
International Journal of Networking and Computing – www.ijnc.org

ISSN 2185-2839 (print) ISSN 2185-2847 (online)
Volume 1, Number 1, pages 2–20, January 2011

Efficient Traffic Simulation Using Agents within the Global Cellular Automata Model

Christian Schäck, Rolf Hoffmann, Wolfgang Heenes

Technische Universität Darmstadt
FB Informatik, FG Rechnerarchitektur

Hochschulstraße 10, 64289 Darmstadt, Germany
{schaeck,hoffmann,heenes}@ra.informatik.tu-darmstadt.de

Received: June 30, 2010

Revised: October 30, 2010

Accepted: December 7, 2010

Communicated by Akihiro Fujiwara

Abstract

We present a mapping of the well known Nagel-Schreckenberg algorithm for traffic simulation
onto the Global Cellular Automata (GCA) model using agents. The GCA model consists of
a collection of cells which change their states synchronously depending on the states of their
neighbors like in the classical CA (Cellular Automata) model. In contrast to the CA model
the neighbors can be freely and dynamically selected at runtime. The vehicles are considered
as agents that are modeled as GCA cells. An agent is linked to its agent in front, and an
empty cell is linked to its agent behind. In the current generation t the position of an agent is
already computed for the generation t+2. Thereby the agents movements and all cell updates
can directly be calculated as defined by the cell rule. No searching of specific cells during
the computation is necessary. Compared to an optimized CA algorithm (with searching for
agents) the GCA algorithm executes significantly faster, especially for low traffic densities and
high vehicle speeds. Simulating one lane with a density of 10% on an FPGA multiprocessor
system resulted in a speed-up (measured in clock ticks) of 14.75 for a system with 16 NIOS II
processors.

Keywords: Nagel-Schreckenberg, Global Cellular Automata, Multiprocessor Architecture, FPGA,
multi-agent simulation

1 Introduction

We have described in [26] a general agent simulation system based on the GCA model (Global
Cellular Automata) [11, 12] which can be used for a variety of different tasks to be solved with
agents. The agent system is now used to model and simulate the Nagel-Schreckenberg [21] algorithm.
Figure 1 shows the levels in the hierarchy of the agent simulation system: the agent system, the
GCA model and the architecture. The object representation for each hierarchy level is shown in the
right column of figure 1.

The agent simulation system consists of an agent system on top of the GCA model and on
top of a certain GCA architecture (multiprocessor architecture (MPA) [25, 26, 27], a data parallel
architecture (DPA) [8, 9, 10] or further architectures). The agent system uses GCA cells to model
agents. Agents are mostly active entities moving and solving tasks while cell states are fixed at their

2

International Journal of Networking and Computing

Figure 1: Abstraction levels: Application, agent system, GCA model, GCA architecture

location. An agent is modeled as a GCA cell state that can move in the GCA cell space. Moving
of an agent is accomplished by deleting the cell state on the source position and creating it on the
target position. Therefore, thinking about active agents (moving objects) is easier than thinking
about copying cell states.

The GCA model as such has the advantage that it can easily be used to describe parallel algo-
rithms [14] and that it can also be efficiently mapped onto different parallel architectures, e.g. DPA
[8, 9, 10] or MPA [25, 26, 27]. A digital laboratory of agent-based highway traffic model has been
investigated in [20] using the GCA model.

1.1 Related Work

Multi-agent modeling can be applied to a variety of disciplines, e.g. traffic simulation [17, 21, 22],
evacuation simulation [4, 33, 36], autonomous aircrafts [16], simulation of biologic systems [29, 32]
or ecosystems [5]. In previous work [26] we have shown how agent simulation can be described and
simulated using the GCA (Global Cellular Automata) model [11, 12]. Meanwhile we have shown
in a current work [28] how the architectures can further be improved to accelerate the simulation
speed by the factor 4.8 for a different test application. Other investigations have incorporated the
characteristics of CAs (Cellular Automata) to simulate HIV-Immune Interaction Dynamics [37].

Multi-agent simulations have also been realized on GPUs (Graphics Processing Unit) using the
CUDA (Compute Unified Device Architecture) framework [30, 31]. The authors of [6] present a new
technique to simulate agent-based models on GPUs. They reached a high simulation performance us-
ing sugarscape as a test application. But the authors criticized the bad programmability and denote
it as counterintuitive. As there is a wide range of multi-agent applications, a more specialized and
agent dedicated platform is desirable. As the agent behavior is mostly fine grained approaches using
MPI (Message Passing Interface) are expected to generate too much overhead. Thus, approaches
with low communication overhead with easy programmability are needed.

