
Interner Bericht 2010-14

Fifteenth International Workshop on
Component-Oriented Programming

Proceedings

Etienne Borde Erik Burger Zoya Durdik
Kerstin Falkowski Jörg Henß Matthias Huber

Markus Knauß Marin Orlić Claas Wilke
Dennis Westermann

22nd June 2010, Praha, Czech Republic

Barbora Bühnová, Ralf Reussner,
Clemens Szyperski, Wolfgang Weck (Editors)

Karlsruher Institut für Technologie
Fakultät für Informatik
Bibliothek
Postfach 6980
76128 Karlsruhe

ISSN 1432-7864

Preface

The Workshop on Component-Oriented Programming (WCOP) was one of the driving forces in the
nineties that brought component orientation into broader consciousness of the software development
community. Definitions of basic terminology were discussed and concepts were clarified. In the
2000 decade, the component idea got established in dedicated conferences (foremost CBSE, itself a
former ICSE workshop) and also influenced the software architecture community strongly. During
these times, WCOP evolved to a workshop for young researchers to present new ideas and to collect
feedback from established members of the community. Right from the beginning, WCOP papers
received high attention and often formed the premier way for researchers informing themselves about
new developments in our community. This is, for example, well demonstrated by the high citation
rate of WCOP papers.

Now, in 2010, at the beginning of a new decade, WCOP institutionalized its role as a forum for
young researchers in our community. The success of WCOP as the doctoral symposium of the Com-
pArch federated conference shows not only that this role of WCOP is appropriate, but much more it
also shows that the component idea is still vibrant and attracts young researchers internationally. We
welcome Assist.-Prof. Dr. Barbora Bühnová from Masaryk University in Brno as an additional orga-
nizer, next to Clemens Szyperski, Wolfgang Weck, and Ralf Reussner. As a new incentive, WCOP
2010 awards the CompArch Young Investigator Award, which is given to the work of a young re-
searcher in our community to award specifically promising work of expected high importance. The
award is sponsored by the steering commitee of CompArch which also forms the programme com-
mitee of WCOP. This year, the first CompArch young investigator award was given to Zoya Durdik
from FZI, Germany, for her paper on the integration of architectural modeling into agile development
methods. This year, after a rigorous review process, we accepted ten papers. The reader will notice,
that all of these papers show original ideas with well-started research, highlighting topics showing the
role that components can play for the future of software development.

We thank the programme committee for their valuable help in the paper selection and Erik Burger
for preparing the proceedings of this year’s WCOP. We are grateful to the CompArch organizers,
especially to Frantisek Plasil and Petr Hnětynka, for taking care of all the local organization and for
accommodating our special requests.

We wish the participants and presenters of WCOP 2010 many insights, useful connections, and
further successes in our community.

Brno, Karlsruhe, Redmond and Zurich

Barbora Bühnová, Ralf Reussner, Clemens Szyperski, Wolfgang Weck

3

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

Workshop Co-organizers

Barbora Bühnová
Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno, Czech Republic
E-mail: buhnova@fi.muni.cz
Web: http://www.fi.muni.cz/~buhnova/

Ralf Reussner
Institute for Program Structures and Data Organization
Karlsruhe Institute of Technology (KIT)
Am Fasanengarten 5
76131 Karlsruhe, Germany
E-mail: reussner@kit.edu
Web: http://sdq.ipd.kit.edu/

Clemens Szyperski
Microsoft
One Microsoft Way
Redmond, WA 98053, USA
E-mail: clemens.szyperski@microsoft.com
Web: http://research.microsoft.com/~cszypers/

Wolfgang Weck
Independent Software Architect
Böszelgstrasse 13
8600 Dübendorf, Switzerland
E-mail: mail@wolfgang-weck.ch
Web: http://www.wolfgang-weck.ch

Programme Committee

• Steffen Becker, University of Paderborn, Germany
• Barbora Bühnová, Masaryk University, Czech Republic
• Ivica Crnkovic, Real Time Research Centre, Mälardalen University, Sweden
• Ian Gorton, Pacific North West National Laboratory, United States of America
• George Heineman, Worcester Polytechnic Institute, United States of America
• Raffaela Mirandola, Politecnico di Milano, Italy
• Sven Overhage, Universität Augsburg/Oversoft, Germany
• František Plášil, Charles University, Prague, Czech Republic
• Ralf Reussner, Karlsruhe Institute of Technology (KIT), Germany
• Heinz Schmidt, RMIT University, Australia
• Judith Stafford, Tufts University, United States of America
• Clemens Szyperski, Microsoft, United States of America
• Wolfgang Weck, Independent Software Architect, Zurich, Switzerland

4

http://www.fi.muni.cz/~buhnova/
http://sdq.ipd.kit.edu/
http://research.microsoft.com/~cszypers/
http://www.wolfgang-weck.ch

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

Workshop Programme

Tuesday 22nd June 2010

08:30 – 09:00 Registration
09:00 – 09:10 Workshop Opening
09:10 – 10:30 Session 1: Architecting Systems

Zoya Durdik (FZI Research Center for Information Technology, Karlsruhe, Ger-
many)
Architectural Modeling in Agile Methods
Markus Knauß (University of Stuttgart, Germany)
Architectural Design with Visualization Patterns
Matthias Huber (Karlsruhe Insitute of Technology, Germany)
Towards Secure Services in an Untrusted Environment
Kerstin Falkowski (University of Koblenz-Landau, Koblenz, Germany)
A scientific component concept – focused on versatile visual component assembling

10:30 – 10:50 Coffee Break
10:50 – 11:50 Session 2: Performance Prediction and Certification

Dennis Westermann and Jens Happe (SAP Research, Karlsruhe, Germany)
Performance Prediction of Large Enterprise Applications Based on Goal-oriented
Systematic Measurements
Jörg Henß (Karlsruhe Institute of Technology, Germany)
Performance Prediction for Highly Distributed Systems
Erik Burger (Karlsruhe Institute of Technology, Germany)
Towards Formal Certification of Software Components

11:50 – 12:00 Break
12:00 – 13:00 Session 3: Verification, Formal Methods, Simulation

Claas Wilke, Jens Dietrich, Birgit Demuth (Technische Universität Dresden, Ger-
many and Massey University, Palmerston North, New Zealand)
Event-Driven Verification in Dynamic Component Models
Marin Orlić, Aneta Vulgarakis, Mario Žagar (University of Zagreb, Croatia and
Mälardalen University, Västerås, Sweden)
Towards Simulative Environment for Early Development of Component-Based Em-
bedded Systems
Etienne Borde (Mälardalen University, Västerås, Sweden)
Formal Model Assisted Code Generation for Critical Embedded Systems

13:00 – 14:15 Lunch Break
14:15 – 14:30 Planning of Break-out Groups
14:30 – 16:00 Discussion in Break-out Groups
16:00 – 16:15 Coffee Break
16:15 – 17:15 Presentations of Break-out Groups
17:15 – 17:30 Workshop Closing

WCOP Website

http://wcop.ipd.kit.edu/

5

http://wcop.ipd.kit.edu/

Contents

Formal Model Assisted Code Generation for Critical Embedded Systems
Etienne Borde . 7

Towards Formal Certification of Software Components
Erik Burger . 15

Architectural Modeling in Agile Methods
Zoya Durdik . 23

A scientific component concept – focused on versatile visual component assembling
Kerstin Falkowski . 31

Performance Prediction for Highly Distributed Systems
Jörg Henß . 39

Towards Secure Services in an Untrusted Environment
Matthias Huber . 47

Architectural Design with Visualization Patterns
Markus Knauß . 55

Towards Simulative Environment for Early Development of Component-Based Embedded
Systems
Marin Orlić, Aneta Vulgarakis, Mario Žagar . 63

Performance Prediction of Large Enterprise Applications Based on Goal-oriented System-
atic Measurements
Dennis Westermann, Jens Happe . 71

Event-Driven Verification in Dynamic Component Models
Claas Wilke, Jens Dietrich, Birgit Demuth . 79

6

Formal Model Assisted Code Generation
for Critical Embedded Systems

Etienne Borde
Mälardalen Real-Time and Research Center

Mälardalen University
P.O. Box 883, SE-72 123 Västerås, Sweden

Email: etienne.borde@mdh.se

Abstract—In order to cope with the growing complexity of
embedded software while shortening time-to-market, component-
based software engineering offers the possibility to reuse existing
functionalities while automating (i) the analysis of the system
under design and (ii) the production of the final software.
However, it is difficult to ensure that the produced software
actually conforms to the hypothesis used for analysis purpose.
Indeed, model based verification relies on a very different
semantics from the one used in the software implementation.

In this paper, we propose a design approach that consists
of automating the production of a detailed description of the
software application, as an intermediate step towards its concrete
production. As a result, the analysis of the system can be made at
both levels, considering its abstract modelling and the description
of its concrete realisation.

I. INTRODUCTION

More and more products in our everyday life take advantage
of the miniaturization of electronics to provide functionalities
that are controlled by a software embedded system. In order to
cope with an increasingly competitive market, these function-
alities are more and more sophisticated, and thus increasingly
complex. For the same reason, the design of such embedded
systems must cope with even shorter time-to-market. Com-
puter systems that are embedded in cars, air planes, military
systems etc., are called critical embedded systems because a
failure of such a system may have catastrophic consequences.
In this paper, we propose a new design approach that we
intend to implement in order to cope with the complexity
of developing critical embedded systems while increasing the
confidence one can have in the final result. To achieve these
goals, we propose a solution that:

1) eases the analysis of a software system at different stages
of its design process;

2) enables reusability of already existing design artefacts;
3) automates the different steps of the design process, until

completion.
Analysis of a system under design increases confidence

one can have in the final product. The reusability of existing
design artefacts accelerates the time-to-market of a product,
even more in product-lines as it is often the case in industry.
Finally, automation of the design process is very important
since the increasing complexity of embedded software induces
integration of a huge set of information that cannot be handled
manually.

If each of these points provides solutions to design phases
of embedded systems, their integration in a consistent design
process still raises an important problem: when it comes to
analysis of critical embedded systems, formal methods enable
insurance that an abstract model of the system under design
respects some safety properties. These formal techniques rely
on mathematical constructions that are used to abstract the
behaviour of a system. On the other hand, the final system is
implemented with a programming language whose semantic
(i.e. meaning when interpreted by a machine or a software
tool) is very different from the one used for analysis purpose.
This poses the following problem: how to ensure that the
implementation of the system actually respects the hypotheses
that were used for verification purposes?

In this paper, we tackle this problem by proposing a new ap-
proach to automate the implementation of the formal semantic:
instead of directly producing this implementation, we propose
to use an intermediate level of representation of the software
(i.e. between the formal level and the implementation level),
whose semantic is close to the implementation semantics but
enables to automate its analysis.

The remainder of this paper is organised as follows: sec-
tion II presents the motivations of this work describing the
two main challenges it aims at tackling. Section III consti-
tutes a brief state of the art of research works that tackled
those challenges. In section IV, we describe in details the
approach for which we intend to implement a dedicated
component framework. Finally, section V concludes this paper
and presents the perspectives of this work.

II. MOTIVATIONS

The main goal of the approach presented in this paper
is to bridge the gap between the formal semantics required
by the analysis techniques of embedded systems and the
implementation of this type of systems. Bridging this gap
enables insurance that the verified model correctly represents
the implemented system, and vice versa. Let us try to present
hereafter the different challenges raised by this objective.

A. Formal semantics versus implementation

Different techniques exist to ensure that a model meets a
given set of safety properties (properties ensuring that the
system always provides the functionalities it was designed for).

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

7

Among those techniques, model-checking is the easiest to use
in an automated design process. There exists two different
approaches in order to perform model-checking.

One consists of modelling a system that has been imple-
mented without any simplifying hypothesis on its execution
semantics. In this case, the formal model must represent the
implemented system as closely as possible. The implementa-
tion actually leads the design process.

The other approach consists of restricting the execution
semantics of the software that constitutes the system thanks
to hypothesis that will simplify the verification process. One
can for instance suppose that all the actions of a system are
atomic so that timing properties is no longer an issue in the
verification process. In this case, verification leads the design
process. If using the former technique, the system is much
simpler to implement (the implementation does not have to
ensure a formal semantic) but more difficult to verify: model
checking techniques suffer from the well known scalability
problem, where this problem increases correspondingly to the
complexity of the model. On the other hand, the simplifying
hypotheses of the later approach are more difficult to imple-
ment, but ease the analysis [1].

In this paper, we choose the later approach, since it is more
suitable for safety-critical systems.

Challenge 1. Automate the implementation of a formally
defined execution semantic.

B. Reusability versus automatic production

Reusability of design artefacts is an important industrial
requirement when it comes to manage the evolution of an
existing product. On the other hand, embedded systems also
have to cope with very heterogeneous requirements, like for
instance: memory limitations, temporal determinism, power
consumption and properties specific to a given system. These
requirements may also lead to the selection of a particular
execution platform (hardware, operating system and communi-
cation media), which can decrease the reusability of a piece of
software. Indeed, embedded software most of the time include
some platform dependent code: when changing the platform,
it is often necessary to use a different compiler. To deal with
this heterogeneity of requirements and execution platforms, it
is possible to generate the software application, but reducing
the reusability of the corresponding code.

Concluding the above, heterogeneity of embedded systems’
requirements makes the reusability of existing software diffi-
cult [2].

Challenge 2. Enable reusability of design artefacts while
answering to the heterogeneity of requirements of embedded
systems.

III. SURVEY OF THE FIELD

a) Existing solutions to challenge 1: The problem of
implementing formally defined semantics has been intensively
studied over the last 20 years, and has been marked by a series
of success stories (e.g. ESTEREL [3], LUSTRE [4], BIP [5],

CSP [6]). These languages rely on simplifying hypothesis that
ease their mathematical analysis: for instance, synchronous
languages (ESTEREL and LUSTRE) assume that every action
of the software application is made instantaneously when
receiving a triggering event. Of course, the implementation
cannot strictly respect this hypothesis. Still, the compilers of
these languages ensure that for any input pattern given to the
system, its outputs will be the same as the one that would have
been produced according to the formal semantics [7]. In the
scope of our proposal, the main limitation of those solutions is
that they do not address the issue of the reusability of existing
design artefacts (see challenge 2).

b) Existing solutions to challenge 2: When it comes
to reusability of design artefacts, component based software
engineering is a well established solution [8], which is already
used in the design of industrial non-critical software products
(Koala [9], THINK [10], MyCCM [11]). As far as we know,
only a few projects have investigated the usage of component-
based software engineering in the domain of critical embedded
systems (MyCCM-HI [12], ProCom [13]). ProCom defines a
formal semantic that eases the formal analysis of a system’s
behaviour. The definition of this semantic consists of assuming
that the communications (control and data transfer) between
collocated software components are atomic. This actually
relaxes the synchronous semantics: the execution time of the
components is not null. On the other hand, MyCCM-HI does
not define any formal semantics, but provides transformation
rules to formal methods in order to ease the analysis. Pro-
Com is a component based model lead by verification, while
MyCCM-HI is lead by implementation. This is the reason why
we propose, in the approach presented here, to use the ProCom
component model.

Among the research works that aim at coping with the
heterogeneity of requirements existing in the domain of em-
bedded systems, architecture description languages and mod-
elling languages constitute a promising solution. In the domain
of real-time and embedded systems, UML and its profile
MARTE [14], as well as AADL [15] offer (among others)
the possibility to model precisely the software architecture of
an embedded system. The architecture description language
AADL has particularly retained our attention. The reasons of
this interest are multiple:

1) AADL is a standard dedicated to the design and anal-
ysis of real-time and embedded systems;

2) several research programs lead to the creation of anal-
ysis and code generation tools using this language
(Cheddar [16], Ocarina [17], ADAPT [18]);

3) its usage is complementary with the usage of ProCom:
they both address different type of design and analysis
requirements of a development process: ProCom targets
the encapsulation of software functionalities in order
to ease their reuse while AADL enables to describe
the allocation of those functionalities over the execution
resources.

As to summarize, AADL meets most of the qualities of an
ideal ADL [19].

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

8

In next section, we present in more details the new approach
we propose to answer both challenges 1 and 2.

IV. TECHNICAL APPROACH

The approach we propose in this paper consists of automat-
ing the production of platform dependent code while reusing
the basic functionalities of a system. Platform dependent code
is thus generated while the functional code is reused (regard-
less it has been handily written or generated by another tool).
These basic functionalities will be encapsulated as software
components in order to ease their reuse in different contexts.
The corresponding component model will provide a formal
semantics in order to ease system level verifications (i.e. the
respect of the system level requirements). As a first step
towards ensuring this formal semantic is actually respected in
the implementation, we propose to model this implementation
in an intermediate representation that must be close to the
implementation semantics, but must also be analysable. The
corresponding level of abstraction consists of representing
the execution and communication semantics of the software:
we describe how functionalities are triggered and how they
communicate in the final implementation. Shared variables,
periodic and sporadic tasks, as well as communication buffers
have to be precisely represented in this model.

To begin with the presentation of this approach, we first
describe ProCom, the component model we have selected for
this approach. We then illustrate the gap existing between the
semantic used for the analysis and for the implementation. To
illustrate this difference, we rely on the example of ProCom
components interaction. This will finally lead us to the pre-
sentation of our integrated approach.

A. ProCom, the component model

1) General presentation: The ProCom component model
has been specifically developed to address the specificities
of designing distributed real-time and embedded systems. To
address the different concerns that exist on different levels of
the design of such systems, ProCom consists of two distinct,
but related, layers. At the upper layer, called ProSys, the
system is modelled as a number of active and concurrent
subsystems, communicating by message passing. The lower
layer, ProSave, addresses the internal design of a subsystem
down to primitive functional components implemented by
code.

In ProSys, a system is modelled as a collection of concur-
rent subsystems that communicate by asynchronous message
passing.

Contrasting this, the lower lever, ProSave, consists of pas-
sive units, and is based on a pipes-and-filters architectural style
with an explicit separation between data and control flow. The
former is captured by data ports where data of a given type can
be written or read, and the latter by trigger ports that control
the activation of components. Data ports always appear in a
group together with a single trigger port, and the data ports in
the same group are read or written together in a single atomic

action. This is the main hypothesis of the ProCom component
model in order to ease the formal analysis of the system under
design.

Both layers are hierarchical, meaning that subsystems as
well as components can be nested. The way in which the
two layers are linked together is that a primitive ProSys
subsystem (i.e., one that is not composed of other subsystems)
can be further decomposed into ProSave components. At the
bottom of the hierarchy, the behavior of a primitive ProSave
component is implemented as a C function.

2) Specificities of ProCom: The main characteristic of the
ProCom component model is that it exhibits, through the
structure of the components, the execution model of the
software architecture. To achieve this objective, the ProCom
component model imposes restrictions on the behavior of its
constructs that we explain hereafter:

The functionality of a ProSave component is captured by
a set of services. The services of a component are triggered
individually and can execute concurrently, while sharing only
data. A service consists of one input port group and zero or
more output port groups, and each port group consists of one
trigger port and a number of data ports. An input port group
may only be accessed at the very start of each invocation, and
the service may produce parts of the output at different points
in time. The input ports are read in one atomic step, and then
the service performs internal computations and writes at its
output port groups. The data and triggering of an output group
of a service are always produced at the same time. Before
the service returns to idle, each of the associated output port
groups must have been activated exactly once. This restriction
serves for tight read-execute-write behavior of a service.

In order to implement complex functionalities, ProCom
components must be connected. This can be done by simple
connections that transfer data or control, and connectors
providing more elaborate manipulation of the data and control
flow.

Finally, ProCom gives the possibility to model the internal
structure of ProSys components thanks to connected ProSave
components, connectors, and clocks. Ports primitive ProSys
subsystems, dedicated to message passing, are then connected
to data and trigger ports of ProSave components. Besides,
clocks serve for generating periodic trigger and activate com-
ponent assemblies periodically.

Figure 1 shows the model of a primitive ProSys subsystem
composed of ProSave components, connectors and clocks. As
one can see on the top right part of the figure, message ports of
ProSys components can be connected to trigger and data ports
of ProSave components. This actually means that data con-
tained in messages received on the system ports are transmitted
to the connected subcomponents. Connectors are represented
in this figure as n-to-m connections. For instance, a control
fork connector is positioned between the clock activated at 50
Hertz and the components triggered by this clock (components
computing the actual direction and the desired direction). This
connector states that both computations have to be executed
in parallel.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

9

Fig. 1. Stability Control System

B. Deployment of ProCom components

Modelling the deployment of ProCom components just
consists of representing the allocation of ProSys components
onto virtual nodes that are latter on mapped onto the concrete
hardware platform. This information is then used to realize
the deployment of components. Since ProCom is dedicated
to the design of critical distributed real-time and embedded
systems, components are deployed statically: the definition and
initialization of data structures corresponding to components,
tasks and interactions, is made at compile time (or during
the very beginning of the system initialization if necessary).
As a consequence of this choice, the definition of these data
structures, as well as their initialization, is synthesised into the
code of the system implementation.

This synthesis process mainly consists of the components-
to-resource allocation. In the scope of distributed and real-time
embedded systems, this allocation consists of mapping:

• interactions of ProSave components to shared variables
and call sequences;

• ProSave components activation (clocks and communica-
tion channels) to real-time tasks;

• interactions of ProSys components to the physical com-
munication media.

As presented in the introduction of this paper, synthesising
the system code while ensuring its conformance with the
model used for its analysis is a difficult problem. In the re-
minder of this section, we present our current works that aims
at answering this issue in the scope of ProSave components.

The main hypothesis of data transfer between ProSave
components is atomicity. Of course, this hypothesis cannot be
ensured in a multi-threaded implementation since it requires
data copying and locking. However, the implementation must
ensure that the data transfer pattern (emission and reception)
is the same as the one that have been considered for analysis
(i.e. with the atomicity hypothesis). To ensure this, we propose
to rely on a three steps data transfer with a double buffer
implementation: the output port of a component is deployed
as a set of two buffers, one that can be updated during the
execution of the component, and one that contains the last
up-to-date value.

1) The first step of a data transfer involves the writer
component: during its execution, it can write on the
accessible buffer.

2) The second step begins when the output port group
(containing the considered data port) is triggered. At
this moment, the buffer roles are switched: the accessible
buffer becomes the last up-to-date buffer and vice versa.

3) The last step is executed when the port group containing
the reader data port is triggered. Then, the last up-to-date
value is copied in the internal structure of the reader
service.

In order to ensure atomicity and data consistency, the second
and third steps must never be concurrently and simultaneously
accessed. This double buffer solution has been preferred to
a single buffer implementation since it reduces time spent
in the critical section, thus getting closer to the atomic
hypothesis. Besides, it is similar to the solution used in the
scope of synchronous programming, for which a conformance
proof has been provided [1]. However, we did not yet prove
that this implementation conforms to the hypothesis of the
ProCom model analysis [13]. As one can easily understand,
the conformance between this implementation and the analysis
semantic is very difficult to ensure.

In the remainder of this paper, we propose a solution to
improve the confidence one can have in the conformance
between the analysed model and its implementation.

C. Describing the execution model with AADL

In order to bridge the gap between the analysis and the
implementation semantics, we propose to produce an AADL
description representing the allocation of ProCom function-
alities onto the execution resources (shared variables, call
sequences, real-time tasks, and communication media).

AADL [15] is an architecture description language (stan-
dardized by the SAE 1) dedicated to the design and analysis of
distributed real-time and embedded systems. AADL relies on
a notion of component which falls in four different domains:
System, Abstract, Software and Hardware. The definition of
the system and abstract domains are very generic, so that
the associated semantic is imprecise (which is not really
surprising considering the purpose of using such components).
On the other hand, software and hardware components are
“concrete components” that come with a precise semantic.
Besides, AADL aims at representing precisely the allocation
of software components onto the execution platform. In the
remainder of this section, we present the different component
categories belonging to AADL software and hardware com-
ponents; we describe some of the possible SW/HW mappings
provided by the language; finally we illustrate the granularity
level AADL enables to reach.

a) Software components: AADL defines six component
categories among software components:

• Data components can represent data types, classes, ob-
jects and shared variables.

• Subprogram components represent sequentially exe-
cuted source text (with its parameters).

• Subprogram groups represent subprogram libraries.

1Society of Automotive Engineers - http://www.sae.org

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

10

• Thread components represent schedulable unit that can
execute concurrently on the execution platform.

• Thread group components represent logically grouped
threads.

• Process components represent a virtual address spaces,
available to store the state of other software components.
b) Hardware components: AADL defines mainly six

component categories among hardware components:
• Processors components represent the set of hardware

and software platform elements that is responsible for
executing and scheduling threads and virtual processors.

• Virtual processors represent logical resources capable
of scheduling and executing threads or other virtual
processors.

• Memory components represent the hardware entities that
enable to store code and data binaries.

• Buses represent communication media dedicated to the
transfer of control and data between memories, proces-
sors, and devices.

• Devices represent hardware entities that interface with the
execution environment.
c) Software to hardware allocation: The allocation of

software components onto hardware components is mainly
modelled into system components, by the means of ”bindings”:
depending on its type, a software subcomponent contained in
a system component can be bound to one of the hardware
components of this system. For instance, a thread component
can be bound to a process components, a data to a memory,
a connection between software components to a bus, etc...

d) AADL, precision of the semantic: The above
presentation shows how concrete is the AADL semantic. The
AADL semantic is also very precise: for instance, when the
communication between two software components requires
the usage of a buffer, AADL enables to specify the size of
the buffer, as well as the expected behaviour of a full buffer:
when the buffer is full and a data has to be written, this data
can overwrite the last or the first data contained in the buffer.

The above presentation of ProCom and AADL shows that
these two modelling techniques are complementary. ProCom
defines software components focusing on their reuse and
the formalisation of their semantic. AADL focuses on the
concrete software and hardware description, as well as the
mapping between them. As a consequence, mapping ProCom
components onto AADL components gives the opportunity to
model precisely the allocation of ProCom components onto
the execution platform. Thus, the design and implementation
of a system, based on ProCom components, can be assisted
by formal verification at both level: considering the formal
semantic of ProCom components, and analysing the AADL
description of their implementation. The remainder of this
paper presents the corresponding approach in more details.

D. Overview of the approach

Figure 2 summarizes this approach. As one can see on this
figure, initial modelling will be performed with the ProCom

component model, and transformed into an AADL model
that describes the implementation of the ProCom semantics.
Our approach enables to ensure the correctness of the model
transformation process thanks to two strong principles:

1) the implementation of the ProCom semantics is correct-
by-construction (the implementation enforces the respect
of the formal semantics hypothesis, the same way as
in [1]);

2) the verification realized at the formal semantic level
can also be performed using the description of the
implementation with AADL (which ensures that the
implementation enforces the respect of those properties).

The non-functional properties of the ProCom components
are then integrated into the generated AADL model (see top
left part of the figure) in order to extend analysis capabilities.
The model transformation from the formal semantics level
to the description of the execution semantics consists of
representing in AADL (target model) how the ProCom (source
model) semantics is implemented. The source model consists
of a set of clocks and events that trigger components, which in
turn trigger the components they are connected to. On the other
hand, the description of the execution semantics consists of a
set of tasks that execute operations, require or provide access
to data, use communication buffer, etc...

The formal semantic and the execution semantic are two
complementary abstraction levels: by representing function-
alities encapsulated by components with a formal seman-
tics, ProCom enables the reuse of existing design artefacts
and eases the analysis of the system requirements (see top
right part of the figure, the analysis can be performed on
components of components assemblies); by representing the
corresponding implementation, AADL eases the generation of
platform dependent code and enables the real-time properties
analysis (for instance that all the tasks meet their deadlines,
see middle right part of the figure).

To conclude this subsection, let us explain how far this
approach answer the two challenges described in section II.

1) Our approach answers challenge 1 firstly by using
implementation patterns that preserve the formal se-
mantic hypotheses [1], and secondly by enabling to
check safety properties twice: once first thanks to the
formal specification and then using the description of
its implementation (described in AADL). Besides, us-
ing the intermediate level of representation (in AADL
here) enables to extend the scope of analysis of safety
properties.

2) Our approach answers to challenge 2 firstly by offering
the possibility to reuse existing design artefacts, and
secondly by automating the assembly process of these
different entities.

Of course, our approach still misses the proof that the
different steps of production are correct, which is actually part
of the perspectives of this work. We illustrate in next section
our preliminary work on mapping ProCom components onto
AADL.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

11

Description of Description of

the formal

semantics

(ProCom)

Formal analysis based

on the ProCom formal

semantics

Description of Description of

the execution

semantics

Formal analysis Formal analysis

ignorant of the

Reusable

components

code

Reusable

components

code

NF properties

integration Model

transformation

Code generation

Requirements analysis

Real-time properties analysis

semantics

(AADL)

ignorant of the

ProCom semantics

Executable

binary code

Executable

binary code

Activation and

communication

code

Activation and

communication

code

Compiler

Code generation

Fig. 2. Overview of the technical approach

E. Mapping ProCom onto AADL

Mapping ProCom components to AADL components
mainly consists of mapping the implementation of ProCom
components, their activation, and their interactions, onto
AADL software components. Indeed, the virtual nodes mod-
elling in ProCom can easily be transformed into a set of AADL
virtual processors and processes. Following the same idea,
the modelling of hardware in ProCom is easy to transform
into AADL: each modelling entity in ProCom dedicated to
the execution platform description has an equivalent entity in
AADL.

When it comes to software components, the main trans-
formation step consists in deciding of the components to
task allocation. After having automatically decided of this
allocation [20], ProCom clocks, components, connectors and
connections are mapped into a set of AADL tasks, subpro-
grams, data, ports, and connections. Figure 3 illustrates the
resulting mapping of the system described in figure 1. On
this figure, one can see that the enclosing ProCom system is
mapped into an equivalent AADL system. Message ports of
the ProCom subsystem are mapped onto AADL data ports. In
case the control flow was transferred with data, the mapping
would have produced a system with AADL event data ports (as
it is the case for the output ports of the system). The ProCom
clock (50 Hz) has been transformed into an AADL periodic
task (20 Ms), and the components activated by this clock are
described thanks to AADL subprogram calls. The data ports
of the components are, in this case, represented thanks to con-
nected subprograms parameters. The reason of this mapping
is that, in this example, the data transfer is realised between

Computing

actual

20 ms

Stability Control System

actual

direction

Computing

desired

direction

Detecting

sliding

Computing

breaking

pressure

System

Process

Thread

Subprogram

Data port

Event data port

Fig. 3. Stability Control System Mapped in AADL

components executed in the same task. When the data transfer
involves different tasks, then data ports have to be mapped into
AADL data components, and the accessors implementation
have to be mapped into AADL subprograms with a shared
access to the data. Such a description corresponds to the
double buffer implementation described in section IV-B.

F. Ongoing research work

The results of the approach presented in this paper will be
twofold (theoretical and experimental):

1) the theoretical part will tackle scientific issues related to
our objectives. On the one hand, accelerating the time-
to-market requires automating the design process, and/or
reusing existing design artefacts. On the other hand, it is
necessary to ensure that the automation of the software

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

12

production, or the reuse of existing functionalities, does
not introduce undesired characteristics in the final prod-
uct. We thus need to provide answers to this question:
how to make automation and reuse reliable?

2) As one can see in the Figure 2, the experimental part will
provide a concrete solution to this problem: a component
framework that automates the production of the software
application, enables the reuse of existing entities, and
improves the analysis of the system under design.

V. CONCLUSION AND PERSPECTIVES

The expected result of this approach is a component-
based framework led by a formal semantics, a requirement of
determinism, and the integration of an architecture description
language dedicated to the design and analysis of real-time
software. As far as we know, this will be the first model driven
approach that merges those three key aspects:

• component-based software engineering for reusability;
• formal model driven engineering;
• modelling languages dedicated to the design and analysis

of distributed real-time systems.
This project opens several perspectives that will have to be

addressed in future works. Out of these perspectives, here are
the two ones we think should be addressed first:

1) in order to reinforce our solution, it is important to deal
with the demonstration that the implementation patterns
we use for compiling the ProCom semantics, as well
as the model transformation algorithms we propose,
produce an execution semantic equivalent to the ProCom
semantic;

2) to go further in the answer to real-time and embed-
ded systems design, we should consider the dynamic
reconfiguration and fault-tolerance issues in the scope
of ProCom.

REFERENCES

[1] Paul Caspi, Norman Scaife, Christos Sofronis, and Stavros Tripakis,
“Semantics-preserving multitask implementation of synchronous pro-
grams”, ACM Trans. Embed. Comput. Syst., vol. 7, no. 2, pp. 1–40,
2008.

[2] Michael Mrva, “Reuse factors in embedded systems design”, Computer,
vol. 30, pp. 93–95, 1997.

[3] Gérard Berry, “The foundations of esterel”, pp. 425–454, 2000.
[4] Nicolas Halbwachs, Fabienne Lagnier, and Christophe Ratel, “Program-

ming and verifying real-time systems by means of the synchronous
data-flow language lustre”, IEEE Trans. Softw. Eng., vol. 18, no. 9,
pp. 785–793, 1992.

[5] Ananda Basu, Marius Bozga, and Joseph Sifakis, “Modeling hetero-
geneous real-time components in bip”, in SEFM ’06: Proceedings
of the Fourth IEEE International Conference on Software Engineering
and Formal Methods, Washington, DC, USA, 2006, pp. 3–12, IEEE
Computer Society.

[6] C. A. R. Hoare, “Communicating sequential processes”, Commun. ACM,
vol. 21, no. 8, pp. 666–677, 1978.

[7] Daniel Weil, Valérie Bertin, Etienne Closse, Michel Poize, Patrick
Venier, and Jacques Pulou, “Efficient compilation of esterel for real-
time embedded systems”, in CASES ’00: Proceedings of the 2000
international conference on Compilers, architecture, and synthesis for
embedded systems, New York, NY, USA, 2000, pp. 2–8, ACM.

[8] Ivica Crnkovic, Building Reliable Component-Based Software Systems,
Artech House, Inc., Norwood, MA, USA, 2002.

[9] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee,
“The koala component model for consumer electronics software”, Com-
puter, vol. 33, no. 3, pp. 78–85, 2000.

[10] Matthieu Anne, Ruan He, Tahar Jarboui, Marc Lacoste, Olivier Lobry,
Guirec Lorant, Maxime Louvel, Juan Navas, Vincent Olive, Juraj Po-
lakovic, Marc Poulhiès, Jacques Pulou, Stéphane Seyvoz, Julien Tous,
and Thomas Watteyne, “Think: View-based support of non-functional
properties in embedded systems”, in ICESS ’09: Proceedings of the
2009 International Conference on Embedded Software and Systems,
Washington, DC, USA, 2009, pp. 147–156, IEEE Computer Society.

[11] Etienne Borde, Grégory Haı̈k, , Virginie Watine, and Laurent Pautet,
“Really hard time developing hard real-time”, in 2nd National workshop
on Control Architecture of Robots, june 2007.

[12] Etienne Borde, Grégory Haı̈k, and Laurent Pautet, “Mode-based recon-
figuration of critical software component architectures”, in DATE, 2009,
pp. 1160–1165.

[13] Aneta Vulgarakis, Jagadish Suryadevara, Jan Carlson, Cristina Sece-
leanu, and Paul Pettersson, “Formal semantics of the procom real-time
component model”, in SEAA ’09: Proceedings of the 2009 35th Euromi-
cro Conference on Software Engineering and Advanced Applications,
Washington, DC, USA, 2009, pp. 478–485, IEEE Computer Society.

[14] Object Management Group (OMG), “The promarte consortium. uml
profile for marte, beta 2, omg document number: ptc/08-06-08”, Tech.
Rep., OMG (Object Management Group), 2008.

[15] SAE, “Architecture analysis and design language (aadl)”, Tech. Rep.,
The Engineering Society For Advancing Mobility Land Sea Air and
Space, Aerospace Information Report, November 2004.

[16] Frank Singhoff et al., “Aadl resource requirements analysis with
cheddar”, in SAE AADL Working Group meeting, Paris, October 18-21,
2005, 2005.

[17] G. Lasnier, B. Zalila, L. Pautet, and J. Hugues, “OCARINA: An Envi-
ronment for AADL Models Analysis and Automatic Code Generation
for High Integrity Applications”, in Reliable Software Technologies’09
- Ada Europe, Brest, France, jun 2009.

[18] Ana-Elena Rugina, Karama Kanoun, and Mohamed Kaniche, “The adapt
tool: From aadl architectural models to stochastic petri nets through
model transformation”, Seventh European Dependable Computing
Conference, vol. 0, pp. 85–90, 2008.

[19] Nenad Medvidovic and Richard N. Taylor, “A classification and
comparison framework for software architecture description languages”,
IEEE Trans. Softw. Eng., vol. 26, no. 1, pp. 70–93, 2000.

[20] Johan Fredriksson, Kristian Sandstrm, Mikael kerholm, and Kristian S,
“Optimizing resource usage in component-based real-time systems”, in
In: Proceeding of CBSE8 International Symposium on Component-based
Software Engineering, 2005, p. 0836.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

13

Towards Formal Certification
of Software Components

Erik Burger
Institute for Program Structures and Data Organization, Faculty of Informatics

Karlsruhe Institute of Technology, Germany
E-mail: burger@kit.edu

Abstract—Software certification as it is practised today guar-
antees that certain standards are met in the process of soft-
ware development. However, this does not make any statements
about the actual quality of implemented code. We propose an
approach to certify the non-functional properties of component-
based software which is based on a formal refinement calculus,
using the performance abstractions of the Palladio Component
Model. The certification process guarantees the conformance
of a component implementation to its specification regarding
performance properties, without having to expose the source
code of the product to a certification authority. Instead, the
provable refinement of an abstract performance specification to
the performance description of the implementation, together with
evidence that the performance description reflects the properties
of the component implementation, yields the certification seal.

The refinement steps are described as Prolog rules so that the
validity of refinement between two performance descriptions can
be checked automatically.

Index Terms—Components, Certification, Performance Engi-
neering.

I. INTRODUCTION

The term software certification usually denotes a process
during which an external authority attests certain properties
of the software development process in a company. These
properties concern the development process or the qualification
of the people envolved with it. Despite the fact that a neutral
third party is involved, this kind of certification does not
guarantee the quality of an actual software product, but, as
Voas [1] puts it, rather “make[s] software publishers take
oaths concerning which development standards and processes
they will use.” However, this type of certification is the most
common, in contrast to product certification [2].

The process of software verification, on the other hand,
proves the functional correctness of a piece of software, based
on formal verification methods. However, software verification
does not cover non-functional requirements such as perfor-
mance or safety. The advantage of formal verification over
a testing and simulation based approach is the exhaustive
coverage of all system states, which cannot be reached with
classical testing [3].

In our proposed approach, software certification is a formal
process of product certification, concerning the non-functional
properties of software. This process includes the definition of

This work is granted by the GlobaliSE project, a research contract of the
state of Baden-Württemberg which is funded by the Landesstiftung Baden-
Württemberg gGmbH.

Service Effect Specifications (SEFF) [4] for the specification
documents as well as for the implementation. The software
issuer can then certify the conformance of the piece of
software to the specification document. In combination with
techniques that certify the implementation against its SEFF
description, the quality of a software product can be certified
through the complete chain of software development, from
the specification document to the actual application. This
is especially important for distributed software development
processes, where the components of a product are developed
by external software suppliers in a globalised market. In
order to guarantee the non-functional properties of a piece of
software, the quality of the externally developed parts has to
be determined. Since software suppliers are often not willing
to have their source code inspected by a certification authority
or the customer, the definition of non-functional properties
of the software provides a level of abstraction that hides
implementation details of the product, but can still be used
to gain a certificate about the quality of the software.

By using formal methods for the certification of software,
the actual process may also be performed by the issuer of the
piece of software himself with the support of semi-automatic
certification tools, which are provided by a certification author-
ity. The result of this kind of self-certification is reproducable
and can be comprehended by the customer of the software,
or an external authority. However, the “classical” certification
scenario, with the authority performing the certifcation, is also
supported. In both situations, human interaction is inevitable,
but can be reduced through the introduction of certification
tools. In one possible scenario, the compliance of product and
specification is specified by the user, and the validity of this
compliance is checked by the tool, yielding the certificate for
the product.

Our approach focuses on non-functional properties such as
performance and resource usage. The envisioned method shall
be fully parametric regarding usage profile, deployment and
assembly. For the initial version, we will assume that some of
these properties are fixed in order to reduce the complexity of
the problem.

This paper is structured as follows: In Section II, an overall
view of the performance modeling constructs in the Palladio
Component Model and the reverse engineering methods is
given. Section III surveys related work, while the certification
scenario is outlined in Section IV. The definition of refinement

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

15

rules and a formal representation is presented in Section V
together with an example in Section VI. The limitations of
the presented approach are discussed in Section VII. After an
outlook on future work in Section VIII, the paper concludes
with Section IX.

