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Abstract 
 
       With rapid technological advances in network 
infrastructure, programming languages, compatible 
component interfaces and so many more areas, today the 
computational Grid has evolved with the potential of 
seamless aggregation, integration and interactions. This 
has made it possible to conceive a new generation of 
realistic, scientific and engineering simulations of 
complex physical phenomenon. These applications will 
symbiotically and opportunistically combine 
computations, experiments, observations, and real-time 
data, and will provide important insights into complex 
phenomena. However, the phenomena being modeled are 
inherently complex, multi-phased, multi-scaled, dynamic 
and heterogeneous (in time space and state). 
Furthermore, their implementations involve multiple 
researchers with scores of models, hundreds of 
components and dynamic compositions and interactions 
between these components. The underlying Grid 
infrastructure is similarly heterogeneous and dynamic, 
globally aggregating large numbers of independent 
computing and communication resources, data stores and 
sensor networks. The combination of the two results in 
application development, configuration and management 
complexities that break current paradigms that are based 
on passive components and static compositions. In fact, 
we have reached a level of complexity, heterogeneity, and 
dynamism that our programming environments and 
infrastructure are becoming unmanageable/insecure [3]. 
      In this paper we attempt to explore an alternative 
programming paradigm and management technique that 
is based on strategies used by biological systems to deal 
with complexity, heterogeneity and uncertainty. This 
approach is referred to as autonomic computing [1]. We 
discuss key technologies to enable the development of 
autonomic Grid applications. We also present a 
middleware architecture that sits on top of the existing 
Grid middleware, intelligently managing and executing 
autonomic applications with huge computational 
requirements over limited Grid resources. We discuss in 
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how the proposed vGrid middleware can be used to 
ically control and manage large-scale forest fire 
tion. 

sign Motivations 

 us look at a scenario where an application with 
resource requirements, needs to be executed over 
 Grid resources. Our approach to handle such a 

io draws its motivation from Virtual Memory and 
it handles huge problem execution with limited 
ble main memory. By injecting autonomous 
ties into the application, we can ensure smart 
ement of the issues associated with this kind of 

tion and de-allocation of resources. We will talk 
this more in the subsequent sections of this paper. 
rtual Memory is the simulation of storage space so 
that programmers do not need to rewrite programs, 
thors do not need to rewrite documents when the 
t of a program module, the capacity of a local 
ry or the configuration of a network changes [5].  It 
ory that is physically not there but behaves as if it 

e. In the world of Virtual Memory, resources are 
ed on demand taking care of achieving optimum 
mance without leading to too many “swaps” of the 
m modules. It has a “working set” to prevent the 
m from thrashing. It has a number of allocation and 
cation strategies to handle different scenarios. 
ptually, we could map the concepts of virtual 
ry to solve our problem at hand, that of bridging the 
 - demand gap.  
 the perspective of virtual memory, we can think of 

l compute resources that can be allocated to the 
ation for execution. Since the resources are virtual, 
n allocate as many of them as required by the 
ation, and have some kind of an intelligent manager 

aps these virtual resources to actual physical 
ces, much like the operating system in the context 
tual memory. We term that central intelligence in 
rchitecture as the vGrid manager. The vGrid 
er will be responsible for collecting resource 
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requests from the application, dividing the application 
into virtual computational units (VCUs) much like the 
pages and segments in virtual memory, applying 
allocation strategies to translate virtual resources to 
physical resources (much like the translation from virtual 
address space to physical address space for a piece of 
code) and applying de–allocation strategies to reallocate 
the same resources to other VCUs (much like the 
operating system throwing away used pages and 
allocating new pages to that part of the memory).  

bor cells to 

 
      The organization of the paper is as follows. In Section 
2, we give an overview of a forest fire simulation 
application that will be used to explain and demonstrate 
the novel features of the vGrid middleware. In Section 3, 
we describe in detail the architecture of the vGrid 
middleware and its main components.  
 
2. Brief Description of Forest Fire Simulation 
Model 
 
      The Forest Fire simulation model has been developed 
using the concepts of cellular automata. 
 