3

Efficient Traffic Simulation Using Agents within the Global Cellular Automata Model

Using the GCA model the programmability can be kept intuitive. New applications can then be
developed with low effort. The application developer does not need to care about parallelism or par-
allel execution. Parallelism is implicitly given by the amount of processors within the architecture.
Many of the above mentioned applications (e.g. [4, 5, 21]) have either been developed using the CA
model or can easily be mapped onto it due to its similarities. A dedicated multi-agent simulation
platform based on the CA/GCA-model can therefore simulate all these applications efficiently and
benefit from past researches based on cellular automata. Our architectures are implemented on
FPGAs (Field Programmable Gate Array). Therefore the absolute performance will not be able
to keep up with the highly advanced GPUs. Developing new architectures allows us to investigate
specially designed commonly required agent functions. The most advanced architecture can then be
build as an ASIC (Application Specific Integrated Circuit) to serve as an agent simulation platform
for various applications.

The authors of [7] use an FPGA based cellular automaton to simulate crowd evacuation models.
They state that the FPGA is advantageous in terms of low-cost, high-speed, compactness and porta-
bility features. They further mention, that the CA-model offers an easy-to-implement framework,
providing a cell-centered programming style that forces the programmer to solve conflicts between
concurrent agent’s actions.

1.2 The Global Cellular Automata Model

Figure 2: The GCA operation principle

The GCA model is a generalization of the Cellular Automata (CA) model using dynamic global
links. The GCA model consists of a set of cells that update their state synchronously in parallel
according to a local rule stored in each cell. Each cell can hold multiple data and link fields. Here
we will not distinguish between data and link fields and call them blocks. Each cell consists of a
configurable number of blocks. The term block describes a memory location holding any kind of
data (data or link information). The interpretation of a block is determined by the application. For
each cell a local cell rule is applied calculating the next block states. All cell states at a certain time
step t constitute a so called generation. In the GCA model each cell has only read access to any
other cell. Write conflicts cannot occur, therefore the model can easily be supported by hardware
for a large number of cells. Figure 2 shows the operations principle for n blocks. The amount of
blocks per cell can be adjusted as necessary.

1.3 Nagel-Schreckenberg Algorithm

The Nagel-Scheckenberg algorithm was introduced in [21]. The authors describe a stochastic discrete
automaton model to simulate freeway traffic for a single lane. Since then, extensions for this model as
well as other approaches have been published such as two-lane traffic models [17, 22], different driver
behaviors [24] or 4-Way intersections [19]. In contrast to our work, [31] uses graphics processing
units (GPU) and NVIDIAs CUDA framework to accelerate traffic simulation. As a generalization

4

International Journal of Networking and Computing

they also use the term agent.

The steps of the Nagel-Schreckenberg algorithm [21, p. 2] are:

1. If the maximum speed of a vehicle is not yet reached, increment the speed by one. The
incremented speed is called new speed.

2. If the gap ∆ to the next vehicle in front is less than the new speed, reduce it to the size of the
gap.

3. Reduce the new speed by one with probability π.

4. Move all vehicles according to their new speed.

This algorithm is probabilistic, thus random numbers are needed for its implementation. To
provide different and random behavior for the agents in the agent system, we have to define how
random numbers can be covered by the GCA model. The movement of an agent to a random
destination equals a copy and delete process in the GCA model. The source cell state has to be
copied to the destination cell state and the source cell state has to be deleted afterwards. Thus, two
cells have to behave consistently.

1.4 Random Numbers in the GCA Model

In order to move the cell state of a cell to another randomly selected cell, both cells need knowledge
about the same random number. A global random number, accessible by all cells does not satisfy the
need of most applications as it does not allow different random behaviors for each cell. To be able
to have different random numbers for each cell, as well as global access to every random number, it
is necessary that each cell holds its own random number. This random number has to be generated
one generation in advance of its usage, because global access is only allowed for cell state variables,
not for local variables being modified in the current generation.