II. FOUNDATIONS

In this section, we will describe the parts of the Palladio
Component Model that are relevant for our approach, and
outline the reverse engineering approach for the extraction of
performance properties from existing component implementa-
tions.

A. Palladio Component Model

The Palladio Component Model (PCM) [5] is a meta-model
for the description of component-based software architectures.
The model is designed with a special focus on the predic-
tion of Quality-of-Service attributes, especially performance.
Furthermore, a component-based development process is de-
scribed that contains four types of developer roles: component
developer, software archtitect, system deployer and domain
experts. The part which is of interest for this paper concerns
the component developer, who specifies the components and
their behaviour.

Service Effect Specifications (SEFF) describe the relation-
ship between provided and required services of a component.
In the PCM metamodel, they are defined in the form of
Resource Demanding Service Effect Specifications (RDSEFF),
which are used for performance prediction contain a proba-
bilistic abstraction of the control flow. RDSEFFs use a notation
stemming from UML activity diagrams, i.e. activities are
denoted by nodes. For each RDSEFF, a resource demand can
be specified as well as dependencies of transition probabilities
and resource demands on the formal parameters of the service.
RDSEFFs can be annotated to each provided service of a
component. They describe
• how the service uses hardware/software resources;
• how the service calls the component’s required services.
Resource demands in RDSEFFs abstractly specify the con-

sumption of resources by the service’s algorithms, e.g., in
terms of CPU units needed or bytes read or written to a
hard disk. Resource demands as well as calls to required
services are included in an abstract control flow specification,
which captures call probabilities, sequences, branches, loops
and forks.

RDSEFFs abstractly model the externally visible behaviour
of a service with resource demands and calls to required
services. They present a grey box view of the component,
which is necessary for performance predictions, because black
box specifications (e.g., interfaces with signatures) do not
contain sufficient information. RDSEFFs are not white box
component specifications, because they abstract from the ser-
vice’s concrete algorithms and do not expose the component
developer’s intellectual property. Component developers spec-
ify RDSEFFs during or after component development and thus
enable performance predictions by third parties.

void execute(int number, List array) {

requiredService1();

// internal computation
innerMethod();

if (number>=0)
for (item in array)
requiredService2();

else
requiredService3();

}

«ExternalCallAction»
requiredService1

«InternalAction»

innerMethod
ResourceDemand

1000 <CPU>

«BranchAction»

? branch

Cond: number.Value >= 0

«Loopaction»
loop

array.NUMBER_OF_ELEMENTS

«ExternalCallAction»

requiredService2

Cond: number.VALUE < 0

«ExternalCallAction»
requiredService3

Figure 1. SEFF Example (from [5])

To get an initial idea of RDSEFFs, consider the example in
Figure 1. The top part depicts the simplified code of the service
execute. The bottom part shows the corresponding RDSEFF. It
includes calls to required services as ExternalCallActions, and
abstracts computations within the component’s inner method
into an InternalAction. Control flow constructs are modelled
only between calls to required services, while control within
the internal computations is abstracted. The example includes
parametric dependencies on the branch transitions and the
number of loop iterations.

A single InternalAction can potentially subsume thousands
of instructions into a single modelling entity as long as these
instructions do not interact with other components and perform
only component-internal computations. In many cases, an
RDSEFF consists only of a few InternalActions and External-
Actions while at the same time modelling large amounts of
code.

In addition to internal and external actions, RDSEFFs
model control flow (Figure 2): StartAction and StopAction
are the beginning and end points of the action chain of a
ResourceDemandingBehaviour. Additionally, RDSEFFs may
contain branches, loops, and forks.

Branches are expressed by BranchActions, which model
XOR control flow alternatives. The contain a number of
AbstractBranchTransitions, which can be either Guarded-

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

16

AbstractResource
DemandingAction StopActionStartAction

BranchAction

AbstractBranch
Transition

Guarded
BranchTransition

BranchCondition

RandomVariable
specification : String

Probabilistic
BranchTransition

branchProbability : Double

AbstractLoopAction

LoopAction

IterationCount

CollectionIterator
Action

Parameter
parameterName : String

ForkAction

ResourceDemanding
Behaviour

1

+branchBehaviour

1 +branchCondition

0..* +branches

1 +bodyBehaviour

1 +iterations

0..*

+forkedBehaviours

1 +parameter

Figure 2. RDSEFF control flow primitives (from [5])

BranchTransitions, i.e. depending on a parameter, or Proba-
bilisticBranchTransitions. Since the value of an input parameter
is not known at design time, guarded branches can also
have transition probabilities if the input parameter is specified
as a stochastical function in the usage model. The branch
probabilities of guarded branches are determined once the
usage model is defined. Probabilistic branches can be used
to model probabilistic behaviour without dependencies to the
input values. Both kinds of branches contain a Resource-
DemandingBehaviour, which includes actions executed in the
body of the branch.

Loops can be modeled in two ways: LoopAction and
CollectionIteratorAction. Both contain inner actions to model
the behaviour of the loop body. A LoopAction includes
the number of loop iterations as a RandomVariable, which
consists of constants or abitrary distribution functions. The
RDSEFF metamodel only allows to model loops explicitly,
without backward references in the chain of actions within
a ResourceDemandingBehaviour. For this reason, the graph
structure of an RDSEFF is always a tree, since cycles or
loops are modeled explicitly. CollectionIteratorActions are a
special construct for loops iterating over a collection, so that
the number of repetitions depends on the size of the collection.

ForkActions model AND control flow alternatives. The
contained ResourceDemandingBehaviours are executed in
parallel, so the succeeding action of a ForkAction is not
executed until all forked behaviours have terminated.

B. Reverse Engineering

The performance predictions that can be performed with the
Palladio Component Model are applicable in early stages of
development as well as in the case of existing software. In or-
der to obtain performance models from black-box components,
Krogmann et al. [6] have developed a reverse engineering
approach that uses genetic algorithms, static and dynamic
analysis, and benchmarking. The approach has been validated

for Java-based code.

III. RELATED WORK

A. Formal Description of SEFFs
1) Finite Automata: In [7], Firus and Koziolek describe a

formal model for Service Effect Specifications that is based
on annotated finite automata. The automata are enriched by
annotations that contain stochastical expressions for transition
probabilities, depending on the usage profile. The basic ele-
ments are serialization, loops, and branches.

However, the actual SEFF metamodel specified as part
of the PCM posesses a higher expressive power than finite
automata. For example, the number of iterations in a loop
may depend on an input variable, which is not expressable by
a regular language.

2) Queueing Petri Networks: The semantics of PCM mod-
els have been described in [8] in terms of Hierarchical Queue-
ing Petri Nets (HQPN) as defined in [9]. The performance-
relevant parts of the PCM such as the usage model and
RDSEFFs are modeled with Petri nets, but not the component-
related concepts like interfaces and roles. The transformation
presented by Koziolek also contains limitations regarding the
stochastical expressions such that it is assumed that all distri-
bution functions can be expressed by phase-type distributions
and that all random variables are stochastically independent.
Furthermore, composite and incomplete component types are
not supported yet.

B. Refinement Calculi and Petri nets
In [10], rule-based modifications are applied to high-level

Petri nets in order to reach a refinement that preserves safety
properties, which are expressed in temporal logic. In contrast
to other refinement calculi on Petri nets, the approach does
not operate on low-level Petri nets, but on algebraic high-level
nets. However, it is concerned with safety rather than perfor-
mance properties of systems, like most refinement calculi for
petri nets [11].

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

17

C. Certification of software implementation against SEFF

In [12], Groenda suggests a test-based validation of perfor-
mance requirements, i.e. resource demands, against a deployed
component implementation. With this approach, the validity
of SEFF descriptions for component-based systems can be
tested for certain parameter ranges that can be specified for
the testing scenario. Based on this, automatic testcases are
generated, which check the performance results against the
specification and vice versa.

In Groenda’s approach, the certification step is performed
by an external certification authority. It is not intended for
self-certification.

Performance
Requirements

Component
Specification

Component
Implementation

Performance
Description

refinement

test-based
validation

[12]

re
ve

rs
e

en
gi

ne
er

in
g

creates

CERTIFIED

ho
ld

s

succe
ssf

ul

conforms to

Figure 3. Certification Idea

IV. SCENARIO

The scenario of certification can be seen in Figure 3. In
the proposed component-based software development pro-
cess, a specifications document for components is created
and enriched by non-functional requirements concerning the
performance of a component (depicted as a cloud symbol on
the left hand side). These requirements have to be laid down
formally in the specifications document, using the formalism
of Service Effect Specifications (SEFF) (see Subsection II-A).

The performance requirements serve as a contract which has
to be fulfilled by the implementing party. However, Service
Effect Specifications can not only be used in the specification
of a software system, but also as a means of description for
an actual implementation of that system.

Based on the specifications document, the implementation
of the component is created, usually by a third party supplier.
The resulting component is shipped with a description of its
performance properties (depicted as a cloud symbol on the
right hand side). This description can be determined by the
implementing party in two ways: In the first case, the devel-
oper of the component creates the performance description
manually. The conformance of these descriptions to the actual
implementation has to be validated by the approach described
in Subsection III-C. In the second case, the reverse engineering
techniques discussed in Subsection II-B are used to create the
performance descriptions a posteriori from the implemented

component. Assuming the correctness of these reverse engi-
neering techniques, the resulting performance description can
be used for a comparison with the requirements.

The availability of both the performance requirements and
the performance description in the form of Service Effect
Specification is a necessary precondition for the approach
proposed in this work. If both artefacts are present, it is
to be determined if the implementation SEFF (which serves
as the performance description of Figure 3) is a refinement
of the requirements SEFF (which serves as the performance
requirements). For this purpose, a formal refinement definition
is specified that allows both parties to check the conformance
of implementation to specification regarding the performance
properties, on the level of the abstract descriptions in the
form of SEFF annotations. With the help of a checking tool,
which could be provided by a certification authority, it is
then checked if a refinement relation between the two SEFF
artefacts holds, and if positive, the certificate can be issued. In
case this performance description has been created manually,
a validation has to be performed, which is indicated by “test-
based validation” in Figure 3. If the refinement relation holds
and the test-based validation is successful, this means that the
implementation complies with the performance requirements.

The separation of performance requirements and perfor-
mance description on the implementation side is necessary for
several reasons:

• If one were to attempt a validation of performance
requirements against the implementation directly, the
approach of Groenda (see Subsection III-C) would not
be applicable. The implementation of a component can
have performance properties that are very different from
the requirements in the sense of providing a much better
performance, but still fulfilling the requirements. Thus,
the test-based validation would return a negative result
which does not reflect the intended purpose of the certi-
fication.

• If the performance descriptions are determined by reverse
engineering techniques, the resulting description will not
be identical with the performance requirements, so that
the refinement is necessary for a conformance check.

In addition to these necessities, the separation of per-
formance requirements and performance description has the
following advantages:

• In a scenario where the component is developed by a third
party, it may not be desireable that all implementation
details of the component, i.e. its sources, are published to
the certificying party or the customer. In order to protect
intellectual property, the performance description can be
used as an abstraction of the software.

• The refinement relation can also be used to find an
existing component implementation from a repository that
meets the performance requirements of the component
specification.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

18

V. RDSEFF REFINEMENT

A. Idea

For the definition of refinement between RDSEFFs, two
things are required. Firstly, the notion of refinement itself
has to be described, and secondly, a formal representation of
RDSEFFs and the rules has to be found in order to check if
the refinement relation holds for actual RDSEFF instances.1

In the following subsection, we will provide a set of refine-
ment rules that defines the refinement relation constructively:
If there is an application of rules for two given SEFFs, then
the refinement relation holds. The proof consists of a set of
valid rule applications.

For the top refinement relation, we propose a definition of
refinement that is dependent from the resource demand of the
SEFF:

Definition 1: A Service Effect Specification SEFF1 is re-
fined by SEFF2 if, for each resource, the resource demands
of SEFF1 are greater or equal than those of SEFF2:

SEFF1 ≥RD SEFF2 (1)

Whether the relation ≥RD is given depends on the elements
contained in the SEFFs, since the total resource demand
of a SEFF is calculated by the actions contained in it. In
the following subsections, the single refinement steps for
the different types of actions will be described. In order to
express the resource demand of an action a, we write RDa. A
comparison on resource demands means that for every type of
resource, the resource demands are compared.

This definition is quite coarse at the moment. The resource
demand of a SEFF or of the actions contained in it can be
parametric regarding the input parameters. It can be a complex
stochastical expression for which the “greater than or equal”
comparison of Definition 1 may be difficult to define. At the
moment, we assume that the comparison of two stochastical
expressions is possible and focus on the structural possibilities
of refinement.

B. Refinement steps

An internal action is the simplest building block of a SEFF,
since it represents an action that has no externally visible
behaviour. It can contain a resource demand. For an internal
action, we define the following refinement steps:

Definition 2: An internal action a is refined by
• an internal action b if a≥RD b
• a branch action c containing2 inner actions di, i ∈ N if
∀di ∈ c : a≥RD di

• a loop action l with a maximum number of iterations
p ∈ N containing an action e if RDa ≥∑

p
RDe

Note that the refinement for the branch action does not take
into account the branch condition. For this estimation, it is

1In the following, we write SEFF instead of RDSEFF for the sake of brevity.
2The contaiment relation is expressed with set operators here. By contain-

ment, we mean the relation depicted as in Figure 2.

only important that the inner action fulfills the comparison of
resource demands, so that ≥RD holds in any case.

The following two definitions are derived from Definition 2,
but consider the opposite direction of refinement: It is also
possible to refine an action with a less complex internal action.
As a consequence of this, the refined SEFF is not necessarily
smaller in its structure, which has serious influences on the
complexity of checking for a valid refinement relation (see
Section VIII).

Definition 3: A branch action b containing inner actions ci
is refined by an internal action a if ∀ci ⊂ b : ci ≥RD a .

Definition 4: A loop action l with maximum number of
executions p ∈ N containing an action c is refined by an
internal action a if ∑

p
RDc ≥ RDa .

As we can see, all these refinement rules are “worst case”
rules: it is assumed that the resource demands are always
less or equal, independent of the circumstances, i.e. the usage
profile. This is why we do not take the branch condition into
account and only regard the maximum number of loop itera-
tions. It is possible to define different notions of refinement,
so that for example the resource demands are lower or equal
on average, and not in all cases. For the certification scenario
outlined in Section IV, this weaker refinement would however
not be useful, so we stick to the stronger definition for the
moment.

C. Formal definition of refinement

After having defined the refinement steps in Subsection V-B,
a formal representation of these rules has to be determined. In
the following subsections, we will present several possibilities
for the representation of SEFFs and the refinement relation.

1) SEFF metamodel: The definition of Service Effect Spec-
ifications is laid down in the Palladio Component Model [5].
There, an EMF metamodel for Resource Demanding Service
Effect Specifications (RDSEFF) is described. This is a formal
definition which serves as a basis for the modeling tools of
Palladio and for various model transformations that can be
performed on PCM instances.

However, for our purposes, this definition is not sufficient.
In order to check whether a refinement between two instances
of a SEFF exists, a series of applications of the refinement
rules described in Subsection V-B has to be provided. If such
a series is found, it is possible to define the concrete refinement
relation as a model transformation in terms of the model-driven
development. However, the general definition of valid refine-
ment would require a type of higher-order transformation, of
which the actual refinement relation would be an instance.
But even then, the determination of such an instance from
two existing SEFFs would still be a problem which cannot be
solved with the mechanism of model transformations. For this
reason, we are looking into different formalisms to express the
refinement relation.

2) Petri Nets: Higher forms of Petri nets such as Stochasti-
cal Petri nets are a possible formalism, since a transformation
of SEFFs in to Hierarchichal Queueing Petri nets (HQPN)

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

19

has been performed with limitations in [8]. The process of
refinement can be described in terms of Petri net refinement
as mentioned in Subsection III-B, but the problem here is also
that the source and target net already exist. Refinement usually
describes a transformation that is to be applied on a source net,
which creates the target. Here, the refinement relation has to
be created for existing nets. Furthermore, a class of refinement
steps has to be defined which represents our desired refinement
relation, and a proof method has to be established that checks
if a given refinement complies to this definition.

3) Prolog encoding: Since the refinement steps are defined
as single refinement rules, a rule-based approach can be used
to define the refinement relation between SEFF instances and
also to find the sequence of rule applications that refines the
source instance to the target instance. Rule-based languages
like Prolog [13] can be used to formally describe the rules of
Subsection V-B, provided that an encoding of Service Effect
Specifications in Prolog is defined.

1 % checks if the demand of action A is greater
2 % or equal than those of the actions in a list
3 demand_geq(A,[Head|Tail]) :-
4 demands(A,D1),
5 demands(Head,D2),
6 D1 >= D2,
7 demand_geq(A,Tail).
8 demand_geq(A,[]).
9

10 % refinement of internalAction to branchAction
11 refinesIntBranch(I1,B1) :-
12 intaction(I1),
13 branchaction(B1),
14 demands(I1,D1),
15 branches(B1,L),
16 demand_geq(I1,L).

Listing 1. Refinement of internal action to branch action in Prolog

In Listing 1, we can see the Prolog representation of the
second part of Definition 2 (refinement of an internal action
by a branch action). For the refinement, we need the recursive
helper function demand_geq() that compares an action A
with a list of actions. The clause branches(A,B) indicates
that action A demands a number B of resources (for the sake
of simplicity in this example, B is a number). Lines 12-15
describe the preconditions for refinement, such as the correct
types of actions. If the clause in line 16 also evaluates to true,
then the refinement relation holds.

VI. EXAMPLE

A. Description

In the example of Figure 4, two different SEFFs are shown.
For the purposes of this example, it is assumed that these
SEFFs describe the behaviour of the same service, for example
in a scenario where SEFF1 is part of the component specifi-
cation, whereas SEFF2 is adjacent to the implementation. In
order to prove that SEFF2 is a refinement SEFF1, one has to
provide a mapping of the single actions of SEFF1 to SEFF2.

In our case, determining a mapping is quite straightfor-
ward, since the SEFFs are not complex. In the example,

«InternalAction»
intAction1

10 <CPU>

«ExternalCallAction»
requiredService1

«LoopAction»

loopAction1
#files·5

«InternalAction»
action1

10 <CPU>

«ExternalCallAction»
requiredService2

«ExternalCallAction»
requiredService1

«BranchAction»

? branchAction1

«InternalAction»
action2

8 <CPU>

«InternalAction»

action3

5 <CPU>

«ExternalCallAction»
requiredService2

«InternalAction»
intAction2

#files·40 <CPU>

SEFF1 SEFF2

Figure 4. Refinement Example

we have calls to two external services: requiredService1 and
requiredService2. To both services, calls occur in SEFF1 as
well as in SEFF2; the ordering is the same in the sense that
requiredService1 is always called before requiredService2.
Since the internal actions between the external calls do not
affect the execution time of the external calls in this case, the
refinement association is valid for these actions.

For the other actions, matching is more complex. Since we
have different kind of actions on both sides, we must inves-
tigate all possible combinations. For example, if we compare
intAction1 with branchAction1, we can see that branchAction1
contains two elements of the type InternalAction, which are
easily comparable with intAction1. In this case, each of the
internal actions contained in branchAction1 has a smaller
resource demand than intAction1. This means that a refinement
relation holds between intAction1 and branchAction1. This
comparison is independent of the conditions under which
the branch in branchAction1 occurs, since in every case the
resource demands will be lower than the one in intAction1.

In comparison, no refinement relation exists between intAc-
tion1 and intAction2, since the resource demand of intAction2
grows linearly with an input parameter (the number of files)
and is thus not necessarily lower than the fixed resource
demand of intAction1. For the same reason, loopAction1 is
not refined by branchAction1, since the internal action of
loopAction1 has a resource demand that depends on an input
parameter, but those of branchAction1 do not, and so it cannot
be guaranteed that the resource demand of branchAction1 is
always lower than that of loopAction1.

So the only two elements that remain are loopAction1 and

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

20

intAction2. The number of iterations of the loop is dependent
from the number of files, and the resource demand of the
internal action is fixed, so we can calculate that loopAction1
has an overall resource demand of #files·50. The resource
demand of intAction2 is also linearly dependent from the
number of files, but with a smaller factor, so the refinement
relation holds between loopAction1 and intAction2.

B. Prolog

As an example of how such a SEFF can be coded in Prolog,
we describe the actions intAction1 and branchAction1 from
Section VI in Listing 2. The clauses should be quite self-
explaining; as mentioned in Subsection V-C3, we are using
natural numbers in the resource demands clause demands()
for the sake of simplicity here.

1 intaction(intaction1).
2 demands(intaction1,10).
3 branchaction(branchaction1).
4 intaction(action2).
5 intaction(action3).
6 demands(action2,8).
7 demands(action3,5).
8 branches(branchaction1,[action2,action3]).

Listing 2. Example encoded in Prolog

Now that we have the SEFF instances, we can pose a query,
which together with the refinement rule of Listing 1 gives us
the following result:

1 ?- refinesIntBranch(X,Y).
2 X = intaction1,
3 Y = branchaction1 ?
4 yes

Listing 3. Query on refinement

With refinesIntBranch(X,Y)., we are querying if
there are two entities that fulfill our refinement rule (which, in
this example, only applies to the refinement of internal actions
to branch actions). The interpreter delivers intaction1 and
branchaction1 as the correct result.

VII. ASSUMPTIONS/LIMITATIONS

The approach presented in this paper can only be performed
if the component specification as well as the component
implementation contain performance descriptions in the form
of Service Effect Specifications. The correctness of these
descriptions is assumed. For the implementation side, this can
be checked by the techniques mentioned in Subsection III-C or
by reverse engineering techniques that can guarantee the con-
formance of performance description to implementation. Since
the final certificate states that the implementation conforms
to the performance requirement laid out in the specifications
document, both the refinement check and the conformance
check are necessary.

The formal refinement check is only correct under the
assumptions that the refinement rules that are used are also
correct. The preservation of resource demands or the fulfill-
ment of performance requirements is not checked directly
like in [10], but is encoded in the refinement rules: if there

is a valid application of rules, then the refinement relation
holds. The rules themselves are not formally proved to be
correct. The reason for this is that the performance semantics
of PCM model instances are not specified formally either, so
the correctness of refinement can not be checked formally at
the moment.

VIII. FUTURE WORK

A. Comparability of Stochastical Expressions

In the presented approach, it is assumed that the resource
demands contained in the SEFFs are comparable, so that
a “greater than” relation can always be specified. However,
resource demands are specified with the Stochastical Expres-
sions language of the PCM, and these expressions can reach
a complexity for which a comparison is not yet defined. For
this reason, the comparability of Stochastical Expressions has
to be researched further so that the approach presented in
this paper can be applied to SEFFs containing any kind of
resource demand definition, and also to take the usage profile
into account.

B. Refinement rules

The definition of rules in Subsection V-B only covers some
SEFF elements (branch, loop, internal action) and must be
extended for all elements of the Palladio Component Model.
Further aspects of refinement are not yet covered in the initial
version presented in this paper. These aspects include
• rules for the matching of actions, so that all elements in

the SEFF are part of a refinement rule
• ordering of actions (especially external actions)
• combining of actions so that multiple actions are refined

by a single action
• preconditions for refinement, e.g. comparibility of certain

types of stochastical functions
Furthermore, it may be possible that a refinement can be

found between two SEFF instances that may require several
applications of refinement rules. This would require the defini-
tion of intermediate states, i.e. SEFF instances that are neither
part of the source nor of the target model. With the current
approach, this is not possible yet, but can be included in a pre-
processing step that would determine the intermediate states
and add them to the set of SEFF instances for which a rule
application path must be determined.

C. Formal representation

In order to check the refinement property for existing
systems, the encoding of SEFFs in a formal language, e.g.
Prolog, has to be specified. For this purpose, a model-to-
text transformation can automatically generate the necessary
code for an interpreter, which can than determine whether the
refinement relation holds. For cases in which the refinement
relation can not be found, a mechanism should be developed
that points out the problems so that the parts which prohibit
a valid refinement can be identified.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

21

D. Validation

For the validation of the approach presented in this paper,
a case study would have to cover the development process
of a component from specification to implementation. From
the implemented component, performance properties can be
extracted through reverse engineering techniques. Then, the
check for a refinement relation is performed for the SEFF
contained in the specification and the generated SEFF, first
manually following the refinement rules defined in natural
speech, then automatically via the formal checks. This way,
it can be determined in which cases a refinement relation
can be found and in which not. From this experience, the
set of refinement rules can be improved in order to meet the
requirements.

IX. CONCLUSION

The proposed approach extends the notion of software certi-
fication into two directions. Firstly, the subject of certification
is shifted from functional correctness to the fulfillment of
non-functional properties such as performance. Secondly, the
certification process is based on formal methods that correlate
the specification documents to the actual implementation for
component-based systems, so that an actual product certifica-
tion can take place.

The process requires that software specification documents
are enriched with descriptions of performance properties,
which can later be checked formally and thus yield a certi-
fication that is concerned with the quality of software. The
formal foundations of this process make it possible to use
certified checking tools for the conformance checks and do not
force the software developer to reveal intellectual property in
the form of source code to the certification authority, but still
gives the customer the possibility to comprehend the check of
compliance between the requirements and the delivered piece
of software.

Since the process is based on the Palladio Component
Model, existing tools and mehods can be used to determine
performance requirements and the performance properties of
existing systems. For the latter case, reverse engineering
methods make the approach also accessible if no performance
descriptions in the form of design documents exist for the
component implementation.

REFERENCES

[1] J. Voas, “Developing a usage-based software certification process,”
Computer, vol. 33, no. 8, pp. 32–37, Aug 2000.

[2] K. C. Wallnau, “Software component certification: 10 useful distinc-
tions,” SEI, CMU, Tech. Rep. CMU/SEI-2004-TN-031, September 2004.

[3] C. Engel, C. Gladisch, V. Klebanov, and P. Rümmer, “Integrating
Verification and Testing of Object-Oriented Software,” in Tests and
Proofs. Second International Conference, TAP 2008, Prato, Italy, ser.
Lecture Notes in Computer Science, B. Beckert and R. Hähnle, Eds.,
vol. 4966. Berlin/Heidelberg: Springer, 2008, pp. 192–191.

[4] R. H. Reussner, S. Becker, H. Koziolek, J. Happe, M. Kuperberg, and
K. Krogmann, “The Palladio Component Model,” Universität Karlsruhe
(TH), Interner Bericht 2007-21, October 2007. [Online]. Available:
http://sdqweb.ipd.uka.de/publications/pdfs/reussner2007a.pdf

[5] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82, pp. 3–22, 2009. [Online]. Available: http:
//dx.doi.org/10.1016/j.jss.2008.03.066

[6] K. Krogmann, M. Kuperberg, and R. Reussner, “Using Genetic Search
for Reverse Engineering of Parametric Behaviour Models for Perfor-
mance Prediction,” IEEE Transactions on Software Engineering, 2010,
accepted for publication, to appear.

[7] H. Koziolek and V. Firus, “Parametric Performance Contracts: Non-
Markovian Loop Modelling and an Experimental Evaluation,” in Proc.
of the 5th Int. Workshop on Formal Foundations of Embedded Software
and Component-Based Software Architectures (FESCA’06), ser. ENTCS,
J. Kuester-Filipe, I. H. Poernomo, and R. H. Reussner, Eds., vol.
176, no. 2. Elsevier Science Inc., March 2006, pp. 69–87. [Online].
Available: http://sdqweb.ipd.uka.de/publications/pdfs/koziolek2006e.pdf

[8] H. Koziolek, “Parameter dependencies for reusable performance speci-
fications of software components,” Ph.D. dissertation, Universität Old-
enburg, Uhlhornsweg 49-55, 26129 Oldenburg, 2008.

[9] F. Bause, P. Buchholz, and P. Kemper, “Hierarchically combined queue-
ing petri nets,” in 11th International Conference on Analysis and
Optimization of Systems Discrete Event Systems, ser. Lecture Notes
in Computer Science, G. Cohen and J.-P. Quadrat, Eds., vol. 199.
Berlin/Heidelberg: Springer, 1994, pp. 176–182.

[10] J. Padberg, M. Gajewsky, and C. Ermel, “Rule-based refinement
of high-level nets preserving safety properties,” Science of
Computer Programming, vol. 40, no. 1, pp. 97 – 118,
2001. [Online]. Available: http://www.sciencedirect.com/science/article/
B6V17-42815TS-5/2/8c7f94a0a6e23e6eacebf11014b31312

[11] W. Brauer, R. Gold, and W. Vogler, A survery of behaviour and
equivalence preserving refinements of petri nets, ser. Lecture Notes in
Computer Science, Berlin/Heidelberg, 1991, vol. 483.

[12] H. Groenda, “Certification of software component performance
specifications,” in Proceedings of the Fourteenth International Workshop
on Component-Oriented Programming (WCOP) 2009, ser. Interner
Bericht. Fakultät für Informatik, Universität Karlsruhe, R. Reussner,
C. Szyperski, and W. Weck, Eds., vol. 2009-11, 2009, pp. 13–
21. [Online]. Available: http://digbib.ubka.uni-karlsruhe.de/volltexte/
1000012168

[13] E. Y. Sterling, Leon ; Shapiro, The art of prolog : advanced program-
ming techniques, 2nd ed., ser. (MIT Press series in) Logic programming.
Cambridge, Mass: MIT Press, 1994.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

22

Architectural Modelling in Agile Methods
Zoya Durdik

FZI Research Centre for Information Technology
Software Engineering (SE)
76131 Karlsruhe, Germany

durdik@fzi.de

Abstract—Agile methods and architectural modelling have
been considered to be mutually exclusive. On the one hand, agile
methods try to reduce overheads by avoiding activities that do
not directly contribute to the immediate needs of the current
project. This often leads to bad cross-project reuse. On the other
hand, architectural modelling is considered a pre-requisite for
the systematic cross-project reuse and for the resulting increase
in software developer productivity. In this paper, I discuss the
relationship between agile methods and architectural modelling
and propose a novel process for agile architectural modelling,
which drives requirements elicitation through the use of patterns
and components. This process is in-line with agile principles and
is illustrated on an example application.

I. INTRODUCTION

Agile methods gain increasing attention in the broader
software developer community [1]–[3]. The notion “agile
methods” is used for software development processes that
are incremental, have strong customer involvement and are
sharply driven by the current needs of a project. They avoid
overhead, i.e., activities and artefacts, which do not directly
contribute to the goals of the current increment [4]. Agile
methods are often adopted by smaller companies; however,
an increasing number of larger companies with established
heavyweight processes are also adapting agile development
methods because of their lower overhead [5]–[8]. Success
stories report on well-managed risks, high chances of customer
satisfaction, and also a good climate in the development team
[2], [9]–[13].

However, the fact that agile methods avoid overhead can be
seen in a strong contrast to architectural modelling [4]. This is
because the effort of explicitly modelling the architecture of a
software system usually does not pay off during initial devel-
opment. However, architecture modelling pays off rather in the
evolution phase or if a cross-project reuse occurs because of
the modelled architecture [14]. Exactly here lie the drawbacks
of agile methods: cross-project reuse of software artefacts,
such as patterns, reference architectures and components are
not foreseen, and product-lines are not supported. However,
software evolution is supported by agile methods in principle
through code refactorings [15]. Refactorings are functionality-
preserving changes of code, usually performed as a preparation
for adding a new functionality [16]. Those refactorings are not
concerned with the overall architecture of a software system.
Furthermore, if the architecture is of any concern at all, it is
considered to be fixed throughout the project [1].

The challenge addressed in this paper is how to reconcile
agile methods with architectural modelling in the software
development process. Its benefits would be the following: agile
methods and their incremental approach lower risks, customer
involvement lowers the danger of developing the wrong prod-
uct. The explicit architectural modelling supports reuse of
components and patterns and would also extend the degree of
creating reusable artefacts for future projects. Furthermore, the
presence of architectural models would support cost estima-
tion [17] and architecture evaluations [18]–[20]. Information
extracted from architectural decisions (reused design patterns
and components) would support the requirements engineering
process through a more goal-oriented requirements elicitation.

Given these benefits of architectural modelling, one can
also envision how architectural modelling can support agile
principles: architectural design supports lightweight develop-
ment processes by systematically reusing existing artefacts,
preventing wrong design-decisions being implemented through
early architectural evaluations and by helping architects to
make important design decisions [21].

Therefore, in this paper, I present an agile architecture
modelling process which is driven by the reuse of patterns
and components and itself drives the requirement elicitation
by explicitly asking questions back to the customer.

The contribution of this position paper is the discussion
of the antimony and symbiosis of agile methods and archi-
tectural modelling and the definition of an architecture-driven
modelling and requirements engineering process. This process
is a step towards architectural modelling in agile processes as
well as for an agile architectural modelling process.

This paper is organized as follows: The following section
discusses agile methods and architectural modelling. Sec-
tion III presents a general model of an architecture-driven
modelling and requirements engineering process. An example
application is introduced in section IV. Section V presents
process benefits and discussion.

II. FOUNDATIONS

Research in the software development processes often fo-
cuses on the heavyweight processes, which are complicated
and highly time and resource demanding. The market pressure
is increasing; projects often suffer from budget and time
pressure in a race for a quick product deliverable. The amount
and the speed of new technologies, requirements and standards

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

23

appearing nowadays produce additional pressure on the devel-
opment process. Classical software engineering methods (like
waterfall) require a big planning up-front and are not flexible
enough to react on rapidly changing conditions. As a reaction
to this, a method family “agile methods” was developed.

The most famous agile methods are: Extreme Programming
(XP) [22], Scrum [23], Crystal Clear [24], Feature Driven
Development [25] and Adaptive Software Development [26].

These methods have the following common characteristics:
• iterative and incremental process;
• lightweight process (as few forward planning as possible,

code is the main artefact, many classical practices e.g.
architecture modelling are considered to be redundant:
YAGNI Principle “You Ain’t Gonna need It”);

• flexible (quick response to a changing environment, new
requirements are welcomed);

• goal-oriented (project value oriented, every development
increment shall add value to the product);

• customer oriented (strong customer involvement);
• team-oriented (team has the main role, self-organized).
The agile manifesto explicitly states the principles of agile

development [27]: individuals and interactions over processes
and tools; working software over comprehensive documen-
tation; customer collaboration over contract negotiation; re-
sponding to change over following a plan.

As already mentioned, agile methods are increasingly gain-
ing popularity in the broader developer community. They
promise a quick reaction to the changing environment and
new requirements while reducing cost and overhead. There is
a big number of success reports, especially for the methods
XP and Scrum [2], [9]–[13].

However, empirical studies on the quality and efficiency of
these methods are less clear [28], [29]. It seems that agile
methods improve well over ad-hoc processes, but elements
such as pair-programming and test-driven development (com-
mon XP practices) are not demonstrated yet to be superior to
established classical software development quality assurance
techniques, such as code and architectural reviews.

Software architecture is a high level abstraction of software
[30]. Documenting architecture is a matter of documenting the
relevant views and then adding documentation that applies to
more than one view. A view is a representation of a set of
system elements and the relations associated with them [30].
Architecture can be represented either graphically in a model
form, for example with the help of the Unified Modelling
Language (UML) [31], or with the help of Architectural
Description Languages (ADL) [32].

For example, the famous “4 + 1 View Model” of P. Kruchten
“describes software architecture using five concurrent views,
each of which addresses a specific set of concerns” [33]. It
consists of: the logical view (functionality of the system), the
development view (static organization of software in the devel-
opment environment), the process view (design’s concurrency
and synchronization aspects), the physical view (mapping of
the software onto the hardware) and the scenarios (system use
cases).

This includes views on its static structure (i.e. components
and connectors), the inter-component control flow and the de-
ployment of components and connectors on virtual or physical
resources.

Software architecture typically plays a key role as a bridge
between requirements and implementation [34]. Architecture
and architecture modelling have the following benefits [30],
[34]:

• communication: architecture may be used as a focus of
discussion by system stakeholders;

• understanding: presenting a complex system at an easier
abstraction level;

• analysis: consistency checking, conformance to con-
straints and quality attributes, dependence analysis;

• reuse: architectural descriptions support reuse at multiple
levels and across a range of systems (styles, patterns,
components, frameworks, code); existing components can
be considered during design (COTS, in-house compo-
nents, commissioned or off-shore);

• management: evaluation of an architecture typically leads
to a much clearer understanding of requirements, imple-
mentation strategies and potential risks (cost-estimation,
mile stone organization, dependency analysis, change
analysis, staffing);

• implementation support: provides a partial blueprint for
development by indicating the major components and
dependencies between them;

• evolution: exposure of the dimensions along which a
system is expected to evolve

There are two plausible scenarios where architectural mod-
elling meets agility beneficially:

• agile architectural modelling is concerned with lowering
the overhead of architectural modelling by using an
incremental, customer-involved process. Challenges lie in
the definition of architectural refactorings and a suitable
redefinition of the term overhead.

• agile methods with architectural modelling are concerned
with the introduction and utilization of architectural
modelling in agile methods. In this scenario, one needs
to define an agile process which works with several
artefacts, i.e. with code and architecture. In addition, the
benefits of architectures, as discussed need to be exploited
in order to support an overall agility. This includes the use
of architectures for cost estimation, early evaluations of
architectural design decisions and the use of architectures
to elicit the right requirements.

In the next section, I present a process where architectural
modelling is done in an incremental process highly intertwined
with requirements engineering. I claim that such a process
is necessary for the above mentioned integration scenarios.
Firstly, my process is an agile architectural modelling process,
as it possesses central elements of an agile method. Secondly,
my agile modelling process could play a central role in an
agile method with architectural modelling.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

24

Fig. 1. An agile architecture-driven modelling and requirements engineering process, Activity diagram

III. AN AGILE ARCHITECTURE-DRIVEN MODELLING AND
REQUIREMENTS ENGINEERING PROCESS

This section presents the proposed process, describes sepa-
rate steps and challenges connected to them.

The process is iterative and incremental. Each iteration con-
sists of the set of phases (initialization, architectural design and
components selection, accomplished with a goal-oriented re-
quirements elicitation) which form a single process increment
(see Scrum: Sprint). With each iteration, the person applying
the process moves a step toward to the ready system design
and adds product value as will be demonstrated below. Beside
this, the artefacts are created according to the demand of the
current process stage, which keeps the process lightweight.
The innovation lies in the fact that architectural design and
the potential reuse of component candidates are drivers of the
requirements elicitation process.

The person using this process shall be involved in the
system negotiation, design and development and shall have a
technical understanding in the area of software intense system
development (software architecture, in particular). This person
may be either a software architect, or a person who has taken
over her responsibilities in the development process. This can
be technical project lead, technical team lead, team or software
developer.

Therefore, the proposed process conforms to the
characteristics of agile methods. It is presented as an
activity diagram in Fig. 1 and consists of the following
coarse-gained steps, which are repeated in iterations a) inside
of each step and b) together:

Step 0. Initialisation.
a) Gather initial information about the system, i.e. its goals,

required functionality and environment conditions.
b) Check if the following assumptions are fulfilled: initial

requirements to the system are elicited, informally or formally
recorded and are prioritized. The requirement prioritization is
a challenging topic, however it lies beyond this paper’s scope
and will not be discussed. For the state of the art one may
apply for example to [35]–[38].

Step 1. Architectural design.
a) Analyse if there is enough information provided by

the gathered requirements for selection of a suitable pattern.
I propose using a pattern catalogue for this purpose. Such
a catalogue contains a detailed pattern description, like a
pattern goal, benefits, drawbacks, variant, application cases
and connected and similar patterns. If the initial information
is not enough, additional requirements to be elicited first. This

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

25

can as well be supported through the pattern catalogue. The
pattern selection may be tool supported.

b) Confirm the pattern. To finally decide whether a pattern is
really suitable, additional information may be needed. In this
case, one can use questions provided in the pattern catalogue
to elicit additional requirements unless the pattern is confirmed
(appropriate use) or invalidated (the idea of using the pattern is
finally not appropriate). If a pattern was invalidated, I propose
selecting the next pattern from the catalogue identified as a
potential candidate. If the pattern was confirmed, proceed to
the pattern variant selection (most of the patterns have several
possible variants).

c) Select a pattern variant. I propose supporting the person
using this process (further on called software architect) by a
requirement engineering questions catalogue. It shall contain
a description of the variant properties and a list of questions.
These questions shall navigate the software architect through
the decision-taking process. The design of such a kind of
pattern catalogue would also have the benefit that the nav-
igating questions also extend the pattern documentation in
understanding when to use which pattern variant in general
(also beyond the use of the process proposed here).

d) Check if there are enough architectural decisions taken
to proceed to the next step: component selection. Only a part
of the system is designed at each iteration, as the system
architectural design is not intended to be completed (the
process proposes an incremental development). If information
is not yet enough to proceed to the next phase, the software
architect shall return to point a).