2.1 Cellular Automata 
 
      A cellular automaton is an array of identically 
programmed automata, or "cells", which interact with one 
another. Essentially, it is a   1-dimensional string of cells, 
a 2-D Grid or a 3-D solid and has three important features 
– state, neighborhood and its program [6]. Just as every 
living cell contains all of the instructions for its 
replication and operation [2], each individual cell in a 
cellular automata can be programmed with a set of rules 
that define how its state changes in response to its current 
state and that of the neighbors.  Thus by building 
appropriate rules into a cellular automaton we can 
simulate many kinds of complex physical behavior, 
ranging from the motion of fluids governed by the 
Navier-Stokes equations to outbreaks of starfish on a 
coral reef [6]. 
 
2.2 Description of the Model 
 
     This model is developed based on DEVS and Cell-
DEVS formalisms [7], [12]. It predicts fire spread (the 
speed, direction and intensity of forest fire front) as the 
fire propagates, based on both dynamic and static 
environmental and vegetation conditions. In addition, 
with the knowledge of fire spread in a given direction, the 
model can estimate the time the fire would take to reach a 
given location. This model considers non-uniform fire 
spread parameters in order to address the issue of 
spatial/temporal variability of forest fire propagation 
variables and follows along the line of work of 

Vasconcelos [10] that introduces and illustrates the 
conceptual basis for a discrete event hierarchical modular 
fire spread model. 
      In this model, the forest is represented as a 2-D cell-
space composed of cells of dimensions l x b (l: length, b:  
breadth). For each cell there are eight major wind 
directions N, NE, NW, S, SE, SW, E, W 
 
 
 

 
 
 
 
 

Figure 1: Cell with major wind directions 
 

      In our architecture, a group of such individual cells 
will together constitute, a Virtual Computational Unit 
(VCU). The weather and vegetation conditions are 
assumed to be uniform within a cell, but may vary in the 
entire cell space. A cell interacts with its neighbors along 
all the eight directions as listed above, using input and 
output ports (the DEVS-Java model).  
      A cell is programmed to undergo state changes from 
“unburned” to “burning” if it is hit by an igniter or gets a 
notification message to compute its fire-line intensity 
value. The cell changes state from “unburned” to 
“burning” only if the computed fire-line intensity is above 
a threshold value for “burning”.  
 
 
 
 
 
  

Figure 2: Fire directions after ignition 
 
       During the “burning” phase, the cell propagates eight 
different fire components along the eight directions (refer 
figure 2 above). The direction and value of maximum fire 
spread is computed using Rothermel’s fire spread model 
[8]. The remaining seven components are then derived 
using a different decomposition algorithm. Rothermel’s 
model takes into account, the wind–speed and direction, 
the vegetation type, the calorific value of the fuel and 
terrain type in calculating the fire spread.  
 
 

   
 
 
 

Figure 3: Potential neigh be ignited 
by the “burning” center cell 
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2.3 The Ch ar 

   Unlike embarrassingly parallel applications, which are 

eduled for execution 

  

allenge of Parallelizing Cellul  
application above, there are a lot of neighbor interactions 
possibly happening at the same time. So when the VCU’s 

Automata  
 

are scheduled to execute on different machines, the 
bordering cells in one VCU will have to communicate 
with the bordering cells in another VCU, physically 
amounting to exchange of messages between machines on 
which the VCUs reside. While developing the simulation 
model above, the amount of communication among 
neighbors was already reduced by implementing the 
concept of “transmit when there is a real state change” 
(DEVS Java approach). The application sees all 
neighboring cells sitting close to one another as if on a 
single machine. It is the responsibility of the vGrid 
manager to route messages between neighboring cells and 
smartly handle underlying communication and 
synchronozation  issues. 

