
vGrid: A Framework For Building Autonomic Applications

Bithika Khargharia1, Salim Hariri1, Manish Parashar2, Lewis Ntaimo1, Byoung uk Kim1

1Autonomic Computing Laboratory
Department of Electrical and Computer Engineering

The University of Arizona
1230 E. Speedway, Tucson, AZ 85721-0104

Email: {bithika_k, hariri,byoung}@ece.arizona.edu
ntaimo@email.arizona.edu

Depa

Abstract

 With rapid technological advances in network
infrastructure, programming languages, compatible
component interfaces and so many more areas, today the
computational Grid has evolved with the potential of
seamless aggregation, integration and interactions. This
has made it possible to conceive a new generation of
realistic, scientific and engineering simulations of
complex physical phenomenon. These applications will
symbiotically and opportunistically combine
computations, experiments, observations, and real-time
data, and will provide important insights into complex
phenomena. However, the phenomena being modeled are
inherently complex, multi-phased, multi-scaled, dynamic
and heterogeneous (in time space and state).
Furthermore, their implementations involve multiple
researchers with scores of models, hundreds of
components and dynamic compositions and interactions
between these components. The underlying Grid
infrastructure is similarly heterogeneous and dynamic,
globally aggregating large numbers of independent
computing and communication resources, data stores and
sensor networks. The combination of the two results in
application development, configuration and management
complexities that break current paradigms that are based
on passive components and static compositions. In fact,
we have reached a level of complexity, heterogeneity, and
dynamism that our programming environments and
infrastructure are becoming unmanageable/insecure [3].
 In this paper we attempt to explore an alternative
programming paradigm and management technique that
is based on strategies used by biological systems to deal
with complexity, heterogeneity and uncertainty. This
approach is referred to as autonomic computing [1]. We
discuss key technologies to enable the development of
autonomic Grid applications. We also present a
middleware architecture that sits on top of the existing
Grid middleware, intelligently managing and executing
autonomic applications with huge computational
requirements over limited Grid resources. We discuss in

detail
dynam
simula

1. De

 Let
huge
limited
scenar
how
availa
proper
manag
alloca
about
 Vi
large
and au
conten
memo
is mem
is ther
provid
perfor
progra
progra
de-allo
Conce
memo
supply
 In
virtua
applic
we ca
applic
that m
resour
of vir
our a
manag

2Applied Software Systems Laboratory
rtment of Electrical and Computer Engineering

Rutgers University
94 Brett Road, Piscataway, NJ 08854

Email: parashar@caip.rutgers.edu

how the proposed vGrid middleware can be used to
ically control and manage large-scale forest fire
tion.

sign Motivations

 us look at a scenario where an application with
resource requirements, needs to be executed over
 Grid resources. Our approach to handle such a

io draws its motivation from Virtual Memory and
it handles huge problem execution with limited
ble main memory. By injecting autonomous
ties into the application, we can ensure smart
ement of the issues associated with this kind of

tion and de-allocation of resources. We will talk
this more in the subsequent sections of this paper.
rtual Memory is the simulation of storage space so
that programmers do not need to rewrite programs,
thors do not need to rewrite documents when the
t of a program module, the capacity of a local
ry or the configuration of a network changes [5]. It
ory that is physically not there but behaves as if it

e. In the world of Virtual Memory, resources are
ed on demand taking care of achieving optimum
mance without leading to too many “swaps” of the
m modules. It has a “working set” to prevent the
m from thrashing. It has a number of allocation and
cation strategies to handle different scenarios.
ptually, we could map the concepts of virtual
ry to solve our problem at hand, that of bridging the
 - demand gap.
 the perspective of virtual memory, we can think of

l compute resources that can be allocated to the
ation for execution. Since the resources are virtual,
n allocate as many of them as required by the
ation, and have some kind of an intelligent manager

aps these virtual resources to actual physical
ces, much like the operating system in the context
tual memory. We term that central intelligence in
rchitecture as the vGrid manager. The vGrid
er will be responsible for collecting resource