New requirements and decisions taken at this step shall
be documented; they can be used to complement the
pattern and requirement engineering questions catalogues for
future projects. Elicitation of new requirements may require
customer (stakeholder) involvement into the process.

Step 2. Component selection.
This step is similar to the step 1, however it goes one level

of abstraction down to the selection of re-usable components
out of an repository.

a) Analyse the selected pattern variant structure. As the
pattern consists of “building blocks”, these blocks may be
represented through components and thus can be reused.

b) Select a suitable component for each building block, if
any component is available. The questions associated with this
component can be used to either validate or invalidate the deci-
sion. These questions will help the architect to elicit additional
requirements unless the component will be confirmed (can be
reused) or invalidated (is found to be inappropriate).

For this step, I propose supporting the software architect
with a tool for architectural evaluation. Certain decisions
(especially regarding quality requirements) may not be obvious
to him, or in some cases she may identify several components
implementing similar functionality. Existing tools for archi-
tectural evaluation are for example the Palladio Component
Model (PCM) [39] and AEvol (A tool for defining and
planning architecture Evolution) [20].

Fig. 2. The salary viewing system, Use Case diagram

If components for each building block of the selected pattern
variant are selected, confirmed or invalidated, the software
architect has finished the iteration and the increment.

c) Check if there any unprocessed requirements. At this
point, the software architect can either proceed to the start to
make more iterations and increments or quit the process.

Questions connected to the selected components help the
architect to validate decisions and elicit new requirements.
Therefore, this paper assumes that the components will be
preferably selected and not created.

IV. AN EXAMPLE APPLICATION: A SYSTEM FOR VIEWING
SALARIES

This section provides an illustrated example – a software
system for viewing salaries, demonstrating the process and its
advantages.

The salary viewing system (SVS) is a system for viewing
salary information and generating reports. It is a simplified
example which shall demonstrate the agile architecture-driven
modelling and requirements engineering process.

The system provides a possibility for an employee to view
the salary and to generate various reports, like annual salary
or bonus overview. A manager can additionally view and edit
salaries and bonuses of her employees. She has a possibility
to view her department statistics and generate reports.

A Use Case diagram for the system is presented on the
Fig. 2.

I proceed with the demonstration of the process on this
test example; it is very simple lest we lose the focus from the
process.

Step 0. Initialisation.
a) Initial information about the system is gathered. One

has the knowledge that this is the system for viewing salary
information and generating reports, which shall provide a
possibility for an employee to view her salary and to generate
various reports and a manager can additionally view and edit
salaries and bonuses of her employees.

b) The initial requirements to the system are affiliated,
informally recorded and prioritized. The software architect
decides for a list form to record requirements, and the list is

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

26

TABLE I
A SAMPLE LIST OF REQUIREMENTS FOR THE SVS

Num. Requirement Priority Risk
1 System must provide own salary and

bonus information for any user
H M

2 System must provide employee’s salary
information for her manager

H L

3 System must provide department statis-
tics for its manager

H L

4 System must provide employee’s salary
and bonus editing functionality for her
manager

H L

5 System shall be able to support new
report types

L H

6 System must generate monthly / quar-
terly / annually reports

M L

presented in the Table I. These requirements are: the system
must provide separate salary and bonus information for any
user, system must provide employee’s salary information for
her manager, system must provide department statistics for
its manager, the system must provide employee’s salary and
bonus editing functionality for her manager, the system shall
be able to support new report types and the system must
generate monthly / quarterly / annually reports.

Since this process step is completed the software architect
can proceed to the next step.

Step 1. Architectural design.
a) The requirements number 1-3 can be summarized as

follows: several system user groups (manager, worker) require
different data representations (view salary, view department
statistics).

There is enough information to have the idea that the Model-
View-Controller Pattern (MVC) could be appropriate.

MVC divides an interactive application into three compo-
nents [40], [41]. The model contains the core functionality
and data. Views display information of the user. Controllers
handle user input. Views and controllers together comprise
the user interface. A change propagation mechanism ensures
consistency between the views and the model. The MVC
pattern is often used with the Observer pattern.

The benefits of the MVC are [40], [41]: Multiple views
of the same model, synchronised views, “pluggable views and
controllers”, exchangeability of “look and feel” and framework
potential.

The drawbacks are [40], [41]: increased complexity, po-
tential for excessive number of updates, intimate connection
between view and controller, close coupling of views and
controllers to a model, inefficiency of data access in view,
inevitability of change to view and controller when porting
and difficulty of using MVC with modern user interfaces tools.

b) To confirm the use of the MVC pattern, one has to
check whether there is the need to keep views and models
synchronised. Although this sounds trivial, it only becomes
an issue if updates of the data can be done by one of several
views. This is because the use of the MVC pattern would
be a potential over-design, if the views provide no editing

possibility and all data updates come from the model. Here
instead of the MVC pattern one could use classical data views
on a data-base (as provided by database management systems
or by mechanisms of ADO.NET for example).

Hence the questions are:
• Shall the user be able to manipulate data through views?
• Do views need to be consistent?

The requirement 4 “System must provide employee’s salary
and bonus editing functionality for her manager” states that
the user shall be able to be manipulate data through views.
For this example I assume that the software architect confirms
the pattern. She also elicits a new requirement: the views have
to be consistent.

c) The MVC Pattern has three possible forms: 1. The view
is connected to the model through a controller, 2. The view is
directly connected to the Model, 3. Mixed form of these two
variants: view is connected to the model through a controller
but in some case has a direct access to the model.

Sample questions which can be associated with the pattern:
• How many views will be needed?
• How many updates will the system have to cope with?
• What is the data volume of each update?
• Can controller become a bottleneck?
• What performance requirements are put on the system?
The software architect could derive the following the MVC

specific questions:
• Shall user only be able to use predefined buttons to

manipulate report queries? (pattern variant 1)
• Shall user be able to construct all queries together through

GUI himself? (pattern variant 2)
• Shall this functionality depend on a user group? (pattern

variant 3)
Based on these questions, the software architect chooses

the variant 1. She has elicited a new requirement: Users must
be able to (only) use predefined buttons to manipulate report
queries and data.

d) The software architect can proceed to the component
selection as she has gathered enough information to execute
the next step.

Step 2. Component selection.
a) The selected pattern variant consists of three general

”building blocks”: model, view and controller. To keep the
example simple, I will only explore the model “block” of the
MVC (as it allows interesting technical speculations and thus
questions to the system). In my application, a database (DB)
is used as the model.

b) If a customer has no preferred technology or vendor, the
software architect can be supported by a set of questions. For
example the following questions can be helpful while selecting
the suitable component (DB Type) for my SVS example:

• Is a database management system (DBMS) necessary or
is simple data file based persistence sufficient?

• Are there concurrent accesses?

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

27

• Is the file-system access control sufficiently detailed (or
is the more sophisticated access control of a DBMS
required)?

• Who will be responsible for the system maintenance
(does responsible side have enough expert knowledge)?

These questions will help the architect to select a suitable
reusable component and elicit additional requirements. Choos-
ing a component can also influence quality properties of the
system. Here the software architect could also have used an
architecture evaluation tool to evaluate possible decisions. This
could be, for example, an average system response time with
a defined amount of system users per period of time.

c) Unprocessed requirements to the SVS system are left,
thus the software architect can make several more iterations.

I argue that already at this process point: a) new re-
quirements were elicited more goal-oriented, b) a significant
increment of the cross-cutting knowledge about the system
was achieved and c) reusable artefacts (components) were
identified.

V. PROCESS BENEFITS AND DISCUSSION

As demonstrated above, the benefit of this process lies in:
a) A more goal-oriented elicitation of requirements: the

proposed process solves two problems, firstly, the danger that
unsuitably cut requirement chunks can lead the architectural
design process in a wrong direction and causes a lot of re-
work, and secondly that it is unclear which requirements are
truly necessary for making architectural decisions.

b) A systematic consideration of reusable artefacts: in the
presented method the decision to reuse artefacts is done
systematically based on the actual requirements.

c) The encouragement of reuse of architectural knowledge
through patterns: the use of patterns itself presents the reuse
of architectural knowledge.

I argue that the process conforms to the characteristics of
agile methods:

• iterative and incremental: the process is iterative and each
process iteration consists of the set of steps which form
a single process increment;

• lightweight: a few forward-planning is required and only
that artefacts are created, which directly contribute to the
goals of the current increment;

• goal-oriented: supports the project value-oriented making
of decisions;

• flexible: new requirements (and also their elicitation) are
supported;

• strong customer involvement: the process supports cus-
tomer involvement by pattern and requirement engineer-
ing questions catalogues;

• team-oriented: the process can be executed by e.g. a team,
which took over the software architect’s role (as proposed
in Scrum).

The process presented in this paper should be seen as an
example. It shows a back flow of information from archi-
tecture design into requirements elicitation through pattern

and component selection. However, these steps may also
appear in different order, i.e. components are selected before
major architectural decisions are taken through the selection
of architectural patterns.

VI. RELATED WORK

Questions concerning the role and potential insertion of ar-
chitecture modelling in agile methods and their reconciliation
are matters of high interest in research, judging by the amount
of articles appearing on these topics. However, most of them
tend to be rather philosophical than practical. Several relevant
practical approaches are presented at the end of this section.

A good introduction into the problem is presented by
Abrahamsson et al. in [4]. This article discusses the roots of
misunderstanding architecture modelling and agile methods
contradictions. It questions the general challenge of their
reconciliation and gives several general advices, but provides
no practical method.

[42] provides an introduction into agile methods, UML-
modelling and describes general agile modelling method-
ologies. However all advices are kept very general, mostly
concentration on the “best practices” of Extreme Programming
(XP) and are more concerning a very general management
level.

[43] presents a project success report where architecture
and Scrum (one of the agile methods) were joined. This report
however neither gives any details on architecture modelling (if
it was used and how), nor proposes any method or process for
their reconciliation.

An exploratory study conducted by IBM and University
of Rome Tor Vergata [44] describes an agile developer per-
spective on the architecture. It shows that in 95% of cases,
developers consider a focus on architecture as important, but
it does not state what is understood by architecture in this
case. It does not propose any method.

There is a set of approaches, dealing with the decomposition
of the problem domain basing on the problem frames and
extending them with software architecture concepts, like [45]–
[47]. For more information on problem frames see [48].
Although these articles do not explicitly deal with the re-
quirement elicitation or agile architecture modelling, they pro-
pose approaches for problem decomposition and architectural
aspects. Thus they can be relevant for the proposed agile
architecture-driven modelling and requirements engineering
process, and, in particular, for the pattern and requirement
engineering questions catalogues.

The approach presented in [49] proposes improving the
software architecture evolution process by mining architecture
and design patterns. Although the approach uses a similar idea
of information extraction out of patters, its goal is to support
the system’s evolution and to extract general scenarios for it.

A practice-oriented approach is presented in [50]. It is
based on Scrum, XP and sequential project management
and requires an architect who plays a central role. Its main
goal is architecture for communication, quality attributes and
technology stack establishment purposes. It does not affect the

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

28

requirement engineering process. Design patterns are used to
give a form to implementation, but not to support requirement
elicitation and further architectural design. Beside that, the
approach seems to be aimed for an organization having one
software system type and thus similar project types (insurance
software systems) as it is should use former architectural
decisions.

A closely related article [51] states that a software archi-
tecture provides a basis for further requirement discovery and
determination of the alternative design solutions. The proposed
method is an adoption of the spiral life-cycle model and
the author describes it as a complementary to XP. However,
the requirements here emerge from: a) the view on models
and prototypes b) from the commercially available software
(COTS, commercial off-the-shelf software), which shall nar-
row the possible architectural decisions. The article mentions
only on the reuse of COTS and requirement identification con-
nected with them. Design patterns are mentioned for “fitting a
component-based development approach into the development
process”. The article is on a very high level. It neither proposes
an exact way on the analysis of the back flow information
from patterns to requirements, nor gives exact details about
the method itself.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, I have discussed the role and potential benefits
of architectural modelling in agile methods and presented a
novel architecture-driven modelling and requirements engi-
neering process. I argue, that such a process is an agile archi-
tectural modelling process, which constitutes a central element
of an agile method which includes architectural modelling.

The future work will target the definition of a set of
questions for driving requirements engineering, similar to the
questions defined in my example application based on the
MVC pattern, and the inclusion of architectural evaluation
in order to deal with quality requirements in a better way.
The validation of the overall process is still an open question.
While its benefits are arguably clear (as discussed here), a
rigorous empirical validation is still needed. Nevertheless, the
process presented here is a promising starting point for a more
comprehensive inclusion of architectural modelling in agile
methods.

VIII. ACKNOWLEDGEMENTS

This work has been supported by the German Federal
Ministry of Education and Research (BMBF), grant No.
01BS0822. The author is thankful for this support.

REFERENCES

[1] M. A. Babar, “An exploratory study of architectural practices and chal-
lenges in using agile software development approaches,” Joint Working
IEEE/IFIP Conference on Software Architecture, 2009 & European
Conference on Software Architecture. WICSA/ECSA 2009., pp. 81 – 90,
2009.

[2] O. Salo and P. Abrahamsson, “Agile methods in european embedded
software development organisations: a survey on the actual use and
usefulness of extreme programming and scrum,” Software, IET, vol. 2 ,
Issue:1, pp. 58 – 64, 2008.

[3] K. Silva and C. Doss, “The growth of an agile coach community at a
fortune 200 company,” AGILE 2007, pp. 225 – 228, 2007.

[4] P. Abrahamsson, M. Babar, and P. Kruchten, “Agility and architecture:
Can they coexist?” Software, IEEE, vol. 27 , Issue:2, pp. 16–22, 2010.

[5] B. Drummond and M.-W. Chung, “Agile at yahoo! from the trenches,”
Agile Conference, 2009. AGILE ’09., pp. 113 – 118, 2009.

[6] S. Nair and P. Ramnath, “Teaching a goliath to fly,” In the proceedngs
of Agile Conference, 2005., pp. 111 – 124, 2005.

[7] R. Rasmussen, T. Hughes, J. R. Jenks, and J. Skach, “Adopting agile
in an fda regulated environment,” Agile Conference, 2009. AGILE ’09.,
pp. 151 – 155, 2009.

[8] D. Tudor and G. A. Walter, “Using an agile approach in a large,
traditional organization,” Agile Conference, 2006, p. 373, 2006.

[9] B. Sheth, “Scrum 911! using scrum to overhaul a support organization,”
Agile Conference, 2009. AGILE ’09., pp. 74 – 78, 2009.

[10] C. Mann and F. Maurer, “A case study on the impact of scrum on
overtime and customer satisfaction,” In the Proceedings of the Agile
Conference, 2005., pp. 70 – 79, 2005.

[11] T. Dingsoyr, G. K. Hanssen, T. Dyba, G. Anker, and J. O. Nygaard, “De-
veloping software with scrum in a small cross-organizational project,”
Lecture Notes in Computer Science, vol. Volume 4257/2006, pp. 5–15,
2006.

[12] K. Long and D. Starr, “Agile supports improved culture and quality for
healthwise,” Conference Agile, 2008. AGILE ’08., pp. 160 – 165, 2008.

[13] A. Cockburn and J. Highsmith, “Agile software development, the people
factor,” Computer, vol. Volume: 34 , Issue: 11, pp. 131 – 133, 2001.

[14] I. Gorton, Essential Software Architecture. Springer, 2006.
[15] R. C. Martin, Agile Software Development. Principles, Patterns, and

Practices. Prentice Hall International, 2002.
[16] W. F. Opdyke, W. F. Opdyke, P. D, and R. E. Johnson, “Refactoring

object-oriented frameworks,” Tech. Rep., 1992.
[17] D. J. Paulish, P.Keil, and R. S. Sangwan, “Cost estimation for global

software development,” International Conference on Software Engineer-
ing, pp. 7–10, 2006.

[18] H. Koziolek, “Performance evaluation of component-based software
systems: A survey.” Performance Evaluation, In Press,, 2009.

[19] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni, “Model-
based performance prediction in software development: A survey,” IEEE
Transactions on Software Engineering, vol. 30, pp. 295–310, 2004.

[20] D. Garlan and B. Schmerl, “Aevol: A tool for defining and planning
architecture evolution,” International Conference on Software Engineer-
ing, pp. 591–594, 2009.

[21] S. Becker, M. Trifu, and R. Reussner, “Towards supporting evolution
of service-oriented architectures through quality impact prediction,” In
the Proceedings of the First International ARAMIS Workshop, L’Aquila,
Italy, 2008.

[22] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional, 2004.

[23] K. Schwaber and M. Beedle, Agile Software Development with Scrum.
Pearson Studium, 2008.

[24] A. Cockburn, Crystal Clear: A Human-Powered Methodology for Small
Teams. Addison-Wesley Longman, Amsterdam, 2004.

[25] S. R. Palmer, M. Felsing, and S. Palmer, A Practical Guide to Feature-
Driven Development. Prentice Hall International, 2002.

[26] J. A. Highsmith and K. Orr, Adaptive Software Development: A Col-
laborative Approach to Managing Complex Systems. Dorset House
Publishing Co Inc.,U.S, 1999.

[27] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas, “Agile manifesto,” 2001, http://agilemanifesto.org/.

[28] H. Hulkko and P. Abrahamsson, “A multiple case study on the impact of
pair programming on product quality,” In Proceedings of the Software
Engineering, 2005. ICSE 2005. 27th International Conference, pp. 495–
504, 2005.

[29] S. Maranzano, J.F.and Rozsypal, G. Zimmerman, G. Warnken, P. Wirth,
and D. Weiss, “Architecture reviews: practice and experience,” Software,
IEEE, vol. 22 , Issue: 2, pp. 34 – 43, 2005.

[30] P. Clements, F. Bachmann, L. Bass, and D. Garlan, Documenting
Software Architectures: Views and Beyond (SEI Series in Software
Engineering). Addison-Wesley Longman, 2002.

[31] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Lan-
guage User Guide. Addison-Wesley Longman, 2005.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

29

[32] P. Dissaux, M. F. Amine, and P. Michel, Architecture Description Lan-
guages: IFIP TC-2 Workshop on Architecture Description Languages
(WADL), World Computer Congress. Springer Verlag, 2004.

[33] P. Kruchten, “The 4+1 view model of architecture,” IEEE Software, vol.
Volume 12 , Issue 6, pp. 42 – 50, 1995.

[34] D. Garlan, “Software architecture: a roadmap,” In Proceedings of the
Conference on The Future of Software Engineering, pp. 91 – 101, 2000.

[35] R. Beg, Q. Abbas, and R. P. Verma, “An approach for requirement
prioritization using b-tree,” First International Conference on Emerging
Trends in Engineering and Technology, 2008. ICETET ’08., pp. 1216 –
1221, 2008.

[36] M. Ramzan, M. A.Jaffar, M. A. Iqbal, S. Anwar, and A. A. Shahid,
“Value based fuzzy requirement prioritization and its evaluation frame-
work,” Fourth International Conference on Innovative Computing, In-
formation and Control (ICICIC), 2009, pp. 1464 – 1468, 2009.

[37] D. Port, A. Olkov, and T. Menzies, “Using simulation to investigate
requirements prioritization strategies,” International Conference on Au-
tomated Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM, pp.
268 – 277, 2008.

[38] K. Logue and K. McDaid, “Handling uncertainty in agile requirement
prioritization and scheduling using statistical simulation,” Conference
Agile, 2008. AGILE ’08., pp. 73 – 82, 2008.

[39] S. Becker, H. Koziolek, and R. Reussner, “The palladio component
model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82, pp. 3–22, 2009.

[40] F. Buschmann, R. Meunier, H. Rohnert, and P. Sommerlad, A System of
Patterns: Pattern-Oriented Software Architecture. John Wiley & Sons,
1996, vol. 1.

[41] J. Gamma, Helm, Design Patterns. Elements of Reusable Object-
Oriented Software. Addison-Wesley Longman, Amsterdam, 1995, no. 1.

[42] S. Ambler, Agile Modeling: Effective Practices for eXtreme Program-
ming and the Unified Process. Wiley, 2002.

[43] M. Isham, “Agie architecture is possible - you first have to believe!”
Conference Agile, 2008. AGILE ’08., pp. 484 – 489, 2008.

[44] D. Falessi, G. Cantone, S. A. Sarcia, G. Calvaro, P. Subiaco, and
C. D’Amore, “Peaceful coexistence: Agile developer perspectives on
software architecture,” Software, IEEE, vol. 27 , Issue:2, pp. 23 – 25,
2010.

[45] J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeh, and L. Rapan-
otti, “Relating software requirements and architectures using problem
frames,” In Proceedings of the IEEE Joint International Conference on
Requirements Engineering, 2002., pp. 137 – 144, 2002.

[46] L. Rapanotti, J. G. Hall, M. Jackson, and B. Nuseibeh, “Architecture-
driven problem decomposition,” In proceedings of the Requirements
Engineering Conference, 2004. 12th IEEE International, pp. 80 – 89,
2004.

[47] C. Choppy and M. Hatebur, D.and Heisel, “Architectural patterns for
problem frames,” In the Proceedings of the Software, IEE, vol. 152 ,
Issue:4, pp. 198 – 208, 2005.

[48] M. Jackson, Problem Frames: Analysing & Structuring Software Devel-
opment Problems. Addison-Wesley Professional, 2000.

[49] L. Zhu, M. A. Babar, and R. Jeffery, “Mining patterns to support
software architecture evaluation,” In proceedings of the Software Ar-
chitecture, 2004. WICSA 2004. Fourth Working IEEE/IFIP Conference
on, pp. 25 – 34, 2004.

[50] J. Madison, “Agile-architecture interactions,” Software, IEEE, vol. 27 ,
Issue:2, pp. 41–48, 2010.

[51] B. Nuseibeh, “Weaving together requirements and architectures,” Com-
puter, vol. 34 , Issue:3, pp. 115 – 119, 2001.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

30

A component concept for scientific experiments
– focused on versatile visual component assembling

Kerstin Falkowski
Institute for Software Technology, University of Koblenz-Landau

Universitätsstrasse 1, 56070 Koblenz, Germany
falke@uni-koblenz.de

Abstract—The intent of this PhD thesis is the specification,
prototypical implementation and evaluation of a component
concept for scientific experiments, focused on versatile visual
component assembling by a human user, assisted by a compre-
hensive assembling environment. This is achieved by providing
a visual assembling simultaneous from different viewpoints.

I. INTRODUCTION

In the field of computer science most research areas com-
prise a huge amount of data structures, algorithms and char-
acteristic algorithm chains providing a basis for the research
area’s tasks. These are normally used and combined consis-
tently in different ways to solve new problems.

In established research areas there are standard libraries
implementing those basic elements efficiently, best practices
for their use possibly becoming manifest in patterns and/or
even standard tools providing ready-made behaviour for all
basic tasks of the research area. In relatively young research
areas such standards do not exist, which unfortunately often
leads to re-developments of basic data structures, algorithms
and algorithm chains on the green field again and again.

The component concept targeted in this work provides a
platform superseding this repeated re-development of algo-
rithms and especially of algorithm chains. It provides rules for
developing algorithms in a specific way, so that they constitute
components. Built thereon it provides a comprehensive assem-
bling environment, in which a human user can assemble com-
ponents visually to a more complex component (corresponding
to an algorithm chain). Of course, assembled components can
in turn be part of even more complex components (hierarchic
assembling).

An example for a relatively new research area is image
processing. Here, two totally different kinds of tools are used
for research. On the one hand there are open source C/C++
APIs, like the Open Computer Vision Library (OpenCV)1,
implementing basic data structures and algorithms in an ef-
ficient manner, but rarely more complex algorithm chains.
On the other hand there is the commercial standard software
MATLAB Image Processing Toolbox (IPT)2, also providing
basic data structures and algorithms, that can be combined to
more complex algorithms. This is done textually in some editor
in a closed system. A lot of image processing researchers test

1http://opencv.willowgarage.com
2http://www.mathworks.com/products/image

their more complex algorithms in the MATLAB IPT before
they implement them in C++ using some image processing
API.

Using the planned component concept for scientific ex-
periments, those researchers could implement basic image
processing algorithms once as components and consistently
use them for experiments via assembling them visually to
arbitrarily complex components. In contrast to existing visual
assembling environments, the assembling can be performed in
a more versatile manner via a simultaneous assembling from
different viewpoints.

The targeted component concept will be specified and
implemented in a generic way, but evaluated using a large
amount of well-defined image processing data structures and
algorithms. Subsets of these data structures and algorithms are
used as examples in the following.

This paper is structured as follows. Section II presents
existing component concepts with interesting aspects for the
planned component concept. Section III provides a detailed
description of the targeted component concept and points out
important research tasks. Section IV summarises the current
state of the PhD thesis and describes future work including
implementation and evaluation.

II. COMPONENT CONCEPTS

This section provides a short introduction to existing com-
ponent concepts with interesting aspects for the targeted
component concept. There are a lot of existing scientific and
industrial component concepts and even more definitions of
the term component. In line with the literature [1], [2] we
define a component as a reusable software unit conforming to
a component concept with a well-defined interface, encapsu-
lating its realisation and possible internal states. The interface
forms a contract between the component and its environment.
It specifies which services a component is able to provide, if
all demands of the component including required services are
met by the environment (e.g. by other components).

Component assembling is the activity that distinguishes the
component lifecycle from the common software lifecycle. It
can be carried out from different behavioural viewpoints. A
component concept has different purposes. At first it has to
determine how components can be assembled and especially
how they can be composed. This includes the component
interface, the kind of assembling environment, the assembler

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

31

and the viewpoints for assembling. Built thereon it has to
specify the resultant component lifecycle in detail, including
its activities, their possible order(s) and their corresponding
actors. Based on this conceptual part, realisation techniques
can be chosen and a specific environment for component
development, assembling and/or execution can be developed.
Finally, all this in conjunction determines the capabilities of
the component concept’s components.

There are two well known surveys of existing software
component concepts. Lau and Wang [2] analyse 13 differ-
ent scientific and industrial component concepts, compare
them based on three different aspects (component semantics,
component syntax and component composition) and classify
them into four different categories according to component
composition. The Common Component Modeling Example
(CoCoME) [3] was a challenge, where 13 developers mapped
a given component-based architecture example to their own
scientific component concept. Goal of the challenge was
making various component concepts comparable in a way. As
a result the participating component concepts were classified
into four categories, in this case according to their focus. In
addition Selmat et al. [4] compare technical aspects of different
scientific and industrial component concepts, namely their
interaction mechanism and support for distributed applications.

A component concept for scientific experiments should
provide the visual assembling of components that are already
implemented and supplied (and potentially occur as binaries)
from different viewpoints. For that purpose, there are two
interesting groups of existing component concepts.

The first group contains component concepts, that allow
the visual assembling of already implemented and supplied
components, which Lau and Wang classify in the cate-
gory ’Deployment with Repository’. Examples are JavaBeans
[5] combined with a suitable assembling environment like
JBeanStudio3 and ConQAT [6]. In both component concepts
functionality is implemented in atomic components in terms
of Java classes with specific properties, that are specified,
developed and supplied at development time. These can be
visually assembled to a composite component and directly
executed in a specific assembling and runtime environment.
In JavaBeans the composition ”glue code” is stored in an
adapter Java class, in ConQAT the composition information
is saved as composed component in an own XML dialect
(.cqb). In contrast to JavaBeans, ConQAT supports hierarchical
component composition. Unfortunately both component con-
cepts compose components only from one fixed viewpoint,
JavaBeans from an event-driven viewpoint and ConQAT from
a data-flow viewpoint.

The next interesting group contains component concepts,
that model component-based architectures of complete ap-
plications from different viewpoints at design time, which
form the CoCoMe category ’formal models, focusing on
behaviour and quality properties’. Examples are SOFA 2.0
[7], Fractal [8] and Palladio [9]. In all three component

3http://www.vislab.usyd.edu.au/moinwiki/JBeanStudio

concepts a component is defined equivalent to the definition
mentioned above. In SOFA and Fractal structural information
about a component-based architecture is modelled conform
to an Ecore4-metamodel and the behaviour of components is
described by (extended) Behaviour Protocols (BP). In Palladio
four different views to a component-based architecture can be
modelled, conforming to an Ecore-metamodel, and addition-
ally performance relevant aspects for each of these models can
be specified via Service Effect Specifications (SEFFs). SOFA 2
and Fractal explicitly separate functional and control parts of
components. All three provide hierarchical component com-
position. In Fractal and Palladio components are composed
via interfaces bindings, in SOFA 2 via connectors offering
different communication styles. Fractal provides shared com-
ponents, component instances that are is subcomponents of
several composite components. SOFA 2 and Palladio provide
performance prediction at design time. Fractal provides the
verification of composition correctness as well as of correspon-
dences between code and behaviour specification. All three
component concepts provide modelling tools, SOFA and Frac-
tal additionally provide APIs for supporting the (top down)
implementation of designed architectures. However, all three
component concepts are originally modelling approaches for
complete component-based architectures and do not provide
the visual assembling of already implemented and supplied
components.

III. A COMPONENT CONCEPT FOR SCIENTIFIC
EXPERIMENTS

In this section the targeted component concept for scientific
experiments is described in detail. As mentioned before, it
offers the visual assembling of components by a human
user, assisted by an assembling environment. In comparison
to the other mentioned visual assembling environments in
Section II, the adaptation and especially the composition of
components shall be much more versatile. This is achieved by
providing assembling from different viewpoints, namely data-
flow, service-usage and control-flow.

This leads to three different kinds of component composi-
tion (Section III-D). On the one hand two components can be
composed, if a datum of a component is required by the other
component. This component composition constitutes a data-
flow, similar to component composition in ConQAT. On the
other hand, two components can be composed, if a service of a
component is required by the other component. This compo-
nent composition constitutes a service-usage, conforming to
the common view on component composition, e.g. in UML
2.2 components. Moreover a component or one of its services
can be an arbitrarily complex control structure. A component
composition with such ”control components” constitutes a
control-flow.

Accordingly, a component may require various input data
from its environment to perform its task and it can provide

4http://www.eclipse.org/modeling/emf

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

32

distinct output data. Moreover a component may require ser-
vices of other components to perform its task and can provide
at least one own service to other components. So, the interface
of a component has to offer different kinds of ports5 for
receiving input data and service access from the environment
and sending output data and access to its own services to the
environment. The mentioned control components can be used
in the internal structure of a component but they do not have
an explicit impact on the interface of a component.

A. Component interface

A component comprises any number of input ports. Data
input ports facilitate the receiving of input data from the
environment. Service input ports enable the access to services
of other components. Every input port has a multiplicity
m..n with m,n ∈ N and n > 0, that decides how much
inputs from different sources the port can receive at runtime.
Input ports whose lower bound m is 0 are called optional
input ports, if m is greater than 0 the input ports are called
obligatory input ports. Input ports whose upper bound n is 1
are called single input ports, if n is greater than 1 the input
ports are called multi input ports.

If a datum/service is obligatory for a component to perform
its task, its interface offers an obligatory service port, if
the datum/service is optional, the interface offers an optional
service port. Usually a component interface offers an optional
data input port for a parameter, for which the component has a
default value/object, that can but does not have to be changed
by a component assembler. If two or more input data/services
of the same type have a specific role for a component, its
interface offers several single input ports. If the data/services
have no specific role, the interface offers a multi input port.

An input datum can be passed directly to a component
via component adaptation (Section III-C). Moreover, input
data/services can be sent/offered to a component by another
component at runtime, where the source component is deter-
mined during component composition (Section III-D).

Moreover, a component interface may comprise any number
of data output ports, each of them facilitating the sending of
exactly one output datum to the environment during runtime.
One can distinguish between two different kinds of output data
and thus between two distinct kinds of data output ports: If an
output datum is a constant of a component, its interface offers
a constant data output port, that is able to send the output
datum anytime during runtime. If an output datum is a result
of the component’s task, its interface offers a resultant data
output port, that is not able to send the output datum to the
environment until the component performed its task.

A component interface comprises one service output port
for every service of the component, offering access to this
service to other components during runtime. A service output
port is not able to offer access to its service until the compo-
nent received all input data and/or services obligatory for the
service.

5Here port in terms of entry and exit is meant, not port in terms of UML.

Output data/services can be sent/offered by a component to
any number of other components at runtime, where the target
components are determined during component composition
(Section III-D).

Every port has a defined type that is decided during com-
ponent development by a component developer and changed
nevermore. All data ports beside constant data ports have in
addition a current type. After component instantiation this is
the same as the defined type, but during component assembling
it can be changed to any subtype.

There can be dependencies between data and thus data ports
of one component, affecting its adaptation and/or composition
from a data-flow viewpoint. As an example the current type
of an data input or output port can depend on the current
types of one or more other data input ports. Such dependencies
should explicitly be offered by the component’s interface to
its environment in a formalised form, so that an assembling
environment as well as a component assembler can make use
of them. A research task in this context is the specification of
a suitable concept for the formalisation and persistent storage
of those dependencies at development time and their usage at
assembling time and runtime.

A component interface shall be able to describe a com-
ponent and its services as accurately as possible. This in-
formation can help an assembling environment to disallow a
syntactically wrong assembling, and it can help a component
assembler to potentially even avoid a semantically wrong
assembling. Moreover detailed information can help to decide,
if a component is equivalent to another component and can
be substituted by it. So, the assembling environment shall be
able to forward as much information about the component
as possible to the component assembler. Orth [10] gives
a good overview about distinct information for component
description.

a) Example.: In the following, some characteristic image
processing operations are shortly introduced and conceptually
modelled as exemplary components conform to the described
component interface. The components are modelled via the
use of UML component / composite structure diagrams in a
specific way.6

An component offers its own services via UML provided in-
terfaces in ball-notation on its right upper corner. A component
that requires access to the services of other components pos-
sesses UML required interfaces with the names of the services
in socket-notation on its left upper corner. For the visualisation
of component composition from a data-flow viewpoint, UML
ports are modified to data ports, rather functioning like UML
pins. Input data ports are always displayed on the left side of a
component, data output ports are always displayed on its right
side. Constant data output ports are dark grey, in contrast to
all other data ports, that are grey.

Figure 1 shows some components, as a base for compo-
nent composition. RGBImageReading is a component, that

6Using the IBM Rational Software Architect http://www.ibm.com/software/
awdtools/architect/swarchitect.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

33

Fig. 1. Basic components.

loads an image from a file. It requires a String containing
path and name of the image as obligatory input datum and
delivers it as 2d RGB image as resultant output datum.
ImageSubtraction is a component that subtracts one
image element-wise from another image. It requires two 2d
images of the same type and size as obligatory input data and
delivers a 2d image of the same type and size as resultant
output datum. To deliver an image of the same type, the
image values of the resultant differenceImage have to be
normalised. ImageViewing is a component that visualises
arbitrarily images. It can get any number of images as input
data and delivers no output data. Erosion takes for every
output image value the minimum of neighbouring values of the
input image. Dilation performs a contrary operation using
the maximum of neighbouring values. The concrete neigh-
bouring values are in both cases determined by a structuring
element. Opening performs an erosion to an image followed
by a dilation. All three components require a 2d image as
obligatory input datum and deliver a 2d image of the same type
as resultant output datum. Optionally they can get the number
of iterations in terms of an integer n > 0 and a 2d structuring
element as optional input data. Erosion and Dilation
provide their default structuring elements as constant output
data.7 Opening additionally requires the services Erosion
and Dilation from its environment.

B. Component instantiation

A component assembler has to instantiate a component,
before it can be assembled. The assembling environment
should facilitate a visual component instantiation via drag
& drop from a list of existent components to an assembling
canvas.

After it was instantiated a component has a state, that
can be changed by component adaptation. A is the decision
how instantiated components and their adapted values/objects
are stored, directly via serialising component instances or
indirectly in specific external files.

7It is a design decision of the component developer, that the opening
operator has no default structuring element as constant output datum.

C. Component adaptation

Via visual component adaptation a component assembler
can directly pass input data to instantiated components.

For that purpose the assembling environment should provide
specific adaptation GUIs. Such an adaptation GUI has to
present the current assembling state of a component, including
already adapted and/or composed input data, and it has to
facilitate the change of input data values regarding potentially
existent dependencies between the component’s data. Thereby
it has to disallow an incorrect adaptation, e.g. setting a value
of a wrong type or outside the correct range to an input datum
and so forth.

An adaptation GUI has to be generated by the assembling
environment on demand based on a component interface. To
enable the automatic generation of adaptation GUIs, there
have to be predefined GUI elements for all input data types
of a component. These GUI elements can be offered by the
component concept as part of the assembling environment or
developed by a component developer. The component concept
should provide GUI elements for all atomic types as well
as for often used complex standard types, like e.g. File. A
component developer should be able to add GUI elements for
any type that is used by a developed component.

One important research question in this context is, if an
additional visual component adaptation during runtime shall
be enabled. A further research task is the specification of
a suitable concept for the development and integration of
type-specific GUI elements at development time and their
automatic composition to adaptation GUIs at assembling time
and runtime. Here related work concerning GUI builders, like
the Eclipse Visual Editor project8 or parts of the JavaBeans
API, partly examined in [10], has to be regarded.

D. Component composition

Via visual component composition a component assembler
can determine, which instantiated components send/offer what
data/services to which other instantiated components at run-
time.

8http://www.eclipse.org/vep/

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

34

Fig. 2. Component composition.

The assembling environment should facilitate a component
composition via drawing an arrow from an output port of a
component to a corresponding input port of another compo-
nent. Thereby, it is responsible for disallowing an incorrect
composition, e.g. the composition of two ports of the same
component, the composition of two input ports or two output
ports, the composition of a data port and a service port, the
composition of two ports with incompatible types and/or a
cyclic data-flow composition of two or more components and
so forth.

A component A can use another component B in two
different ways. A can use B directly via receiving one or more
of its resultant data after B performed its task. Or A can use B
indirectly via getting access to one or more of Bs services after
B received all required input data/services. These two kinds of
usage should not be combined, because for an indirect use B
has to receive potentially less input data/services than for a
direct use. For that purpose an assembling environment could
prohibit a simultaneous usage in both ways. This means, if
at least one of the resultant output ports of a component is
composed, its service output ports can not be composed and
vice versa. They can be disabled or even made invisible.

There is a further research task concerning component com-
position in general, that affects realisation of the component
concept but is not only a realisation problem. It has to be
decided, if data/services are passed from one component to
another during execution by value/copy or by reference. Or
rather, in which cases data/services are sent by value/copy and
in which cases by reference. And, who determines, if data are
sent by reference or by value/copy: the component developer,
the component assembler and/or the assembling environment.

b) Data-flow.: During component assembling compo-
nents can be composed from a data-flow viewpoint via their
data ports (Section III-A). Such a data flow composition
means, that at runtime one component sends a specific datum
to another component.

Every data output port of a source component can be con-
nected to any number of data input ports of target components,
if their types are compatible. For a compatibility checking, the
data port’s current type is used and can be changed due to
composition. Only for a constant data output port, the defined
type is used, because it has no current type. Usually one would
expect, that an output port is compatible to an input port, if
the output port type is the same or a subtype of the input

port type. This statement is correct, but can be incomplete.
As mentioned before, there can be dependencies between the
ports of one component, and these dependencies can lead to
further cases of compatibility via changing the current types
of depending ports.

Hence, further research tasks are the analysis of the impact
of port dependencies on a data-flow component composition
and the development of an algorithm that checks the com-
patibility of two data ports and determines which current
types have to be changed in which way to offer the data port
composition. Here, related work dealing with type inference
[11] has to be regarded.

c) Service-usage.: During component assembling com-
ponents can be composed from a service-usage viewpoint
via their service ports (Section III-A). Such a service-usage
composition means, that at runtime a component’s service is
used by another component.

Every service output port of a source component can be
connected to any number of service input ports of target
components, if their types are compatible, which means that
the output port type is either the same or a subtype of the
input port type.

Usually one would expect, that a component can offer its
services anytime during runtime. This is because, a target
component uses a service internally and is itself responsible for
providing all required input data and/or services to the service
before use. But this statement is only true, if the two service
ports have exactly the same type. If a service output port type
is a subtype of the service input port type, this subtype can
specify additional obligatory input data and/or services that
the target component does not know. In this case, the source
component is not able to provide the service to the target
component, until it received those additional obligatory input
data and services.

d) Control-flow.: During component assembling, compo-
nents can also be assembled from a control-flow viewpoint,
because every component is itself a control structure.

Every component affects the successive program flow dur-
ing runtime implicitly in different ways. Usually a component
assembler does not really know, how the adaptation and/or
composition of a component correlates to the resulting pro-
gram flow at runtime. But if this knowledge is made explicit
during assembling time, it can facilitate an explicit control-
flow component composition.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

35

Fig. 3. Top hat components.

On the one hand, an assembling environment can provide
ready-made generic control components for different kinds
of loops and choices. So, a research task is to identify
important control structures and develop them in a generic
way, conforming to the component concept. Here, existing
visual languages dealing with control flow like UML activity
diagrams [12] and languages for exogenous connectors like
Reo [13], where atomic ’channel types’ can be hierarchically
composed to more complex connectors, have to be regarded.