  
easily distributed on a network, large-scale models of 
living systems will require ongoing communication 
between the computers participating in the computation 
[2]. To parallelize the application that we have discussed 
above, we need to study and think extensively about the 
behavior of the application. The operating system utilizes 
“locality of reference” as one criterion in dividing the 
huge code into smaller pages or segments. In our design, 
the initial partitioning of the problem space is performed 
based on the application specific information provided by 
the user. After execution has started, the vGrid manager 
may decide to reconfigure the VCUs to optimize the 
performance of the application autonomously. Note that 
this runtime autonomic management of the application is 
done without any user intervention. 
      Finally, these VCUs will be sch

 
3. vGrid Architecture  
 

      An overview of the vGrid middleware architecture is 
shown in the figure 4 below:  over the Grid, with heterogeneous resources in different 

domains, geographically  dispersed.  As explained  in  the   
  

                                 
  
  
  
  
  

  
  
  
     

  
 

 
 

Figure 4: vGrid Middleware Architectur .   

 

 
Overview (vGrid Manager Symbol [4])al
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3.1 Layer I: Autonomic Problem Solving 
Environment (PSE) 
 
      The autonomic PSE will provide application 
developers with a general software development 
environment to design and construct large scale  scientific 
 
and engineering applications, specify high level policies 
that capture different aspects of autonomic behavior in the 
application (like self – optimization, self – healing etc, 
refer figure 4 above) and submit the application for 
execution over the Grid. 
      The general problem-solving environment or 
Autonomic PSE, that appears as the topmost layer in the 
vGrid architecture, (refer Figure 4 above), is based on a 
previous project called Adaptive Distributed Virtual 
Computing Environment (ADViCE) [9]. The software 
architecture of the ADViCE problem-solving 
environment has a web-based graphical user interface that 
provides users with a set of task libraries to solve one 
class of problems. 
      Now let us look at the process of configuring and 
executing the forest fire application within the autonomic 
PSE. The application developer will compose the forest 
fire problem space with the individual cells or fine 
computational units (FCUs). Within the PSE task library 
for forest fire simulation application, these FCUs exist as 
individual modules of code. There exist, within the task 
library, one FCU of each type (with different forest cell 
characteristics, different fire spread algorithms etc) .When 
configuring the application, the user can select FCUs of 
different types, drag and drop them in the editor area and 
link them in the manner in which they want to form the 
entire forest cell space. 
     A right click on the application brings up a menu bar 
with items like self-optimizing, self – healing etc. 
Clicking on the self-optimization menu item for example, 
will open up a small box where the user can key in the 
policies for self-optimization of the simulation. Let us 
assume he key’s in –“load balanced execution with 
minimum execution time”. For ease of explanation, we 
will use this one objective to show how the intelligent 
middleware operates to self-optimize the simulation as 
specified by the user. 
      The PSE also provides appropriate visualization tools 
for the application developer to view different results of 
the simulation (like execution time on each machine 
where parts of the application are running, load on each 
individual machine, how the fire front is advancing etc) 
as it proceeds. 
  
Autonomic Components 
 
     An autonomic component is a self – governing, self – 
managing module that will maintain and adjust its 
operation in the face of changing workloads, demands, 

hardware failures both innocent and malicious. Our 
approach here is to develop an autonomic application as a 
dynamic and opportunistic composition of autonomic 
components. In the forest fire application, the entire forest 
is composed of tiny cells or FCUs such that the properties 
of the forest remain uniform within that cell. A group of 
FCUs are then managed in a collection called Virtual 
Computational Unit (VCU), which is the amount of the 
problem to be given to a single Grid resource unit.  The 
total sets of VCUs make up the complete parallel problem. 
In our architecture, autonomic properties reside at the level 
of VCUs, which is nothing but an agglomeration of 
numerous cells with certain common properties.  
 
Cell or Fine Computational Unit (FCU)  
 
      Each individual cell has the following information – 
data (like threshold value of fire line intensity to change 
state from “unburned” to “burning”, Rothermel’s 
equations, the current state of the cell and how long will it 
remain in that state), rules for its operation (eg. what 
happens when a burning cell receives an ignition input 
from its burning neighbors) and knowledge about its 
neighbors. Each cell has a unique cell id in the cell space. 
A cell has input and output ports for communication. 
Note that a cell or FCU is “atomic” in the sense that we 
cannot further divide the FCU into smaller units during 
computations. 
 