1

requests from the application, dividing the application
into virtual computational units (VCUs) much like the
pages and segments in virtual memory, applying
allocation strategies to translate virtual resources to
physical resources (much like the translation from virtual
address space to physical address space for a piece of
code) and applying de–allocation strategies to reallocate
the same resources to other VCUs (much like the
operating system throwing away used pages and
allocating new pages to that part of the memory).

bor cells to

 The organization of the paper is as follows. In Section
2, we give an overview of a forest fire simulation
application that will be used to explain and demonstrate
the novel features of the vGrid middleware. In Section 3,
we describe in detail the architecture of the vGrid
middleware and its main components.

2. Brief Description of Forest Fire Simulation
Model

 The Forest Fire simulation model has been developed
using the concepts of cellular automata.

2.1 Cellular Automata

 A cellular automaton is an array of identically
programmed automata, or "cells", which interact with one
another. Essentially, it is a 1-dimensional string of cells,
a 2-D Grid or a 3-D solid and has three important features
– state, neighborhood and its program [6]. Just as every
living cell contains all of the instructions for its
replication and operation [2], each individual cell in a
cellular automata can be programmed with a set of rules
that define how its state changes in response to its current
state and that of the neighbors. Thus by building
appropriate rules into a cellular automaton we can
simulate many kinds of complex physical behavior,
ranging from the motion of fluids governed by the
Navier-Stokes equations to outbreaks of starfish on a
coral reef [6].

2.2 Description of the Model

 This model is developed based on DEVS and Cell-
DEVS formalisms [7], [12]. It predicts fire spread (the
speed, direction and intensity of forest fire front) as the
fire propagates, based on both dynamic and static
environmental and vegetation conditions. In addition,
with the knowledge of fire spread in a given direction, the
model can estimate the time the fire would take to reach a
given location. This model considers non-uniform fire
spread parameters in order to address the issue of
spatial/temporal variability of forest fire propagation
variables and follows along the line of work of

Vasconcelos [10] that introduces and illustrates the
conceptual basis for a discrete event hierarchical modular
fire spread model.
 In this model, the forest is represented as a 2-D cell-
space composed of cells of dimensions l x b (l: length, b:
breadth). For each cell there are eight major wind
directions N, NE, NW, S, SE, SW, E, W

Figure 1: Cell with major wind directions

 In our architecture, a group of such individual cells
will together constitute, a Virtual Computational Unit
(VCU). The weather and vegetation conditions are
assumed to be uniform within a cell, but may vary in the
entire cell space. A cell interacts with its neighbors along
all the eight directions as listed above, using input and
output ports (the DEVS-Java model).
 A cell is programmed to undergo state changes from
“unburned” to “burning” if it is hit by an igniter or gets a
notification message to compute its fire-line intensity
value. The cell changes state from “unburned” to
“burning” only if the computed fire-line intensity is above
a threshold value for “burning”.

Figure 2: Fire directions after ignition

 During the “burning” phase, the cell propagates eight
different fire components along the eight directions (refer
figure 2 above). The direction and value of maximum fire
spread is computed using Rothermel’s fire spread model
[8]. The remaining seven components are then derived
using a different decomposition algorithm. Rothermel’s
model takes into account, the wind–speed and direction,
the vegetation type, the calorific value of the fuel and
terrain type in calculating the fire spread.

