicitly to be sure that the timeout has occurred:  

E<> taillight.idle imply contrast.S1 and taillight.ta==taillight.t_ref_ta - Property is 

satisfied 

 

For the convenience of reconfigurable hardware systems it should be proved if at least one model 

component is always deleted:  

E[] (shape.deleted or contrast3.exit or taillight4.deleted) - Property is satisfied 

By forming subsets from the set of “deleted” locations it can be tested, which of these model 

components could not be deleted at the same time. 

 

The execution of the confluent function is verified again on the instance of the Shape component, 

which it closely and tricky connected with automata template of the Contrast component:  

E<> contrast.entrance imply shape.confluent and shape.sh==shape.t_ref_sh - Property 

is satisfied 
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An alternative specification would be if the execution of the confluent function in the Shape process 

can be checked as follows:  

E<> shape.confluent imply (shape.entrance and shape.deleted) - Property is satisfied  

In this case the time request is omitted because the state “confluent” is marked as committed location. 

 

Some implementation restrictions were given in Section 3.3.7. The major one is impossibility to 

evaluate the elapsed time e of a state. Therefore, to resolve this limitation an effort was made to 

retrieve the time of execution inside UPPAAL. The condition is that additional local clocks must be 

defined to evaluate the time of execution. These clocks are named matching the function, i.e. shape_act 

(see Figure 24) and after a transition they are set to 0 again. For instance, how much time is needed to 

detect a tunnel and to perform corresponded transition in the Shape component? The following 

specification allows to implement this time evaluation: 

E<> (shape.idle imply shape.action imply shape.entrance imply shape.idle) and 

shape.shape_act<=6 - Property is satisfied  

In this case the complete execution path is given through discrete states: shape.idle imply shape.action 

imply shape.entrance. Notice that some intermediate states can be omitted if it is rather obvious that 

there is no any other execution path for this transition: 

E<> (shape.idle imply shape.entrance imply shape.idle) and shape.shape_act<=6 - 

Property is satisfied 

During simulation it was observed that tunnel detection lasts about 6 time units; let us suppose that 

there exists eventually a path where this specification is true.  The next specification proves whether 

this transition always lasts 6 time units or not: 

E[] (shape.idle imply shape.entrance imply shape.idle) and shape.shape_act<=6 - 

Property is not satisfied 

The result is obvious: the property is not satisfied. Even so, the simulation process in the UPPAAL 

Model Checking tool permits time evaluation through observing the execution trace. Afterwards, it is 

still possible to verify assumptions depending on the observations.  
 

The demonstrated results do not cover all verification capabilities of the UPPAAL Model Checking tool. 

Specification requirements can become more complex in the structure depending on the desired goals 

of the investigation and the interest for non-functional behavior of the system, but it still depends on 

the individual interest of the researchers, the user’s way to express desired features and the formulated 

problem. 

 

 

 

 

 

 

 



6. Conclusions  

 

The technique of formal verification described in this diploma thesis is already used in industry to find 

nontrivial errors in implementations [26], e.g. circuits and protocols and by a number of companies 

such as IBM, Intel and Motorola which benefits from applying Model Checking as a part of the design 

process due to relatively easy usage. Model checking alleviates the process of verification in virtue of 

its automation level. Additionally it provides a counterexample trace of the violated specification 

requirements and avoidance of the complicated proofs constructions which in its turn facilitate the 

modeling and verification processes for users. 

 

Taking these aspects of utmost importance it was decided to show the reader the connection between 

the verification and DEVS models as well as relation of DEVS models and its’ use in reconfigurable 

systems. 

 

A variety of different available Model Checking tools was examined as a part of this research giving a 

short introduction to those that were found  as applicable tools for modeling and verification of DEVS 

Models. Being guided by the selection criteria given in the introduction, it must be concluded that the 

UPPAAL Model Checker is the most convenient formal verification tool.  

 

Furthermore, the overall structure and the main features of the UPPAAL tool were represented in this 

diploma thesis, along with the design process of DEVS models and RecDEVS extension for 

reconfigurable systems. Because of various and multiple attempts to represent DEVS models in the 

UPPAAL tool the implementation possibilities were exemplified. Many conclusions were made, 

powerful and forcible limitations were found. However, they have not complicated the transformation 

and verification process of the reconfigurable systems based on DEVS models, e.g. AutoVision example. 

 

The collected verification results and gained experience during the investigation period proved that the 

UPPAAL Model Checker provides the ease of use for simulation and verification necessary for system 

verification. It is quite simple to prove the supposed system behavior and to check the absence of 

deadlocks in the model. Verification results recognize that in spite of some time restrictions in the 

UPPAAL tool, it is still possible to verify timed behavior of DEVS models in a certain way by extending 

the model component with additional local clocks and defining appropriate specification requirements.  

 

In the future, this research is going to continue expecting further developments in this field. There 

exists a graphical editor for DEVS models developed at the Department of Integrated Circuits and 

Systems that also enables the design process of the systems and stores the model design in XML based 

format (SCXML). The next approach would be the development of an UPPAAL generator, which 

automatically provides generation of verified UPPAAL Models from DEVS models designed in the XML 

format.  

 

 

 

 

Verification of DEVS Models for reconfigurable systems  41 



7. Appendix 
  

 

Figure 26: Syntax of expressions in BNF 

 

 

Figure 27: Time evaluation methods in the Contrast component 
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Figure 28: Time evaluation methods in the Taillight component 
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