5

Efficient Traffic Simulation Using Agents within the Global Cellular Automata Model

Figure 3: General GCA system architecture with data path and random number generator

2 Multiprocessor Architecture

2.1 Overview

The GCA multiprocessor architecture already presented in [26] was enhanced and will be used here
for the evaluation of the speed-up of the Nagel-Schreckenberg algorithm. It consists of p NIOS II
softcores and different selectable interconnection networks. It turned out that for agent simulations
the network with dynamic bus arbitration performed best for agent simulations [26]. So it will be
used here, too. Our system design was taking into account related work like bus architectures in
[23], and another multiprocessor architecture with NIOS II softcores [18].

Each of the p NIOS II processors is supplied with a program memory and a cell memory (Pro-
cessing Unit (PU)). The program memory holds the programmable cell rule. The cell memory holds
the cell values. Each cell memory holds a subset of all cells. Each NIOS II processor applies the
cell rule to the cell data in its associated cell memory. To be able to read neighbor data addressed
by the links, all processors are connected to a network. Each PU has its own processor ID to be
accessible and distinguishable from the other PUs. Write accesses to neighbor cells are not allowed
according to the GCA model. The cell memories are implemented as dual port memories. The first
port is used for read and write accesses by the associated processor, the second port is used for
read accesses by other processors via the network. Read accesses within the PU are called internal,
read accesses using the network are called external. The cell memories are capable of holding two
generations at a time. The current generation is used for all read accesses while the next generation
is used for all write accesses. Thereby data consistency is given at any time. The synchronization
process will be explained in detail in section 2.5.

The GCA multiprocessor architecture has been enhanced with a random number generator using
a linear feedback shift registers (LFSR) in each processing unit (PU) as shown in figure 3. A LFSR
generates pseudo-random numbers and stores them in the highest available block of each cell. The
random number is written automatically in parallel whenever the cell’s state is updated (or any
block of it). In the FPGA implementation, each block of a cell corresponds to a local memory
block, therefore parallel access to all blocks is available. The random number generation does not
cause any additional processing time, but requires additional memory space for each cell. Random
numbers can only be read by the application. Integers instead of floats are used as random variables.
They need much less hardware for generation and handling, and the accuracy can be adjusted by
modifying the word length.

6

International Journal of Networking and Computing

2.2 The NIOS II Softcore Processor

The NIOS II processor [2] is a general-purpose RISC processor core, providing:

• Full 32-bit instruction set, data path, and address space

• 32 general-purpose registers

• Floating-point instructions for single-precision floating-point operations

• Custom instructions, as defined by the user

For the implementation of the multiprocessor architecture, the custom instructions [3] turned
out to be very useful (Section 2.3).

2.3 Custom Instruction

We extended the NIOS II instruction set with a parametrized custom instruction. The custom
instruction can be specified by one of the following functions (Q ∈ {0, ..., n− 1} for n blocks):

(1) RD B{Q} read operation for block Q with automatic decision between internal and external
accesses based on processor ID comparison

(2) EXT RD B{Q} external read operation for block Q

(3) INT RD B{Q} internal read operation for block Q

(4) WR B{Q} write operation for block Q

(5) NEXTGEN processor synchronization command (Section 2.5)

The automatic read function (1) decides between an internal or external read access by comparing
the address with the processor ID. The actual read process is then mapped onto the corresponding
read function (2,3) named EXT RD B{Q} or INT RD B{Q}. This process does not need an extra
clock cycle and should therefore always be favored over the seperated access functions (2,3).

2.4 Network

The bus network connects all processing units with a shared bus. As there are no tristate buffers
in the FPGA the common bus is implemented using multiplexers. The challenging part is the
implementation of an efficient arbiter. Two approaches have been implemented, a round robin
arbiter and a dynamic prioritized arbiter.

Dynamic Prioritized Arbiter (BDPA). The dynamic prioritized arbiter checks the request signals
by searching the processor with the highest ID that wants to read via the network. The IDs of the
processors are compared with a comparator tree. A processor with an active request signal advances
its ID otherwise zero through the comparator tree. The comparator tree finds the highest processor
ID with an active request and forwards this request with its corresponding address signals onto the
bus.

2.5 Generation Synchronization

All processors run independently from each other which leads to unsynchronized executions of the
processors. To ensure data consistency a special synchronization point was introduced. The synchro-
nization point, implemented with a custom instruction function as described in section 2.3, ensures
that at a certain time all processors have executed the current generation and are ready to start
execution of the next generation. A barrier-synchronization technique [34, p. 165] is implemented
by AND gating.