Figure 3: Potential neigh be ignited
by the “burning” center cell

 2

Autonomic PSE

Problem needs, preferences
• Hardware Resources

Self – Optimizing
Policies

Self- Deployment
Policies

Self – Configuring
Policies

Self – Healing
Policies

Self – Protecting
Policies

Problem Characteristics
• High Activity Zones

vGrid Infrastructure Services

Autonomic vGrid Application Execution Environment

Open
Grid

Services

vGrid
Resources

system
config
status

Distributed Communication Service (whiteboard)

Knowledge Engine
Monitoring

Engine

Analysis
Engine

Planning
Engine

Execution
Engine

Knowledge Engine
Monitoring

Engine

Analysis
Engine

Planning
Engine

Execution
Engine

2.3 The Ch ar

 Unlike embarrassingly parallel applications, which are

eduled for execution

allenge of Parallelizing Cellul
application above, there are a lot of neighbor interactions
possibly happening at the same time. So when the VCU’s

Automata

are scheduled to execute on different machines, the
bordering cells in one VCU will have to communicate
with the bordering cells in another VCU, physically
amounting to exchange of messages between machines on
which the VCUs reside. While developing the simulation
model above, the amount of communication among
neighbors was already reduced by implementing the
concept of “transmit when there is a real state change”
(DEVS Java approach). The application sees all
neighboring cells sitting close to one another as if on a
single machine. It is the responsibility of the vGrid
manager to route messages between neighboring cells and
smartly handle underlying communication and
synchronozation issues.

easily distributed on a network, large-scale models of
living systems will require ongoing communication
between the computers participating in the computation
[2]. To parallelize the application that we have discussed
above, we need to study and think extensively about the
behavior of the application. The operating system utilizes
“locality of reference” as one criterion in dividing the
huge code into smaller pages or segments. In our design,
the initial partitioning of the problem space is performed
based on the application specific information provided by
the user. After execution has started, the vGrid manager
may decide to reconfigure the VCUs to optimize the
performance of the application autonomously. Note that
this runtime autonomic management of the application is
done without any user intervention.
 Finally, these VCUs will be sch

3. vGrid Architecture

 An overview of the vGrid middleware architecture is
shown in the figure 4 below: over the Grid, with heterogeneous resources in different

domains, geographically dispersed. As explained in the

Figure 4: vGrid Middleware Architectur .

Overview (vGrid Manager Symbol [4])al

3

3.1 Layer I: Autonomic Problem Solving
Environment (PSE)

 The autonomic PSE will provide application
developers with a general software development
environment to design and construct large scale scientific

and engineering applications, specify high level policies
that capture different aspects of autonomic behavior in the
application (like self – optimization, self – healing etc,
refer figure 4 above) and submit the application for
execution over the Grid.
 The general problem-solving environment or
Autonomic PSE, that appears as the topmost layer in the
vGrid architecture, (refer Figure 4 above), is based on a
previous project called Adaptive Distributed Virtual
Computing Environment (ADViCE) [9]. The software
architecture of the ADViCE problem-solving
environment has a web-based graphical user interface that
provides users with a set of task libraries to solve one
class of problems.
 Now let us look at the process of configuring and
executing the forest fire application within the autonomic
PSE. The application developer will compose the forest
fire problem space with the individual cells or fine
computational units (FCUs). Within the PSE task library
for forest fire simulation application, these FCUs exist as
individual modules of code. There exist, within the task
library, one FCU of each type (with different forest cell
characteristics, different fire spread algorithms etc) .When
configuring the application, the user can select FCUs of
different types, drag and drop them in the editor area and
link them in the manner in which they want to form the
entire forest cell space.
 A right click on the application brings up a menu bar
with items like self-optimizing, self – healing etc.
Clicking on the self-optimization menu item for example,
will open up a small box where the user can key in the
policies for self-optimization of the simulation. Let us
assume he key’s in –“load balanced execution with
minimum execution time”. For ease of explanation, we
will use this one objective to show how the intelligent
middleware operates to self-optimize the simulation as
specified by the user.
 The PSE also provides appropriate visualization tools
for the application developer to view different results of
the simulation (like execution time on each machine
where parts of the application are running, load on each
individual machine, how the fire front is advancing etc)
as it proceeds.