On the other hand, a component developer can develop
arbitrarily complex domain specific control components for his
research area. Hence, a research task is to analyse the impact
of such control structures to the program flow and summarise
the results in terms of guidelines for domain specific control
component development.

A control component decides, how often the services of
its composed components are used or rather how often its
composed component are executed.

e) Example.: Figure 2 shows a set of assembled compo-
nents, not (yet) saved as composed components. A component
composition from a data-flow viewpoint is visualised as a con-
nection between an output port of a component and an input
port of another component. A component composition from
a service-usage viewpoint is visualised as an assembly con-
nection in lollipop notation. Because the RGBImageReader
delivers a 2d RGB image, the input image port and output
image port of the Opening component changed their types
from TwoDImage to the subtype TwoDRGBImage.

E. Component storage

A component assembler can store a set of assembled
components persistently as a new component.

A set of assembled components is storable, if all compo-
nents are able to either perform their task or offer their services
at runtime. This is the case, if at storage time none of them
possesses an obligatory input port, that is neither adapted nor
composed. If there are still unassembled obligatory input ports,
they can be added to the interface of the new component.
Then the required data and/or services have to be provided
from the environment of the new component at runtime and
are internally passed to the contained components.

The assembling environment should facilitate the storage
of a component via one click. Thereby it is responsible for

disallowing the storage of incomplete components. This can
be achieved by automatic addition of unassembled obligatory
input ports to the new component interface.

Every stored component can again be loaded into the assem-
bling environment for further (re-)assembling or instantiated to
be used in another component. Moreover it can be executed, if
its interface comprises no unassembled obligatory input ports
(Section III-F).

f) Example.: Figure 3 shows two different compo-
nent variants of the morphological operation TopHat,
that subtracts the opening of an image from the original
image. Both top hat operators compose the components
ImageSubtraction and Opening internally. TopHat1
delivers the services Erosion and Dilation to Opening
internally via the components Erosion and Dilation.
TopHat2 delivers the services Erosion and Dilation
to Opening via requiring them from the environment itself.
Both top hat components require a 2d image as obligatory in-
put datum and deliver a 2d image of the same type as resultant
output datum. Optionally they can get the number of iterations
in terms of an integer n > 0 and a 2d structuring element
as optional input data. In both components the dependencies
between their data input and output ports can be derived from
the internal modelling.

F. Component execution

A component user can initiate the execution of an executable
component by the assembling environment. A component is
executable, if its interface comprises no unassembled oblig-
atory input ports. For execution it has to be loaded into the
assembling environment.

The assembling environment controls the execution and
is responsible for a correct performance. It carries out the
following evaluation algorithm:

1. Pass all received input data to contained components.
2. Send constant output data from all contained components

to connected contained components.
3.a Execute all contained components, that are able to

perform their task now, and send resultant data to connected
contained components.

3.b Offer service access from all contained components, that
are able to offer their service now, to connected contained
components.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

36

4. Repeat step 3 until there are no further components that
can be executed or can offer their service.

5. Send resultant data and offer services to connected
components.

G. Component concept realisation

The component concept will be realised using Java as well
as TGraphs [14], directed graphs whose vertices and edges
are typed, ordered and attributed, and JGraLab9, an API for
TGraph processing.

During component development the component concept
explicitly distinguishes between two kinds of components. An
atomic component is developed by a component developer
at development time. It can be supplied as .java and/or
.class file, packed in a .jar archive, depending on how much
information the component assembler/user shall get about
the atomic component’s internals. A composed component is
developed by a component assembler during assembling time
in the assembling environment. Internally it is modelled as
TGraph instance conforming to a specific TGraph schema for
composed components. It can be persistently stored as .tg file,
packed in a .jar archive, and again loaded from this .tg file.
But both kinds of components have exactly the same interface
to their environment during visual component assembling. The
defined type of a data port can be any Java type. The defined
type of a service port has to be a subtype of a specific Java
type constituting the supertype for all components.

An atomic component is instantiated via instantiation of
the corresponding Java class and a composed component
is instantiated via loading the corresponding TGraph into
Java and instantiating all contained components. An atomic
component is executed via calling the execute()-method
of its corresponding Java class. A composed component is
executed by executing directly used contained components.

For the development of adaptation GUIs and adaptation GUI
elements potentially JavaBeans property editors and/or cus-
tomisers [5] can be used. For the formalisation of dependencies
between data ports, potentially the Java Modeling Language10

can be used.
The mentioned image processing components for evaluating

the component concept shall use existing image processing li-
braries. Haas [15] gives a good overview about those libraries.

IV. SUMMARY

As mentioned at the beginning, the intent of the PhD
thesis is the specification, prototypical implementation and
evaluation of a component concept for scientific experiments.
In section III a detailed description of the targeted component
concept and predicted research tasks have been introduced.
The research tasks comprise:

1. a) The specification of a suitable concept for the for-
malisation and persistent storage of dependencies between
data ports of one component at development time and their
usage at assembling time and runtime. b) The analysis of the

9jgralab.uni-koblenz.de
10http://www.eecs.ucf.edu/∼leavens/JML

impact of those port dependencies on a data-flow component
composition. c) The development of an algorithm that checks
the compatibility of two data ports and determines which
current types have to be changed in which way to offer the
data port composition.

2. a) The identification of important control structures and
their development as ready-made generic control components
conforming to the component concept. b) The analysis of
the impact of arbitrarily complex domain specific control
structures on the program flow and the summarisation of the
results in terms of guidelines for the development of such
control components.

3. The specification of rules that determine, in which cases
data/services are passed from one component to another during
execution by value/copy and/or by reference, and/or rules that
determine, which actor takes this decision.

4. a) The determination, how instantiated components are
stored. b) The decision, if components can additionally be
adapted at runtime. c) The specification of a suitable concept
for the development and integration of type-specific GUI
elements at development time and their automatic composition
to adaptation GUIs at assembling and runtime.

In future work, these research tasks have to be performed
to complete the specification for the planned component con-
cept for scientific experiments. Based thereon the component
concept can be prototypically implemented and evaluated
using a large amount of image processing data structures and
components11.

REFERENCES

[1] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming, 2nd ed. Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2002, (first edition 1997).

[2] K.-K. Lau and Z. Wang, “Software Component Models,” IEEE Trans-
actions on Software Engineering, vol. 33, no. 10, pp. 709–724, 10 2007.

[3] A. Rausch, R. Reussner, R. Mirandola, and F. Plasil, The Common Com-
ponent Modeling Example: Comparing Software Component Models.
Springer Publishing Company, Incorporated, 2008.

[4] M. H. Selamat, H. Sanatnama, R. Atan, and A. A. Abd Ghani, “Software
Component Models from a Technical perspective,” International Journal
of Computer Science and Network Security (IJCSNS), vol. 7, no. 10, pp.
135 – 147, 10 2007.

[5] G. Hamilton (Editor), “JavaBeans,” Sun Microsystems, Tech. Rep., 08
1997, version 1.01-A. [Online]. Available: http://java.sun.com/javase/
technologies/desktop/javabeans/api

[6] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. Mas y
Parareda, and M. Pizka, “Tool Support for Continuous Quality Control,”
IEEE Software, vol. 25, no. 5, pp. 60–67, 2008.

[7] T. Bures, P. Hnetynka, and F. Plasil, “Sofa 2.0: Balancing advanced fea-
tures in a hierarchical component model,” in SERA ’06: Proceedings of
the Fourth International Conference on Software Engineering Research,
Management and Applications. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 40–48.

[8] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani,
“The fractal component model and its support in java: Experiences with
auto-adaptive and reconfigurable systems,” Softw. Pract. Exper., vol. 36,
no. 11-12, pp. 1257–1284, 2006.

[9] S. Becker, H. Koziolek, and R. Reussner, “The palladio component
model for model-driven performance prediction,” J. Syst. Softw., vol. 82,
no. 1, pp. 3–22, 2009.

11The planned component concept is developed in the context of the project
Software Techniques for Object Recognition (STOR), http://er.uni-koblenz.de,
whose task is the use of software engineering techniques in image processing.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

37

[10] S. Orth, “Entwicklung eines Konzepts zur Selbstauskunftsfähigkeit für
STOR-Komponenten,” Master’s thesis, Universität Koblenz-Landau, 12
2009.

[11] J. Plevyak and A. A. Chien, “Precise concrete type inference for object-
oriented languages,” in OOPSLA ’94: Proceedings of the ninth annual
conference on Object-oriented programming systems, language, and
applications. New York, NY, USA: ACM, 1994, pp. 324–340.

[12] “UML 2.0 Superstructure Specification,” Object Management Group
(OMG), Tech. Rep., August 2005.

[13] F. Arbab, Reo: a channel-based coordination model for component
composition. New York, NY, USA: Cambridge University Press, 2004,
vol. 14, no. 3.

[14] J. Ebert, V. Riediger, and A. Winter, “Graph Technology in
Reverse Engineering, The TGraph Approach,” in 10th Workshop
Software Reengineering (WSR 2008), ser. GI Lecture Notes in
Informatics, R. Gimnich, U. Kaiser, J. Quante, and A. Winter,
Eds., vol. 126. Bonn: GI, 2008, pp. 67–81. [Online]. Available:
http://www.uni-koblenz.de/∼ist/documents/Ebert+2008GTI.pdf

[15] J. Haas, “Analyse, Evaluation und Vergleich von Bildverarbeitungsbib-
liotheken aus Sicht der Softwaretechnik,” Master’s thesis, Universität
Koblenz-Landau, 4 2009.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

38

Performance Prediction for
Highly Distributed Systems

Jörg Henss
Institute for Program Structures and Data Organisation

Faculty of Informatics
Karlsruhe Institute of Technology, Germany

Email: Henss@kit.edu

Abstract—Currently more and more highly distributed systems
emerge, ranging from classic client-server architectures to peer-
to-peer systems. With the vast introduction of cloud computing
this trend has even accelerated. Single software services are
relocated to remote server farms. The communication with these
services has to use uncertain network connections over the
internet.

Performance of such distributed systems is not easy to predict
as many performance relevant factors, including network perfor-
mance impacts, have to be considered. Current software perfor-
mance prediction approaches, based on analytical and simulative
methods, lack the support for detailed network models. Hence
an integrated software and network performance prediction is
required.

In this paper general techniques for the model integration
of differently targeted simulation domains are presented. At plus
design alternatives for the coupling of simulation frameworks are
discussed. Finally this paper presents a model driven approach
for an integrated simulation of software and network aspects,
based on the palladio component model and the OMNeT++
simulation framework.

I. INTRODUCTION

Distributed systems have a long tradition in computer sys-
tem design. This includes client server, peer-to-peer, and other
systems that communicate using networks. We use distributed
computer systems in our daily life as for example a super-
market point of sale will communicate with the warehouse
management system, the credit card clearing house, and some
loyalty program system.

Highly distributed systems are distributed systems that use
a lot of communication and consume many remote services. A
currently emerging form of highly distributed systems is the
so called cloud computing. Cloud computing [1] stands for
the displacement of actual running computer applications from
a users machine or corporate servers to a remote distributed
system, providing superior computing power at lower costs.
Services that used to reside on the same server are distributed
on different machines, that even might be miles away, when
using cloud computing.

During software development in general and especially for
distributed systems, it is desirable to know whether certain
performance constraints, like response time or throughput,
will be met. Software performance prediction allows for an
ahead of time estimation of these performance characteris-
tics. Furthermore the performance information also assist to

choose the right dimensioning of hardware. For distributed
systems, the communication between systems can be a major
performance factor as data has to be interchanged. This is
not only especially true in the high performance computing
domain, where large efforts are spent on minimising the
communication costs, but also for traditional client server and
other distributed software architectures. One of the problems
network communication has, is the use of a shared media,
as this can lead to collision and contention problems. These
contention effects can have a large impact on the overall
performance of a system.

Several architectural design decisions can be made to op-
timise distributed systems. For example the introduction of
caches can reduce communication at the cost of memory.
Furthermore network compression and quality of service based
prioritisation can be applied as well, but require more CPU
usage or more expensive hardware. A performance prediction
can help to choose the best suited solution and to find a good
trade off between alternatives.

It is a matter of discussion how the performance of such
distributed systems can be well predicted. On the one hand
current software prediction methods only have limited support
of network communication prediction. On the other hand
network simulation can be used to predict the performance
of network communication, but those simulation frameworks
have no simple means to model software systems. Thus a com-
bination of both simulative approaches seems to be a solution
to this problem. However it is unclear which techniques can
be used to accomplish this integration of simulations.

We recognised that some kind of integration has to be made
both on the model layer and on the simulation layer. The
integration techniques on the model layer have to combine the
different simulation models, while the integration on simula-
tion layer describes styles of coupling between the simulation
frameworks themselves.

The contribution of this paper is twofold. First we introduce
a reference architecture for the model integration and the
coupling of simulation frameworks in general and describe
certain design alternatives. Secondly we describe a concrete
integration architecture that uses model driven techniques
to combine a software performance model with a network
simulation model. This concrete architecture can be used to
predict the performance of highly distributed systems in an

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

39

early design stage. In our approach the palladio component
model is used as software performance model and is combined
with the OMNeT++ network simulation framework that allows
to model and simulate detailed network models.

The paper is structured as follows. Section II describes
the the foundation of discrete-event simulation in general and
software and network performance simulations in special. In
Section III several techniques are introduced for a simula-
tion model integration. Methods for coupling of simulation
frameworks are introduced in Section IV. Our concrete model
driven simulation integration approach is presented in Sec-
tion V. Related work is presented and discussed in Section VI.
Section VII concludes this paper and describes the future work.

II. DISCRETE-EVENT SIMULATION

There exist a large amount of analytical approaches that
use formal methods like petri-nets, markov-chains, or queuing
networks to calculate different measures of a system. However
these analytical methods can not be used for analysing large
complex systems without introducing strong constraints (e.g.
no mixed scenarios are supported). Thus it is necessary to use
a simulative approach for those complex systems.

There are many different techniques for the simulation of
systems. Nevertheless the discrete-event simulation approach
is among the most popular and wide spread simulation tech-
niques. A large number of discrete-event simulation frame-
works are available, both commercially and as open source.

A. Simulation Concepts

Though different simulation frameworks use differing ter-
minologies, the description of discrete event simulation can
be stripped-down to the following concepts as described by
Banks et al. [2]

A system is the set of all entities that interact together
over time. These entities usually have a goal they want to
achieve. The so called system state is a set of variables that
are sufficient to describe a system at any given time. As an
illustration we will regard a supermarket as a system.

The model is an abstraction of a system. The system is
described by structural, logical, and mathematical information.
This information is represented by entities, events, activities
and further state information. A model will usually build upon
a meta-model that is fitted to the modelled domain.

An entity is an object in a system that is individually
represented in the model. Entities can have attributes that can
change over time. Often entities are organised in a hierarchical
way. A supermarket has customers, goods, etc. as entities.

Among the entities, there are special entities that are called
active and passive resources. Active resources are used to
execute an activity. Usually only one activity can be executed
by an active resource at the same time. Thus some kind of
scheduling policy is required when several activities are wait-
ing for execution at an active resource. Common scheduling
strategies are first-in, first-out (FIFO), last-in, first-out (LIFO),
time sharing, or ranked by any attribute of the entities like

priority. Some times active resources are also called service
center.

Passive resources are entities that have to be acquired to
achieve a goal, e.g. the execution of an activity. The number of
passive resources in a system that can be acquired is usually
limited, dependent on the kind of resource. Consequently a
passive resource has to be released after a corresponding goal
is achieved. An acquisition of a passive resource blocks until
a resource is available.

In the supermarket example, the checkout is an active
resource as the payment activity is executed here, while the
shopping cart is a passive resource that has to be acquired
before a shopping activity can start. After an shopping activity
has ended the cart is released and a new customer can use it.

Events are triggers that usually change the state of a
modelled system. In discrete-event systems an event can be
scheduled to occur in the future. Events succeed each other in
time.

As input to the simulation a so called workload is used.
The workload starts so called jobs, which initially trigger
different events and are active until the reception of an event
that indicates the end of the job. Usually a stochastic process
is used that determines the occurrence of a certain job at
an instance of time. Commonly a poisson process is used.
Workloads can be open or closed. A closed workload allows
only a limited number of jobs to be active and is characterised
by a thinking time that determines the time between end of
a job and the start of the next job. An open workload is
characterised by inter-arrival times of jobs and has no limit
on the number of active jobs. Additionally a workload can
be based on measured data that is used as input. In our
example the workload would generate customers that enter
the supermarket.

An activity describes a step that takes a certain time to
accomplish. This time can be a deterministic value or a
statistical value based on a distribution function. Moreover the
time can have functional dependencies on the current state.

The time an activity takes is often called service time.
A delay is a time span that is not priorly specified, but

is a results of the current system state. Delays occur when
passive resources can not be acquired instantly and when an
active resource has several activities that have to wait until
they are executed. The average delay is an important measure
of a system.

The clock in a discrete-event simulation is a variable
that represents the simulation time. It is used to express
the progress of time while the simulation is running. The
progress of time can be synchronous, i.e. the time is constantly
increased by a fixed span. However usually an asynchronous
time is used, that allows the simulation to skip in time to the
next occurrence of an event. A common stop criterion is the
arrival at a specific simulation time. For further explanation
on discrete-event simulation techniques cf. [2].

There exist a vast amount of discrete-event simulation
frameworks, both commercial and open source. Typically
every simulation that is to be carried out uses a specific

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

40

Application

Presentation

Session

Transport

Network

Data link

Physical

Software Model

Network Model

Fig. 1. OSI stack with the network model and the software model.

simulation framework that is fitted to its domain. Mostly theses
framework are composed of a simulation core that is used for
managing the basic simulation concepts like time, events, and
entities. Furthermore the frameworks support the collection of
statistical data and event trace data for the evaluation of results.

Another simulation approach is the so called process-
oriented simulation, where simulated system activities are
mapped to processes. A process represents the life cycle of an
entity and can interact with other processes using messages.
Shared resources are used to simulate active and passive
resources and can cause a process to block and wait for execu-
tion or acquisition. This process based view is often regarded
as being more intuitive than the event based view. Nevertheless
process-oriented simulations often have a limitation on the size
of the system that can be simulated and “are known to be
slower than discrete-event simulations” [2, p. 537].

On top of simulation frameworks, there usually exist domain
specific elements that build upon the basic building blocks and
allow for a more convenient definition of simulation scenarios.
In most cases one can find an existing simulation framework
that already supports most of the required functionality. The
domain specific elements usually can be extended additionally,
to further customise a simulation. Two distinct domains of
discrete-event simulation are the simulation of networking
systems and software systems, which will be discussed in the
following.

B. Network and Software System Simulation

The domain of network and software systems have much in
common, as networks are using software at different levels
and software is often using networks for communication.
Nevertheless both domains are usually regarded with different
focuses. Figure II-B shows the layers of the OSI reference
model where software and networks are shown in context.
The software domain is mostly situated in layers 5 to 7 while
the network domain is settled in layers 1 to 5.

Network simulation usually have a focus on the com-
munication of nodes and the protocols that are used. The

communication can be simulated on different levels of abstrac-
tion. Common network simulators often simulate on packet
or session level. That means the simulation uses packets or
sessions as smallest separate entities. Nevertheless there also
exist simulators that operate very low on bit level or very
high on the system level, where whole networks are com-
municating. Usually network simulators provide build in high
level concepts to model the network nodes. Every node in the
network usually has some kind of protocol stack depending on
the level it operates on. Stochastic channels are used to model
uncertain connections. This allows to simulate loss, jitter, and
distortion of transferred data. The main characteristics that
are measured are throughput and latency. Though network
simulations are also used to validate the pure functionality
of protocols.

Prominent network simulation framework are the ns-2 [3]
and OMNeT++ simulation frameworks [4]. Both provide a
large collection of already implemented network protocols and
implementations of network channels. Furthermore rudimen-
tary application entities are built in that represent sinks and
sources for protocols like FTP or HTTP. Nevertheless both
have in common that advanced behaviour on application layer
has to be implemented as code manually.

In this paper the OMNeT++ network simulation framework
will be used as ns-2 is not maintained anymore and the
new developed ns-3 is not yet matured. OMNeT++ supports
discrete-event and process based simulations. Furthermore
there exists a GUI for modelling network topologies.

The OMNeT++ network meta-model includes entities that
model queues, channels, messages, and packets. So called
cModules are used to model network nodes. Furthermore
cModules can be composed of other modules and are than
called cCompoundModules. Thus cModules are a kind of
simulation components. The support for IP networks in OM-
NeT++ is given by the INET framework for OMNeT++ [5]
that includes the implementations of a large number of IP
based network protocols. These protocols are as well defined
using the cModule structure. A cModule can have parameters
that are used to configure it.

The OMNeT++ framework includes a language for the
definition of the network topology, the cModule assembly
and the cModule parameters. This language is called NED.
The NED language is used to define OMNeT++ models for
simulation.

An OMNeT++ simulation model is compiled to an exe-
cutable using a specialised pre-processor for the gcc com-
piler [6]. When run this executable offers a GUI to control
the resulting simulation.

The simulation of software systems to predict their perfor-
mance and other quality attributes is a well-known research
field. The results of simulations can be used to rate and find
trade-offs between alternative software architectures, choose
an accurate hardware platform, and to predict whether certain
quality constraints will be fulfilled. A software simulation
model often is based on design-level models like UML,
automata, or control flow diagrams and can be used when

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

41

annotated with information about the quality attributes. The
UML SPT [7] and MARTE [8] profiles are examples for such
UML annotations. The design model usually is transformed
to a simulation model that only contains simulation relevant
information and has the quality attributes embedded.

There also exist specialised models that support the spec-
ification of quality attributes directly. One of these models
is the Palladio Component Model [9]. It allows for the
modelling of component based software systems with a focus
on the prediction of performance and other Quality-of-Service
attributes. The behaviour of the modelled components can be
specified using so called Service effect specications (SEFF).
For every method in the provided interface of a component a
SEFF can be defined. A SEFF includes several constructs that
represent the control flow of the method. Moreover a SEFF
can make (external) calls to other methods that are part of the
component’s required interface.

The so called Resource Demanding Service Effect Speci-
cations (RDSEFF) allows the definition of (active) resource
demands in a SEFF. These resource demands can be mod-
elled as stochastic expressions. A stochastic expression usu-
ally includes a stochastic distribution function and can have
parametric dependencies. A parameter is characterised by a
number of so called variable characterisations that define e.g.
the size, structure, or value. The variable characterisations
for parameters used to solve the parametric dependencies are
stochastic expression themselves and are either defined in the
SEFF or are part of the method signature and handed over
when the method is called. Furthermore there also exist passive
resources in the PCM. Thus a RDSEFF can contain acquire
and release methods for these resources.

In the palladio component model components can be de-
ployed to systems. A system also provides the active and
passive resources that are used in the RDSEFFs. When more
than one system is modelled those systems have to com-
municate using modelled network connection. In the PCM a
network connection has attributes that define the throughput
and latency.

The palladio component model can be used to make analyt-
ical and simulation based predictions. To execute one of these
prediction methods the model is transformed using model-to-
model or model-to-text transformations. The current simulative
prediction approach is called SimuCom and uses a process
based approach that is described in [10]. SimuCom builds up
on the Desmo-J framework [11] for the modelling of queues
and events. Currently SimuCom has a very limited support
of networks. When a palladio component model includes two
components that are communicating over a network connec-
tion, SimuCom uses an active resource with a FIFO scheduling
strategy to represent this network connection.

The integrated simulation approach presented in this paper
will be based on the palladio component model.

Further software simulation approaches using UML and
other models can be found in sect. VI.

III. SIMULATION INTEGRATION ON MODEL LAYER

As mentioned before every simulation uses a simulation
model to describe entities, resources, events, workload, and
activities. The simulation model can additionally have several
higher level domain specific elements that ease the definition
of simulation scenarios.

For network simulations these elements are network nodes
and connections based on some kind of network protocol.
At plus common devices will be presented, that represent
switches, servers, etc.. Software simulations usually will in-
clude elements like software modules, components, and other
means to structure software systems. Furthermore the control
flow has to be described and how the software system is
distributed among servers.

To bring network and software simulation together both sim-
ulation models have to be combined. In the following several
ways of integration on the model layer will be introduced.

A. Separate Models

A separate models approach is utilised when no direct
integration of models is used. This can occur when models
are structurally not-connectable or have no direct matching
entities. In addition separate models can be required by the
utilised simulation framework(s).

B. Monolithic Model

A monolithic model describes the elements of two or more
domains as single model. This approach has to be used when
a simulation framework only allows for one input model.
Nevertheless a monolithic model has the disadvantage that it
can be problematic to find a representation that fits the high
level domains elements. Thus all domain elements have to be
reduced to the supported basic concepts. Usually this will lead
to a loss of information, e.g. the context of elements.

C. Federated Model

A federated model integration uses an additional model that
links the input models. This extra model is some kind of bridge
between domains. It includes basic mapping entities for every
element in the intersection of models. Simulation frameworks
can use these mapping entities to propagate changes and keep
elements in sync. The federated model is commonly used used
for federated simulations c.f. Sect. IV-D.

D. Decorated Model

The decorated model approach is based on the usage of a
decoration model to extend a simulation model with further
information. These information can be based on another sim-
ulation domain than the model that is decorated. A decoration
model has references to the model elements in the model it
decorates. In this way the decoration model can add informa-
tion and annotate elements. For two different domain models
usually one domain model will be used to decorate the other
domain model.

When a decoration model is only used to add details to
existing model elements it is often called completion. A

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

42

Fig. 2. Simulation integration on the model layer

completion can be seen as a kind of macro mechanism to
expand model elements.

The decorated approach has the advantage that no changes
to the base model must be made. Furthermore a model can
be decorated by more than one decoration model. At plus this
technique allows for a modular composition of the simulation
model and supports the information hiding principle.

IV. COUPLING OF SIMULATION FRAMEWORKS

There exist several possibilities for coupling two or more
simulation frameworks. Coupling of simulations is quite com-
mon in the computer aided engineering (CAE) discipline
where many relevant aspects have to be simulated at the same
time. For instance the simulation of a car crash test uses many
different physics and deformation simulations.

The coupling of simulation introduces some Challenges.
One major problem is the management and synchronisation
of simulation time. Another task is the syncing of entity
states and the propagation of events. In the following several
approaches for coupling of simulation frameworks will be
introduced. All approaches are shown in figure 3.

A. Independent Simulation

An independent simulation means that two or more simula-
tions are executed independently from each other such that no
simulation result is influenced by running another simulation.
For each simulation a separate input model is required that is
based on a simulation specific meta model. In special cases
these simulation specific models can also be generated from a
common model. After all simulations have finished the results
are combined. Thus the coupling is solely realised on the result
layer.

B. Simulation with Feedback

A simulation with feedback means that the result of one
simulation is used as input for another. This input can be

necessary when simulations are dependent. For example
When simulations are interdependent it is necessary to use

both all as inputs for each other. This will usually lead to a
cycle in the dependency graph. To solve this cycle, simulation
results can be used as input iteratively until a fixpoint is
reached. I.e. both simulations are repeated with the result of
the last iteration as input until no significant changes occur.
This method is not very efficient and is not guaranteed to
converge when no steady state is reached.

C. Direct Communicating Simulations

Another alternative for coupling simulations is the use of
direct communication between simulation frameworks. This
approach has the advantage that interdependencies can be
resolved directly. A major disadavntage is, that the simulation
logic has to be changed to allow this communication. Further-
more, the communicating simulations should be compatible
in ways of time and event management, such that only
lightweight wrappers and adapters have to be implemented.
A large limitation of this approach is that it requires two
simulation frameworks at the same time. Thus more CPU and
memory is utilised.

D. Federated Simulations

Federated simulations approach is quite similar to the direct
communication approach. It requires both simulation frame-
works to run at the same time but a centralised co-ordination
layer is used. This co-ordination layer is responsible for
managing the time and simulation flow. A federated simulation
usually also has a federated object model that is used for
passing information between simulations.

The major disadvantage of this approach is that the simula-
tion core of the frameworks have to be changed, as time man-
agement is externalised. Furthermore a fast co-ordination layer
is required for efficient simulation. The federated simulation

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

43

Fig. 3. Coupling of software and network simulations

approach allows for flexible coupling of different simulations.
The High Level Architecture (HLA) as defined under IEEE
Standard 1516 [12] is a standard for distributed federated
simulations. It defines an interface for a run-time infrastructure
being the co-ordination layer. Moreover the object model
template (OMT) can be used to define federated models that
are used in HLA simulations.

V. AN INTEGRATED SIMULATION APPROACH

In this section we will introduce our approach for an
integrated simulation, that is suitable for the prediction of
performance and other quality attributes of highly distributed
systems. Hence our approach is based on the integration of
network and software system simulation. This integration is
based on model driven techniques.

On the one hand the basis of our approach is the palladio
component model that is used for the modelling of software
systems. This model will be extended by using completions
for the detailed modelling of network layer entities. On the
other hand the OMNeT++ network simulation framework will
be used to simulate the network and software systems in an
integrated way.

A. Integrated Model

Our approach uses a specialised software simulation model
as basis. This model is derived from the palladio component
model by using a model-to-model transformation. Thus the
distributed system can be modelled using existing editors.

As before-mentioned in the palladio component model the
behaviour of component methods is specified as resource
demanding service effect specifications (RDSEFFs). For use
in the integrated simulation model these RDSEFFs are trans-
formed to a set of instruction entities that represent the

behaviour. Every step of the control flow is represented as
a distinct instruction entity. The number of instruction entity
types is intentionally kept low to make an implementation of
these entities as simple as possible. Furthermore each of these
entity types has well defined semantics.

This reduced set of control flow instructions for example
includes a beginning of a variable scope, a definition of a
variable, an acquire operation, an asynchronous call, waiting
for events, and the consumption of an active resource. Many
behaviour defining elements originally used in a RDSEFF
are replaced by two or more entities. Thus the integrated
simulation model usually has a higher number of elements.
As an example, the model-to model transformation will sub-
stitute every synchronous call in a RDSEFF by a pair of
asynchronous calls and a wait operation that waits on the
return call. This reduction of control flow concepts can be
compared to the use of a reduced instruction set (RISC) [13]
architecture.

The basic entities are connected in the order of execution
and also includes means to model branches, loops, and other
conditional jumps. By passing events between these instruction
entities the running of the software is simulated. The events
allow to pass variables and state information of the current job
between the entities.

Beside the behavioural modelling the intermediate simula-
tion model also includes structural information. This structural
information is used to map behaviour to the modelled software
components which are adopted from the PCM . Furthermore
the component assembly is also represented and composite
components are supported. In addition software components
are assigned to systems. The services provided by the compo-
nents assigned to a system can be accessed locally and using
network.

A system can have several active and passive resources that
can be accessed by the entities using events. By using the
before mentioned variables and state information parametric
resource demands can be applied when an active resource is
called.

Furthermore the network connections between systems are
modelled. A network connections has attributes that specify
the throughput, latency, and the used protocol.

For advanced modelling of networks, like choosing param-
eters of protocols, we decided to use the decorated model
approach. This allows us to hide domain specific design
decisions that are not applicable universally. Thus the used
decoration model contains all information that is specific to
the utilised network simulator. In this way present editors for
networks can be used as well to model network specific parts.

The model integration technique used in our approach can
be seen as a mixture of a monolithic model integration and
the use of a decorated model.

B. Simulation

As our integrated simulation model is event based, the
simulation framework has to be event driven as well. We
decided to use the OMNeT++ simulation framework that

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

44

Fig. 4. Schematic illustration of our integrated simulation approach

offers support for discrete event simulation. Nevertheless our
approach can be applied to other simulation frameworks as
well in an easy way.

We extend the OMNeT++ simulation framework to support
all entities of the integrated simulation model. This extension
is quite simple as the semantics of entities is well defined.
Furthermore only few entity types have to be implemented.
The components in our integrated simulation model can be
mapped easily to OMNeT++ cModules and cCompoundMod-
ules. In this way the integrated simulation model can be used
as direct input. In addition the decoration model can also be
used directly as it only contains entities already present in the
OMNeT++ meta-model.

The amount of network traffic that is simulated using
the INET framework is calculated from the variable char-
acterisations of the parameters used in the signature of a
request. In addition an overhead is added that results from the
used protocols. Where possible, already existing OMNeT++
protocol implementations are used.

To run a simulation the integrated model is used as input
that is compiled, together with the OMNeT++ simulation
core, the INET framework, and our extensions, to a run-able
executable. Thus the bottom line is that we use an independent
simulation that is only coupled by an integrated model layer.
Though when further simulation frameworks are utilised, e.g.
for simulation of additional quality attributes, other coupling
methods can be used easily.

VI. RELATED WORK

There exist several works in the field of performance and
quality prediction of software systems. Many of these are
based on UML and the UML profiles SPT [7] and MARTE [8].

In [14] Pustina et al. describe a method for the performance
evaluation of communication systems including protocols and
devices. They use an UML model of the system annotated with
either the UML SPT or UML MARTE profile, that is converted
into a queuing network based performance model. This per-
formance model is then evaluated using an implementation
of queueing networks based on the OMNeT++ simulation
framework. Though Pustina et al. also use the OMNeT++
framework, their work is focused on the embedded systems
domain and does not yet include detailed network models.

Another approach that makes use of the UML SPT profile
is the KLAPER intermediate language introduced by Grassi et
al. [15]. Furthermore KLAPER also supports other component
based models as input. The KLAPER model is focused on the
performance and reliability analysis, but has in common with
our approach that a quality aware intermediate model is used.
However, KLAPER uses a single monolithic model and uses
multiple analysis tools like queuing networks together with a
feedback loop. Network specific constructs are not included
in the KLAPER language.

A similar analysis approach is the Performance by Unified
Model Analysis (PUMA) [16]. It uses the so called Core Sce-
nario Model (CSM) that integrates the SPT profile information
with the common UML model. The CSM is similar to the
integrated simulation model used in our approach as it also
contains entities for every step in a control flow and supports
active and passive resources. Nevertheless the CSM is centred
on the support of different analysis techniques and only targets
simulations tangentially. At plus networks are not modelled in
depth.

VII. CONCLUSION AND FUTURE WORK

In this paper we present an approach for an integrated
simulation of software and network performance. We expect
that the use of a fully-fledged network simulator can improve
the prediction results of software performance simulation. No
existing software performance simulation approache uses a
detailed modelling and simulation of network effects that
can strongly influence the performance of (highly) distributed
systems.

The intermediate simulation model introduced in this paper
is generated from a palladio component model and a network
model description using model driven techniques. This allows
the reuse of existing tools for the palladio model and the
application of our approach to existing network models as
well. Furthermore the existing tools for the used network
simulation framework OMNeT++ can be reused as well.

Our proposed approach has the main advantage that the
underlying simulation framework has not to be changed and
only has to be extended to support the introduced software
simulation elements which have well defined semantics. This
allows us to exchange one used simulation framework for

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

45

another. Moreover in future work simulation frameworks can
be used that predict other quality attributes.

In future work it has to be evaluated whether our approach
is really suited to improve the prediction of highly distributed
systems. Therefore after the initial implementation of the
OMNeT++ extension is finished, experiments will be run that
compare our new simulation to existing simulations. At plus
our simulation will be compared to the performance of real
distributed software systems.

REFERENCES

[1] T. Sridhar, “Cloud computing,” The Internet Protocol Journal (IPJ),
vol. 12, no. 3, pp. 2–19, September 2009.

[2] J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol, Discrete-Event
System Simulation (3rd Edition), 3rd ed. Prentice Hall, 2000.

[3] The network simulator - ns-2. [Online]. Available: http://www.isi.edu/
nsnam/ns/

[4] A. Varga and R. Hornig, “An overview of the omnet++ simulation
environment.” in SimuTools, S. Molnár, J. Heath, O. Dalle, and G. A.
Wainer, Eds. ICST, 2008, p. 60.

[5] The inet framework for omnet++. [Online]. Available: http://inet.
omnetpp.org/

[6] Gcc, the gnu compiler collection. [Online]. Available: http://gcc.gnu.org
[7] Object Management Group (OMG), “UML profile for schedulability,

performance, and time specification version 1.1,” 2005.
[8] ——, “A UML profile for MARTE: Modeling and Analysis of Real-

Time Embedded systems, beta 2,” 2008.
[9] R. H. Reussner, S. Becker, J. Happe, H. Koziolek, K. Krogmann, and

M. Kuperberg, “The Palladio Component Model,” Universitaet Karlsruhe
(TH), Tech. Rep., 2006.

[10] S. Becker, Coupled Model Transformations for QoS Enabled
Component-Based Software Design, ser. The Karlsruhe Series on Soft-
ware Design and Quality. Universitätsverlag Karlsruhe, 2008, vol. 1.

[11] “The DESMO-J Homepage,” University of Hamburg, Department of
Computer Science, 2007, last retrieved 2008-01-06. [Online]. Available:
http://asi-www.informatik.uni-hamburg.de/desmoj/

[12] Simulation Interoperability Standards Committee (SISC), “IEEE stan-
dard for modeling and simulation (M & S) High Level Architecture
(HLA) - Framework and Rules,” pp. i –22, 2000.

[13] A. H. J. Sale, “The risc style of architecture.” Australian Computer
Journal, vol. 21, no. 3, pp. 97–99, 1989.

[14] L. Pustina, S. Schwarzer, M. Gerharz, P. Martini, and V. Deichmann, “A
practical approach for performance-driven uml modelling of handheld
devices - a case study,” J. Syst. Softw., vol. 82, no. 1, pp. 75–88, 2009.

[15] V. Grassi, R. Mirandola, and A. Sabetta, “From Design to Analysis
Models: a Kernel Language for Performance and Reliability Analysis
of Component-based Systems,” in WOSP ’05: Proceedings of the 5th
international workshop on Software and performance. New York, NY,
USA: ACM Press, 2005, pp. 25–36.

[16] M. Woodside, D. C. Petriu, H. Shen, T. Israr, and J. Merseguer, “Perfor-
mance by unified model analysis (PUMA),” in WOSP ’05: Proceedings
of the 5th International Workshop on Software and Performance. New
York, NY, USA: ACM Press, 2005, pp. 1–12.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

46

Towards Secure Services in an Untrusted
Environment

Matthias Huber
Institute for Program Structures and Data Organization

Faculty of Informatics
Karlsruhe Insitute of Technology, Germany

Email: matthias.huber@kit.edu

Abstract—Software services offer many opportunities like re-
duced cost for IT infrastructure. However, they also introduce
new risks, for example losing control over data. While data can
be secured against external threats using standard techniques, the
service providers themselves have to be trusted to ensure privacy.
Cryptographic methods combined with architectures adjusted
to the client’s protection requirements offer promising methods
to build services with a provable amount of security against
internal adversaries without the need to fully trust the service
provider. We propose a reference architecture which separates
services, restricts privilege of the parts and deploys them on
different servers. Assumptions about the servers’ and adversary’s
capabilities yield security guarantees which are weaker than
classical cryptographic guarantees, yet can be sufficient.
Keywords: services, cloud computing, security

I. INTRODUCTION

Due to advances in networking and virtualization tech-
nology, new paradigms of providing IT infrastructure and
software have emerged – among them the so-called Cloud
Computing. The National Institute of Standards and Technol-
ogy [21] defines Cloud Computing as “a model for enabling
convenient, on-demand network access to a shared pool of
computing resources (e.g., networks, servers, storage, appli-
cations, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction”. Cloud Computing enables clients to use Software
as a Service and to outsource their data, thus cutting the cost
of maintaining an own computing center.

However, inherent to Cloud Computing are privacy prob-
lems [17], [22]: By using services in the Cloud, clients lose
control over their data. Clients can not control if their data gets
copied or misused on the server. The threat of insider attacks
exists and keeps many potential customers from using Cloud
Computing in critical or sensitive scenarios (e.g., scenarios
comprising business secrets or customer data). Current security
mechanisms focus on protecting the data transfer to and from
the service provider.

Protecting a pure storage service against insider attacks is
easy. Encrypting all data on the client before uploading it to
the server provides a sufficient level of protection based on
the used encryption [4]. However, this prevents the server from
performing any meaningful operation on the data. Hence, more
complex services require advanced techniques for providing
privacy.

Cryptographic methods like secure multiparty computa-
tion [7], [13] or private information retrieval [11] can in
principle solve all privacy problems. Especially since a fully
homomorphic encryption method [12] was discovered in 2009
which allows calculations on encrypted data. These methods
offer strong security guarantees. For example fully homomor-
phic encryption allows to build services where the service
provider does not learn anything about the user input. How-
ever, due to high communication and computation costs, these
methods are not practical and their costs outweigh all benefits
of outsourcing software or data.