7

Efficient Traffic Simulation Using Agents within the Global Cellular Automata Model

2.6 FPGA Prototype Implementation

The prototyping platform is a Cyclone FPGA with the Quartus II 8.1 synthesis software from
Altera. The Cyclone II FPGA contains 68,416 logic elements (LE) and 1,152,000 RAM bits [1]. The
implementation language is Verilog HDL. The NIOS II processor is built with the SOPC-Builder
(System-On-a-Programmable-Chip). We used the NIOS II/f processor. This core has the highest
execution performance and uses a 6 stage pipeline. The DMIPS [35] rate is 218 at the maximum
clock frequency of 185 MHz. The synthesis settings are optimized for speed. Table 1 and table 2
show the numbers of logic elements (LE), logic elements for network, the memory usage and the
maximum clock frequency for a different amount of blocks. One implementation uses 2 blocks (CA
model), the other implementation uses 4 blocks (GCA model). The two models will be described in
section 3.

Table 1: p NIOS II softcores configured on a Cyclone II FPGA. Resources and clock frequency using
2 blocks (CA model)

processing total LEs register mem register max.
units LEs for for bits bits clock
(p) net net (MHz)

1 3,390 - - 195,296 1,932 140.00
2 6,135 50 2 226,720 3,357 127.78
4 11,712 116 3 289,568 6,211 107.15
8 22,898 157 4 415,264 11,921 92.86
16 45,184 354 5 666,656 23,351 75.00

Table 2: p NIOS II softcores configured on a Cyclone II FPGA. Resources and clock frequency using
4 blocks (GCA model)

processing total LEs register mem register max.
units LEs for for bits bits clock
(p) net net (MHz)

1 3,421 - - 326,368 1,932 131.25
2 6,251 83 2 357,792 3,357 120.85
4 12,005 198 3 420,640 6,211 103.34
8 23,473 415 4 546,336 11,921 88.89
16 46,605 892 5 797,728 23,353 73.08

3 CA and GCA Model for Traffic Simulation

In the Nagel-Schreckenberg algorithm each agent has a front view of vmax cells where vmax denotes
the maximum speed of an agent. A straight forward approach is to check the type of all front cells
up to the current speed (CA algorithm in section 3.1 to be used for comparison). Instead, our novel
approach is to interconnect all cells with each other dependent on their current type (GCA algorithm
in section 3.2).

In the following sections Ci denotes the cell C (or its type) at the current index i, ∆ the gap
size between two agents and d the distance from an agent cell to an empty cell. The abbreviations
E = Empty, A = Agent will be used. In our simulations there is one agent type representing a
car. Other vehicle types can be added by using multiple agents.

8

International Journal of Networking and Computing

3.1 CA Model with Searching

The Nagel-Schreckenberg algorithm usually is modeled as Cellular Automata which is then sequen-
tially or partially in parallel executed (simulated). In the simulation each cell computes at first its
next state s’ by using its own current state s and the states sn of the neighbor cells, s’ := f(sn, s).
Thereby the sequence of computations is arbitrary. Secondly, after each cell has computed its next
state, the next state is copied to the current state (s := s’), for all cells in any order. Thereby syn-
chronous updating is simulated. If several processors are simulating subarrays of the whole cell field
in parallel, then the processors have to wait for the update step until all processors have computed
their next states. In an implementation a barrier synchronization can be used.

In this application the radius is vmax to the right (vehicles shall drive from left to right) for an
Agent. The radius is vmax to the left and two to the right for an Empty cell. In a sequential
implementation on a standard computer it is reasonable to check the neighbors sequentially for
certain properties with the option to stop the checking when a certain property was found. Thereby
the mean number of checks is lower than the maximal neighborhood distance, that is in our case
vmax. The model with searching requires two blocks Ci = (r, v) per cell, where v is the current
speed and r the random number. An Empty cell is defined by v > vmax, otherwise if 0 ≤ v ≤ vmax

then the cell type is Agent.
An Agent at first increments its speed (v′ := max(v + 1, vmax)). Then all cells to the right

(relative distance = 1, 2, ..., vmax) are accessed consecutively to determine the gap size ∆. The new
speed may not be higher than the gap size (v′ := min(v′,∆)). Then the new speed is reduced by one
with probability π: (v′ := v′ − 1), and the cell can be updated: if v′ = 0 then the new type remains
Agent (agent cannot move), otherwise the new type is Empty (agent is moving). In the hardware
implementation the probability is computed by checking a 16 bit unsigned integer against a limit.
Alternatively the probabilistic reduction of the speed can be written as (v′ := v′ −R), where R is a
random binary variable (zero or one).