Autonomic Components

 An autonomic component is a self – governing, self –
managing module that will maintain and adjust its
operation in the face of changing workloads, demands,

hardware failures both innocent and malicious. Our
approach here is to develop an autonomic application as a
dynamic and opportunistic composition of autonomic
components. In the forest fire application, the entire forest
is composed of tiny cells or FCUs such that the properties
of the forest remain uniform within that cell. A group of
FCUs are then managed in a collection called Virtual
Computational Unit (VCU), which is the amount of the
problem to be given to a single Grid resource unit. The
total sets of VCUs make up the complete parallel problem.
In our architecture, autonomic properties reside at the level
of VCUs, which is nothing but an agglomeration of
numerous cells with certain common properties.

Cell or Fine Computational Unit (FCU)

 Each individual cell has the following information –
data (like threshold value of fire line intensity to change
state from “unburned” to “burning”, Rothermel’s
equations, the current state of the cell and how long will it
remain in that state), rules for its operation (eg. what
happens when a burning cell receives an ignition input
from its burning neighbors) and knowledge about its
neighbors. Each cell has a unique cell id in the cell space.
A cell has input and output ports for communication.
Note that a cell or FCU is “atomic” in the sense that we
cannot further divide the FCU into smaller units during
computations.

1. Data
2. Operational Rules
3. Neighbor Information

Output
ports

Input
ports

Figure 5: An individual forest cell

Virtual Computational Units (VCUs)

 The granularity of an autonomic component lies at the
level of a Virtual Computational Unit or VCU. VCUs are
capable of exporting their information and policies about
their behavior, resource requirements, performance,
interactivity and adaptability to the vGrid manager. The
vGrid manager uses that information to autonomously
change its configuration as and when necessary.
 The VCU performs the above mentioned
functionalities with the help of an Autonomic Wrapper
(AW) associated with the VCU. AW maintains
information about the operational, functional and control
aspects of the VCU in the following tables:

Os_Table or Operating State Table.

 4

 This table maintains the operating state information for
the VCU. Just as the operating system saves process state

information while doing context switching, the AW will
maintain VCU operating state information in the
Os_Table. If a VCU gets de-scheduled due to a resource
allocation decision by the vGrid Manager for example, its
entire status at the time of getting de-scheduled will be
updated and saved in the Os_Table. When this VCU gets
scheduled later, execution can resume from the point at
which this VCU left it. It contains the following
information: VCU_id, VCU state (running, ready,
blocked, free), value of data structures.

 5

Autonomic Wrapper

VCU
Os

Collection
Of FCUs

Functional Profile

Control Profile

Operational Profile

sensor actuator

Fi

Ci

Ci_Table or Control Information Table

 This table maintains all control information about the
VCU. It contains the following information: VCU
Complexity, Block_Time, Total Ex_Time, % CPU
utilization, Available Memory.

Fi_Table or Functional Information Table

 This table maintains functional information about the
VCU like fire spread algorithms etc.

 After a configurable number of cycles, this
information is made available to the vGrid manager [2].
The vGrid manager uses this information, and decides on
appropriate course of action to reconfigure that VCU if
needed. We will explain this process in the following
sections. The vGrid manager interacts with the VCU
through the AW. So configuration changes prescribed by
the vGrid manager is communicated to the AW and
enforced by the AW on the VCU by using the actuator
port. Similarly, the AW uses the sensor port to sense
VCU data [2].

ure 6: Virtual Computational Unit (VCU) [2] [3]

.2 Layer II: vGrid Infrastructure Services

 The vGrid middleware services implement key
ime

rvices to support autonomic Grid Applications [3].

gine
and

omponent in the vGrid
architecture is the vGrid Manager (VGM) which is the

E)

the application for execution,
e ME reads the application information and generates a

the cell_properties array and
enerates a Work Capability Index (WCI) for each cell in

Fig

3

enhancements to existing Grid middleware and runt
se

The main components of the vGrid infrastructure
architecture include vGrid Manager – Knowledge Engine,
Monitoring Engine, Analysis Engine, Planning En

 Execution Engine, vGrid Resources, Open Grid

Services, and Distributed Communication Service. In
what follows, we will describe how the simulation
application submitted by the user will use the vGrid
infrastructure services to use the heterogeneous Grid
resources and achieve autonomic runtime management.