Nevertheless, security guarantees for Cloud Computing are
needed: Without provable security, outsourcing is not an
option for most sensitive scenarios. Since achieving classical
cryptographic security guarantees is in most cases infeasible
for service scenarios, these guarantees have to be weaker,
yet provide a sufficient level of protection. Moreover, to be
accepted broadly the security guarantees must be easy to
understand.

The contribution of this paper is an idea for solving the
privacy problems inherent to Cloud Computing. We suggest
partitioning a service on the basis of its duties and deploying
its parts on different servers. Combined with cryptographic
methods, this approach can provide a provable level of protec-
tion. We discuss an architectural style for separating a service
and provide examples how this separation can enhance the
security of a database service.

We also sketch a new security notion inspired by k-
anonymity [8], [24] which can be applied to outsourced
databases. This notion has been defined in our previous
work [16]. The level of privacy provided by this notion is
easy to understand and we show informally that our database
example fulfills this notion. In contrast to secret sharing, we
respect algorithms and data structures and thus preserve the
efficiency of the service. This is vital for services: Outsourcing
is pointless if the benefits are canceled by security measures
that try to solve problems introduced by outsourcing. Unlike
our previous work [16] which focuses on a formal security
property, this papers focus is on the architecture implied by a
separation of duties.

The rest of this paper is organized as follows: We give
a short introduction to approaches for the security of out-
sourced databases in Section II. We also give an overview

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

47

of related cryptographic primitives. In Section III, we discuss
the requirements for solutions to the problem motivated in
this Section. We present a reference architecture that we
call Separation of Duties which allows building more secure
services in Section IV. In Section V we discuss why we
need new security properties to provide provable security.
In Section VI, we show with the help of an example of an
outsourced database how Separation of Duties can enhance the
security of services. We discuss assumptions needed for our
approach and its limitations in Section VII. In Section VIII,
we discuss future work and conclude in Section IX.

II. RELATED WORK

Since many services rely on databases, in Section II-A, we
give an overview of the Database as a Service literature that
tries to solve the privacy problems of outsourced databases
with the help of cryptographic methods. Apart from the
methods used here, cryptography offers additional methods to
engage privacy and security issues. We discuss other existing
cryptographic methods in Section II-B.

A. Database as a Service

The database community realized the benefits of outsourc-
ing early. The concept of Database as a Service was in-
troduced by Hacigümüs et al. in 2002 [15]. They propose
to use encryption to enhance privacy and evaluate several
different ways to encrypt data in a database. However, the
user has to hand the encryption key to the server for query
processing. This is a security risk in an untrusted server
scenario. Since then the privacy aspects of this concept and
the problem of a searchable encryption got much attention.
In [14], Hacigümüs et al. propose a tuple level encryption
scheme and coarse indices to enable the server to execute SQL
on the encrypted data. In this scenario, the server does not
need to decrypt the data for coarse-grained query execution,
and returns a superset of the tuples queried. The client has
to decrypt the returned data and execute the exact query on
it. There were other papers considering different aspects of
this idea: Damiani et al. consider confidentiality in encrypted
databases in [9]. They introduce exposure coefficients and
examine databases where an index refers to just one attribute
value. A more detailed view on exposure coefficients which
considers coarse indices is given by Ceselli et al. in [6].
However it remains unclear, what level of privacy can be
provided by considering exposure coefficients. In [18], Hore et
al. addressed the problem of creating an optimal bucketization
scheme under efficiency aspects.

In contrast to the schemes described above, Aggarwal et al.
propose to separate a database according to privacy constraints
and to distribute it to different providers [1]. They propose
to use encryption if a privacy constraint cannot be met and
present three encryption schemes, namely one-time pad, deter-
ministic encryption, and random addition. They also propose
adding noise to enhance privacy of a distributed database.
Moreover, they define a composition as privacy preserving
if all privacy constraints are met. However, this definition

depends on the privacy constraints of the actual database.
It remains unclear what level of privacy can be provided if
the associations between deterministically encrypted attribute
values are not hidden.

Kantarcioglu and Clifton showed in [19] that classical cryp-
tographic notions are not applicable to encrypted databases
under practical constraints because in general it is infeasible to
realize a database that complies with these notions. Therefore,
they define new notions and propose an encrypted database
with hardware support. In [2] Amanatidis et al. consider
searchable encryption from a provable-security methodology
point of view. They propose an encryption scheme capable
of efficient exact match and range queries while providing
provable security. In [3], Bellare et al. propose a new security
notion called PRIV. In contrast to our notion, a PRIV-secure
database provides provable privacy only if the plaintext is
drawn from a space of high min-entropy. They emphasize
that the proposed schemes enable sublinear search complexity
which is important for databases to enable fast query process-
ing.

B. Cryptography

In this Section we discuss cryptographic methods, namely
Multiparty Computation, Homomorphic Encryption, and Pri-
vate Information Retrieval which can in principle solve all
the privacy and security problems outlined in Section I.
These methods may be applicable in special cases. In general,
however, the complexity of these methods cancels the benefits
of outsourcing.

1) Multiparty Computation:
There are cryptographic solutions for two or more parties
cooperatively computing a certain function over a set of
data without any party learning anything about the input of
other parties except what is learned by the output. Using an
interactive protocol, these secure multiparty computations [7],
[13] can thus solve all computation related privacy problems.
The problem is that for each party, the computation cost is
higher than computing the whole function on the complete
input without any other party. This makes the concept of
multiparty computation for outsourcing services too expensive
and in fact pointless if the client is the only one with private
input.

2) Homomorphic Encryption:
There are encryption schemes that produce ciphertexts with
homomorphic properties: Consider for example Textbook-
RSA [23]. Multiplying two ciphertexts and decrypting the
result yields the same result as decrypting the two ciphertexts
and multiplying the plaintexts. However, Textbook-RSA is not
considered as secure [5]. In 2009, Craig Gentry discovered
a fully homomorphic encryption that supports multiplication
as well as addition [12], and theoretically solves our privacy
problem: The client could simply use the proposed encryption
scheme, and the service provider could adapt its service to
work on encrypted data using this scheme. However, this is
not feasible since the size of the key scales with the size of
the circuit of the algorithm which the service calculates.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

48

3) Private Information Retrieval:
Cryptography offers a method to retrieve information from
an outsourced database without the server learning anything
about the information queried [11]. This is a special case
of oblivious transfer [25]. However, these methods are also
infeasible in most cases: If the database server must not learn
anything about a query, the query issued to the database
must contain every cell. Otherwise the server learns which
cells do not contribute to the result of the query, and thus
learns something about the result set, if no special-purpose
hardware is involved [19]. The need to iterate over every cell
for every query execution makes private information retrieval
impractical in most cases.

III. REQUIREMENTS

In this chapter we discuss the requirements of a solution
for the privacy problems inherent to most services. Basically,
solutions for the presented problem should provide provable
security and practicability. While there are solutions that pro-
vide either provable security or practicability (cf. Section II),
there is a lack of solutions that provide both.

A. Requirement 1: Provable Security

Formal notions and proofs are provided for cryptographic
methods. While providing security in the sense of classical
cryptography is infeasible for nontrivial services (e.g. services
more complex than pure storage services), solutions for the
privacy problem described in Section I should provide prov-
able security. This means that we need a formalization of the
level of privacy provided. Furthermore, we need to prove that
our solution provides this level of privacy (fulfills the formal
notion). A level of privacy one wants a service to provide is
for example that an adversary cannot learn relations between
attribute values of an outsourced database (cf. Section V).

B. Requirement 2: Practicability

There are cryptographic solutions for all problems men-
tioned in Section II. However, in most cases they are inappli-
cable due to their complexity. We strive for solutions that are
practical and do not cancel the benefits of outsourcing. Also
the provided level of privacy has to be easy to understand,
since this is vital to the acceptance of the solution.

client application

client

service

server

Fig. 1. System and deployment view of a client application deployed on a
client machine invoking a service deployed on a server.

IV. SEPARATION OF DUTIES

In order to reduce the information a single provider can
learn, we propose to combine the design pattern Partitioned
Application [20] with the Need to Know Principle [27] and
apply it to services. Partitioned Application is a security design
pattern that suggests to split a large monolithic application
into several parts and to restrict the privileges of each part
individually. The Need to Know Principle originates from the
intelligence service area and suggests to allow access to the
data needed, and to deny access to all other data. For services,
this means separating a service with respect to its algorithms
and data structures and deploying each part on a different
server. Each part only gets the data needed to fulfill its duty.

Consider for example a route planning service. This service
can be separated into a maps part and a route optimization
part. A client using this service can get the maps required
for his route, extract the graph data, and send it to the route
optimization part, which does not need the names of the
locations, but the graph representation of the map to find
the cheapest way. With this separation, the service provider
does not necessarily learn the location of departure and the
destination of the client.

Assumptions about the server’s capabilities (like limited or
no storage) and the application of well-understood efficient
cryptographic methods result in provable and easy to under-
stand security guarantees assuming the adversary only has
access to one server. If the separation respects the algorithms
and data structures of the service the efficiency of the overall
service can be conserved with little overhead. Therefore Sep-
aration of Duties can be a solution for the privacy problem
of services that fulfills both requirements from Section III. As
a side effect, since the code of the service is partitioned and
distributed as well, this can also impede software piracy.

Separating a service (c.f Figure 1) into different parts can
be done in two ways which we term serial and parallel. We
will explain with the help of examples of outsourced databases
how a service can be separated. While these separations for
themselves in general does not offer an additional level of
privacy, they allow us to deploy them on different servers and
to apply cryptographic methods like encryption and provide
a level of privacy that can be sufficient while maintaining
scalability. Note that the parts even can be deployed on servers
of different infrastructure providers.

In the remainder of this Section, we will present serial and
parallel separation, and discuss the security implications of
these separations. In Section VI we provide an example for a
separated database which offers privacy due to the separation
and the applied cryptographic methods.

A. Serial Separation

If a service is separated into two (or more) parts and a newly
introduced requiring interface of the first part is connected to
a newly introduced providing interface of the second part then
we call this serial separation (cf. Figure 2). This separation is
transparent to the client if the providing interface on the first
part does not change.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

49

client application

client
service

part 1

server1

part 2

server2

Fig. 2. System and deployment view of a serial separation of a service

client application client database adaptor

client

database service

server

Fig. 3. An example for a serial separation: The architecture of a secure
outsourced database proposed in [14]. The adaptor provides and requires a
standard SQL interface. The overall database service consists of the database
service on the server and the adaptor on the client.

Consider for example the architecture of the outsourced
database proposed in [14] (cf. Figure 3). The database service
is split into two parts: The database part is deployed on a server
and the adaptor part is deployed on the client. A sequence
diagram for a query is depicted in Figure 4. The adaptor
translates queries from the client application to match the
scheme of the encrypted database of the database service. The
adaptor then decrypts the results, eliminates false positives,
and returns the results to the client application.

With serial separation, in order to be connected the com-
ponents or the servers the components are deployed on have
to be aware of each other. If this is a potential security risk,
since it elevates the likelihood of malicious cooperation. This
can be avoided by using anonymizing proxies. However, since
the first part of a service has a requiring interface, it knows
that there is a second part somewhere.

B. Parallel Separation

If a service is separated into two (or more) parts which are
connected in parallel to an adaptor component or the client
application we call this parallel separation. In order to be
connected, the parts of a serially separated service or the
servers the parts are deployed on have to be aware of each
other. With parallel separation, this is not necessary. However,
for such a separation to be transparent to the client application,
an adaptor has to be deployed. Figure 5 shows a parallel
separation with an adaptor component deployed on a third
server. This adaptor can be as well deployed on the client’s
machine.

Consider for example the architecture depicted in Figure 6.
Here, the database indices are outsourced to another compo-
nent deployed on a separate server. In order for this separation
to be transparent to the client, an adaptor component is
deployed on the client’s machine. The overall service consists
of the adaptor, the database indexing service and the database
service. The adaptor or the client application has to call both,
the indexing service and the database service in order to

client application client database adaptor database service

query

coarse query

coarse results

decrypt results, fine-grained query execution

results

Fig. 4. Sequence Diagram for a query in the serial separated database. The
adaptor translates queries from the client application to match the scheme of
the encrypted database of the database service decrypts the results and returns
them after removing false positives to the client application.

client application

client

service

adaptor

part 1

part 2

server1

server2

server3

Fig. 5. System and deployment view of a parallel separation of a service, and
an adaptor. The composition structure and the deployment relationship may
cross each other. Consider the adaptor deployed on the client. This is not in
conflict with UML and conceptionally sound, as long as the inner components
are bundled by an assembly where inner components remain visible, exactly
for the reason of possibly distributed deployment.

execute a query. In Figure 7 a sequence diagram for a query
is depicted. A client calls the adaptor. The adaptor calls the
indexing service and then queries the database using the results
from the indexing service. Then, it returns the result from the
database service to the client application.

Parallel separation can reduces the likelihood of malicious
collaboration. The components do not have to be aware of each
other, and the adaptor can be deployed on the clients’ machine.
However, parallel separation of services may be harder to

client application adaptor

client

indexing service

database service

server1

server2

Fig. 6. An example for a parallel separation: The overall database service is
separated in an indexing service and a database service deployed on different
servers. An adaptor deployed on the client’s machine provides a standard SQL
interface to the client application.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

50

achieve since it requires a new component and can require
an adaption of existing components and the calling party as
well. This may be counterintuitive for software engineers.

C. Security of Separations of Duties

Separating a service does not enhance the security in
general. Consider for example the route planning service from
the beginning of this Section. If the route optimization part can
match the input graph unambiguously to an area, privacy is
lost.

However separating a service allows to restrict the privilege
of individual parts, or apply cryptographic methods that also
can be seen as a restriction of privilege. If the route optimiza-
tion service does not get graph data which is unambiguously
mappable (e.g. noisy data), intuitively there is a privacy gain.

V. SECURITY PROPERTIES

For cryptographic methods, there are security notions that
formally describe the security provided by these methods.
Classical cryptographic security notions are inspired from
indistinguishability. For example, an encryption scheme is con-
sidered secure if two different ciphertexts are indistinguishable
for an adversary. If an adversary is given a plaintext, the
encrypted plaintext and another ciphretext, she should not
be able to relate one of the two given ciphertexts to the
plaintext correctly with a probability significantly greater than
1
2 . Otherwise the encryption scheme is considered insecure.
This is a very strong notion. It implies, that a ciphertext yields
no information about the plaintext.

However, classical style cryptographic notions are not appli-
cable in a Service scenario under practical constraints: If you
transfer indistinguishability-inspired notions to a Service sce-
nario, you would want the server not to be able to distinguish
between two different sets of data sent to the service. Neither
would you want the server to gain information about the input
from an execution of the service (to be able to distinguish
two executions of the service). For Database as a Service,
it is neither possible to obtain database indistinguishability
nor query indistinguishability under practical performance
constraints [19].

client application adaptor indexing service database service

query

getIndices(value)

indices

getRows(indices)

rows

result

Fig. 7. Sequence diagram for a query on an example of a parallel separated
database service: The client queries the adaptor, which calls the indexing
service for the indices needed for the query of the database.

To provide provable security, we need a formulation of the
level of security we want to provide. In order to be applicable
in a service scenario, we strive for cryptographic security
notions that are weaker than classical notions, but provide a
sufficient level of protection:

Consider a system that hides relations between attribute val-
ues while allowing attribute values itself to leak. Such a system
would not considered as secure by classical cryptography, but
the level of privacy it provides can be sufficient. In some cases
it may be even sufficient to allow to leak that an arbitrary value
of an attribute is related to k distinct rows in the database This
is inspired from the anonymity property k-anonymity [8], [24].
As the level of privacy provided by hiding relations is easy
to understand, it is not trivial to formalize and is out of the
scope of this paper. However, formal security notions are in
the scope of our work (cf. [16]).

Note that there are different levels of privacy between no
security and perfect security. These levels in general cannot
be compared to each other, since they form a half order. For
example, you cannot compare the levels of privacy provided
by hiding relations to the level of privacy provided by hiding
attribute values.

Hiding relations, but allowing attribute values to leak is
clearly weaker than database indistinguishability [19], yet
achievable with reasonable overhead. In the next Section we
will present an example for a separated database that hides
relations.

VI. EXAMPLE

In Section IV we introduced parallel and serial separation
of a service and provided examples. While these separations
do not provide an additional level of privacy in general, they
allow us to apply cryptographic methods while maintaining
scalability. In this Section we provide an example for a
separated database that offers privacy due to the separation
and the applied cryptographic methods.

Consider the toy CRM database depicted in Figure 8 con-
taining the names, surnames and bank account numbers of
individuals. We want to outsource this database without an

row name surname bank account
1 Alice Smith 573535635
2 Bob Smith 436343346
3 Alice Jones 343462624
...

...
...

...

Fig. 8. An toy example of a CRM database.

adversary learning the relations between the attribute values
(cf. Section V). For example, we allow an internal adversary
to learn that our database contains a tuple with the name value
“Alice”, but we do not want the adversary to learn that there
is a tuple in the database with the name value “Alice” and the
surname value “Smith”. Additionally, one may want to hide
the number of occurrence of attribute values. For example, we
may want to hide that the attribute value “Alice” occurs two

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

51

row ENCprob(name, surname, bank account)
1 ENCprob(Alice, Smith, 573535635)
2 ENCprob(Bob, Smith, 436343346)
3 ENCprob(Alice, Jones, 343462624)
...

...

Fig. 9. The toy CRM database from Figure 8 with tuples encrypted
probabilistically.

times in our database. In this database, we want to be able to
search by name and surname values, but we never search by
the bank account number. Furthermore, we only want to be
able to execute exact match queries efficiently.

Creating explicit index tables for the attributes “name” and
“surname” allows (cf. Figure 10) to apply encryption to the
original database. These indices can either be created bit by
bit if the database is empty in the beginning, or in one step
by the client before the database gets outsourced. In this
example we propose to apply probabilistic encryption on tuple
level. Figure 9 depicts the resulting table. Here, the tuples
are encrypted probabilistically with ENCprob. The attribute
values can only be read with the appropriate encryption
key. Of course, this prevents the execution of most queries.
However, exact match queries still can be executed by using
the previously created index tables (cf. Figure 10). Note that
efficient execution of other queries e.g. range queries or sum
and avg aggregates can be provided with more sophisticated
index structures [1], [14]. For the simplicity of this example,
we focus on exact match queries.

If the index tables and the encrypted CRM table are
deployed on the same server, attribute value relations may
still leak even if the values in the rows column are encrypted
(cf. Figure 12). An adversary who has access to logs can infer
that rows often queried successively are related. Therefore
we deploy each index and the relations database on different
servers. Figure 11 depicts the system and the deployment view
of the resulting database service. The overall service consists
of the adaptor deployed on the clients machine, the indices
and the relations database.

To hide the number of occurrence of individual attribute
values, the entries in the rows column can be padded to a
fixed length and encrypted probabilistically (cf. Figure 12).

Note that search time for exact match queries for this
database system is still sublinear.

name rows
Alice 1, 3
Bob 2

...
...

(a)

surname rows
Smith 1, 2
Jones 3

...
...

(b)

Fig. 10. Separated indices for the attributes name and surname of the database
in Figure 8

client application adaptor

client

name index

surname index

attribute value database

server1

server2

server3

Fig. 11. Structural and deployment view of our separated CRM database.
The indices are deployed on separate servers as well as the encrypted attribute
values database. An adaptor deployed on the clients’ machine provides a
standard SQL interface to the client application. The overall service consists
of the indices, the adaptor and the attribute values database.

name rows
Alice ENCprob(1, 3)
Bob ENCprob(2)

...
...

(a)

surname rows
Smith ENCprob(1, 2)
Jones ENCprob(3)

...
...
(b)

Fig. 12. Encrypted separated indices for the attributes name and surname
of the database in Figure 8. The first column contains the attribute value, the
second column contains a probabilistically encrypted list of the rows where
the attribute values occur in the original database.

Consider for example the query:

query := SELECT * FROM table
WHERE name = "Alice"
AND surname = "Smith"

A sequence diagram for this query is depicted in Figure 13.
After receiving this query the adaptor has to get the appropriate
tuple IDs from the indices. These queries can be executed in
parallel:

subquery1 := SELECT rows FROM name index
WHERE name = "Alice"

subquery2 := SELECT rows FROM surname index
WHERE surname = "Smith"

After decrypting the results, the adaptor gets the tuple IDs 1
and 3 from the name index and the tuple IDs 1 and 2 from
the surname index. The client can intersect the two id sets and
query the attribute value database for the appropriate tuples:

get tuples := SELECT * FROM
attribute value database
WHERE row = 1

After decrypting the result, the adaptor returns it to the client
application. Note since the adaptor is deployed on the client’s
machine, the server does not need the encryption keys, and
relations between attribute values are hidden assuming an
adversary only has access to one server.

This example shows that it is possible to separate a database

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

52

client application adapter name index surname index attribute values database

query

subquery2

subquery1

result2

result1

decrypt and intersect results

get tuples

tuples

decrypt tuples

result

Fig. 13. Sequence diagram for a query in the separated database. After
receiving a query from the client application, the adaptor queries the indices
for tuple IDs, then the attribute value database and returns the decrypted
results to the client application.

and to apply cryptographic methods in order to hide relations
between attribute values. For additional levels of privacy
further methods may be used. For example dummy queries can
shroud the frequency distribution of attribute values involved
in queries. Deterministic encryption of the keywords of the
indices still allows for efficient execution of exact match
queries, but can hide even single attribute values.

VII. ASSUMPTIONS AND LIMITATIONS

For our approach we need some assumptions.
We assume that adversaries cannot solve problems in feasi-

ble time for which no efficient algorithm has been found yet.
This is a reasonable assumption and broadly accepted.

We currently assume that the adversary is honest but cu-
rious. This means that the adversary does not change data
or influence calculations on the server, but just observes, and
tries to learn as much as possible. Consider for example a
system administrator who dumps data and tries to sell it. We
assume that the client can detect malicious behavior beyond
eavesdropping. This is reasonable since in most cases such
a behavior can be detected, for example by occasionally
comparing the output of the service to the expected output,
or by using hash codes for storage.

We also assume that adversaries only have access to one
server. This is also reasonable since the parts of the service
can be distributed to different servers or even different infras-
tructure providers. This makes malicious cooperation highly
unlikely.

VIII. FUTURE WORK

For future work we plan to investigate more complex index
structures that allow efficient execution of other types of
queries. We plan to evaluate different alternatives for databases

with respect to the level of privacy provided and the perfor-
mance of the overall system.

We also plan to investigate if and how Separations of
Duties can be applied to more complex services and how it
can enhance the privacy in other scenarios than outsourced
databases.

We also need formalizations of the level of privacy we
want to provide. We need security notions, that are easy to
understand, and achievable in a service scenario, yet provide
sufficient privacy guarantees.

We want to understand new methods such as adding noise or
dummy data that intuitively enhance privacy (cf. the example
from Section IV-C). There has been some work [10], [26]
considering the effects of noise or artificial data. However,
the privacy aspects in a service scenario are still unclear.
Investigating the privacy properties of adding noise or dummy
data seems a promising direction.

IX. CONCLUSION

Privacy problems are inherent to services. Since classical
cryptographic security notions are not applicable to services,
we need new security notions which are easy to understand
and are weaker than classical notions but provide a sufficient
level of protection, and means to realize them. We presented
a reference architecture that we called Separations of Duties
which can potentially solve the privacy problems by i) sepa-
rating a service into several parts and restricting privilege of
individual parts and therefore ii) allowing the application of
practical cryptographic methods to single parts. We presented
an example of a separated database service and showed that
this service hides relations of attribute values while providing
efficient execution of exact match queries.

X. ACKNOWLEDGEMENT

We want to thank Prof. Jörn Müller-Quade and his research
group for their valuable input and fruitful discussions.

REFERENCES

[1] Gagan Aggarwal, Mayank Bawa, Prasanna Ganesan, Hector Garcia-
Molina, Krishnaram Kenthapadi, Rajeev Motwani, Utkarsh Srivastava,
Dilys Thomas, and Ying Xu. Two can keep a secret: A distributed
architecture for secure database services. CIDR 2005.

[2] Georgios Amanatidis, Alexandra Boldyreva, and Adam O’Neill.
Provably-secure schemes for basic query support in outsourced
databases. In DBSec, pages 14–30, 2007.

[3] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic
and efficiently searchable encryption. In CRYPTO, pages 535–552, 2007.

[4] Matt Blaze. A cryptographic file system for unix. In CCS ’93: Pro-
ceedings of the 1st ACM conference on Computer and communications
security, pages 9–16, New York, NY, USA, 1993. ACM.

[5] Dan Boneh, Antoine Joux, and Phong Nguyen. Why textbook elgamal
and rsa encryption are insecure (extended abstract), 2000.

[6] Alberto Ceselli, Ernesto Damiani, Sabrina De Capitani Di Vimercati,
Sushil Jajodia, Stefano Paraboschi, and Pierangela Samarati. Modeling
and assessing inference exposure in encrypted databases, 2005.

[7] David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty uncon-
ditionally secure protocols. In STOC ’88: Proceedings of the twentieth
annual ACM symposium on Theory of computing, pages 11–19, New
York, NY, USA, 1988. ACM.

[8] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti, and
Pierangela Samarati. k-anonymity. pages 323–353, 2007.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

53

[9] Ernesto Damiani, S. De Capitani Vimercati, Sushil Jajodia, Stefano
Paraboschi, and Pierangela Samarati. Balancing confidentiality and
efficiency in untrusted relational DBMSs, 2003.

[10] Josep Domingo-Ferrer, Francesc Sebe, and Jordi Castella-Roca. On the
security of noise addition for privacy in statistical databases. In Privacy
in Statistical Databases 2004, pages 149–161. Springer, 2004.

[11] William Gasarch. A survey on private information retrieval. Bulletin of
the EATCS, 82:72–107, 2004.

[12] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
STOC ’09: Proceedings of the 41st annual ACM symposium on Theory
of computing, pages 169–178, New York, NY, USA, 2009. ACM.

[13] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game. In STOC ’87: Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pages 218–229, New York, NY,
USA, 1987. ACM.

[14] Hakan Hacigümüs, Bala Iyer, Chen Li, and Sharad Mehrotra. Executing
SQL over encrypted data in the database-service-provider model. In
Proceedings of the 2002 ACM SIGMOD international conference on
Management of data, pages 216–227. ACM, 2002.

[15] Hakan Hacigümüs, Bala Iyer, and Sharad Mehrotra. Providing database
as a service. In ICDE ’02: Proceedings of the 18th International
Conference on Data Engineering, page 29, Washington, DC, USA, 2002.
IEEE Computer Society.

[16] Christian Henrich, Matthias Huber, Carmen Kempka, Jeorn Mueller-
Quade, and Ralf Reussner. Technical report: Secure cloud computing
through a separation of duties. https://sdqweb.ipd.kit.edu/huber/reports/
sod/technical report sod.pdf, 2010.

[17] Christian Henrich, Matthias Huber, Carmen Kempka, Jörn Müller-
Quade, and Mario Strefler. Towards secure cloud computing. In
Proceedings of the 11th International Symposium on Stabilisation,
Safety, and Security of Distributed Systems (SSS 2009), 2009.

[18] Bijit Hore, Sharad Mehrotra, and Gene Tsudik. A privacy-preserving
index for range queries. In VLDB ’04: Proceedings of the Thirtieth
international conference on Very large data bases, pages 720–731.
VLDB Endowment, 2004.

[19] Murat Kantarcioglu and Chris Clifton. Security issues in querying
encrypted data. Technical report, 2004.

[20] Darrell M. Kienzle, Matthew C. Elder, Ph. D, Ph. D, David Tyree, and
James Edwards-hewitt. Security patterns repository, version 1.0, 2006.

[21] NIST. NIST - cloud computing. http://csrc.nist.gov/groups/SNS/
cloud-computing/, 2009.

[22] Sinai Pearson. Taking account of privacy when designing cloud
computing services. HP Laboratories, 2009.

[23] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21:120–126, 1978.

[24] Latanya Sweeney. k-anonymity: A model for protecting privacy. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
10(5):557–570, 2002.

[25] Wen-Guey Tzeng. Efficient 1-out-of-n oblivious transfer schemes with
universally usable parameters. IEEE Trans. Comput., 53(2):232–240,
2004.

[26] Jonathan Ullman and Salil Vadhan. PCPs ans the hardness of generating
synthetic data. Technical report, 2010.

[27] H. Wedekind. Ubiquity and need-to-know: two principles of data
distribution. SIGOPS Oper. Syst. Rev., 22(4):39–45, 1988.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

54

Architectural Design with Visualization Patterns
Markus Knauß

Institute of Software Technology, Software Engineering Research Group
University of Stuttgart, Germany

knauss@informatik.uni-stuttgart.de

Abstract—The design of the architecture of a software is a
crucial step in the development process. The architecture defines
the components of the software and the functions and respon-
sibilities of each component. Also, the architecture determines
the maintainability of the software, and the techniques that are
used in the implementation. Software architecture visualizations
support the architect when she designs the software because
they facilitate communication, analysis, and developmentof the
architecture. Unfortunately, no visualization is available that
allows for efficient visualization of a software architecture while
the architecture is designed.

This paper introduces NOTAV IS. A visualization concept that
claims to efficiently support the design of a software architecture.
NOTAV IS will provide a visualization that can be used as a
medium for efficient communication about an architecture, and
that is helpful in architecture analysis and development.

Keywords-software architecture; architecture visualization; ar-
chitecture design

I. I NTRODUCTION

Designing the architecture of a software is a crucial step
in the software development process. The architecture defines
the components from which the software is build, it decides
on the technologies that must be used for implementation, and
it determines the maintainability of the software. The design
of a software architecture is done by the software architect.

In order to efficiently design an architecture visualizations
are needed [23]. A visualization will support the analysis,
development, and communication of an architecture. When
designing a software architecture the architect develops a
mental picture of the architecture [1], but the architecture itself
is invisible. A visualization of this mental picture supports
the analysis of the architecture, because the reviewers share
a common picture of the architecture that is induced by the
visualization [8]. Also, the visualization supports the develop-
ment of the architecture, because additions and modifications
to the architecture become visible. In addition, a visualization
serves as a medium for communicating an architecture to their
stakeholders, e.g. developers and project managers.

Therefore, visualizations are needed that efficiently support
the architect when she designs an architecture, but unfor-
tunately currently available and used visualizations do not
support the architect when she designs an architecture. That is
because existing visualizations are not integrated in the design
process, the widely used UML diagrams do not efficiently
support the design of an architecture, and the frequently used
ad-hoc architecture visualizations are of little use for the
further software development.

Existing architecture visualizations are not integrated in the
design process. Architecture visualizations are created in one
step after the architecture is designed, but the architecture
design process is iterative, and an architecture is developed
in several ever-changing directions, e.g. top-down, bottom-up,
inside-out, or outside-in [20]. While an architecture is designed
changes are common, but changes to visualizations often
destroy them, e.g. the layout of the symbols. Visualizations
typically do not define methods and tools that support the iter-
ative, change-intensive design process. Therefore, architecture
visualizations are not integrated in the design process.

UML diagrams are widely used for visualizing an archi-
tecture, but they do not efficiently support the design of an
architecture. First, UML doesn’t define a method that will
allow the architect to efficiently turn his mental picture of
the architecture into a UML diagram representing her mental
picture. Second, most of the UML diagrams require that
implementation details are known, e.g. the methods of classes.
When designing an architecture this details are initially of no
importance. Third, UML doesn’t provide a single overview
of an architecture because the elements of an architecture are
scattered over different diagrams whose relationships aren’t
obvious. For instance, architectural structurces like compo-
nents, their interfaces, and their deployment are scattered
over the the component, the class, and the deployment dia-
gram. Fourth and finally, UML doesn’t support the effective
visualization of modern architectural concepts like plug-in
frameworks for instance. This is why UML diagrams do not
efficiently support the design of an architecture.

When designing an architecture architects frequently use ad-
hoc architecture visualizations to overcome the shortcomings
of UML [6]. Unfortunately, the ad-hoc visualizations are of
little use for the further software development. The informal
symbols that are used in ad-hoc visualizations have no obvious
connection to the source code, therefore they are of little
use for the later implementation. Ad-hoc visualizations don’t
serve well as communication medium, because the meaning
of the symbols is not defined, and therefore the architect must
describe their meaning to any stakeholder. At last, ad-hoc visu-
alizations are of little use for the project management, because
the missing connection to the source code makes it hard to
use the visualization as a basis for planning and controlling
the implementation phase. Thus, ad-hoc visualizations areof
little use.

Although visualizations are needed for efficient design of a
software architecture, actually there is no visualizationin use

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

55

Fig. 1: The software architecture design process ofNOTAV IS

or available that efficiently supports the architect while she
designs a software architecture. That is because visualizations
are not integrated in the architecture design process, the widely
used UML diagrams are unsuitable to support the design of
an architecture, and ad-hoc visualizations are of little use for
the further software development.

This paper presents theNOTAV IS visualization concept. It
provides a method for efficient visualization of the mental
picture of an architecture that the architect builds when she
designs the architecture. This is done by combining design
decisions, architectural styles and patterns, and architecture vi-
sualizations. In order to support the method,NOTAV IS defines
a visualization tool and a graphic notation. The visualization
tool complements the architecture design process and allows
for an iterative visualization of an architecture while it is de-
signed. The graphical notation is derived from typical elements
of ad-hoc architecture visualizations, and is therefore easy to
comprehend. Though it is derived from ad-hoc visualizations,
it links to the source code, and therefore will be useful in later
software development.

The structure of this paper is as follows. The next section
introduces theNOTAV IS concept.NOTAV IS comprises a vi-
sualization method, a graphical notation, and a visualization
tool. Following this, section III shows an example of how
NOTAV IS is used in practice. Section IV shows the relations of
NOTAV IS to the areas of architecture visualization, architecture
documentation, and visualization. This section also compares
and contrastsNOTAV IS with existing architecture visualization
approaches. Finally, in section V a conclusion is drawn and
an outlook to future work is given.

II. T HE NOTAV IS CONCEPT

The NOTAV IS concept comprises three parts. These parts
are a visualization method, a graphical notation, and a vi-
sualization tool. The visualization method is based on the
architecture design process. The graphical notation is based on
ad-hoc visualizations, design rules for efficient visualizations,
and the connection to the implementation. The visualization
tool is developed with respect to design rules for efficient
visualization tools. All these parts are described in detail in
the sections that follow.

Fig. 2: Refinement of a usage relationship

A. Visualization Method

The visualization method ofNOTAV IS supports the archi-
tect in turning her mental picture of the architecture into a
visualization and in refining the visualization in order to be
useful for later development phases. The method is based on
the architecture design process, the visualization of the mental
picture, and the refinement of usage relationships between
components.

The architecture design process is iterative [24]. In the
beginning the architect takes the specified requirements that
must be realized by the software that is to be developed.
Her job is to design an architecture that allows for realizing
the specified requirements [3]. In order to design a suitable
architecture the architect first formulates a design problem,
e.g. what architecture will allow for the implementation ofa
graphical user interface. For the design problem she decides on
a design solution. For instance, the graphical user interface is
implemented using the model-view-controller pattern (MVC).
The design solution in turn leads to an architecture, continuing
with the example this is a MVC architecture [15]. At last,
in the NOTAV IS architecture design process the architect
visualizes her mental picture of the architecture, namely the
MVC architecture. This process is repeated until all design
problems are satisfactorily solved, and the architecture allows
for realizing the specified requirements [15]. Figure 1 shows
the described design process.

A crucial step in the design process is the visualization of
the architect’s mental picture of the architecture [23].NOTAV IS

supports the architect in visualizing her mental picture by
providing visualization patterns. Design decisions an architect
takes are based on her intuition, design methods she knows,
and her experience [15], [19]. Reference architectures, archi-
tectural styles and patterns, and design patterns, are called
solution patterns. Solution patterns are part of design methods
the architect knows and are part of her experience. Therefore,
when solving a design problem an experienced architect often
uses solution patterns. These solution patterns modify the
designed architecture, and in turn modify the architect’s mental
picture of the architecture [1], [15]. To visualize her modified
mental picture the architect selects the matching visualization
pattern from the visualization pattern catalog ofNOTAV IS and
adds it to the visualization. A visualization pattern is simply
a visual representation of a solution pattern.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

56

TABLE I: NOTAV IS’ symbols

Symbol Semantics Symbol Semantics

Component Part of a software that realizes a
function of the software and is
usable through an interface.

Usage relation Shows a relationship between two
components. The arrow points to
the used component.

Multiple
component

A component that exists multiple
times in different forms. Inverse usage

relation

Shows an inverse relationship
between two components. For
instance, this is a callback relation.
The using component defines an
interface that is implemented by
the used component. To be used
the component that implements the
interface must register with the
component that defines the
interface. The dot of the arrow
points to the component that
defines the interface, and the arrow
points to the component that
implements the interface and is
used.

Nested
component

A component that is nested into
another component. The nested
component can be used through the
interface of the nesting component,
or it can share an interface with
the nesting component.

Concept, Style,
Pattern

Encloses components that are part
of a concept or an architectural
style or pattern.

Application
boundary

A software application has
boundaries. Inside these boundaries
the application’s components are
placed. Relationships crossing the
application boundary are
dependencies to the environment.

In order to be useful for the later development phases the
architecture visualization must link to the elements of the
source code, e.g. classes, interfaces, or methods. The link
is established by refining the usage relationships between
the components and the components and the environment.
When a relationship is refined the syntactical interface is
defined. The syntactical interface comprises the parts of the
implementation that make up the relationship. For instance, if
Java is used the syntactical interface of a relationship between
two components is defined by designing the Java interface that
is provided or used by the components respectively. Figure 2
shows the refinement of an inverse usage relationship between
two components.

B. Graphical Notation

The architecture of a software is its structure that com-
prise components, the externally visible properties of those
components, and their relationships to each other and to the
environment [3]. Also, components can be part of logical
concepts, and of course they are part of a software application.

A component encapsulates functions, data, and possibly
other components. It realizes parts of the functionality ofthe
software. The encapsulated functions, data, and components
can be used through interfaces that the encapsulating com-
ponent provides. If one component uses another component
a relationship between them is established. All components
of a software together make up the application in which the
requirements of the stakeholders are realized.

A logical concept in an architecture is, for instance, a
solution pattern. Components that make up a solution pattern,
e.g. the model, view, and controller components in a model-
view-controller pattern, are part of the logical concept model-
view-controller.

NOTAV IS provides symbols to visualize the elements of an
architecture. Table I shows the symbols and describes the

meaning of each symbol. The symbols were derived from
ad-hoc visualizations because they are familiar to architects,
widely used, and easy to use. Typically rectangles and arrows
are used in ad-hoc visualizations [6]. Iconic representations of
real-world objects are also frequently used in ad-hoc visualiza-
tions. Therefore,NOTAV IS allows to add icons to component,
application, and concept symbols to give the viewer a hint of
the functions and responsibilities of the visualized element.

For the visualization of the refined relationships between
components and between components and their environment
UML diagrams are used. UML diagrams were chosen because
they are familiar to the developers and they directly map to the
source code, e.g. a class in a class diagram represents a class in
the source code. Also, UML diagrams integrate theNOTAV IS

visualization with the UML diagrams that are regularly used
in the architecture documentation [6].

An efficient visualization allows the viewer to quickly catch
on the meaning of the visualization and its symbols. The com-
prehension process is supported by colors and by arranging
the symbols in a meaningful way [25].NOTAV IS provides
color schemes that can be applied to the used symbols. The
color schemes define colors that are easily distinguishable.
Also, NOTAV IS defines layout rules for the arrangement of
the symbols. There are two kinds of layout rules: Inter-symbol
layout rules, and visualization patterns.

Inter-symbol layout rules define how symbols are arranged
relative to each other. First, symbols do not overlap each other
except for the concept symbol. Second, the lines of symbols
should not adjoin to make them distinguishable except for
nested components that share an interface with their nesting
component. Third, symbols are arranged with respect to their
relationships. Relationships should flow from top to bottom
and from left to right. This arrangement matches the typical
reading direction. Finally, bends of relationships are always
right-angled, and crossings should be avoided.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

57

Fig. 3: The user interface of theNOTAV IS tool

Visualization patterns are graphical representations of a
solution pattern. For instance, the visual representationof the
model-view-controller pattern. Therefore, visualization pat-
terns define the symbols and their arrangement to be used
when a solution pattern is visualized. When a visualization
pattern is added to the existing visualization the layout of
the visualization pattern is preserved. The visualizationpattern
itself is treat like a single symbol that is positioned according
to the inter-symbol layout rules in the visualization.

The functions, responsibilities, roles, and meanings of the
symbols are documented. To support the architect in docu-
menting the elements of the architecture she designs,NOTAV IS

defines documentation templates. The templates define the
content of the documentation for a symbol. For instance, fora
component the sections name, role, function, responsibilities,
dynamic behavior, states, and references are defined. The
sections are either obligatory or optional. If a component
originated from a visualization pattern a documentation ex-
ample is provided along with the template. The example
documentation facilitates the documentation task becauseit
shows the architect how the documentation could look like
[18].