 
     
 
 
 
 
 
  

 
1. Data 
2. Operational Rules 
3. Neighbor Information 

          
Output 
ports 
 

          
Input 
ports 
 

Figure 5: An individual forest cell 
     
Virtual Computational Units (VCUs) 
 
      The granularity of an autonomic component lies at the 
level of a Virtual Computational Unit or VCU. VCUs are 
capable of exporting their information and policies about 
their behavior, resource requirements, performance, 
interactivity and adaptability to the vGrid manager. The 
vGrid manager uses that information to autonomously 
change its configuration as and when necessary.  
      The VCU performs the above mentioned 
functionalities with the help of an Autonomic Wrapper 
(AW) associated with the VCU. AW maintains 
information about the operational, functional and control 
aspects of  the VCU in the following tables: 
 
Os_Table or Operating State Table. 
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    This table maintains the operating state information for 
the VCU. Just as the operating system saves process state  

information while doing context switching, the AW will 
maintain VCU operating state information in the 
Os_Table. If a VCU gets de-scheduled due to a resource 
allocation decision by the vGrid Manager for example, its 
entire status at the time of getting de-scheduled will be 
updated and saved in the Os_Table. When this VCU gets 
scheduled later, execution can resume from the point at 
which this VCU left it. It contains the following 
information: VCU_id, VCU state (running, ready, 
blocked, free), value of data structures. 
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Ci_Table or Control Information Table 

    This table maintains all control information about the 
VCU. It contains the following information: VCU 
Complexity, Block_Time, Total Ex_Time, % CPU 
utilization, Available Memory. 

Fi_Table or Functional Information Table 

     This table maintains functional information about the 
VCU like fire spread algorithms etc. 

      After a configurable number of cycles, this 
information is made available to the vGrid manager [2]. 
The vGrid manager uses this information, and decides on 
appropriate course of action to reconfigure that VCU if 
needed. We will explain this process in the following 
sections. The vGrid manager interacts with the VCU 
through the AW. So configuration changes prescribed by 
the vGrid manager is communicated to the AW and 
enforced by the AW on the VCU by using the actuator 
port. Similarly, the AW uses the sensor port to sense 
VCU data [2]. 
 

ure 6: Virtual Computational Unit (VCU) [2] [3] 

.2 Layer II: vGrid Infrastructure Services 

   The vGrid middleware services implement key 
ime 

rvices to support autonomic Grid Applications [3]. 

gine 
and

omponent in the vGrid 
architecture is the vGrid Manager (VGM) which is the 

E) 

the application for execution, 
e ME reads the application information and generates a 

the cell_properties array and 
enerates a Work Capability Index (WCI) for each cell in 

 
Fig
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enhancements to existing Grid middleware and runt
se

The main components of the vGrid infrastructure 
architecture include vGrid Manager – Knowledge Engine, 
Monitoring Engine, Analysis Engine, Planning En

 Execution Engine, vGrid Resources, Open Grid 

Services, and Distributed Communication Service.  In 
what follows, we will describe how the simulation 
application submitted by the user will use the vGrid 
infrastructure services to use the heterogeneous Grid 
resources and achieve autonomic runtime management.  

  
3.2.1 vGrid Manager (VGM) 

 
     The main administrative c

autonomic application manager that sets up and 
configures the application execution environment, 
manages and controls all the autonomic requirements 
(e.g., self-optimizing, self-healing, self-configuring, self-
protecting, etc.).The vGrid Manager consists of the 
following five engines: 
 
Monitoring Engine (M
 
     Once the user submits 
th
cell_properties array for each forest cell constituting the 
application. The cell_properties array stores information 
like moisture content, terrain topography, vegetation type, 
wind speed and wind direction. The ME uses the Grid 
services (like Metacomputing Directory Service) to 
generate and update a resource_properties array for each 
physical resource in the Grid 
 
Analysis Engine (AE)  
 
     The AE reads in 
g
the forest cell space. The WCI is a number that indicates 
the compute intensity of a particular cell within the forest 
cell space. In addition to the cell properties, the WCI also 
depends on cell position in the cell space. This means that 
neighboring cells have more or less the same WCI. This 
is also justified by reality because properties of the forest 
only change gradually and there are normally no 
observable discrete changes within a forest. So WCI 
generation must respect the natural boundaries. It also 
generates a Resource Capability Index (RCI) for each 
available resource in the Grid by reading in information 
from the resource_properties array.  
 