3.2.1 vGrid Manager (VGM)

 The main administrative c

autonomic application manager that sets up and
configures the application execution environment,
manages and controls all the autonomic requirements
(e.g., self-optimizing, self-healing, self-configuring, self-
protecting, etc.).The vGrid Manager consists of the
following five engines:

Monitoring Engine (M

 Once the user submits
th
cell_properties array for each forest cell constituting the
application. The cell_properties array stores information
like moisture content, terrain topography, vegetation type,
wind speed and wind direction. The ME uses the Grid
services (like Metacomputing Directory Service) to
generate and update a resource_properties array for each
physical resource in the Grid

Analysis Engine (AE)

 The AE reads in
g
the forest cell space. The WCI is a number that indicates
the compute intensity of a particular cell within the forest
cell space. In addition to the cell properties, the WCI also
depends on cell position in the cell space. This means that
neighboring cells have more or less the same WCI. This
is also justified by reality because properties of the forest
only change gradually and there are normally no
observable discrete changes within a forest. So WCI
generation must respect the natural boundaries. It also
generates a Resource Capability Index (RCI) for each
available resource in the Grid by reading in information
from the resource_properties array.

Planning Engine (PE)

ing engine is to partition the cells
VCUs by using the WCI as already computed by the

 The task of the plann
into
AE. While doing this initial partitioning, if the PE
discovers WCI that donot conform to geometry of the cell
space, it will send an error message to the AE with the
cell_id and neighboring cell ids. The AE re-computes the
WCI. If it arrives at the same result, it will raise an error
condition to the application developer requesting

reconfiguration of the application in and around that
cell_id. The PE also generates the Working Set of VCUs
by reading in fire-spread rules stored in the Knowledge
Engine (KE).

Concept of Working Set (WS)

ry, working set is the set
f pages that must be there in memory at any point of

ch

he simulation proceeds thereby steering the

ad in VCU ids from the WS and

ocate VCUs to physically available resources by a way

n

 At this level, the global EE divides VCUs into several

tra-Grid Allocation

 This allocation is taken care of by the local vGrid

Knowledge Engine (KE)

 The KE will contain rules for fire spread based on

Grid domains, based on the current state of the Grid
resources, their availability (RCI) and the pre-determined
computational intensity of the VCUs (WCI). The EE
picks up VCUs both from the WS and outside the WS and
attempts to loosen the communication/synchronization
messages between inter-Grid domain resources as much
as possible by grouping adjacent VCUs to one Grid
domain. The EE creates Ci, Os and Fi tables for each AW
associated with a VCU and updates current information in
those tables. EE also generates an I_table or interaction
table that contains information about VCU location in the
Grid. Finally the EE sends these tables for local and
remote VCUs together with the VCUs, to that domain.

 In the world of virtual memo
o
time in order to ensure that the program does not thrash.
In our forest fire example, the nature of the problem is
such that the area of intensive computation is defined by
the fire-front. As the fire front advances, all the cells
behind the fire front have already burned out and the
resources allocated to them can be taken away and
allocated to the cells within and ahead of the fire front.
 The direction of fire-front depends on initial ignition
point and wind direction. The KE already has rules whi