C. Visualization Tool

A visualization tool is also part ofNOTAV IS. The tool is
designed with respect to Shneiderman’s rules for the designof
efficient visualization tools [22]. Figure 3 shows a prototype of
the user interface (UI) of the tool. The elements of the UI are
described in the following paragraphs. Each of the described

elements is numbered, e.g.①. The description below refers to
that number.

The visualization panel① is the main element of the UI.
In this panel the architecture is visualized using the symbols
described in section II-B. The whole visualization can be
zoomed, and elements in the visualization can be refined by
using an element zoom function. The element zoom function
allows to vertically zoom in or out of a symbol, for instance
to refine a relationship or to hide nested components. The
element zoom takes place in the visualization. Surrounding
symbols that are not zoomed make place for the zoomed
elements. Figure 2 shows the principle of the element zoom
when refining a relationship.

The visualization pattern catalog② provides visualizations
for solution patterns. A visualization pattern can be inserted
into the visualization either by dragging or by double-clicking
on it. When the visualization pattern is inserted the currently
selected element is refined by the pattern. The visualization
tool manages the insertion of the visualization pattern by
rearranging the surrounding symbols to make room for the
added visualization pattern. Rearranging the symbols is done
in a way that preserves the existing layout as far as possible.

The toolbox③ provides a symbol palette, the color scheme
selector, a zoom function, and access to a bird’s-eye view on
the architecture. An architecture can be visualized freely, that
is, without using visualization patterns. Free visualization is
done by using the symbols from the symbol palette.

For each visualization pattern and for each symbol the
architect adds to the visualization it is assumed that it resulted

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

58

(a) (b) (c)

Fig. 4: Visualization of the architecture of JTodo withNOTAV IS

from taking a design decision. Therefore, additions to and
modifications of the visualization are recorded in a protocol
④. The protocol can be used for analysis and documentation
of the design decisions. The recorded design designs can be
combined and renamed. It is also possible to undo a design
decision. Actually, the undo mechanism thought about is very
simple. It just removes the undone design decision from
the protocol and all design decisions that were taken after
the undone one. By removing the design decisions from the
protocol all symbols that were added by the design decisions
are removed from the protocol too.

The documentation view⑤ shows the documentation of
the currently selected symbol. The documentation view is an
editor for structured documents. The structure of a document
is defined by the documentation template that is provided for
each symbol. If a symbol originated from a solution pattern
the role of the symbol and eventually its function is known.
Therefore, the documentation template of the symbol is filled
with an example documentation.

Additionally, the UI provides an architecture browser⑦.
This browser lists the symbols in the visualization with respect
to their nesting relationships. The to-do view⑥ lists items that
must be done to complete the visualization, e.g. refine a usage
relationship or document a symbol. To-do items are retrieved
from the meta model ofNOTAV IS that is beyond the scope
this paper.

III. E XAMPLE

This example shows the design of the architecture of JTodo.
JTodo is a software application that can be used for managing
to-do lists. The application is used in teaching Java program-
ming to undergraduate students. Therefore, the application
is simple and small, and it is implemented in Java. JTodo
consists of about 350 lines of code that are spread across 10
classes and interfaces respectively. Java Swing components are
used to implement the graphical user interface (GUI). The
implementation of JTodo contains some design patterns that
are typically used in Java desktop applications with a GUI.

The following sections describe the design decisions that
the architect took when she designed the architecture. The
description of the design process is top-down only to illustrate
the refinement of the visualization using visualization patterns.
The resultingNOTAV IS visualization is shown in figures 4
a–f. Elements in the text that reference elements in the
visualizations are printed initalics.

When the architect designed the architecture of JTodo she
first decided to structure the components using a layered style
[21]. This design solution is visualized using the visualization
pattern for the layered style (figure 4a).

Then the architect decided to structure the implementation
of the GUI according to the model-view-controller pattern
(MVC) [11]. The MVC pattern defines a model, view, and
controller component. All these components appear in multiple
forms, e.g. different views each one with its own model. In
order to visualize the design solution theUser interfacelayer
is refined with the visualization pattern representing the MVC
pattern (figure 4b).

Next, the event-handling mechanism is designed. TheCon-
troller components of the GUI realize the event handlers.
Each event handler is used from multiple places in the source
code. Therefore, the architect decides to implement the event
handlers using the action technique of Swing. Access to the
handlers is provided through aBroker component [4]. The
design solution is visualized using the visualization for the
Broker pattern (figure 4c).

TheApplication logiclayer is refined after the design of the
GUI is finished. The architect takes the decision to realize all
use cases in one component that is accessible through a façade.
The façade is realized as a singleton. The centralApplication
data modelcomponent is used to store the data with which
the application works. In order to visualize this design solution
the architect refines theApplication logiclayer by adding the
componentsUses casesand Application data modelto the
Application logic layer. TheUse casescomponent is refined
with the visualization patterns for the singleton and the façade
patterns (figure 4d).

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

59

(d) (e) (f)

Fig. 4: Visualization of the architecture of JTodo withNOTAV IS

After this step, the connection of the GUI data model with
the application data model is designed. The architect decides
to use the observer pattern. Therefore, she refines theDialog
modeland theApplication data modelusing the visualization
pattern for the observer pattern. The observer pattern overlays
the User interfaceand theApplication logic layer. Figure 4e
shows the visualization of this design solution.

At last, the architect designs thePersistence layer. She
decides to provide access to the persistence layer through a
façade. The implementation of the storage provider is defined
using the dependency injection pattern [10]. The architect
visualizes the design solution by refining thePersistence layer
using the visualization patterns for singleton, façade, and the
dependency injection pattern (figure 4f).

After this steps the components of JTodo and their re-
lationships are designed. In order to finish theNOTAV IS

visualization of the architecture the architect has to a) refine
all relationships, and b) document all symbols. After doing
this, the designed architecture for JTodo can be analyzed, it
can be documented, and it can be implemented.

The example showed the top-down direction of architecture
design only. If the design followed a bottom-up direction
components and solution patterns on a lower level of the
architecture are added to solution patterns or components on a
higher level. For instance, if at a low level an observer pattern
is used to connect two components these two components
can be added to the same layer or different layers of a
layers style solution pattern that is applied later at a higher
level. If the design direction is inside-out or outside-in the
existing elements of the architecture are connected with the
new elements.

IV. RELATED WORK

NOTAV IS is in the context of the topics software architecture
visualization for design, software architecture documentation,
the creation of efficient visualizations and visualizationtools,
and architecture design methods that use visualizations. Each
of these topics is briefly introduced and the relation toNO-
TAV IS is described in the sections that follow.

Today, many visualizations for software architectures exist.
The visualizations are needed to give the architect and the
stakeholders of the architecture a visible presentation ofthe
invisible architecture. UML diagrams are the most prominent
visualization for a software architecture. In contrast toNO-
TAV IS, UML doesn’t define a method to efficiently visualize
an architect’s mental picture of the architecture. Also, UML
doesn’t define a tool that allows for efficient step-by-step
development of an architecture visualization. At last, UML
does not define any rules for the presentation of an architecture
visualization, e.g. coloring or layout rules.

The Unified Process [14] and the architecture design meth-
ods Catalysis [9] and UML Components [5] are based on
the UML as graphical notation for visualizing an architecture
while it is designed. These approaches define how to design
an architecture.NOTAV IS in contrast doesn’t define how to
design an architecture. It defines how the mental picture
of an architecture is efficiently visualized regardless of the
process. The design methods define that UML is to be used
for visualization, but they do not define how to use UML
efficiently.

FMC (Fundamental Modeling Concepts) is an architec-
ture visualization approach that is more related toNOTAV IS.
FMC was developed by Keller and Wendt [16]. In FMC
an architecture is visualized using three distinct views: the

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

60

concept, block, and petri-net view. The visualizations support
the communication about a software architecture. Gröne [12]
enhanced FMC by adding conceptual patterns. Conceptual
patterns are used during the design of an architecture. Ad-
ditionally, Gröne defines sample visualizations for typical
architectures. Apfelbacher et al. [2] extended Gröne’s work
by adding a standard layout and layout rules for architecture
visualizations. In contrast toNOTAV IS, FMC doesn’t define
visualization patterns, and therefore doesn’t define a method
to support the architect in visualizing his mental picture of
the architecture. Also, documentation and refinement of the
elements of an architecture isn’t defined by FMC.

State of the art in software architecture documentation is
to use multiple views. The views that are used are defined
by the stakeholder’s viewpoints. The views complement each
other, and each one visualizes a special facet of the architecture
[7], [13]. NOTAV IS provides an overview of a software archi-
tecture. Therefore, aNOTAV IS visualization can be used as
one view of the architecture in an architecture documentation.
Through the refined relationships of the components aNO-
TAV IS visualization connects to other views, e.g. a static view
showing the classes of the software. Additionally,NOTAV IS

records design decisions and defines the documentation of the
elements in the architecture. Both, recorded design decisions
and the documentation of the symbols, can be reused in the
architecture documentation.

NOTAV IS builds upon concepts for the design of efficient
visualizations and visualization tools. Shneiderman provides
rules for efficient visualization tools [22]. Rules for goodlay-
out provides Wertheimer’s classic work on the Gestaltgesetze
[26]. Koning provides layout rules especially for architecture
diagrams [17]. Ware provides rules to create efficient visual-
izations [25]. All these rules are reflected in the visualization
method, the graphical notation, the visualization tool, and the
meta model ofNOTAV IS.

V. CONCLUSION AND FUTURE WORK

This paper introduced theNOTAV IS concept.NOTAV IS is
used to visualize a software architecture while it is designed.
The motivation forNOTAV IS is the lack of a visualization
concept that efficiently supports the architect in visualizing a
software architecture while she designs the architecture.The
NOTAV IS concept defines a visualization method, a graphical
notation, and a visualization tool in order to efficiently support
the architect in visualizing an architecture while it is designed.
The sections above described the parts of the concept in detail.

We claim thatNOTAV IS will contribute to the work of the
software architect and the scientific community a concept that
allows for efficient visualization of a software architecture
while it is designed. The concept will contribute the following
three main parts:

• Provide a method for efficient visualization of the mental
picture of a software architecture that the architect builds
when she designs the architecture.

• Provide a graphical notation that is designed according
to the rules for good visualization design, and that can

easily be understood by the stakeholders of the visualized
architecture.

• Provide a visualization tool that complements the archi-
tecture design process, and that allows for iterative archi-
tecture visualization while the architecture is designed.

Additionaly, NOTAV IS will support the documentation of
the architectural elements that are designed usingNOTAV IS.
Thus, NOTAV IS will add to exisiting architecture design,
visualization, and documentation approaches by providinga
concept for efficient visualization of a mental picture of an
architecture while it is designed.

More work has to be done to prove that the claims stated
above are true. First of all, the elements of theNOTAV IS

concept and their foundations must be developed and refined.
Among other things, these elements are the graphical notation,
the visualization tool and the pattern catalog. All this work is
underway.

The NOTAV IS concept must be evaluated after relevant
elements of the concept are finished. Two evaluation ap-
proaches are considered. One is to show thatNOTAV IS can
be used to visualize any architecture. The other is to prove
that NOTAV IS efficiently supports the architect in visualizing
her mental picture. For this purpose a controlled experiment
is planned. Participants in the experiment are told to visualize
an architecture that is known to them. The experiment will
try to answer questions about the supportNOTAV IS provides
for visualizing the architecture and the quality of the created
visualizations.

REFERENCES

[1] B. Adelson and E. Soloway. The Role of Domain Experience in Software
Design. IEEE Transactions on Software Engineering, SE-11(11):1351–
1360, 1985.

[2] R. Apfelbacher, A. Knöpfel, P. Aschenbrenner, and S. Preetz. FMC
Visualization Guidelines. http://www.fmc-modeling.org(last access:
08/26/2009).

[3] L. Bass, P. Clements, and R. Kazman.Software Architecture in Practice.
SEI Series in Software Engineering. Addison Wesley Longman, Inc.,
1998.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
Pattern-oriented Software Architecture - A System of Patterns. John
Wiley & Sons, Ltd., 1996.

[5] J. Cheesman and J. Daniels.UML Components: A Simple Process for
Specifying Component-Based Software. Addison-Wesley, 2000.

[6] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko. Let’s Goto the
Whiteboard: How and Why Software Developers use Drawings. In
Proceedings of CHI, pages 557–566, 2007.

[7] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R.Little,
R. Nord, and J. Stafford.Documenting Software Architectures: Views
and Beyond. Pearson Education, Inc., 2003.

[8] S. Diehl. Softwarevisualisierung.Informatik Spektrum, 26(4):257–260,
2003.

[9] D. F. D’Souza and A. C. Wills.Objects, Components, and Frameworks
with UML – The Catalysis Approach. Addison-Wesley, 1999.

[10] M. Fowler. Inversion of Control Containers and the Dependency
Injection Pattern. http://martinfowler.com/articles/injection.html (last
accessed: 04/15/2010), 2004.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

61

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns
- Elements of Reusable Object-oriented Software. Addison Wesley
Longman, Inc., 1995.

[12] B. Gröne. Konzeptionelle Patterns und ihre Darstellung. Dissertation,
Universität Potsdam, 2004.

[13] IEEE Std. 1471.Recommended Practice for Architectural Description
of Software-intensive Systems. IEEE Standards Association, 2000.

[14] I. Jacobson, G. Booch, and J. Rumbaugh.The Unified Software
Development Process. Addison Wesley Longman, Inc., 1999.

[15] R. Jeffries, A. A. Turner, P. G. Polson, and M. E. Atwood.The Process
Involved in Designing Software, chapter 8, pages 255–283. Lawrence
Erlbaum, 1981.

[16] F. Keller and S. Wendt. FMC: An Approach Towards Architecture-
centric System Development. InProceedings of the 10th IEEE Interna-
tional Conference and Workshop on Architectures for Software Systems,
pages 198–205, 1995.

[17] H. Koning. Communication of IT-Architecture. Dissertation, Universität
Utrecht, 2008.

[18] S. Krauß.Verfahren der Software-Dokumentation. Dissertation, Univer-
sität Stuttgart, 2007.

[19] P. Kruchten. Mommy, where do software architectures come from? In
Proceedings of the 1st Intl. Workshop on Architectures for Software
Systems, pages 198–205, 1995.

[20] J. Ludewig and H. Lichter.Software Engineering: Grundlagen, Men-
schen, Prozesse, Techniken. dpunkt.verlag GmbH, 2nd edition, 2010.

[21] M. Shaw and D. Garlan.Software Architecture: Perspectives on an
Emerging Discipline. Prentice-Hall, Inc., 1996.

[22] B. Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy
for Information Visualization. InProceedings of the IEEE Symposium
on Visual Languages, pages 336–343, 1996.

[23] S. Sonnentag. Expertise in Professional Software Design: A Process
Study. Journal of Applied Psychology, 83(5):703–715, 1998.

[24] O. Vogel, I. Arnold, A. Chughtai, E. Ihler, T. Kehrer, U.Mehlig, and
U. Zdun. Softwarearchitektur: Grundlagen, Konzepte, Praxis. Spektrum
Akademischer Verlag, 2009.

[25] C. Ware. Information Visualization - Perception for Design. Academic
Press, 2000.

[26] M. Wertheimer. Untersuchung zur Lehre von der Gestalt.Psychologische
Forschung, 4:301–350, 1923.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

62

Towards Simulative Environment for Early
Development of Component-Based

Embedded Systems
Marin Orlić

Faculty of Electrical
Engineering and Computing,

University of Zagreb,
Croatia

marin.orlic@fer.hr

Aneta Vulgarakis
Mälardalen Real-Time

Research Centre,
Mälardalen University,

Sweden
aneta.vulgarakis@mdh.se

Mario Žagar
Faculty of Electrical

Engineering and Computing,
University of Zagreb,

Croatia
mario.zagar@fer.hr

Abstract—As embedded systems become more and more com-
plex the significance of predictability grows. The particular
predictability requirements of embedded systems, call fora
development framework equipped with tools and techniques
that will guide the design and selection of system software.
Simulation and verification are two complementary techniques
that play a valuable role in achieving software predictability
already at early design stage. Simulation is scalable and can
be very useful in debugging and validating the system design.
Moreover, it can be used as a supplement to verification for
visualizing diagnostic traces produced by the verificationtool
and for rerunning counterexamples in cases when the verification
property is not satisfied.

In this paper we introduce an idea of a simulative environment
for early development of component-based embedded systems.
By using it, the designer can navigate and debug the design and
behavior of such systems at early stages of the system lifecycle.

I. Introduction

As the complexity of embedded systems grows their de-
velopment becomes more and more difficult. An appealing
approach to manage the embedded systems software com-
plexity, reduce time-to-market and decrease development costs
lies in the adoption of component-based development [1]. The
specific predictability demands of embedded systems, require
the designer to employ a framework equipped with tools and
techniques that can be applied to deal with requirements such
as dependability, timing, and resource utilization, already at
early-stage of development. Modeling, simulation and verifica-
tion play increasingly important roles in achieving predictabil-
ity, since they can help us to understand how systems function,
validate the design and verify some important properties.

Simulation validates the behavior of a system for one exe-
cution path. Being relatively inexpensive in terms of execution
time compared to verification, simulation is a valuable fault
detection technique in early stages of system development.In
general, it can be used to quickly verify a system prototype
for desired properties and behavior and it can contribute to
our studying of system design alternatives, in a controlled
environment. Moreover, with simulation one can explore sys-

tem configurations that are difficult to physically construct,
and observe interactions that are difficult to capture in a
live system. The ability of the simulation can be applied as
a complementary activity to verification, which covers the
exhaustive dynamic behavior of the system. A simulator can
be used for visualizing diagnostic traces generated by the
verification tool and for replaying counterexamples in cases
when the verification property does not hold.

In this paper we introduce a simulative environment for
development of component-based embedded systems. The
simulative environment allows the designer to navigate the
behavior of possibly complex and multilayered systems with
respect to time and resource consumption and check behavior
compliance to resource constraints. Here, we use the ProCom
component model for describing the architecture of our em-
bedded systems [2]. Additionally, we use the Remes dense-time
state-based language [3] for modeling resource-wise behavior
of ProCom components. Our main goal for the simulator
is to be developer-friendly and usable by system modelers,
engineers and developers with no prior knowledge of formal
verification methodologies and tools. Finally, our intent is to
present this environment to the user as a debugger with a
familiar interface that will reduce the user learning effort.

The remainder of the paper is organized as follows. Sec-
tion II reviews the ProCom component model and the associ-
ated behavioral model Remes needed to comprehend the rest
of the work. Section III introduces our simulative environment
and finally, Section IV discusses our and related approaches
and concludes the paper.

II. Preliminaries

A. The ProCom component model

The ProCom component model [4] is designed to address
the key requirements and modeling issues coming from the
embedded system domain. In particular, ProCom considers the
need for the design of a complete system consisting of both
complex and distributed functionalities on one hand, and small
low-level control-based functionalities on the other. Therefore,

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

63

ProCom is a hierarchical component model structured into two
layers: ProSys and ProSave. The upper layer, ProSys, serves
for modeling a system as a collection of active and distributive
subsystemsthat execute concurrently, and communicate by
asynchronous messages sent and received at typed output
and inputmessage ports. The lower layer, ProSave, models
the internal design of subsystems as interconnected passive
components with small functionality, whose communication
is based on the pipe-and-filter paradigm with an explicit
separation between data- and control flow. The former is
represented bydata ports, and the latter bytrigger ports. The
functionality of a ProSave component is captured by a set of
services, which may execute concurrently while sharing only
data, but no triggering. Components may be interconnected
by simple connections from output- to input ports or by
connectorsthat provide detailed control over data- and control
flow. A ProSave component can be activated by a special type
of construct,clock.

The ProSys and ProSave layer can be related to each other
only in the lowest level of a ProSys hierarchy, where a ProSys
component can be modeled out of ProSave components. For
more details, see [2].

B. TheRemes behavioral modeling language

The REsource Model for Embedded Systems Remes [3] is a
dense time state-based behavioral modeling language, which
is primarily intended to provide a basis for capturing resource-
constrained and timing behavior of embedded systems. It
introduces resources as first-class modeling entities thatare
characterized by their discrete (e.g., memory, access to external
devices) or continuous (like energy) nature.

For formal analysis purposes, Remes models can be trans-
formed into timed automata (TA) [5], or priced timed automata
(PTA) [6], depending on the analysis type. We use Remes for
modeling and (when translated to TA or PTA) for formally
analyzing, the behavior of ProCom component-based systems.

The internal behavior of an embedded component is de-
scribed by a Remes modethat can be eitheratomic (does not
contain submodes), orcomposite(contains submode(s)). The
discrete control of a mode is captured by acontrol interface
made up ofentry- and exit points, whereas the data transfer
between modes is done through adata interface. Similar to
other languages, each Remes mode may containlocal or global
variables that can be of types integer, natural, boolean, array,
or clock.

Assuming that a component consumes resources, its Remes

mode can be annotated with the corresponding resource-wise
continuous behavior. The consumption is expressed by the first
derivatives of the variables that denote resources, and which
evolve at positive integer rates.

The control flow is given byedges(i.e., a set of directed
lines) that connect the control points of (sub)modes. The
continuous behavior of a mode is captured bydelay/timed
actions and their execution does not change the current mode.
The discrete behavior is given by discrete actions (represented
as edge annotations), which execution changes the mode. A

discrete action can be executed only when the corresponding
booleanguard that prefixes the action body holds. A Remes
composite mode may containconditional connectorsthat
enable nondeterministic selection of one discrete outgoing
action to be executed, out of many possible ones. A mode
may also be annotated withinvariantsthat bound from above
the current mode’s execution time. For more details about the
Remes model, we refer the reader to [3].

III. A n idea for a simulative environment

Starting from a given specification of a system (architecture-
, behavior- and platform specification) we want to simulate
the system behavior, with respect to timing and resource
utilization. In order to achieve this goal we propose to build
a simulator that would be able to accept a model fed in
by a developer and allow the user to track the changes
in component behavior, component activation and resource
utilization. Ideally the user interface should be providedin
a fashion that the user is comfortable with, in order to avoid
the resistance associated with “learning yet another tool”.

A. The 2+1 view of a system

To prepare a specification of an embedded system, we
propose a three-fold view of the system. Architecture- and
behavior specification define the desired system, and the third
component - the platform specification, describes the execution
platform for the system. The first two models are typically
specified by the system designer, while the last one comes
from the platform designer and is a common artefact shared
between all systems or products based on the same platform.

Architecture specification comprises of systems, compo-
nents and their connections conforming to the ProCom com-
ponent model, and the behavior specification of the system
is specified with Remes models, where each Remes model is
corresponding to a ProCom component.

Platform specification declares available platform resources
– CPU, available memory, energy consumption etc., within
a platform profile. Once declared, resource consumption is
modeled within component behavior – the resources are ref-
erenced as variables that cannot be read, only incremented
and decremented. Platform profile also specifies constraints
over resources. We propose to define constraints as minimum,
maximum and average functions on either concrete resource
values or resource changes (differences), as defined by the
following grammar:

rc F (max | min | avg)

’(’ (resource| resource′) ’)’

(< | ≤ | = | ≥ | >) value

For example, the platform profile can define the constraints
for CPU and memory resources such as: max (CPU) <
200,max (mem) < 16384, to define memory size to 16 Ki
units and CPU usage to 200 units (or 200% usage, assuming
two available CPU cores). In case of available energy the
constraints could be: max (eng′) < 50,max (eng) < 15000,
to limit usage peaks to 50 units, with maximum total energy

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

64

platform designer system designer

create
platform

specification

create
architecture
specification

create
behavior

specification

Platform
Profile

ProCom
model

Remes model

intermediate
model

automated
configure
simulator

model

simulator

Fig. 1. Workflow steps involved in setting up the simulator

reserve of 15000 units. The choice of operators max, min and
avg allows tracking and detecting peaks and spikes, as well as
average resource usage.

To allow some degree of behavior parametrization, the
platform profile can also define values for constants declared
in Remes models. If a Remes model declares constants with
no values assigned, it is assumed that such constants will
finally be assigned values when a profile is added. This allows
component behavior to use platform-dependant constants to
declare resource usage, e.g. component initialization overhead.

During development of a system in compliance to a specific
platform profile, the profile can ideally be replaced with
another. Applying a new profile allows to check conformance
with constraints of a different platform configuration, or a
different platform version.

B. Generating the intermediate model

In order to prepare the simulation, the architecture- and
behavior specifications are combined to form an integral inter-
mediate model of the system. The purpose of the intermediate
model is similar to that of object files obtained by compiling
the source code of a programming language – it contains
syntax-checked model information and resolved variable ref-
erences. As a part of this process, expressions contained in
component behaviors are translated to their corresponding
abstract syntax trees and type-checked. Intermediate model
joins the architecture and behavior using predefined mappings
between components and behavior. Architecture and behavior
are both copied to a single model namespace with the addition
of a platform profile, forming a simulation specification. For
example, architecture-behavior mappings map Remes variables
used in Remes behavior models to input and output data
ports of a ProSave/ProSys component. Connections between
such data ports are converted to variable renamings (mappings
between Remes variables in different behavior models) in the
intermediate model.

The intermediate model is the input model for the simulator,
therefore it should be complete and well-defined – references

to unknown variables or type-invalid expressions would make
simulation impossible.

The process of generating the intermediate model should be
hidden from the user. Whenever an architecture- or behavior
specification for a component changes, it’s corresponding
intermediate model should be automatically generated, sim-
plified and checked. Figure 1 gives an overview of the model
translations needed to prepare for the simulation. Actors are
represented with ellipses, processes with white boxes, and
artifacts with gray boxes. Platform- and system specification
are essentially separate design processes. Platform designer
specifies platform resources and constraints through a platform
profile. System designer (possibly a team of engineers) is
responsible for architecture and behavior of the system and
creates ProCom and Remes models, respectively, to specify
the two. An automated process transforms the three models
(platform profile, architecture- and behavior models) to an
intermediate model. Finally, system designer configures the
simulation process with a simulator model.

C. Code generation and simulation

To simulate the system, we have utilized code generation
from the intermediate model, using common model-to-text
transformation tools. Compared to interpreter, generatedcode
is simpler – the structure of the system is mirrored in generated
code, and the simulator core can manipulate program objects
directly, using language facilities, instead of manipulating
model elements using model API or reflection. The core
simulator process was designed after the time and action
successor functions for timed automata [7]. As mentioned
before, an alternative to this approach would be to perform
the simulation using interpretation with a model visitor.

The simulator is configured with its corresponding simulator
model. The simulator model contains links to intermediate
model of a system, platform profile and, optionally, one or
more simulator sensors. Sensors monitor data points (Remes

variables or component data ports) and record value changes

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

65

0

5

10

15

20

25

125 1625 3125 4625

global clock [ticks]

te
m

p
e
ra

tu
re

 [
u
n
it
s
]

119

120

121

122

123

124

125

126

127

128

m
e
m

o
ry

 [
u
n
it
s
]

temperature (temp) rod temperature (tempROD) memory (mem), uppaal memory (mem), simulator

Fig. 2. An example run of a simulator for Temperature ControlSystem

TABLE I
Mapping between common debugger objects and ProCom/Remes objects

Debugger object ProCom/Remes object Comment
Process System Container of execution for all objects
Thread Active subsystem (ProSys) Basic unit of parallel execution

Stack frame (method) Component (in a hierarchy of components)Unit of (hierarchical) sequential execution
Current instruction pointer Active mode of component behavior Smallest unit of execution

Variable Mode variables Variables and resources

when triggered. Sensors can be triggered on Remes variable
change or on component trigger port activation. Data collected
from sensors is displayed in the simulator environment and
stored for later analysis.

To show an example of a simulator run, we can look at a
temperature control system (TCS) [3]. TCS models a cooling
controller for a reactor system that has two cooling rods which
are used to absorb excessive reactor heat thus maintaining
reactor temperature within predefined boundaries. The primary
purpose of the Remes behavior model of the TCS system is
to illustrate resource consumption (e.g., CPU, memory and
energy) during TCS system lifetime.

Figure 2 illustrates changes in core and rod temperatures and
memory consumption for a sample run in both our simulator
and the one in the Uppaal ∗ tool. Both simulators were forced
to follow the same execution trace when selecting transitions
to perform. Slight differences in the results can be noted for
memory consumption at the very beginning of the simulation.
This is due to different resource initialization strategies – TCS
model in Uppaal performs resource initialization at the time
the components (Uppaal processes) are activated, while our
simulator adheres to the Remes execution model and performs
initialization the first time a component is activated and its
corresponding behavior mode is entered.

The main benefit of simulating the TCS system is the ability
of the simulator to track changes for each resource separately.
The current implementation of Uppaal Cora † is somewhat
limited – model checking or simulation can be performed over
a single monotonically rising cost variable, with occasional

∗For more information on Uppaal , please visit http://uppaal.com/
†For details, visit http://www.cs.aau.dk/∼behrmann/cora/

errors in the simulator. To track resource changes on Figure2
we have manually tracked memory resource change using Up-
paal and its simulator. Note that in UppaalCora all resources
need to be combined to a single cost variable. This approach
does not allow to track each resource separately. Therefore, we
have used the Uppaal simulator to track memory changes for
comparison with our simulator. The downside of this approach
is that only discrete model transitions can update resources, as
Uppaal cannot model continuous variable change. However,
in the sample TCS system memory resource consumption is
not affected by delay transitions but only discrete transitions
of the automata.

D. Simulative environment from a user’s perspective

Our main goal for the user interface is to reuse the existing
UI as much as possible, and reduce the effort needed to use the
simulator facilities. With this in mind, we propose to integrate
the simulator with a well-known IDE platform, similar to
what was done with SaveIDE [8] (Eclipse-based) and Uppaal
Port [9], but reuse the platform even further and present the
simulator as a debugger.

Figure 3 illustrates the user’s perspective. Architectureand
behavior models are created using graphical editors, as seen
on the left. These models are then automatically translated
into their intermediate model counterparts (in the middle).
Platform profile (top right) is linked with the two using a
simulator configuration model (middle right) which is used to
generate the simulator classes (bottom right). The intermediate
model consists of several submodels, as both architecture and
behavior models can be split over several submodels, e.g. for
each component in the system.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

66

Users accustomed to modern IDEs are also familiar with the
concept of debuggers – every programming language comes
with one, and users are familiar with core debugging concepts.
Debuggers deal with objects that model execution elements
like processes, threads, stack frames, current instruction point-
ers and variables, and features of modern IDEs are built to
support manipulation of these objects. In a system modeled by
ProCom and Remes we can distinguish active elements such
as subsystems, components and modes of behavior that have
some similarity to traditional execution elements. An example
of relation between some common debugger objects and
ProCom/Remes objects is given in Table I. During simulation,
we can manipulate these objects in the same fashion as during
debugging of a program process – pause execution, switch
between active elements, inspect current state and so on.

In this way we can reuse metaphors of threads, stack
frames and current instruction pointers to follow the active
model elements (subsystems, components and modes). Mode
variables correspond to debug variables. This allows the user
to navigate possibly complex and multilayered system through
both its architecture and behavior in a familiar fashion – as
debugging equally complex structures defined in traditional
programming languages. It is our hope that this approach will
increase the appeal of the simulative environment to a wider
audience.

During debugging, the user needs to be able to navigate the
system model(s). To enable this, the simulative environment
needs to be integrated with the development environment for
ProCom – the Progress-IDE [10], [11]. Progress-IDE is built
on Eclipse Platform [12] which provides rich editors and a
Debug platform among other facilities. The environment is
component-centric, and system and component structure are
modeled in ProCom. Work on support for behavior modeling
with Remes, simulator-debugger interface and automating tasks
required to generate intermediate models is in progress.

IV. D iscussion

A. Assumptions

There are several assumptions (or limitations) built into the
simulation process, which we list in the following.
Static architecture specification– the architecture specification
is implied to be static. Although ProCom component model
doesn’t explicitly prohibit dynamic reconfiguration of com-
ponents and their connections, the simulation assumes that
components cannot migrate to different underlying hardware
resources or change connections.
Simplified view of system runtime environment– processing
elements such as CPUs are described by their processing
speed/rate in a simple resource model. This is a simplification
as modern CPUs cannot be characterized with just their clock
frequency when many parameters such as processor architec-
ture, cores, cache, pipelining, instruction dispatch and general
platform architecture come into play. To some extent this
assumption originates in Remes, with an intent that behavior
models stay platform-independent.
Limited support for concurrency– execution parallelism in

target hardware platform and concrete component allocation
to hardware nodes is not taken into consideration. It is instead
left for analysis in later system design stages when deploy-
ment/allocation models are introduced.

B. Simulation strategy

In section III-A we introduced platform resource usage
as incrementing and decrementing referenced resources (that
behave as scalar variables). The simulator actually manipulates
resources as intervals with open or closed bounds (endpoints).
When a discrete transition and its corresponding action is
performed, it can increment or decrement the resource variable
– in effect, translating the resource interval by a specified
amount. When a delay transition is performed, the resource
update is calculated depending on the duration of the transition
– in effect, arbitrarily changing the resource interval bounds.
Resource updates therefore depend on the timed execution of
model, as described in [3].

Simulation is performed in steps guided by minimum time
intervals for next discrete transition, similar to global execution
strategy described in [13]. In essence, the list of active modes
and possible transitions is traversed to calculate time intervals
till next discrete transition. From the list of intervals, a
minimum interval is selected, time is let pass within this
interval and the system state is updated accordingly. Transition
prioritization and selection (perhaps on user intervention) can
easily be performed during mode list traversal in each round.

C. Trace visualization

Simulator can be used to visualize traces generated by the
verification tools and inspect counterexample states in detail.
Our approach of presenting the simulator as a debugger can
easily be adapted to this purpose – the process of transition
selection for the next simulation round should be guided
by the generated diagnostic trace, instead of usual selection
rules. When following a trace, the designer can monitor state
change, and in any moment divert from the generated trace to
investigate a different dynamic execution path. In combination
with model-checkers for verification, a proposed tool could
be used for both quick prototyping at an early system design
stage, and system verification of a complete system model.

D. Partially-specified systems

An interesting topic for further consideration is the pos-
sibility to simulate and analyze partially-specified systems.
To illustrate, imagine a system designer working on an early
system design. She has specified overall structure, but has
yet to define behavior specifics of each component. How-
ever, when designing for a concrete platform, some details
(e.g. component overhead resource consumption) are already
known as they are dictated by the platform. With this in mind,
it should be possible to simulate the early system model based
on default component behaviors provided within platform
profile. We intend to extend the platform profile with the
description of default behaviors for components, the support
for this in Remes remains a topic for discussion.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

67

Clock RodSelectorHCController

HCController

Constants

Variables

Resources

Idle

true

Constants

Variables

Resources

Heat_Cool

x<=C_HC

false

Constants

Variables

Resources

cpu'=5

eng'=100

x==C_HC

<...>

mem+=10, x:=0
mem+=80

mem+=10, x:=0

x==C_HC

<...>

mem+=80

Cool2 HeatCool Idle HCController

SubMode CompositeMode

Fig. 3. From architecture- and behavior specification to simulator code: architecture- and behavior models (left) are translated into intermediate models
(middle) and combined with platform profile to form the simulator configuration (right), which is then used to generate simulator source code (bottom right).

E. Related approaches

Several approaches, based on simulation models derived
from UML diagrams, have beed suggested. Extended UML
can be used to specify system models directly, and de Miguel
et al. [14] propose extensions (with UML profiles) to ex-
press temporal requirements and resource usage. Annotated
diagrams are then automatically transformed to scheduling
and simulation models using Analysis- and Simulation Model
Generators, respectively. Similar to our approach, application
element models are transformed to simulation submodels
which are combined to form an integrated simulation model.
A second approach, proposed by Arief and Spiers [15] uses
UML to specify system details needed for simulation with a
process-oriented simulation model. System simulation is built
using a predefined Java-based Simulation Modeling Language
(SimML) framework with key elements such as components,
processes, queues and messages.

Balsamo and Marzolla in [16], [17] propose a similar tool
for simulation of performance for process-oriented systems.
Annotated UML diagrams, such as Use Case, Activity and
Deployment diagrams, are used to describe system perfor-
mance parameters. UML model elements are closely related
those of the simulator, and simulator structure and behavior
closely follow the structure and behavior of the UML model.
A discrete-event simulation model is automatically extracted
from the diagrams, and simulation results are reported back
as tagged values in diagrams.

A notable approach is that of Palladio Component Model
(PCM) [18], [19]. PCM describes component-based systems
with structure, behavior, allocation and usage models and de-
rives a simulation model from them. PCM can model resource
demands of discrete component actions and provide statistical
results, such as processing rate, throughput and response
time per component. Simulation workload is generated using
domain-specific experts’ knowledge contained in the usage

model. A development and analysis environment is provided.
When discussing embedded systems, we should not forget to

consider approaches using Matlab and Simulink, as these tools
have established themselves as standard tools for embedded
system design and analysis. COMDES [20], [21], [22] is
a framework for hard real-time distributed control systems
that uses actor diagrams representing subsystems and signals
exchanged between them, and state-machines or functional
block diagrams to specify behavior. COMDES translates the
model to Simulink for simulation.

Acknowledgment

This work was supported by the Swedish Foundation for
Strategic Research via the strategic research centre Progress,
Croatian Ministry of science, education and sports via the re-
search project Software engineering in ubiquitous computing,
and the Unity Through Knowledge Fund via the Dices project.

References

[1] I. Crnkovic, “Component-based Software Engineering for Embedded
Systems,” S. G. Jean-Phillipe Babau, Jol Champeau, Ed. IESTE, Ltd,
2006, pp. 71–90. [Online]. Available: http://www.mrtc.mdh.se/index.
php?choice=publications&id=1381

[2] T. Bureš, J. Carlson, I. Crnković, S. Sentilles, and A.Vulgarakis,
“ProCom – the Progress Component Model Reference Manual,
version 1.0,” Mälardalen University, Technical Report MDH-MRTC-
230/2008-1-SE, June 2008. [Online]. Available: http://www.mrtc.mdh.
se/index.php?choice=publications&id=1508

[3] C. Seceleanu, A. Vulgarakis, and P. Pettersson, “Remes:A resource
model for embedded systems,” inIn Proc. of the 14th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS
2009). IEEE Computer Society, June 2009. [Online]. Available:
http://www.mrtc.mdh.se/index.php?choice=publications&id=1741

[4] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I.Crnkovic,
“A component model for control-intensive distributed embedded
systems,” in Proceedings of the 11th International Symposium
on Component Based Software Engineering (CBSE2008). Springer
Berlin, October 2008, pp. 310–317. [Online]. Available: http:
//www.mrtc.mdh.se/index.php?choice=publications&id=1525

[5] R. Alur and D. L. Dill, “A theory of timed automata,”Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994. [Online].
Available: citeseer.nj.nec.com/alur94theory.html

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

68

[6] R. Alur, “Optimal paths in weighted timed automata,” inIn HSCC’01:
Hybrid Systems: Computation and Control. Springer, 2001, pp. 49–62.

[7] W. Penczek and A. Półrola,Advances in verification of time
petri nets and timed automata: a temporal logic approach.
Springer-Verlag New York Inc, 2006. [Online]. Available:
http://scholar.google.com/scholar?hl=en\&btnG=Search\&q=intitle:
Advances+in+verification+of+time+petri+nets+and+times+automata\
#0

[8] S. Sentilles, J. Håkansson, P. Pettersson, and I. Crnković, “Save-
IDE An Integrated development environment for building predictable
component-based embedded systems,” inProceedings of the 23rd
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2008.

[9] Uppsala University, Aalborg University, “UPPAAL Port,” http://www.
uppaal.org/port/ accessed 14/4/2010.

[10] J. Feljan, L. Lednicki, A. Petričić, and S. Sentilles, “Requirements on
the system design phase for Progress-IDE, Dices technical report,” http:
//www.fer.hr/dices/resources accessed 14/4/2010.

[11] S. Sentilles, P. Stepan, J. Carlson, and I. Crnkovic, “Integration of
extra-functional properties in component models,” in12th International
Symposium on Component Based Software Engineering (CBSE
2009), LNCS 5582, I. P. Christine Hofmeister, Grace A. Lewis,
Ed. Springer Berlin, LNCS 5582, June 2009. [Online]. Available:
http://www.mrtc.mdh.se/index.php?choice=publications&id=1634

[12] Eclipse, http://www.eclipse.org/.
[13] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee, “Modular Specification

of Hybrid Systems in Charon,”Hybrid Systems: Computation and
Control, Third International Workshop, vol. LNCS 1790, pp. 6–19, 2000.