Planning Engine (PE) 
      

ing engine is to partition the cells 
VCUs by using the WCI as already computed by the 

     The task of the plann
into 
AE. While doing this initial partitioning, if the PE 
discovers WCI that donot conform to geometry of the cell 
space, it will send an error message to the AE with the 
cell_id and neighboring cell ids. The AE re-computes the 
WCI. If it arrives at the same result, it will raise an error 
condition to the application developer requesting 



reconfiguration of the application in and around that 
cell_id. The PE also generates the Working Set of VCUs 
by reading in fire-spread rules stored in the Knowledge 
Engine (KE). 
 
Concept of Working Set (WS) 

ry, working set is the set 
f pages that must be there in memory at any point of 

ch 

he simulation proceeds thereby steering the 

 
ad in VCU ids from the WS and 

ocate VCUs to physically available resources by a way 

n 

    At this level, the global EE divides VCUs into several 

tra-Grid Allocation       

    This allocation is taken care of by the local vGrid 

Knowledge Engine (KE) 

  The KE will contain rules for fire spread based on 

  
Grid domains, based on the current state of the Grid 
resources, their availability (RCI) and the pre-determined 
computational intensity of the VCUs (WCI). The EE 
picks up VCUs both from the WS and outside the WS and 
attempts to loosen the communication/synchronization 
messages between inter-Grid domain resources as much 
as possible by grouping adjacent VCUs to one Grid 
domain. The EE creates Ci, Os and Fi tables for each AW 
associated with a VCU and updates current information in 
those tables. EE also generates an I_table or interaction 
table that contains information about VCU location in the 
Grid. Finally the EE sends these tables for local and 
remote VCUs together with the VCUs, to that domain. 
 

 
      In the world of virtual memo
o
time in order to ensure that the program does not thrash. 
In our forest fire example, the nature of the problem is 
such that the area of intensive computation is defined by 
the fire-front. As the fire front advances, all the cells 
behind the fire front have already burned out and the 
resources allocated to them can be taken away and 
allocated to the cells within and ahead of the fire front. 
     The direction of fire-front depends on initial ignition 
point and wind direction. The KE already has rules whi

In
 
  

dictate the direction of fire-front depending on the initial 
ignition point and wind direction. The PE reads those 
rules and determines the cells that will be under the fire 
front initially and subsequently. It finds out the VCU ids 
for those cells and thus generates the initial WS for the 
application.  
      Note that the initial wind direction is capable of 
changing as t

manager (EE) responsible for that domain. Within each 
Grid domain, the number of VCUs allocated to the 
domain Grid resources are much larger than what can be 
handled by the existing resources (e.g., say we have 25 
Million VCUs to run over 250 computing nodes (128 
IBM SP2, 64 Bewoulf cluster, 58 ATM Cluster, etc.). We 
already have the WCI computed for each VCU that 
reflects the computational requirements for that VCU. 
The local EE will simply pick VCUs that were marked to 
be in the WS and allocate them to the resources by using 
the WCI and RCI values. 
 

fire front in a direction different from the originally 
predicted direction. This situation will be taken care of as 
the simulation proceeds, from the feedback information 
received from the AW for each active VCU. Let us 
assume that the wind direction has changed during 
simulation and an active VCU sends notification message 
to an inactive VCU to compute fire-line intensity and 
check if it can transit from “unburned” to “burning”. 
Since this VCU is currently inactive, the active VCU will 
be in blocked state till the message reaches the desired 
VCU. This VCU has to block because its future state 
might be affected by inputs coming in from the currently 
inactive VCU. The Block_Time parameter in the Ci_table 
will be used by the AE to discover and deduce the 
bringing in of the currently inactive VCU into the WS. 
 