In

dictate the direction of fire-front depending on the initial
ignition point and wind direction. The PE reads those
rules and determines the cells that will be under the fire
front initially and subsequently. It finds out the VCU ids
for those cells and thus generates the initial WS for the
application.
 Note that the initial wind direction is capable of
changing as t

manager (EE) responsible for that domain. Within each
Grid domain, the number of VCUs allocated to the
domain Grid resources are much larger than what can be
handled by the existing resources (e.g., say we have 25
Million VCUs to run over 250 computing nodes (128
IBM SP2, 64 Bewoulf cluster, 58 ATM Cluster, etc.). We
already have the WCI computed for each VCU that
reflects the computational requirements for that VCU.
The local EE will simply pick VCUs that were marked to
be in the WS and allocate them to the resources by using
the WCI and RCI values.

fire front in a direction different from the originally
predicted direction. This situation will be taken care of as
the simulation proceeds, from the feedback information
received from the AW for each active VCU. Let us
assume that the wind direction has changed during
simulation and an active VCU sends notification message
to an inactive VCU to compute fire-line intensity and
check if it can transit from “unburned” to “burning”.
Since this VCU is currently inactive, the active VCU will
be in blocked state till the message reaches the desired
VCU. This VCU has to block because its future state
might be affected by inputs coming in from the currently
inactive VCU. The Block_Time parameter in the Ci_table
will be used by the AE to discover and deduce the
bringing in of the currently inactive VCU into the WS.

Execution Engine (EE)

 The EE will simply re

 all

Figure 7: Grid Resource Hierarchy Vs
of mapping the WCI to the RCI. Note that the EE also
sends VCUs that are currently not in the WS, to different
Grid domains, because these VCUs have been marked as
the next potential entries in the WS. The approach to
allocate the VCUs to Grid resources is carried out in a
two level hierarchy.

Inter-Grid Allocatio

Application Domain Hierarchy

wind direction and ignition points. At any point of time,
the fire front can be predicted by using these rules, the
wind direction and ignition point. This knowledge will be

 6

used to generate the WS. All high level policies are stored
as implementation rules here. For example, a high level
self – optimization policy of “load balanced execution
with minimum execution time” will be stored here in
terms of different load - balancing algorithms (like
migration of VCUs, enlarge or compact a VCU etc) and
different execution time reduction algorithms (like
communication reduction by redistribution of VCUs to
resources, overlap communication and computation etc) .
It will also contain rules governing resource allocation
strategies among VCUs. Let’s say, the AE observes that a
currently inactive VCU is projected to be active (from
the fire spread rules in the KE) in the next iteration and
all the resources are currently busy running the other
VCUs,. The PE will turn to the KE for rules to allocate
resources to this VCU. It could have rules like, de-
schedule an active VCU (based on its total
execution_time, total block_time or total time_to
_completion parameters) and allocated the resource to
this VCU, or queue this VCU for execution in an already
busy resource till it becomes completely free. Just as the
operating system has different de-scheduling algorithms
(round robin, elevator, scan etc) for different scenarios,
the KE gives estimated / projected execution times, effect
on overall performance, load on resource unit etc values
for different scheduling/de-scheduling algorithms and this
enables the PE to plan the appropriate strategy for a
particular scenario.

3.2.2 VCU shifting: Dynamic Problem Partition

 To be able to allocate and de-allocate resources

execution proceeds, the AW keeps updating

n section 3.1, we will use the

ted

2.3 Distributed Communication Service (White

vGrid uses a distributed communication
infra

itten in
Java)

depending on the computational intensity and status of
available resources, we need to dynamically re-partition
the VCUs as the fire front advances and move them
among Grid resources as execution proceeds. So, we
should have a mechanism to track the activity of the
computation in space. Our approach to implement this is
as follows.
 Once the
the Ci and Os tables depending on the execution status of
the VCU it manages. AW periodically sends Ci_table and
Os_table to the local ME.
 As we had mentioned i
self-optimization objective of achieving “load balanced
execution with minimum execution time” to explain how
the vGrid middleware achieves that objective
autonomously without user intervention. Local AE reads
Ci_table information, let’s say the total execution time
parameter from Ci_table and the number of cells in the
VCU that are yet to become active. The local AE
computes the projected time_to_completion and
compares it with the estimated time_to_completion for
that VCU. The estimated_time_to_completion, optimal
load values etc for this forest fire application are already
stored in the KE as obtained from previous runs and from