[14] M. de Miguel, T. Lambolais, M. Hannouz, S. Betgé-Brezetz, and
S. Piekarec, “UML extensions for the specification and evaluation of
latency constraints in architectural models,” inProceedings of the second
international workshop on Software and performance - WOSP ’00.
New York, New York, USA: ACM Press, 2000, pp. 83–88. [Online].
Available: http://portal.acm.org/citation.cfm?doid=350391.350411

[15] L. B. Arief and N. A. Speirs, A UML tool for an automatic
generation of simulation programs. New York, New York, USA:
ACM Press, 2000, vol. 21, no.]. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=350391.350408

[16] S. Balsamo and M. Marzolla, “A simulation-based approach to
software performance modeling,” inESEC/FSE-11: Proceedings of
the 9th European software engineering conference held jointly with
11th ACM SIGSOFT international symposium on Foundations of
software engineering. ACM, 2003, pp. 363–366. [Online]. Available:
http://portal.acm.org/citation.cfm?id=940071.940122

[17] M. Marzolla and S. Balsamo, “UML-PSI: the UML performance
simulator,” First International Conference on the Quantitative
Evaluation of Systems, 2004. QEST 2004. Proceedings., pp. 340–
341, 2004. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=1348057

[18] S. Becker, H. Koziolek, and R. Reussner, “Model-Based Performance
Prediction with the Palladio Component Model,” inProceedings of
the 6th international workshop on Software and performance. ACM,
2007, p. 65. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1217006

[19] R. Reussner, S. Becker, J. Happe, H. Koziolek, K. Krogmann,
and M. Kuperberg, “The Palladio component model,” Karlsruhe,
2007. [Online]. Available: http://sdqweb.ipd.kit.edu/publications/pdfs/
reussner2007a.pdf

[20] C. Angelov, K. Sierszecki, and N. Marian,Component-Based Design
of Embedded Software: an Analysis of Design Issues. Springer
Berlin / Heidelberg, 2005, vol. 3409, pp. 1–11. [Online]. Available:
http://www.springerlink.com/index/FNL8TWBABACHQ3C0.pdf

[21] C. Angelov, K. Sierszecki, N. Marian, and J. Ma,A Formal
Component Framework for Distributed Embedded Systems. Springer
Berlin / Heidelberg, 2006, pp. 206–221. [Online]. Available: http:
//www.springerlink.com/index/644W21160610014R.pdf

[22] N. Marian and Y. Ma, “Translation of Simulink Models
to Component-based Software Models,” inProc. of the 8th
International Workshop on Research and Education in Mechatronics
REM’2007, Talinn, Estonia, 2007, pp. 262–267. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.86.
1490\&rep=rep1\&type=pdf

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

69

Towards Performance Prediction of Large Enterprise
Applications Based on Systematic Measurements

Dennis Westermann∗, Jens Happe∗
∗SAP Research, Vincenz-Priessnitz-Strasse 1, 76131 Karlsruhe, Germany

Email: {dennis.westermann|jens.happe}@sap.com

Abstract—Understanding the performance characteristics of
enterprise applications, such as response time, throughput, and
resource utilization, is crucial for satisfying customer expecta-
tions and minimizing costs of application hosting. Enterprise
applications are usually based on a large set of existing software
(e.g. middleware, legacy applications, and third party services).
Furthermore, they continuously evolve due to changing market
requirements and short innovation cycles. Software performance
engineering in its essence is not directly applicable to such
scenarios. Many approaches focus on early lifecycle phases
assuming that a software system is built from scratch and all
its details are known. These approaches neglect influences of
already existing middleware, legacy applications, and third party
services. For performance prediction, detailed information about
the internal structure of the systems is necessary. However,
such information may not be available or accessible due to
the complexity of existing software. In this paper, we propose
a combined approach of model based and measurement based
performance evaluation techniques to handle the complexity of
large enterprise applications. We outline open research questions
that have to be answered in order to put performance engineering
in industrial practice. For validation, we plan to apply our
approach to different real-world scenarios that involve current
SAP enterprise solutions such as SAP Business ByDesign and the
SAP Business Suite.

I. INTRODUCTION

The performance (timing behavior, throughput, and resource
utilization) of a software system is one of its key quality
attributes. Performance is directly visible to the user and it
heavily affects the total cost of ownership (TCO) for the
system provider. Software Performance Engineering (SPE) [1]
helps software architects to ensure high performance stan-
dards for their applications. However, applying performance
engineering for large enterprise applications is a challenging
task. Today’s enterprise systems are usually built on a large
basis of existing software (middleware, legacy applications,
and third party services) and rarely developed from scratch.
Furthermore, companies continuously adapt their applications
to changing market requirements and technological innova-
tions. Thus, performance analysts have to evaluate perfor-
mance aspects during the whole lifecycle of the system.
Although many approaches have been published in the con-
text of software performance engineering, none of them has
achieved widespread industrial use [2]. In many cases, the
sheer size and complexity of a software system hinders the
application of performance engineering in practice. Especially
in large enterprise applications, the performance of a system is
affected by a variety of parameters. Often, these parameters are

distributed across various layers (infrastructure, virtualization,
database, application server, etc.) involving many different
technologies. Thus, evaluating such systems is a time and
resource consuming process.

Most existing approaches use established prediction models
([3], [2]) to estimate the performance of a software system.
Most of them aim for predicting the performance in early
lifecycle phases, especially before system implementation.
This can avoid substantial costs for redesigning the software
architecture. Concerning the evaluation of already existing
components, the main focus of existing approaches lies on
(i) the derivation or extraction of appropriate models and (ii)
the estimation of resource demands / quantitative data needed
to parameterize prediction models. Approaches focusing on
the first issue analyze call traces [4] or apply static code anal-
yses [5] to extract models of software systems. Approaches
focusing on the second issue (e.g. [6], [7]) use benchmarking
and monitoring of systems to derive model parameters. The
general drawback of these approaches is that they are bound
to the assumptions of the underlying prediction model [8].
For example, if a network connection is modeled with FCFS
scheduling, it won’t capture the effect of collisions on the
network. Another important issue is scalability. The existing
approaches do not scale with respect to size and complex-
ity of today’s enterprise applications. Creating performance
prediction models for those systems requires considerable
effort and can become too costly and error-prone as much
work has to be done manually. For the same reason, many
developers do not trust or understand performance models,
even if such models are available. Concerning legacy systems
and third party software, the required knowledge to model the
systems may even not be available at all. Here, re-engineering
approaches (e.g. [9], [5]) can help. However, the large and
heterogeneous technology stack of such systems makes re-
engineering often infeasible.

The approach presented in this paper, handles the complex-
ity of large enterprise applications by abstracting those parts
of the system that cannot be modeled or only with high effort.
The goal is to capture the dependencies between the system’s
usage (workload and parameters) and performance (timing
behavior, throughput, and resource utilization). The technical
core of the approach is the Performance Cockpit, a framework
for systematic performance evaluations. Around that technical
core, there are four conceptional blocks: experiment definition,
automated measurements, statistical inference, and model inte-

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

71

gration. The combination of the aforementioned blocks allows
the performance analyst to evaluate the performance of large
systems with reasonable effort.

The contribution of this paper is an approach that combines
measurement based and model based performance engineering
techniques to evaluate the performance of large enterprise
applications. Furthermore, we outline open research question
in order to put the approach into practice. We plan to validate
the approach in different scenarios that involve current SAP
solutions such as SAP Business ByDesign and the SAP
Business Suite.

The paper is structured as follows. Section II illustrates the
research challenges that arise owing to the considered systems
and the chosen approach. In Section III we present the building
blocks towards meeting these challenges. Section IV describes
some application scenarios of the approach. In Section V, we
outline related research work. Finally, Section VI concludes
the paper.

II. RESEARCH QUESTIONS

In this section, we describe the main research questions ad-
dressed by our research. The general challenge is to understand
the dependencies between the system’s usage (workload and
parameters) and performance (timing behavior, throughput,
and resource utilization). The goal is to predict the perfor-
mance behavior of the system in productive operation under
real-world customer load. The following questions describe
the steps towards accomplishing that goal using our systematic
measurement approach.

A. How can we automatically identify the performance rele-
vant parameters?

The sheer size of the considered systems bears a big
challenge when answering the question how to identify the
performance relevant parameters from a set of potential can-
didates. In large enterprise applications, a variety of potential
performance relevant parameters and parameter combinations
exist which span a huge search space. Thus, we have to
develop an intelligent and efficient search algorithm that com-
bines statistical analyses with the experiment setup. However,
due to the huge cause of dimensionality such an algorithm
might require too much time and resources. Thus, manual
reduction of the search space may be necessary before starting
the actual measurements. This can be accomplished by an
explicit configuration of the measurements with appropriate
heuristics based on expert knowledge. Another problem is that
these parameters are distributed across various layers involving
many different technologies. Thus, measuring the impact of
the parameters can be a time and resource consuming process.
Hence, there is a need for a powerful measurement framework
that can be easily adapted and applied to different systems
under test. Moreover, it should support/guide the performance
analyst as far as possible in order to reduce the effort and the
error rate.

B. How can we efficiently quantify the influence of specific
parameters on software system performance?

Once we are able to identify the performance-relevant
parameters of a software system, the derivation of their actual
impact on the overall performance of the system is still a
complex task. Especially in large enterprise applications, a
variety of parameters affect the performance of a system. As
a consequence, we have to find a trade-off between providing
enough measurement data for the analyses and minimizing
the period of measurements. Due to the sheer size of the
considered systems it is not feasible to measure each possible
parameter assignment. However, the number of measurements
has to be large enough to provide statistically significant
results and to cover all possible effects. Thus, we have to find
an optimal mixture of intelligent experiment determination and
efficient statistical analysis techniques to reduce the number of
measurements. Another problem is that the system under test
might not deliver the necessary monitoring information for all
required parameters (e.g. due to the impact of monitoring on
the performance of the system). Therefore, we have to infer
this information from the available monitoring data.

C. How to deal with interdependencies?

One of the strengths of our goal-oriented measurement
based approach is that it abstracts from system internals,
meaning it abstracts the internal resources and behavior from
prediction modeling. However, this black-box approach of
course involves the risk that important dependencies between
components and resources inside the abstracted system are not
captured. For example, consider two otherwise independent
web services share the same database. Here, we have to iden-
tify the interdependencies that influence performance without
detailed knowledge about the system internals. Moreover, we
have to find a solution that allows the explicit integration of
these interdependencies in our resulting functions.

D. How to integrate our measurement based approach with
existing model based approaches?

The combination of measurement based and model based
performance prediction methodologies is a promising research
field towards better applicability of software performance en-
gineering in industrial practice [8]. This combination leverages
from the benefits of both approaches. However, the results de-
rived by the measurements and statistical analyses are basically
mathematical functions that capture the dependency between
a set of performance relevant input parameters (independent
parameters) and certain performance metrics (dependent pa-
rameters). Thus, these functions cannot be directly combined
with classical performance prediction approaches (such as
queuing networks or stochastic process algebras [10]), or
model-driven approaches (such as PCM [11] or CB-SPE [12]).
As a consequence, we have to find a way to adjust the existing
solutions in order to integrate our measured functions and
combine the strength of both approaches.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

72

E. How can we apply the approach using live monitoring
instead of systematic benchmarks?

An important problem of performance prediction techniques
concerning their applicability in industrial practice is that in
most cases they are only practicable in early phases of the
software lifecycle, particularly before the system goes live.
However, in practice customers do not provide the necessary
information about their expected workload which is an im-
portant parameter for detailed performance predictions ([13],
[14]). Even if customers provide that information, it will
for sure change over time which obsolesces the predictions
made in early lifecycle phases. Furthermore, the system itself
evolves over time or might integrate different third party
services which can only be observed after system deployment.
These are all effects that are hard to consider in early lifecycle
performance evaluations. Thus, we have to develop a method-
ology that allows us to derive/adapt our performance models
during productive operation of the system. In the course of
this, we have to answer the questions discussed earlier in
this section in consideration of the entailed restrictions in pro-
ductive operation (e.g. that measurements must not affect the
performance visible to the customer or the availability of the
system). This causes additional challenges to the algorithms
and analysis procedures for example due to the noisy data
for statistical analyses or the reduced control over the system
compared to a test setup.

III. APPROACH

In the following, we present our approach that aims at
understanding the performance behavior of large enterprise
applications in real customer environments. The main idea is
to abstract from system internals by applying a combination
of systematic goal-oriented measurements, statistical model
inference, and model integration. Figure 1 illustrates the major
building blocks of the approach.

Fig. 1. Goal-oriented Systematic Measurement Approach

The technical core of the approach is our Performance
Cockpit, a framework for systematic performance evaluations.
Around that technical core, there are four conceptional blocks:
Experiment Definition, Automated Measurements, Statistical
Inference, and Model Integration. In what follows, we describe
the building blocks of the approach in detail.

A. Performance Cockpit

Today’s enterprise applications are rarely developed from
scratch. On the contrary, in most cases these applications
are built on a large basis of existing components such as
middleware, legacy applications, or third-party services. Be-
sides the sheer size of these systems, the resulting complexity
and heterogeneity in terms of technology, distribution, and
manageability complicates the application of performance
evaluations. Since the performance of a system is affected
by multiple factors on each layer of the system, performance
analysts require detailed knowledge about the system under
test. Moreover, they have to deal with a huge number of
tools and techniques for benchmarking, monitoring, and data
analyses. In practice, performance analysts try to handle this
complexity by focusing on certain aspects, tools, or technolo-
gies within the system. However, these isolated solutions are
inefficient due to the small reuse and knowledge sharing and
do not provide reliable performance predictions for the overall
system. The goal of the Performance Cockpit is to encapsulate
knowledge about performance engineering, the system under
test, and statistical analyses in a single application. There-
fore, the framework implements best practices and guides
the performance analyst in conducting systematic performance
evaluations [15]. Moreover, the framework provides a flexible,
plug-in based architecture that allows the separation of concern
and supports the reuse of performance evaluation artifacts.
Figure 2 illustrates the idea of the Performance Cockpit.

Fig. 2. The Idea of the Performance Cockpit

Each stakeholder contributes to those parts of the perfor-
mance evaluation he is an expert in. The basic functionality to
control the performance evaluation is provided by the frame-
work. This plug-in based approach enables the Performance
Analyst to reuse the adapters implemented by the System,
Benchmark, and Tool Experts or the Analysis Experts, respec-
tively. Moreover, the Performance Analyst can reuse adapters
in multiple scenarios. Furthermore, if a component in the

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

73

system under test is changed one can easily switch the plug-
ins without changing the actual measurement application. The
resulting benefits are (i) less effort for setting up performance
tests, (ii) better knowledge transfer, (iii) flexible measurement
environment, (iv) better usability, and thus making perfor-
mance evaluations available to a broader target group.

B. Experiment Definition

The approach introduced in this paper requires a huge
number of measurements. Moreover, the approach should be
applicable for various systems. In order to keep the approach
feasible, we have to abstract from the concrete system under
test and automate the measurements as far as possible. The
Model-Driven Architecture (MDA) [16] is a design approach
that allows to meet these challenges. We implement the MDA
approach by designing a platform-independent meta-model for
the definition of experiments. Experiment includes the sys-
tem under test, workload, monitoring, analysis, measurement
procedures, evaluation goals, etc. The definition of a platform-
independent meta-model allows us to provide a single point of
configuration to the performance analyst. Based on the meta-
model, we can automatically create configurations for different
parts of the performance evaluation (e.g. via model-to-model
or model-to-text transformations). Figure 3 illustrates the idea.

Fig. 3. ExperimentDefinitionMetaModel

The generic Experiment Definition Meta-Model allows us
to perform multiple evaluations in a consistent and integrated
way without having effect on the flexibility of the approach.
Garcia, Mora, and others successfully applied such a meta-
model for software artifact and process measurements [17],
[18], [19]. In our approach, we focus on the configurations
necessary to perform measurements of performance metrics.
This includes the following points:

• Performance Cockpit Configuration: Information con-
cerning the execution of measurements by the Perfor-
mance Cockpit, e.g. number of experiment runs, stop cri-
teria for the experiments, notification event receiver, and
plug-in selection (load driver, system control, monitoring,
analysis, etc.).

• System Under Test Configuration: Information concerning
the setup of the system under test, e.g. system parameters,
system topology including addresses, and system control
information.

• Load Driver Configuration: Information concerning the
generation of load on the system under test, e.g. the num-
ber of concurrent users, and the variation of parameters.

• Monitoring Configuration: Information concerning the
monitoring infrastructure and behavior, e.g. monitored
metrics, sampling intervals, and hold-back time of mon-
itoring data.

• Analysis Configuration: Information concerning the sta-
tistical analysis of the monitored data, e.g. analysis
technique, assumptions about the expected functions, ex-
pected accuracy of the results and desired output format.

C. Automated Measurements

The experiment definition meta-model described in the
previous section is an approach to automate configuration and
setup of measurement environments. In this section, we focus
on the automated execution of measurements. Due to the size
of the considered systems and the resulting huge number of
necessary measurements, the automated execution is a critical
success factor. In order to automate the measurements, we have
to link the different areas of performance measurement by an
intelligent and efficient algorithm. If setup and configuration
of the system under test and the measurement environment
are completed, the following steps remain for the actual mea-
surements: determining the actual experiment setup (i.e. how
to vary the parameters in each experiment run), running the
experiment and measure, and analyzing. Typically, these steps
are triggered manually. For example, if performance analysts
want to evaluate the performance of a middleware component,
they generate or adopt a certain load profile (such as provided
by the SPEC benchmarks [20]) as the experiment setup and
execute it, monitor the relevant metrics and parameters during
execution, and finally analyze the monitored data. Often, this
process is not only manually triggered but also executed only
once due to the effort involved. In our approach, we will
automate this process as depicted in Figure 4.

Fig. 4. Automated Measurement Process

The Performance Cockpit generates the experiment setup,
automatically deploys the load drivers on the corresponding
nodes, and starts the measurements. During the measurements,
the Performance Cockpit captures information about the pa-
rameters and performance metrics of interest provided by
existing monitoring infrastructures. The information is aggre-
gated and saved in the cockpit’s measurement data repository.
The Performance Cockpit uses the data to run its statistical
analyses in predefined intervals. Depending on the results
of the analysis the Performance Cockpit (i) reruns the load
profile analyzed in that interval (e.g. because of insufficient
monitoring information) or (ii) generates and executes new
load profiles (e.g. in order to detect effects not covered by
the actual load profile). The presented procedure allows us to

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

74

implement highly dynamic and efficient algorithms (such as
introduced by Reussner et al. [21]). This is an essential issue
towards the feasibility of our approach in large, real-world
enterprise applications.

D. Statistical Inference

In the previous section, we described the automated mea-
surement process used in our approach. In the analyses phase
of the process we use statistical inference [22] to capture
the dependencies between the system’s usage and perfor-
mance. The data collected by the monitoring is used to infer
(parameters of) a prediction model. In one of our recent
work [23], we derived the dependencies between the usage
and the performance of a message-oriented middleware using
Multivariate Adaptive Regression Splines (MARS) [24] and
genetic optimization [25]. While statistical inference does not
require specific knowledge on the internal structure of the
system under test, it might require assumptions on the kind
of functional dependency between independent and dependent
variables. The main difference between the multiple inference
approaches is their degree of model assumptions. For example,
the nearest neighbor estimator makes no assumptions on the
model underlying the observations, while a linear regression
makes rather strong assumptions (linearity). Most other sta-
tistical estimators lie inbetween both extremes. In general,
methods with stronger assumptions need less data to provide
reliable estimates, while methods with less assumptions need
more data, but are also more flexible. In our approach, the
concrete technique used depends on the considered problem.
For example, the identification of performance relevant pa-
rameters requires other techniques than the derivation of the
actual impact of a certain parameter on a certain perfor-
mance metric. Additionally, the chosen technique might differ
depending on the system under test, as in some cases we
might have good estimators for the underlying model while
in other cases the system under test is a complete black-
box. Furthermore, the available monitoring information can
influence the selection of an appropriate technique. In our
approach, we aim for automatically selecting the appropriate
method by the Performance Cockpit. However, in many cases
this is not possible since expert knowledge is required. Thus,
we enable the performance analyst to extensively configure the
analyses using our experiment definition model (see Section
III-B).

E. Model Integration

Model-driven performance prediction approaches (such as
surveyed in [2]) allow to evaluate the performance of a
software system prior to its implementation. The evaluation at
design time has the advantage that it can avoid performance
problems during implementation and testing, which can raise
substantial costs for redesigning the software architecture.
However, the drawback of these approaches is that they require
detailed knowledge about the system under test in order to
provide reliable results. The advantage of our measurement
based approach is that we can apply it to nearly any system

without detailed information about its internal structure and
behavior. However, the drawback of such measurement based
approaches is that the system has to be available in order to
conduct the measurements. This excludes the approach from
answering questions like ”How would the system perform if
we buy another server?”.

With the combination of model based and measurement
based techniques, we leverage from the benefits of both
approaches while overcoming the drawbacks. We target at in-
tegrating our measured functional dependencies in the Palladio
Component Model (PCM). PCM is a model based performance
prediction approach that targets component based, distributed
systems. It is parameterizable for parameter values as well as
for the deployment platform. Moreover, PCM supports the use
of performance completions. Performance completions allow
software architects to annotate an architecture model [26].
Model-to-model transformations refine the annotated elements
by injecting low-level performance influences, e.g. of a certain
middleware [27]. The completions are parametric with respect
to resource demands of the annotated element. For each
implementation and each execution environment the demands
have to be determined explicitly. The integration of the inferred
models in PCM allows us design-time performance predictions
for systems that build on a large basis of existing components.
In [23], we applied our approach to build a performance
completion for the message-oriented middleware ActiveMQ
5.3.

IV. APPLICATION SCENARIOS & VALIDATION

The Performance Cockpit supports software architects and
developers in different stages of the software lifecycle. During
design time, software architects can use the Performance
Cockpit to derive performance models of middleware plat-
forms and legacy systems. In the implementation phase, devel-
opers can use the Performance Cockpit to conduct regular per-
formance tests of their system. Furthermore, service providers
can determine reliable and flexible SLAs for their services
using the Performance Cockpit. In the following, we discuss
possible application scenarios in more detail.

Evaluation of Design Alternatives: During design time,
software architects often face architectural choices that are
equivalent with respect to functionality but heavily differ with
respect to performance (or extra-functional properties in gen-
eral). Proper estimates of the influence of such decisions on the
system’s performance are essential. Design time performance
predictions can avoid costly refactoring of the whole system
in later development stages. However, such predictions require
a detailed understanding of the middleware, third party and
legacy software on which a new system is built. The Perfor-
mance Cockpit enables software architects to automatically
derive performance models and dependencies from systematic
measurements of the systems used. Software architects can
focus on the evaluation of the design decisions at hand. They
can use performance completions [26] in combination with
the Performance Cockpit to add low-level performance details
of underlying middleware to their system under study. The

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

75

Performance Cockpit instantiates performance completions for
specific implementations and configurations of a middleware
platform.

In case of composable (third-party) services, software ar-
chitects can use the prediction models inferred by the Per-
formance Cockpit to assess performance characteristics of
higher level services. For example, if a customer requires a
special composition of business services, software architects
can use the resulting model to estimate the response time and
throughput of the composed business process.

Sizing and Adaptation: Sizing the underlying IT in-
frastructure is a critical task when deploying an enterprise
application. On the one hand, the infrastructure has to provide
enough resources to run the application fluently. On the other
hand, purchasing and operating infrastructure resources are a
substantial factor with regard to the cost-effectiveness of a
companies IT landscape. Especially the trend towards provid-
ing enterprise applications as on-demand services increases the
requirements on scalability and cost-effectiveness of software
systems. The combination of measurement based and model
based performance prediction proposed in this paper helps
software architects to tailor the infrastructure to the specific
needs. Thus, the approach can prevent companies from over-
or undersizing their systems. In combination with appropriate
cost models (such as proposed in [28]), software architects
can find an efficient trade-off between costs, performance,
and scalability. Moreover, the targeted performance prediction
along the whole lifecycle of software systems allows early
and efficient adaptations to changed workload requirements.
Hence, applying the Performance Cockpit performance ana-
lysts are able to answer questions like ”‘Can we start another
instance of application X on server Y without violating exist-
ing performance agreements?”’.

Regression Benchmarking: Regression Benchmark-
ing [29] (analogously to regressions testing) automatically
executes a series of performance tests. The performance
tests are executed on a regular basis (for instance after
each nightly build). The results are summarized in a set
of reports accessible to the developers. Thus, developers
receive regular feedback on the performance of their system.
They can directly assess the effect of changes in the
implementation on software performance. The Performance
Cockpit with its high degree of automation is well suited to
support regression benchmarking. Its infrastructure allows the
automatic execution of a series of measurements. The results
of the measurements can be automatically analyzed and
exported. Developers can specify the performance tests using
the measurement configuration. In addition, the regularly
executed benchmarks can be used to generate up to date
performance models of the system under study.

Flexible SLA Specifications: In recent years, Service-
level Agreements (SLAs) are gaining more and more
attention. However, the specification of quality attributes in
SLAs is still limited to fixed values (e.g., the response time is
smaller than 2 seconds in 90% of all cases). A specification of
dependencies between a service’s usage and its performance

has not yet been established. In our approach, we propose
a black-box specification of performance characteristics,
i.e., the performance of a system is captured by a function
of its usage. These black-box performance models do not
contain any information about the system’s internal structure.
Including such models (e.g. as functions) in SLAs allows more
fine-grained performance evaluations of service compositions
and thus better service selections. For example, customers
who require a scalable service can evaluate the available
offers with respect to their expected usage profile and load.
Furthermore, service providers can use the Performance
Cockpit to determine reliable SLAs. The Performance
Cockpit allows them to automatically execute the necessary
measurements and derive the parameters for their SLAs in
their environment. Based on the results, they can assess what
performance they can provide. Additionally, they can use the
models for internal capacity planning. For example, if a new
customer requests one of their services, service providers
can use the integrated prediction models to decide how the
additional load will affect other customers.

For validation, we apply our approach on (i) a multi-
tenant SAP ByDesign system and (ii) an SAP ERP system
comprising a set of already existing SAP Enterprise Services
which are composed to customer specific business processes.
For each selected scenario, we will provide a validation of the
prediction model (i.e. we will compare our predictions with
observations). We also envision to evaluate the applicability
by realizing one scenario in a larger case study. However,
this depends on the feasibility and required overhead which
we cannot assess in this early phase of the work.

V. RELATED WORK

This section presents current research dealing with
measurement based performance analysis of software
systems. Approaches that combine the different building
blocks presented in this paper to an integrated, practice-
oriented solution are rare. Liu et al. [30] build a queuing
network model whose input values are computed based
on benchmarks. The goal of the queuing network model
is to derive performance metrics (e.g. response time and
throughput) for J2EE applications. The approach applied
by Denaro et al. [31] completely relies on measurements.
The authors estimate the performance of a software system
based on measurements of application specific test cases.
However, both approaches simplify the behavior of an
application, and thus, neglect its influence on performance.
Jin et al. [32] introduce an approach called BMM that
combines benchmarking, production system monitoring,
and performance modeling. Their goal is to quantify the
performance characteristics of real-world legacy systems
under various load conditions. However, the measurements
are driven by the upfront selection of a performance model
(e.g layered queuing network) which is later on built based
on the measurement results. Thakkar et al. [33] describe a
framework that targets the derivation of software performance

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

76

models by a series of tests. In order to reduce the required
number of actually needed test runs the authors suggest to
use domain knowledge or statistical analyses techniques such
as Main Screen Analysis [34] and two-way ANOVA [35].
However, the authors remain open how to design such a
framework and how well the suggested statistical analyses
worked in their scenario. In [36], Bertolino et al. introduce
an approach that verifies QoS properties of Web service
implementations before their deployment. The approach is
based on the automatic generation of test-beds for the Web
Service under development. The authors focus on testing a
single Web service while generating mock-ups for the rest
of the system. In [37] they included the test-bed generation
tool in a framework called PLASTIC. PLASTIC aims at
enabling online and offline testing of networked applications
by providing a set of tools for generating and executing tests
as well as for monitoring different metrics. An approach to
generate customized benchmark applications for Web service
platforms is described by Zhu et al. in [38]. The approach is
based on their benchmark generation tool MDABench [39].

Many measurement based approaches rely on statistical
inference techniques to derive performance predictions based
on measurement data. Zheng et al. [40] apply Kalman Filter es-
timators to track parameters that cannot be measured directly.
To estimate the hidden parameters, they use the difference
between measured and predicted performance as well as
knowledge about the dynamics of the performance model. In
[6] and [7], statistical inferencing is used for estimating service
demands of parameterized performance models. Kraft et al.
apply a linear regression method and the maximum likelihood
technique for estimating the service demands of requests. The
considered system is an ERP application of SAP Business
Suite with a workload of sales and distribution operations.
Pacifici et al. [6] analyze multiple kinds of web traffic using
CPU utilization and throughput measurements. They formulate
and solve the problem using linear regressions. Kumar et
al. [41] and Sharma et al. [42] additionally take workload
characteristics into account. In [41], the authors derive a
mathematical function that represents service times and CPU
overheads as functions of the total arriving workload. Sharma
et al. [42] use statistical inferencing to identify workload
categories in internet services.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an approach for performance
evaluations of large enterprise applications. Our approach
focuses on the observable data and does not consider the
internal structure of the underlying system. We propose a com-
bination of model configuration, automated measurements,
statistical inference and model based performance prediction
in order to support performance evaluations along the whole
lifecycle of a software system. The approach is realized by a
flexible framework called Performance Cockpit. So far, we
implemented a first prototype of the Performance Cockpit

to evaluate the performance of message-oriented middleware
[23].

The approach allows software architects to create perfor-
mance models for applications that include components (e.g.
middleware, legacy systems, third-party services) of which
they do not know or understand all performance relevant
internals. Performance analysts can apply the approach to an-
swer sizing questions, to provide guarantees in SLAs, support
decisions for adaptation scenarios (e.g., moving an image from
one node to another), run regression benchmarks on nightly
builds, and so on. Due to the separation of concern principle
and the flexible, plug-in based architecture of the Performance
Cockpit, the effort to execute the aforementioned tasks is kept
feasible.

In our future work, we are going to gradually answer the
research questions outlined in Section II. Moreover, we will
further enhance the architecture and the prototype of the
Performance Cockpit framework. Currently, we are applying
the approach to evaluate the performance of different types
of middleware (message-oriented middleware and application
servers) as well as for predicting the performance of web
services and web service compositions.

Acknowledgement: This work is partially supported by
the German Federal Ministry of Education and Research
under promotional reference 01|G09004 (ValueGrids) and by
the European Community’s Seventh Framework Programme
(FP7/2001-2013) under grant agreement no.216556.

REFERENCES

[1] C. U. Smith, Performance Engineering of Software Systems. Addison
Wesley, 1990.

[2] H. Koziolek, “Performance evaluation of component-based software
systems: A survey,” Performance Evaluation, vol. In Press, Corrected
Proof, 2009. [Online]. Available: http://www.sciencedirect.com/science/
article/B6V13-4WXC21F-1/2/602bed8a6bd384b5516b8f84ac82c672

[3] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-Based
Performance Prediction in Software Development: A Survey,” IEEE
Transactions on Software Engineering, vol. 30, no. 5, pp. 295–310, May
2004.

[4] F. Brosig, S. Kounev, and K. Krogmann, “Automated Extraction of
Palladio Component Models from Running Enterprise Java Applica-
tions,” in Proceedings of the 1st International Workshop on Run-time
mOdels for Self-managing Systems and Applications (ROSSA 2009).
In conjunction with Fourth International Conference on Performance
Evaluation Methodologies and Tools (VALUETOOLS 2009), Pisa, Italy,
October 19, 2009. ACM, New York, NY, USA, Oct. 2009.

[5] K. Krogmann, M. Kuperberg, and R. Reussner, “Using Genetic Search
for Reverse Engineering of Parametric Behaviour Models for Perfor-
mance Prediction,” IEEE Transactions on Software Engineering, 2010,
accepted for publication, to appear.

[6] G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi, “Dynamic
estimation of cpu demand of web traffic,” in Valuetools ’06: Proceedings
of the 1st international conference on Performance evaluation method-
olgies and tools. New York, NY, USA: ACM, 2006, p. 26.

[7] S. Kraft, S. Pacheco-Sanchez, G. Casale, and S. Dawson, “Estimating
service resource consumption from response time measurements,” in
Valuetools ’06: Proceedings of the 1st international conference on
Performance evaluation methodolgies and tools. New York, NY, USA:
ACM, 2006.

[8] M. Woodside, G. Franks, and D. C. Petriu, “The Future of Software
Performance Engineering,” in Proceedings of ICSE 2007, Future of SE.
IEEE Computer Society, Washington, DC, USA, 2007, pp. 171–187.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

77

[9] T. Poch and F. Plasil, “Extracting behavior specification of components
in legacy applications,” in CBSE, 2009, pp. 87–103.

[10] M. Bernardo and J. Hillston, Eds., Formal Methods for Performance
Evaluation, 7th International School on Formal Methods for the Design
of Computer, Communication, and Software Systems, SFM 2007, Berti-
noro, Italy, May 28-June 2, 2007, Advanced Lectures, ser. Lecture Notes
in Computer Science, vol. 4486. Springer, 2007.

[11] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82, pp. 3–22, 2009. [Online]. Available: http:
//dx.doi.org/10.1016/j.jss.2008.03.066

[12] A. Bertolino and R. Mirandola, “Cb-spe tool: Putting component-
based performance engineering into practice,” in Proc. 7th International
Symposium on Component-Based Software Engineering (CBSE 2004).
Springer, 2004, pp. 233–248.

[13] H. Koziolek, “Parameter Dependencies for Reusable Performance
Specifications of Software Components,” Ph.D. dissertation, University
of Oldenburg, 2008. [Online]. Available: http://sdqweb.ipd.uka.de/
publications/pdfs/koziolek2008g.pdf

[14] H. Li, “Workload characterization, modeling, and prediction in grid
computing,” Doctoral thesis, 2008.

[15] R. Jain, The art of computer systems performance analysis. New York:
Wiley Interscience, 1991.

[16] “OMG model driven architecture,” Apr. 2010, http://www.omg.org/mda/.
[17] F. Garcı́a, M. A. Serrano, J. A. Cruz-Lemus, F. Ruiz, and

M. Piattini, “Managing software process measurement: A metamodel-
based approach,” Inf. Sci, vol. 177, no. 12, pp. 2570–2586, 2007.
[Online]. Available: http://dx.doi.org/10.1016/j.ins.2007.01.018

[18] B. Mora, F. Garcia, F. Ruiz, and M. Piattini, “Model-driven software
measurement framework: A case study,” Quality Software, International
Conference on, vol. 0, pp. 239–248, 2009.

[19] B. Mora, M. Piattini, F. Ruiz, and F. Garcia, “Smml: Software mea-
surement modeling language,” in Proceedings of the 8th Workshop on
Domain-Specific Modeling (DSM’2008), 2008.

[20] SPEC, “SPEC’s benchmarks and published results,” Standard
Performance Evaluation Corporation, Apr. 2010. [Online]. Available:
http://www.spec.org/benchmarks.html

[21] R. Reussner, P. Sanders, L. Prechelt, and M. Mueller, “SKaMPI: A
detailed, accurate MPI benchmark,” Lecture Notes in Computer Science,
vol. 1497, pp. 52–??, 1998.

[22] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data mining, Inference ,and Prediction, 2nd ed., ser. Springer
Series in Statistics. Springer, 2009.

[23] J. Happe, D. Westermann, K. Sachs, and L. Kapova, “Statistical in-
ference of software performance models for parametric performance
completions,” in 6th International Conference on the Quality of Software
Architectures, QoSA 2010, Prague, Czech Republic, , June 23-25, 2010,
Proceedings. To Appear.

[24] J. H. Friedman, “Multivariate adaptive regression splines.” Annals of
Statistics, vol. 19, no. 1, pp. 1–141, 1991.

[25] D. Beasley, D. R. Bull, and R. R. Martin, “An overview of genetic
algorithms: Part 1, fundamentals,” 1993.

[26] J. Happe, S. Becker, C. Rathfelder, H. Friedrich, and R. H. Reussner,
“Parametric Performance Completions for Model-Driven Performance
Prediction,” Performance Evaluation, vol. In Press, Corrected Proof,
pp. –, 2009.

[27] L. Kapova and T. Goldschmidt, “Automated feature model-based gen-
eration of refinement transformations,” in Proceedings of the 35th
EUROMICRO Conference on Software Engineering and Advanced Ap-
plications (SEAA). IEEE Computer Society, 2009, pp. 141–148.

[28] H. Li, G. Casale, and T. Ellahi, “Sla-driven planning and optimization of
enterprise applications,” in WOSP/SIPEW ’10: Proceedings of the first
joint WOSP/SIPEW international conference on Performance engineer-
ing. New York, NY, USA: ACM, 2010, pp. 117–128.

[29] T. Kalibera, L. Bulej, and P. Tuma, “Generic environment for full
automation of benchmarking,” in SOQUA/TECOS, ser. LNI, S. Beydeda,
V. Gruhn, J. Mayer, R. Reussner, and F. Schweiggert, Eds., vol. 58. GI,
2004, pp. 125–132.

[30] Y. Liu and I. Gorton, “Performance prediction of J2EE applications
using messaging protocols,” in CBSE, ser. Lecture Notes in Computer
Science, G. T. Heineman, I. Crnkovic, H. W. Schmidt, J. A. Stafford,
C. A. Szyperski, and K. C. Wallnau, Eds., vol. 3489. Springer, 2005,
pp. 1–16. [Online]. Available: http://dx.doi.org/10.1007/11424529 1

[31] G. Denaro, A. Polini, and W. Emmerich, “Early performance testing
of distributed software applications,” SIGSOFT Software Engineering
Notes, vol. 29, no. 1, pp. 94–103, 2004.

[32] Y. Jin, A. Tang, J. Han, and Y. Liu, “Performance evaluation and predic-
tion for legacy information systems,” in ICSE ’07: Proceedings of the
29th international conference on Software Engineering. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 540–549.

[33] D. Thakkar, A. E. Hassan, G. Hamann, and P. Flora, “A framework for
measurement based performance modeling,” in WOSP ’08: Proceedings
of the 7th international workshop on Software and performance. New
York, NY, USA: ACM, 2008, pp. 55–66.

[34] C. Yilmaz, A. S. Krishna, A. M. Memon, A. A. Porter, D. C. Schmidt,
A. S. Gokhale, and B. Natarajan, “Main effects screening: a distributed
continuous quality assurance process for monitoring performance
degradation in evolving software systems,” in ICSE, G.-C. Roman,
W. G. Griswold, and B. Nuseibeh, Eds. ACM, 2005, pp. 293–302.
[Online]. Available: http://doi.acm.org/10.1145/1062455.1062515

[35] M. Sopitkamol and D. A. Menascé, “A method for evaluating
the impact of software configuration parameters on e-commerce
sites,” in WOSP. ACM, 2005, pp. 53–64. [Online]. Available:
http://doi.acm.org/10.1145/1071021.1071027

[36] A. Bertolino, G. D. Angelis, and A. Polini, “Automatic generation
of test-beds for pre-deployment qoS evaluation of web services,” in
WOSP, V. Cortellessa, S. Uchitel, and D. Yankelevich, Eds. ACM,
2007, pp. 137–140. [Online]. Available: http://doi.acm.org/10.1145/
1216993.1217017

[37] A. Bertolino, G. Angelis, L. Frantzen, and A. Polini, “The plastic
framework and tools for testing service-oriented applications,” pp. 106–
139, 2009.

[38] L. Zhu, I. Gorton, Y. Liu, and N. B. Bui, “Model driven benchmark
generation for web services,” in SOSE ’06: Proceedings of the 2006
international workshop on Service-oriented software engineering. New
York, NY, USA: ACM, 2006, pp. 33–39.

[39] L. Zhu, N. B. Bui, Y. Liu, and I. Gorton, “Mdabench: Customized
benchmark generation using mda,” Journal of Systems and Software,
vol. 80, no. 2, pp. 265–282, 2007.

[40] T. Zheng, C. M. Woodside, and M. Litoiu, “Performance model
estimation and tracking using optimal filters,” IEEE Trans. Software
Eng, vol. 34, no. 3, pp. 391–406, 2008. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TSE.2008.30

[41] D. Kumar, L. Zhang, and A. Tantawi, “Enhanced inferencing: Estimation
of a workload dependent performance model,” in Valuetools ’09: Fourth
International Conference on Performance Evaluation Methodologies and
Tools, 2009.