Execution Engine (EE) 

 
 
 
 
 
 
 
 
 
 
 
 
 

   
     The EE will simply re  

 all
 

Figure 7: Grid Resource Hierarchy Vs 
of mapping the WCI to the RCI. Note that the EE also 
sends VCUs that are currently not in the WS, to different 
Grid domains, because these VCUs have been marked as 
the next potential entries in the WS. The approach to 
allocate the VCUs to Grid resources is carried out in a 
two level hierarchy. 
 
Inter-Grid Allocatio

Application Domain Hierarchy 
 

   
   
wind direction and ignition points. At any point of time, 
the fire front can be predicted by using these rules, the 
wind direction and ignition point. This knowledge will be 
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used to generate the WS. All high level policies are stored 
as implementation rules here. For example, a high level 
self – optimization policy of “load balanced execution 
with minimum execution time” will be stored here in 
terms of different load - balancing algorithms (like 
migration of VCUs, enlarge or compact a VCU etc) and 
different execution time reduction algorithms (like 
communication reduction by redistribution of VCUs to 
resources, overlap communication and computation etc) . 
It will also contain rules governing resource allocation 
strategies among VCUs. Let’s say, the AE observes that a  
currently inactive VCU is projected to be active ( from 
the fire spread rules in the KE) in the next iteration and 
all the resources are currently busy running the other 
VCUs,. The PE will turn to  the KE for rules to allocate 
resources to this VCU. It could have rules like, de-
schedule an active VCU ( based on its total 
execution_time, total block_time or total time_to 
_completion parameters) and  allocated the resource to 
this VCU, or queue this VCU for execution in an already 
busy resource till it becomes completely free. Just as the 
operating system has different de-scheduling algorithms 
(round robin, elevator, scan etc) for different scenarios, 
the KE gives estimated / projected execution times, effect 
on overall performance, load on resource unit etc values 
for different scheduling/de-scheduling algorithms and this 
enables the PE to plan the appropriate strategy for a 
particular scenario.  
 
3.2.2 VCU shifting: Dynamic Problem Partition 

   To be able to allocate and de-allocate resources 

execution proceeds, the AW keeps updating 

n section 3.1, we will use the 

ted 

2.3 Distributed Communication Service (White 

vGrid uses a distributed communication 
infra

itten in 
Java)

 
  
depending on the computational intensity and status of 
available resources, we need to dynamically re-partition 
the VCUs as the fire front advances and move them 
among Grid resources as execution proceeds. So, we 
should have a mechanism to track the activity of the 
computation in space. Our approach to implement this is 
as follows. 
     Once the 
the Ci and Os tables depending on the execution status of 
the VCU it manages. AW periodically sends Ci_table and 
Os_table to the local ME.  
     As we had mentioned i
self-optimization objective of achieving “load balanced 
execution with minimum execution time” to explain how 
the vGrid middleware achieves that objective 
autonomously without user intervention. Local AE reads 
Ci_table information, let’s say the total execution time 
parameter from Ci_table and the number of cells in the 
VCU that are yet to become active. The local AE 
computes the projected time_to_completion and 
compares it with the estimated time_to_completion for 
that VCU. The estimated_time_to_completion, optimal 
load values etc for this forest fire application are already 
stored in the KE as obtained from previous runs and from 