profiling information for this application. It also reads the
tables to compare the actual load on that machine with the
estimated load. If the AE finds the values to have
exceeded the threshold limit, it sends the information to
the local PE. The local PE computes the number of cells
that need to be removed from the VCU to bring the load
and execution time to the estimated values. The local EE
checks to see if that plan can be executed within that
domain itself. It does that by reading the plans for the
other VCUs within that domain as generated by the PE. If
it finds it can accommodate that request within that
domain, it signals the target AW. The AW then updates
the tables, sends information like – affected data
structures for those cells to the local EE, deletes those
cells from that VCU and updates the tables with the
current VCU information. The EE now sends those cells
together with the information sent by the old AW, to the
selected machine as determined by the PE. The new AW
then updates all the tables and starts execution again.
 If however, the request cannot be accommoda
within that domain, it has to be sent back to the global
ME. The global ME will request for execution time and
load information from all the domains that have VCUs
running at that minute. Once it gets all that information,
the global AE and PE together generate plans, either to
adhere to the plan sent by the local vGrid manager or
generate a new plan of actually moving the entire VCU to
a different domain with higher RCI. Note that the local
AE and PE make it easier for the global contemporaries
to set up plans, but they have no authority in taking
decisions outside their own Grid domain. .Since the
global ME, AE and PE have the global picture of the
entire execution, they are in the best position to decide the
correct plan. Next, the global EE simply carries out the
plan in a manner similar to the local EE. Of course the
I_table might have to be updated by the global EE if the
VCU partition or location has changed.

3.
Board)

structure with a white board or “Linda” like
architecture [11] for coordination of all of the different
components. It uses the IBM’s TSpaces, which is an
intelligent connection-ware component that provides
flexible communication, event notification, transactions,
and database storage, queries and access control.

Because of its ubiquitous nature (being wr
, reach-ability characteristics (it uses standard

TCP/IP protocols) and loosely connected nature, TSpaces
is an ideal middleware component for making network
oriented services available to any client, regardless of the
computing platform. For example, a service such as
printing, email, network fax service or remote device
control can be provided in the following way. A client

 7

simply sends a message in the form of a tuple to the
TSpaces server, specifying the data (e.g. the description
of a compute service submitted by an AW) and the
service needed (e.g. a problem to run). A service
provider application registers an interest with the TSpaces
server for all tuples mentioning that particular service.
When tuples mentioning that service appear, the TSpaces
server notifies the service provider, whereupon the
service provider can remove those tuples and process
those [2].

Inter VCU Communication

tion, when a cell completes

3.3 Layer III: Autonomic Grid Application

 responsible for monitoring and

nd Current Status

 In our forest fire applica
“burning” it goes to “burned” state after transmitting
the notification message to its neighbors.
Communication between neighbors in the same VCU is
handled using the output ports of DEVS Java model.
Communication between neighbors in separate VCUs
(whether within a domain or in different domains) is
handled as follows. When cell id ‘x’ for example, needs
to communicate with cell id ‘y’ and both of them are on
two different Grid domains, the Local VGM (EE) will
get the request from the AW that it could not resolve
that cell id within that site .The Local VGM issues a
query for that information on the white board and the
VGM responds to that query by writing on the
whiteboard, the VCU number for that cell and the
corresponding communication server. It uses the
I_table to respond to this query. The message is then
routed to the appropriate communication server.