[42] A. Sharma, R. Bhagwan, M. Choudhury, L. Gol-
ubchik, R. Govindan, and G. M. Voelker, “Automatic
request categorization in internet services,” 2008. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.141.
1977;http://www.cs.ucsd.edu/∼voelker/pubs/insight-hotmetrics08.pdf

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

78

Event-Driven Verification
in Dynamic Component Models

Claas Wilke
Institut für Software- und

Multimediatechnik,
Technische Universität

Dresden, Germany
Email: claas.wilke@tu-dresden.de

Jens Dietrich
Massey University,

Institute of Information
Sciences and Technology,

Palmerston North, New Zealand
Email: j.b.dietrich@massey.ac.nz

Birgit Demuth
Institut für Software- und

Multimediatechnik,
Technische Universität

Dresden, Germany
Email: birgit.demuth@tu-dresden.de

Abstract—Modern component models enable software design-
ers to design, vary and reuse multiple implementations of specific
components in their software systems. Besides the implementa-
tion of specific interfaces, these components often have to fulfill
contracts that are given implicitly or hidden in the interfaces’
documentation. In this paper, we present ActiveTreaty, a novel
contract and verification framework suitable to define component
contracts explicitly. ActiveTreaty is an extension of our previously
presented Treaty framework and combines aspects of static and
dynamic verification by triggering component contract checks
whenever configuration changes occur. We introduce a role
model that supports the flexible, context-dependent management
of different aspects of contract management and enforcement.
Furthermore, we discuss the changes that were necessary to
extend Treaty as a dynamic verification framework. Finally, a
proof-of-concept implementation for the OSGi/Eclipse component
model is presented.

I. INTRODUCTION

In recent years, dynamic component models supporting the
dynamic (re-)configuration of applications have become very
successful. Examples include OSGi [1], its derivatives and the
.NET framework [2]. Some of the largest and most complex
systems are now based on these models, including application
servers such as IBM WebSphere [3]. The question arises how
these systems can be effectively verified. In practise, static
verification techniques are still dominant. This includes the
use of compilers and unit testing. Verification is typically per-
formed for single components and test assemblies at buildtime.
Component containers and runtime environments have little
support to verify the integrity of actual runtime assemblies.
For instance, OSGi containers merely check the type safety
of classes providing services described by interfaces, and the
version compatibility of the components composed. This is
based on the implicit assumption that compatibility informa-
tion between components can be completely described by the
combination of service interfaces and dependencies between
versioned packages and components.

In our previous work [4], we have argued that a more
expressive contract language is required to precisely describe
the relationship between collaborating components. This has
resulted in Treaty, an expressive, component-model indepen-
dent contract language. Treaty supports alternative contract
arrangements (disjunction), component collaborations based

on resources other than program language types, and therefore
contracts that describe different aspects of component compat-
ibility [5] including interface, behavioural and quality of ser-
vice contracts. It turns out that these features are appropriate to
simplify and improve the contract management in applications
based on dynamic component systems such as Eclipse [6].

In the first version (1.*) of Treaty, contracts were repre-
sented by integrity rules. Once a contract is instantiated when
collaborating components pair up, contracts are ready to be
used for verification. However, Treaty makes no assumptions
about when verification is actually performed. On the other
hand, dynamic component models like OSGi have well defined
lifecycle models that describe the various lifecycle states of
components, and the transitions between these states. It is
therefore possible to use the events signalling state transitions
to trigger contract verification.

In this paper, we propose an extension to make Treaty active
by integrating both the events that trigger contract verification,
and the actions that are to be performed upon verification into
the contracts. This implies that contracts are represented using
event-condition-action rules (ECA rules for short) [7].

The rest of this paper is organised as follows. In the next
section, we review related work. We then sketch the Treaty
framework in section III. For a detailed description, the reader
is referred to [4]. In section IV, we introduce ActiveTreaty.
Afterwards, we present a prototypical implementation of Ac-
tiveTreaty for Eclipse as a case study in section V. Section VI
concludes our contribution.

II. RELATED WORK

The idea of having contracts between collaborating software
artifacts has been made popular by Meyer’s work on design by
contract (DBC) [8]. Contracts are represented by invariants,
pre- and postconditions and added directly to the programming
language source code. Several authors have adopted these
ideas to other programming languages and runtime environ-
ments, including the Java Modeling Language (JML) [9] and
Spec# [10]. In contrast to ActiveTreaty, these approaches have
no explicit event handling, contract checks are performed
when the methods are invoked. Furthermore, these DBC
approaches are bound to specific programming languages,

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

79

while ActiveTreaty is programming language independent.
Arnout and Meyer [11] have used “A Posteriori Contracting”
to add contracts to existing software artifacts. This is similar
to the introduction of legislator components in ActiveTreaty
as discussed below.

The Tamago platform [12] supports design by contract
during component development and execution. In Tamago,
contracts are based on assertion logic combined with state
transitions. Similar to ActiveTreaty, contracts are defined in
an annotational and not-intrusive manner and the contracted
components can be deployed and composed at runtime. In
contrast to Tamago, ActivteTreaty focuses on an extensible
contract language that can be extended to check both func-
tional and non-functional properties.

In [13], a framework that enhance components programmed
in the object-oriented language Creol with contracts described
in deontic logic, is presented. Besides the definition what is
obliged, permitted or forbidden, the contract language also
contains statements to express what has to happen if contracts
were violated. Similar to ActiveTreaty, the supported contracts
can be regarded as ECA rules. But the approach is limited to
components modeled in Creaol whereas ActiveTreaty provides
an abstract component model in Java that can be applied to
multiple component models and can be implemented in other
programming languages as well.

The Component Interaction Property Validator (CIPV) [14]
allows to define interaction contracts on CORBA components.
The interaction contracts are defined using the specification
pattern system (SPS) which allows to define orders in which
specific events have to occur at runtime. For validation, the
contracts are represented as finite state automata and are
validated by intercepting the interactions between components
during runtime. In contrast to ActiveTreaty, the CIPV focuses
on interaction contracts whereas ActiveTreaty allows to ex-
press and validate multiple kinds of contracts.

Other formal contract languages have been used success-
fully in order to define several kinds of contracts in business
computing, including SLA contracts [15], business contracts
[16], [17] and the provisions for exception handling in elec-
tronic contracts [18]. These languages support complex event
handling, in particular through the use of ECA rules.

III. THE TREATY CONTRACT LANGUAGE

Treaty is a framework to manage different types of contracts
in dynamic component systems. It is based on the idea that
components interact through connectors by providing and con-
suming services and resources.1 Examples for (dynamic) com-
ponents are Eclipse and OSGi bundles, examples for connec-
tors are Eclipse extensions and extension points, respectively.
Contracts describe this interaction. The requirements in these
contracts are themselves expressed through resources that are
usually provided by the consumer components. Examples are

1In this paper the term resource has the same meaning as in the OSGi
component model [1]. Everything that is part of an OSGi component can be
regarded as a resource. E.g., a Java class, an XML file or the component’s
manifest file.

Java interfaces, OCL constraint sets, JUnit test suites and XML
Schemas. Suppliers of services provide other resources that
have to have certain typed relationships with consumer side
resources. For instance, they provide classes that must imple-
ment (consumer-side) interfaces and/or pass JUnit test suites
and XML documents that must instantiate XML Schemas.
Treaty contracts consist of these typed relationships or boolean
expressions built from these relationships. Simple properties
(comparisons against values) and mere resource existence
conditions can also be expressed. It turns out that this rep-
resentation is appropriate to express many types of contracts
in existing component models. In particular in the case of
Eclipse, both logically complex conditions and contracts using
resource types other than Java types are required. The type
system used by Treaty is defined using the Web Ontology
Language (OWL) [19]. I.e., resource, property and relationship
types are represented by URIs and reasoning features such
as subtype and subproperty reasoning are supported. The set
consisting of types, relationships and properties is called a
contract vocabulary.

Treaty is suitable for dynamic component models using
late binding. I.e., contracts can be defined without explicit
reference to a supplier or a consumer. The missing resources
can be referenced by function symbols representing queries to
component meta data. This allows the components to advertise
services by listing the respective resources in their meta data.
Once the supplier and consumer are known, the contract
is instantiated by executing these queries against the meta
data of these components and replacing the functions by the
actual resource references. This process is called binding. For
instance, in the Treaty proof-of-concept implementation for
Eclipse, these functions are XPath [20] expressions that are
resolved against the plugin.xml meta data file of a supplier
bundle when binding occurs.

A sample contract is shown in Listing 1. This contract
defines the relationship between a component that prints dates
(clock view) and a component that provides a date formatting
service (date to string). The contract can be separated into
three sections: a consumer, a supplier and a constraints sec-
tion. The consumer and supplier sections define the resources
provided by the components playing the consumer and the
supplier role in the contract, respectively. The constraints
section defines the constraints that shall be checked during the
contract’s verification. In this contract, suppliers can provide
the service either by providing a Java class implementing a
certain interface and passing two test suites, or by providing
a formatting template XML document instantiating a given
XML Schema. The references to consumer resources (lines
25 and 29) are XPath queries that are resolved against the
plugin.xml meta data of the supplier component when
binding occurs. The example application is an Eclipse bundle
that can be installed from an Eclipse update site following the
instructions on the Treaty project home page [21]. For further
details the reader is referred to [4].

Figure 1 depicts the Treaty meta model. This meta model is
simplified, in particular, the type hierarchy of Conditions

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

80

id : URI

Connector

id : URI

Component

Extension ExtensionPoint

/isInstantiated : boolean

Contract

context Extension::extends: ExtensionPoint
derive: ExtensionPoint.allInstances()

-> any(xp: ExtensionPoint |
xp.id = self.id)

context Component::contracts: Set(Contract)
derive: Contracts.allInstances()

-> select(contract: Contract |
contract.owner.owner = self)

context Contract::isInstantiated: Boolean
derive: not self.supplier.oclIsUndefined()

and
not self.consumer.oclIsUndefined()

0..1

consumer

0..1

supplier

0..*/contracts

0..*

extensions

0..1definition

1 owner

0..*

extensionPoints
1 owner

Fig. 1: The Treaty meta model (derived fields are defined using OCL [22]).

that can be used in contract definitions is missing for space
reasons. Treaty supports the posteriori association of contracts
with components. This is achieved by using special legisla-
tor (contract owner) components that provide contracts for
other components. There are numerous use cases for this,
including context-dependent contracts and retrofitting existing
component-based systems for verification.2

The Treaty implementation for Eclipse also supports the
dynamic composition of contract vocabularies [4]. The use
case used to motivate this feature is the following. As-
sume a company provides a business reporting tool based
on the Velocity template engine. They want to allow cus-
tomers to add in their own reporting templates by pro-
viding components supplying resources of the respective
type. The type is MyReportingTemplate, a subtype of
VelocityTemplate with restrictions on the variables that
can be used in the templates. These are exactly the vari-
ables the application can bind when the report is gener-
ated. To capture this in a contract, a new resource type
MyReportingTemplate must be introduced. This would
be part of the reporting tool, and used to safeguard the tool
against faulty extensions. In Treaty, this is called a vocabulary
contribution. A vocabulary contribution defines new types,
properties and relationships, and their semantics. For instance,
the vocabulary contribution would provide the semantics repre-
sented as a script that loads a resource and checks it by parsing
it with a velocity parser and checking the variables found in
the template against a predefined static list of symbols. If
the MyReportingTemplate was declared as subtype of
VelocityTemplate provided by another contribution, the

2See http://www-ist.massey.ac.nz/jbdietrich/treaty/treatyout/index.html for
an experiment where Eclipse has been retrofitted with contracts and verified
against these contracts.

type reasoner could be used to delegate part of the check to
the contribution defining VelocityTemplate.

The fact that different components can play different roles
with respect to a given contract creates dependencies that need
to be carefully taken into account when verification in dynamic
component models is considered. For instance, if a component
C1 provides a contract for another component C2, then the
contract can only be checked if C1 is present. I.e., there is
a runtime dependency between C2 and C1. This dependency
is implicit, but can be made explicit when the components
are designed. E.g., OSGi supports direct dependencies be-
tween bundles3 as well as (less explicit) dependencies through
versioned packages.4 A similar dependency exists between
components providing contracts and components providing
vocabularies for these contracts.

IV. ACTIVETREATY

One of the main challenges in verifying systems based
on dynamic component models is that assemblies change at
runtime. It is therefore difficult to predict the behaviour of
these systems by using static verification (such as unit testing)
on pre-deployment snapshots. These snapshots can only cover
a small subset of possible runtime configurations, and will
therefore not be able to detect many faults resulting from
integration problems.

The main issue is the assumption that the behaviour of
assemblies can be predicted from the known behaviour of
components in other (test) assemblies. However, this is diffi-
cult as long as the contracts governing compositions are weak
and ignore aspects such as semantics as this is often the case.
Treaty is an approach to improve the situation by facilitating

3Declared using the Require-Bundle header.
4Declared using the Import-Package and Export-Package headers.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

81

1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
2 <c o n t r a c t>
3 <consumer>
4 <r e s o u r c e i d =” I n t e r f a c e ”>
5 <t y p e>h t t p : / / code . g oo g l e . com / p / t r e a t y / j a v a
6 # A b s t r a c t T y p e</ t y p e>
7 <name>c l o c k . D a t e F o r m a t t e r</ name>
8 </ r e s o u r c e>
9 <r e s o u r c e i d =” QoSTests ”>

10 <t y p e>h t t p : / / code . g oo g l e . com / p / t r e a t y / j u n i t
11 # T e s t C a s e</ t y p e>
12 <name>c l o c k . D a t e F o r m a t t e r P e r f o r m a n c e T e s t s</ name>
13 </ r e s o u r c e>
14 <r e s o u r c e i d =” F u n c t i o n a l T e s t s ”>
15 <t y p e>h t t p : / / code . g oo g l e . com / p / t r e a t y / j u n i t
16 # T e s t C a s e</ t y p e>
17 <name>c l o c k . D a t e F o r m a t t e r F u n c t i o n a l T e s t s</ name>
18 </ r e s o u r c e>
19 <r e s o u r c e i d =” DateFormatDef ”>
20 <t y p e>h t t p : / / code . g oo g l e . com / p / t r e a t y / xml
21 #XMLSchema</ t y p e>
22 <name>/ d a t e f o r m a t . xsd</ name>
23 </ r e s o u r c e>
24 </ consumer>
25 <s u p p l i e r>
26 <r e s o u r c e i d =” F o r m a t t e r ”>
27 <t y p e>h t t p : / / code . g oo g l e . com / p / t r e a t y / j a v a
28 # I n s t a n t i a b l e C l a s s</ t y p e>
29 <r e f>s e r v i c e p r o v i d e r / @class</ r e f>
30 </ r e s o u r c e>
31 <r e s o u r c e i d =” F o r m a t S t r i n g ”>
32 <t y p e>h t t p : / / code . g oo g l e . com / p / t r e a t y / xml
33 # XMLInstance</ t y p e>
34 <r e f>s e r v i c e p r o v i d e r / @formatdef</ r e f>
35 </ r e s o u r c e>
36 </ s u p p l i e r>
37 <c o n s t r a i n t s>
38 <xor>
39 <and>
40 <r e l a t i o n s h i p r e s o u r c e 1 =” F o r m a t t e r ”
41 r e s o u r c e 2 =” I n t e r f a c e ”
42 t y p e =” h t t p : / / code . go og l e . com / p / t r e a t y / j a v a
43 # implemen t s ” />
44 <r e l a t i o n s h i p r e s o u r c e 1 =” F o r m a t t e r ”
45 r e s o u r c e 2 =” F u n c t i o n a l T e s t s ”
46 t y p e =” h t t p : / / code . go og l e . com / p / t r e a t y / j u n i t
47 # v e r i f i e s ” />
48 <r e l a t i o n s h i p r e s o u r c e 1 =” F o r m a t t e r ”
49 r e s o u r c e 2 =” QoSTests ”
50 t y p e =” h t t p : / / code . go og l e . com / p / t r e a t y / j u n i t
51 # v e r i f i e s ” />
52 </ and>
53 <r e l a t i o n s h i p r e s o u r c e 1 =” F o r m a t S t r i n g ”
54 r e s o u r c e 2 =” DateFormatDef ”
55 t y p e =” h t t p : / / code . go og l e . com / p / t r e a t y / xml
56 # i n s t a n t i a t e s ” />
57 </ xor>
58 </ c o n s t r a i n t s>
59 </ c o n t r a c t>

Listing 1: The contract for the clock example.

the definition of more expressive contracts in order to make
assemblies more predictable. But the basic problem persists -
Treaty itself can not make assemblies completely predictable.

The situation can be further improved by repeating ver-
ification on snapshots taken whenever the configuration
changes. This is facilitated by the fact that many dynamic
component models support component lifecycle events in-
dicating configuration changes. An example lifecycle model
for OSGi components is shown in Figure 2 [1]. OSGi
containers fire BundleEvents to notify observers about
bundle lifecycle changes. Eclipse has an additional event
mechanism for bundles on top of the OSGi mechanism.

Stopping

Active

Starting

Uninstalled

Resolved

Installed

refresh / update

stop

start

uninstall

uninstall

refresh / updateresolve

Fig. 2: The lifecycle of an OSGi component [1].

The IExtensionRegistry fires events when extensions
and extension points of Eclipse bundles are added or re-
moved to/from the registry. These events can be captured
by IRegistryEventListener implementations. Further-
more, the Eclipse Equinox [23] OSGi implementation provides
the BundleWatcher interface to capture similar events.

These kinds of events can be used to trigger contract
verification. In particular, the events can be added to con-
tracts themselves to make the verification policy configurable.
In a similar manner, actions can be added to contracts to
define behaviours being executed upon verification results.
This amounts to the use of ECA rules to represent contracts.
Therefore, the following issues need to be addressed:

1) An extended syntax for Treaty contracts,
2) Semantics of events and actions,
3) Dependency management between components.

A. Syntax

The contract syntax of Treaty is formally defined by an
XMLSchema.5 To support ActiveTreaty contracts, additional
trigger and action elements were added to the schema.
The types of both elements is the XMLSchema built-in type
anyURI. Listing 2 shows an extended contract for the clock
example (the already presented sections are not shown com-
pletely, see Listing 1 for the missing elements).

In the trigger section, events can be defined that shall
trigger the verification of the contract. E.g., an event can
represent the change of the consumer or supplier component’s
state such as activation (lines 3-4) or installation. ActiveTreaty
allows to define multiple events for the same contract. Event
sequences are interpreted as disjunction, i.e. they are implic-
itly connected via OR connectives. Thus, the contract will
be verified if any of the described events occur. Currently,
ActiveTreaty does not allow the use of a full event algebra to
compose events. This is to keep the contract language and its
verification as simple as possible to address core use cases.

The action section allows the definition of multiple actions
to be performed either if the contract is violated or verified
successfully. ActiveTreaty supports onSuccess and onFailure

5The full schema can be accessed at the following address: http://treaty.
googlecode.com/svn/tags/release2.0.0/treaty-eclipse/treaty.xsd

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

82

1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
2 <c o n t r a c t>
3 < t r i g g e r>h t t p : / / code . g oog l e . com / p / t r e a t y / t r i g g e r / b u n d l e
4 # S u p p l i e r B u n d l e S t a r t e d</ t r i g g e r>
5 <onSucces s>h t t p : / / code . g oo g l e . com / p / t r e a t y / a c t i o n / l o g g e r
6 # LogInfo</ onSucces s>
7 <o n F a i l u r e>h t t p : / / code . g oo g l e . com / p / t r e a t y / a c t i o n / l o g g e r
8 # LogWarning</ o n F a i l u r e>
9 <o n F a i l u r e>h t t p : / / code . g oo g l e . com / p / t r e a t y / a c t i o n / b un d l e

10 # S t o p S u p p l i e r B u n d l e</ o n F a i l u r e>
11 <consumer> . . .</ consumer>
12 <s u p p l i e r> . . .</ s u p p l i e r>
13 <c o n s t r a i n t s> . . .</ c o n s t r a i n t s>
14 </ c o n t r a c t>

Listing 2: A contract for the clock example including triggers
and actions.

actions. E.g., an action can be the logging of a message,
warning or exception (lines 5-8) or the deactivation (lines 9-
10) or uninstallation of a component. In ActiveTreaty actions
are implicitly connected via AND connectives. Thus, if the
contract is verified successfully, all onSuccess actions are
performed. If the contract’s verification fails, all onFailure
actions are performed. The actions are executed according
to the order in which they are defined in the XML contract
definition.6 This is important as different actions are generally
not orthogonal. I.e., executing the same actions in a different
order could have different effects.

B. Semantics

Contracts declare actions and events using the URIs of the
respective action and event types. The semantics of these types
are defined in action and event contributions, respectively. This
design is analogue to the design of vocabulary contributions
in Treaty [4]. The contributions provide the semantics for the
actions and events through classes that are associated with
the respective URIs. The model comprising the interfaces
that must be implemented by these classes is shown in
Figure 3. The action semantics is given by the perform
method defined in the ActionContribution interface.
The semantics of the event is given by the implementation
of TriggerContribution interface that is an observable
(event source) [24].

Action examples are actions that log or display messages,
or uninstall components. Event triggers usually act as adapters
to lifecycle events of the underlying component system, which
are first captured, and then registered observers are notified by
calling the update methods. Another example for a trigger
implementation are user interface events, allowing verification
to be triggered by GUI interaction (e.g., a button to verify a
selected set of contracts).

Note that ActiveTreaty does not have a “declarative seman-
tics”. In particular, by mapping actions to methods, actions
cannot be guaranteed to be free of side effects. An example,
where this can become problematic, is when actions them-
selves perform component lifecycle changes like uninstalling

6Actions defined as default actions are performed after performing all
actions defined explicitly (default actions are introduced and explained below).

+getActions() : URI []
+getDescription(action : URI) : String
+isBeforeAction(action : URI) : boolean
+isAfterAction(action : URI) : boolean
+isDefaultOnFailure(action : URI) : boolean
+isDefaultOnSuccess(action : URI) : boolean
+after(trigger : URI, action : URI, reports : VerificationReport [])
+before(trigger : URI, action : URI, contracts : Contract [])
+perform(trigger : URI, action : URI, report : VerificationReport)

<<Interface>>
ActionContribution

+getTriggers() : URI
+getDescription(trigger : URI) : String
+getSubTriggers(trigger : URI) : URI []
+getSuperTriggers() : URI []
+isDefaultTrigger(trigger : URI) : boolean

<<Interface>>
TriggerContribution

+update(trigger : URI, contracts : Contract [])

<<Interface>>
EventListener

0..* listeners

Fig. 3: Trigger and Action Contribution in ActiveTreaty.

or passivating components. This may trigger further contract
checks. This cascading verification could even result in infinite
loops and threaten system stability. While those scenarios are
unlikely, they are possible. Some problems could be prevented
through meta verification (e.g., checking the ECA contract
rules for potential circular dependencies). This problem is
currently not addressed in ActiveTreaty.

Events can be defined hierarchically. E.g., an event
BundleStarted could have the subevents Consumer-
BundleStarted and SupplierBundleStarted. This
means that contract verification is triggered if any of the
subevents occurs. The use of event hierarchies is similar to
the handling of hierarchical exception events in languages like
Java.

ActiveTreaty supports events to be defined as default events.
Default events are global and used to specify events that can
cause contract verification but have not to be declared in
contracts. This is useful to define events that can be used to
verify all selected contracts–e.g., caused by a user interface
component that displays a set of contracts and provides such
an operation. In ActiveTreaty, default actions can be defined
as well. Actions can have up to four different kinds of default
states:

1) Actions can be declared as default before the verification
of a set of contracts (before action). E.g., an action to log
a message how many contracts will be verified caused
by a specific event.

2) Actions can be declared as default after the verification
of a set of contracts (after action). E.g., to log a
message how many contracts have been violated during
a triggered verification or to show a similar message in
a GUI dialog.

3) Actions can be declared as default after a contract’s
successful verification (default onSuccess). E.g., to log a
message that the contract has been verified successfully.

4) Actions can be declared as default after a contract’s
failed verification (default onFailure). E.g., to log a
warning including the verification’s stack trace.

Please note, that before and after actions cannot be defined
in a contract itself but in an action contribution. In a contract
only onSuccess and onFailure actions can be declared.

C. Dependency Management

As briefly discussed earlier, the management of dependen-
cies between components having different roles with respect

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

83

to a contract is a problem that must be addressed when man-
aging contracts. The main problem is to ensure that actions,
events, types, relationships and properties used in contracts are
available. For instance, consider the clock example introduced
above. The contract defines a relationship between an XML
document and an XML schema (line 45-47 in Listing 1). This
relationship (http://code.google.com/p/treaty/xml#instantiates)
is defined by a vocabulary. The vocabulary is itself provided
as a resource by an Eclipse bundle extending a vocabulary
extension point of the ActiveTreaty implementation. If this
contract is to be verified, the bundle must be available. In
particular, the bundle knows the semantics of this relationship
and can compute a boolean indicating that the respective XML
document indeed instantiates the schema. The bundle would
use a validating XML parser for the actual implementation of
this functionality.

This example shows that there is a runtime dependency
between the component that defines the contract and the
component that defines the vocabulary used in the contract. In
OSGi, this dependency would imply that the bundle defining
the vocabulary is visible (its classloader accessible) to the
bundle defining the contract.

Abstracting from this example, contracts have additional
(implicit) references to extensions providing the building
blocks for contracts. Figure 4 depicts the resulting extended
Treaty meta model for ActiveTreaty.

To define dependencies between components, we first asso-
ciate components with roles with respect to components. The
use of roles is similar to how roles are used in design patterns
[24], [25]. Here, a class can play a role like factory or product
in the context of a certain (factory) pattern instance. However,
a class can be a factory in the context of a factory instance,
and a product in the context of another factory instance.
Formally, roles are subsets of Component×Contract defined
as follows:7

1) (com, con) ∈ CONSUMER⇔
con.consumer.owner == com

2) (com, con) ∈ SUPPLIER⇔
con.supplier.owner == com

3) (com, con) ∈ LEGISLATOR⇔
com.contracts.includes(con)

4) (com, con) ∈
V OCABULARY CONTRIBUTOR⇔ ∃x ∈
Extension ∧ con.vocabularies.includes(x) ∧
extension.owner == com

5) (com, con) ∈ EV ENT CONTRIBUTOR⇔ ∃x ∈
Extension ∧ con.events.includes(x) ∧
extension.owner == com

6) (com, con) ∈ ACTION CONTRIBUTOR⇔ ∃x ∈
Extension ∧ con.actions.includes(x) ∧
extension.owner == com

A component can have multiple roles with respect to the

7We use a compact syntax combining PL1 with navigational OCL for
simplicity.

same contract. For instance, in the clock example, the contracts
are defined in the component that has the extension point, and
therefore the LEGISLATOR and the CONSUMER roles
overlap.

Using these definitions, each contract gives rise to a legis-
lator component and sets of consumers, suppliers, legislators,
and vocabulary, event and action contributors. To execute a
contract, the following dependencies must be satisfied for each
component in the respective role:

1) ∀c1, c2 ∈ Component : (∃con ∈ Contract :
(c1, con) ∈ LEGISLATOR ∧ (c2, con) ∈
V OCABULARY CONTRIBUTOR⇒ (c1, c2) ∈
DependsOn

2) ∀c1, c2 ∈ Component : (∃con ∈ Contract :
(c1, con) ∈ LEGISLATOR ∧ (c2, con) ∈
EV ENT CONTRIBUTOR⇒ (c1, c2) ∈
DependsOn

3) ∀c1, c2 ∈ Component : (∃con ∈ Contract :
(c1, con) ∈ LEGISLATOR ∧ (c2, con) ∈
ACTION CONTRIBUTOR⇒ (c1, c2) ∈
DependsOn

4) ∀c1, c2 ∈ Component : (∃con ∈ Contract :
(c1, con) ∈ LEGISLATOR ∧ (c2, con) ∈
CONSUMER⇒ (c1, c2) ∈ DependsOn

5) ∀c1, c2 ∈ Component : (∃con ∈ Contract :
(c1, con) ∈ LEGISLATOR ∧ (c2, con) ∈
SUPPLIER⇒ (c1, c2) ∈ DependsOn

In many cases, the supplier also depends on the Consumer.
An example where this is the case is if the consumer describes
a service to be provided by a supplier using a (Java) interface.
The supplier needs to provide a class implementing these
interface, and needs access to the interface to do this. E.g.,
in OSGi, the supplier bundle would need access to the class
path of the consumer bundle.

V. CASE STUDY: ACTIVETREATY FOR ECLIPSE

To prove the concepts of ActiveTreaty, the framework has
been implemented and tested as a contracting language for
Eclipse bundles and their extension points. Some implemen-
tation details and challenges are depicted below.

A. Application Structure

The Eclipse implementation of ActiveTreaty consists of
three different features, the contract framework (net.java.
treaty.eclipse.feature.group), the clock example (net.java.
treaty.eclipse.example.clock.feature.group), and a system ex-
ample that retrofits some standard Eclipse extension points
with contracts (net.java.treaty.eclipse.example.system.feature.
group). The framework feature also contains views to monitor
contracts, vocabularies and event and action contributions. The
application can be easily installed using the Treaty update site
[21].

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

84

id : URI

Connector

id : URI

Component

/isVocabularyContributor : boolean
 /isEventContributor : boolean
 /isActionContributor : boolean

Extension ExtensionPoint

/isInstantiated : boolean

Contract

context Extension::
 isVocabularyContributor: Boolean
derive: self.extends.id =
 'net.java.treaty.eclipse.vocabulary'

context Extension::
 isEventContributor: Boolean
derive: self.extends.id =

'net.java.treaty.eclipse.triggervocabulary'

context Extension::
 isActionContributor: Boolean
derive: self.extends.id =
 'net.java.treaty.eclipse.actionvocabulary'

1 owner

0..*

/contracts

0..1

definition

0..*/events
0..1 consumer

1..*/vocabularies

0..1supplier

0..*/actions

0..*

extensions

0..*

extensionPoints

1 owner

Fig. 4: The ActiveTreaty meta model with additional derived associations and attributes. The derived associations Con-
tract.vocabularies, Contract.events and Contract.actions are not defined using OCL because these expressions would be too
complex. A Contract references all vocabulary, event and action contributions whose types or other elements are used in the
contract’s definition.

B. Contracts and Vocabularies

The Eclipse application includes nine contracts, including
four “system contracts” used by ActiveTreaty itself for con-
tracts, vocabulary, event and action contributions, one contract
for the clock example, and another four contracts for several
standard Eclipse extension points. The number of instanti-
ated contracts depends on the Eclipse configuration and is
significantly higher. The retrofitted standard Eclipse extension
points have been choosen because we know that the respective
contracts are often violated by extensions.

The contracts use five different vocabularies - Java, XML,
JUnit, OWL and a vocabulary for basic types such as strings
and numerical types.

C. Events

The application defines two default events that are used to
trigger all or a selected sets of contracts. The clock example
uses the event http://code.google.com/p/treaty/trigger/bundle#
SupplierBundleStarted. This trigger is activated when the
supplier bundle (i.e., the Eclipse bundle that has an extension
extending the data formatter extension point) is activated.
This means that the contract is checked automatically if a
new bundle providing a date formatting service is installed
and started. The respective event basically acts as an adapter
between the OSGi bundle event mechanism and ActiveTreaty’s
internal event system.

D. Actions

The Eclipse application contains an action vocabulary that
adds default actions to pop up information dialogues showing
verification results. Furthermore, there is an action vocabulary
that defines actions to log the results of contract verifications to

the standard Eclipse error log. A third experimental vocabulary
provides actions to deactivate or uninstall OSGi bundles.

E. Lazy Loading and Verification Side Effects

Eclipse bundles can be activated lazily. If an Eclipse bundle
is resolved, it remains in the lifecycle state resolved,
since a class from the bundle is required (e.g., shall be
instantiated). The class loading process causes a change of
the bundles’s lifecycle state. The bundle becomes active.
This mechanism–known as Lazy Activation Policy [1]–is one
example for a side effect that can occur during the verification
of ActiveTreaty contracts.

Consider two bundles A and B. A defines an extension point
A.xp1 with a contract and B extends this extension point with
an extension B.x1. The contract defined on A.xp1 contains
a trigger that states that the contract shall be verified if one
of the contracted bundles (the consumer A or the supplier
B) becomes active. Furthermore, the contract states that a
class provided by B must implement an interface provided
by A. First, both bundles are deactivated but resolved by
the runtime environment. At a certain point during runtime,
A becomes active and the contract is verified. ActiveTreaty
has to load the implementation class from B and thus, the
bundle becomes activated and changes its state to active.
This change triggers the verification of the contract again.

In this simple example the side effects are harmless. The
same contract is checked twice and the bundle B changes its
lifecycle state. But the example illustrates that ActiveTreaty’s
contract verification can have side effects that can alter the
system’s state, can cause further contract verification and can
even lead to endless verification loops.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

85

F. Dependency Management

The dependency problems illustrated in subsection IV-C are
solved by using explicit bundle dependencies. For instance,
the legislator component containing contracts for standard
Eclipse extension points declares explicit dependencies to
ActiveTreaty, to the bundles providing vocabularies, actions
and events used in the contracts, and to the (standard) bundles
owning the extension points representing the consumers.

VI. CONCLUSION

We have presented ActiveTreaty, a contract framework for
software components based on ECA rules. The presented im-
plementation based on Eclipse shows such that this framework
can be easily added to an existing component model and
can be used to safeguard evolving component assemblies by
triggering verification whenever assemblies change. A detailed
case study contracting existing Eclipse extension points [26]
proofed that Eclipse lacks the support for such a contract
mechanism and that such a contract mechanism is indeed
sensible.

There are some open questions though. The actions used in
our implementation so far are fairly simple - user notification
and logging. While this is useful, it would be desirable to go
one step further and to use corrective actions. In particular
actions such as uninstalling faulty components and roll-back
component upgrades. However, this causes another problem.
Actions interfering with the lifecycle of components will
indirectly trigger lifecycle events. These events can trigger
new contracts and the system could go into infinite loops.
Therefore, verification of contracts is needed. One way of
doing this is to build a dependency graph between actions and
events and check this graph for circular dependencies. The
events used so far in ActiveTreaty are flat. The expressiveness
of the contract language could be further increased by allowing
complex events such as events composed using event algebras.

In our current research we plan to implement an OCL
vocabulary [22] for ActiveTreaty. The major challenge is to
develop an action contribution that triggers verification when
the actual service invocation occurs. We have conducted a first
case study to investigate a suitable extension to support such
an OCL vocabulary in ActiveTreaty [27].

VII. ACKNOWLEDGEMENTS

This work was supported by the New Zealand Royal Society
International Science & Technology Linkages Fund and the
Bundesministerium für Bildung und Forschung (BMBF).

REFERENCES

[1] “OSGi Service Platform Core Specification - Release 4, Version 4.2,”
June 2009, http://www.osgi.org/Download/Release4V42.

[2] “MS .NET Framework,” http://msdn.microsoft.com/netframework/.
[3] “IBM Software - Websphere,” http://www.ibm.com/websphere.
[4] J. Dietrich and G. Jenson, “Components, contracts and vocabu-

laries - making dynamic component assemblies more predictable,”
Journal of Object Technology, vol. 8, no. 7, pp. 131–148, 2009,
http://www.jot.fm/issues/issue 2009 11/article4/index.html.

[5] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins, “Making
components contract aware,” Computer, vol. 32, no. 7, pp. 38–45, 1999.

[6] “The eclipse project,” http://www.eclipse.org/.
[7] K. R. Dittrich, S. Gatziu, and A. Geppert, “ACT-NET - the active

database management system manifesto: A rulebase of ADBMS fea-
tures,” SIGMOD Record, vol. 25, no. 3, pp. 40–49, 1996.

[8] B. Meyer, “Applying ”Design by Contract”,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[9] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll, “Beyond Assertions:
Advanced Specification and Verification with JML and ESC/Java2,” in
FMCO, ser. Lecture Notes in Computer Science, F. S. de Boer, M. M.
Bonsangue, S. Graf, and W. P. de Roever, Eds., vol. 4111. Springer,
2005, pp. 342–363.

[10] M. Barnett, K. R. M. Leino, and W. Schulte, “The spec# programming
system: An overview,” in Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices, International Workshop, CASSIS 2004,
Marseille, France, March 10-14, 2004, Revised Selected Papers, ser.
Lecture Notes in Computer Science, G. Barthe, L. Burdy, M. Huis-
man, J.-L. Lanet, and T. Muntean, Eds., no. 3362. Springer-Verlag,
Berlin/Heidelberg, Germany, January 2005, pp. 49–69.

[11] K. Arnout and B. Meyer, “Finding Implicit Contracts in .NET Compo-
nents,” in Formal Methods for Components and Objects, ser. Lecture
Notes in Computer Science, F. de Boer, M. Bonsangue, S. Graf, and
W.-P. de Roever, Eds., vol. 2852. Springer, 2003, pp. 285–318.

[12] H. Belhaouari and F. Peschanski, “A lightweight container architecture
for runtime verification,” in 8th International Workshop, RV 2008,
Budapest, Hungary, March 30, 2008, Selected Papers, ser. Lecture Notes
in Computer Science, M. Leucker, Ed., no. 5289. Springer-Verlag,
Berlin/Heidelberg, Germany, October 2008, pp. 173–187.

[13] O. Owe, G. Schneider, and M. Steffen, “Components, objects, and
contracts,” in Proceedings of the Sixth International Workshop on
Specification and Verification of Component-Based Systems (SAVCBS
2007). New York, NY, USA: ACM, September 2007, pp. 95–98.

[14] Y. Jin and J. Han, “Runtime validation of behavioural contracts for
component software,” in Proceedings of the Fifth International Confer-
ence on Quality Software (SQIC’05). Los Alamitos, CA, USA: IEEE
Computer Society Press, 2005.

[15] A. Paschke, J. Dietrich, and K. Kuhla, “A logic based SLA management
framework,” in Proceedings of the Semantic Web and Policy Workshop
(SWPW) at 4th Semantic Web Conference (ISWC 2005), 2005, pp. 68–
83.

[16] P. F. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulkarni, and
S. Neal, “A unified behavioural model and a contract language for
extended enterprise,” Data Knowl. Eng., vol. 51, no. 1, pp. 5–29, 2004.

[17] G. Governatori and Z. Milosevic, “A formal analysis of a business
contract language.” Int. J. Cooperative Inf. Syst., vol. 15, no. 4, pp.
659–685, 2006.

[18] B. Grosof and T. Poon, “SweetDeal: representing agent contracts with
exceptions using XML rules, ontologies, and process descriptions,” in
Proceedings of the 12th international conference on World Wide Web
(WWW’03). New York, NY, USA: ACM, 2003, pp. 340–349.

[19] D. L. McGuinness and F. van Harmelen, “OWL Web Ontol-
ogy Language Overview,” W3C, W3C Recommendation, Feb. 2004,
http://www.w3.org/TR/2004/REC-owl-features-20040210/.

[20] “XML Path Language (XPath) 2.0. W3C Recommendation 23 January
2007,” 2007, http://www.w3.org/TR/xpath20/.

[21] “The Treaty Project,” http://code.google.com/p/treaty/.
[22] “Object constraint language, version 2.2,” Object Management Group

(OMG), Needham, MA, USA, February 2010. [Online]. Available:
http://www.omg.org/spec/OCL/2.2/

[23] “The eclipse equinox project,” http://www.eclipse.org/equinox/.
[24] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides, “Design

Patterns: Abstraction and Reuse of Object-Oriented Design,” in ECOOP
’93: Proceedings of the 7th European Conference on Object-Oriented
Programming. London, UK: Springer-Verlag, 1993, pp. 406–431.

[25] D. Riehle and T. Gross, “Role model based framework design and
integration,” in Proceedings of the 1998 Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA 98),
1998, pp. 117–133.

[26] J. Dietrich and L. Stewart, “Component contracts in eclipse - a case
study,” in Submitted and accepted for the 13th International Symposium
on Component Based Software Engineering (CBSE2010), June 2010.

[27] C. Wilke, “Model-based Run-time Verification of Software Components
by Integrating OCL into Treaty,” Diploma Thesis, Technische Univer-
sität Dresden, Germany, September 2009.

Proceedings of the Fifteenth International Workshop on Component-Oriented Programming (WCOP) 2010

86

	Formal Model Assisted Code Generation for Critical Embedded Systems Etienne Borde
	Towards Formal Certification of Software Components Erik Burger
	Architectural Modeling in Agile Methods Zoya Durdik
	A scientific component concept – focused on versatile visual component assembling Kerstin Falkowski
	Performance Prediction for Highly Distributed Systems Jörg Henß
	Towards Secure Services in an Untrusted Environment Matthias Huber
	Architectural Design with Visualization Patterns Markus Knauß
	Towards Simulative Environment for Early Development of Component-Based Embedded Systems Marin Orlic, Aneta Vulgarakis, Mario Žagar
	Performance Prediction of Large Enterprise Applications Based on Goal-oriented Systematic Measurements Dennis Westermann, Jens Happe
	Event-Driven Verification in Dynamic Component Models Claas Wilke, Jens Dietrich, Birgit Demuth