profiling information for this application. It also reads the 
tables to compare the actual load on that machine with the 
estimated load. If the AE finds the values to have 
exceeded  the threshold limit, it sends the information to 
the local PE. The local PE computes the number of cells 
that need to be removed from the VCU to bring the load 
and execution time to the estimated values. The local EE 
checks to see if that plan can be executed within that 
domain itself. It does that by reading the plans for the 
other VCUs within that domain as generated by the PE. If 
it finds it can accommodate that request within that 
domain, it signals the target AW. The AW then updates 
the tables, sends information like – affected data 
structures for those cells to the local EE, deletes those 
cells from that VCU and updates the tables with the 
current VCU information. The EE now sends those cells 
together with the information sent by the old AW, to the 
selected machine as determined by the PE. The new AW 
then updates all the tables and starts execution again.  
      If however, the request cannot be accommoda
within that domain, it has to be sent back to the global 
ME. The global ME will request for execution time and 
load information from all the domains that have VCUs 
running at that minute. Once it gets all that information, 
the global AE and PE together generate plans, either to 
adhere to the plan sent by the local vGrid manager or 
generate a new plan of actually moving the entire VCU to 
a different domain with higher RCI. Note that the local 
AE and PE make it easier for the global contemporaries 
to set up plans, but they have no authority in taking 
decisions outside their own Grid domain. .Since the 
global ME, AE and PE have the global picture of the 
entire execution, they are in the best position to decide the 
correct plan. Next, the global EE simply carries out the 
plan in a manner similar to the local EE. Of course the 
I_table might have to be updated by the global EE if the 
VCU partition or location has changed. 
  
3.
Board) 
 

structure with a white board or “Linda” like 
architecture [11] for coordination of all of the different 
components. It uses the IBM’s TSpaces, which is an 
intelligent connection-ware component that provides 
flexible communication, event notification, transactions, 
and database storage, queries and access control.  

Because of its ubiquitous nature (being wr
, reach-ability characteristics (it uses standard 

TCP/IP protocols) and loosely connected nature, TSpaces 
is an ideal middleware component for making network 
oriented services available to any client, regardless of the 
computing platform.  For example, a service such as 
printing, email, network fax service or remote device 
control can be provided in the following way.  A client 
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simply sends a message in the form of a tuple to the 
TSpaces server, specifying the data (e.g. the description 
of a compute service submitted by an AW) and the 
service needed (e.g. a problem to run).  A service 
provider application registers an interest with the TSpaces 
server for all tuples mentioning that particular service.  
When tuples mentioning that service appear, the TSpaces 
server notifies the service provider, whereupon the 
service provider can remove those tuples and process 
those [2].  

 
Inter VCU Communication 

tion, when a cell completes 

3.3 Layer III: Autonomic Grid Application 

 responsible for monitoring and 

 

nd Current Status 

   
      In our forest fire applica
“burning” it goes to “burned” state after transmitting 
the notification message to its neighbors. 
Communication between neighbors in the same VCU is 
handled using the output ports of DEVS Java model. 
Communication between neighbors in  separate VCUs 
(whether within a domain or in different domains) is 
handled as follows. When cell id ‘x’ for example, needs 
to communicate with cell id ‘y’ and both of them are on 
two different Grid domains, the Local VGM (EE) will 
get the request from the AW that it could not resolve 
that cell id within that site .The Local VGM issues a 
query for that information on the white board and the 
VGM responds to that query by writing on the 
whiteboard, the VCU number for that cell and the 
corresponding communication server. It uses the 
I_table to respond to this query. The message is then 
routed to the appropriate communication server. 

 

Execution Environment 
  
     This layer is
controlling the actual execution. In terms of Grid 
Resource Hierarchy (see Figure 7) this layer exists in 
each Grid resource domain. The main component in 
this layer is the Local VGM consisting of the local KE, 
ME, AE, PE, and EE. It performs the second level of 
resource allocation and de-allocation (Intra Grid) as 
mentioned above. It also periodically communicates 
with the VGM using the whiteboard, where it sends 
information about the VCUs being executed in its 
domain. The VGM needs this information from all 
domains, for autonomously managing the VCUs 
according to the self-healing, self-optimizing, self-
protecting, self – configuring and self – deploying 
properties specified by the application developer. This 
has already been explained in section 3.2.2. 
  
4. Conclusion a
 
    The vGrid architecture is a middleware system that is 
capable of managing Grid applications according to the 

r the system to support autonomic cellular 
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autonomic properties specified by the application 
developer during problem configuration stage. It frees the 
application developer from the issues related with 
execution and management of huge applications 
distributed over heterogeneous Grid resources.It appears 
to the user like an operating system that promises to run 
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