Execution Environment

 This layer is
controlling the actual execution. In terms of Grid
Resource Hierarchy (see Figure 7) this layer exists in
each Grid resource domain. The main component in
this layer is the Local VGM consisting of the local KE,
ME, AE, PE, and EE. It performs the second level of
resource allocation and de-allocation (Intra Grid) as
mentioned above. It also periodically communicates
with the VGM using the whiteboard, where it sends
information about the VCUs being executed in its
domain. The VGM needs this information from all
domains, for autonomously managing the VCUs
according to the self-healing, self-optimizing, self-
protecting, self – configuring and self – deploying
properties specified by the application developer. This
has already been explained in section 3.2.2.

4. Conclusion a

 The vGrid architecture is a middleware system that is
capable of managing Grid applications according to the

r the system to support autonomic cellular

[1]P. Horn, “Autonomic C perspective on the
State of Information Techn rp., October 2001.

timal Grid: Grid
Middleware for High Performance Computational Biology”,

an, V. Putty, C.
Schmidt, G. Zhang , M. Parashar, B. Khargharia, S. Hariri,

n of
Autonomic Computing”, published by IEEE Computer Society,

s Virtual”, Draft, June
6th 1996. http://cne.gmu.edu/pjd/PUBS/bvm.pdf.

[7]B.P. Zeigler, H. Praehofer, T.G. Kim, “Theory of modeling and

roblem Solving

odeling Spatial Dynamic Ecological
Processes with DEVS-Scheme and Geographical

t,”
Communications of the ACM 32, No. 4, 444-458 (April 1989).

imulation of cell spaces”, in Discrete Event Modeling and

autonomic properties specified by the application
developer during problem configuration stage. It frees the
application developer from the issues related with
execution and management of huge applications
distributed over heterogeneous Grid resources.It appears
to the user like an operating system that promises to run
your application irrespective of the application memory
requirements.
 We are currently developing the conceptual
architecture fo
automata type and autonomic adaptive mesh refinement
applications (AMR) in science and engineering.

References
omputing: IBM’s
ology”, IBM Co

http://research.watson.ibm.com/autonomic.

[2]James Kaufman, Toby Lehman,“Op

Research Report, IBM Almaden Research Center.
Email:{kaufman,lehman}@almaden.ibm.com.

[3]M. Agarwal, V. Bhat, H. Liu, V. Matossi

“Automate: Enabling Autonomic Applications On The Grid”,
Proceedings of Active Middleware Services (AMS) 2003.

[4]Jeffery O. Kephart, David M. Chess, “The Visio

Volume:36, Issue:1,Jan 2003 pp 41 -50

[5] Peter J. Denning, “Before Memory Wa

[6] http://life.csu.edu.au/complex/tutorials/tutorial1.html

simulation”, 2nd Edition, Academic Press, 2000.

[8]Rothermel, R.], “A mathematical model for predicting fire
spread in wildland fuels”, Research Paper INT-115. Ogden, UT:
U.S. Department of Agriculture, Forest Service, Intermountain
Forest and Range Experiment Station, 1972.

[9] H. Topcuoglu, S.Hariri, Wojtek Furmanski, D. Kim, Y. Kim,
I. Ra, X. Bing, B. Ye, J. Valente, “A P
Environment for Network Computing”, published by IEEE
Computer Society, 1997

[10]J.M. Vasconcelos, “M

InformationSystems, Ph.D. Dissertation, Department Renewable
and Natural Resources , University Of Arizona, U.S.A, 1993.

[11]N. Carriero and D. Gelernter, "Linda in Contex

[12]G. Wainer, N. Giambiasi, “Timed Cell-Devs: modeling and
s

 8

Simulation: Enabling Future Technologies, Springer – Verlag,
2001.

 9

	Abstract
	1. Design Motivations
	2. Brief Description of Forest Fire Simulation Model
	2.1 Cellular Automata
	2.2 Description of the Model
	
	
	
	
	
	Figure 2: Fire directions after ignition

	2.3 The Challenge of Parallelizing Cellular Automata
	
	Autonomic Components
	
	
	
	
	Figure 5: An individual forest cell

	Inter VCU Communication
	References