The cell rule for an Empty cell Ci is more complex. An empty cell has to check all cells to the
left until the maximum speed vmax or until an Agent is found at position i − d. If an agent is
found, the same calculation is performed as the one the agent is doing itself, in order to find out
whether the agent has to be copied from cell Ci−d or not.

Searching from the agent back to the empty cell in order to find the gap size can be avoided,
because the cells have already been checked to find the agent. Only if the gap is of size d+1 or d+2
the agent might move to the empty cell. Therefore it is necessary to check only the two cells to the
right of the empty cell in order to react correctly. The agent will only be copied if the incremented
and randomly reduced speed is equal to the distance d. The optimized algorithm for Empty is (with
the default setting Ci := E):

1. // search to the left for an agent at rel. distance d

d := 0; repeat d := d+ 1 until (Ci−d = A) or (d = vmax);

if (Ci−d = E) then return // empty cell remains empty

2. // execute 2., 3., 4. only if agent was found

v′ := min(vmax, v + 1);

if (v′ < d) then return // agent cannot reach E

3. if (v′ > d)&(Ci+1 = A) OR (v′ = d) then v′ := d−R

else
if (v′ = d+ 1)&(Ci+1 = E) OR (v′ > d+ 1)&(Ci+1 = E)&(Ci+2 = A) then

v′ := d+ 1−R

4. if (v′ = d) then Ci(t+ 1) := A (with speed v(t+ 1) := v′) //sync. update

The required neighborhood distance with static links is the union of vmax to the right, vmax

to the left, and two to the right for uniform cells (Agent or Empty). When the algorithm is
sequentially executed (simulated), then the worst case sequential complexity is O(N ·vmax), because

9

Efficient Traffic Simulation Using Agents within the Global Cellular Automata Model

direction of movement

v′ = 2 v′ = 1

v′ = 3 v′ = 2

v = 4

X B C

Case I:
t = 0

t = 1

Case II:

front cell checks checks

back cell checks

front cell checksback cell checks

Figure 4: CA algorithm with searching

at most vmax (respectively vmax + 2) steps for searching are necessary. The execution time when
simulating on a p processor system will be shown in section 4.

Example: Figure 4 shows the movement of two agents (cases I (t=0), (t=1)). The hatched cells
denote the cells that have to be checked by the agent. The left agent has a speed of two while the
right agent has a speed of one (after acceleration) which leads to a different amount of front cell
checks. In case I (t=1) the left agent had increased its speed to three but the amount of front cell
checks is limited to two because an agent will be found there. The amount of front cell checks varies
between zero and vmax.

Case II shows the operations of the empty cell X. The current speed of the agent is four and is
increased to five. The empty cell X checks the cells to the left until vmax or an agent is reached.
In this case an agent is found and X has to calculate the agents destination cell. If cell B is empty
then the destination will be X or B (because of random decrease). Only if the final destination is
X, the agent will be copied. Another case: if the agent wants to move to C and there is an agent,
then the agent’s speed is limited to the destination B which can further be reduced randomly to the
final location X. So an empty cell has to check two cells to the right if the agents speed is equal or
higher than the gap.

3.2 GCA Model with Linked Agents

A novel, more complex approach is a GCA model with interconnected cells. This approach requires
four blocks per cell Ci = (r, L, z, v). If v ≤ vmax then the type is A and v is the speed, otherwise
the type is E. The second block holds the link z, representing a relative value (a distance/speed). z
is called precomputed speed. The third block holds the link L, representing an absolute value (points
to a position). And the fourth block holds the random number r. Comparing r against a limit set
by using the probability π the binary variable R is determined (0 or 1).

The link L is used by an agent to point to the next agent in front. It is used by an empty cell to
point to the next agent behind it that might move to it. Therefore, the link points forward for all
agent cells and backward for all empty cells. All cells are interconnected in a circular way because
we assume that there are no boundaries (wrap-around). The link L is an absolute address allowing
direct access to the position of another cell without further address calculation.

10

International Journal of Networking and Computing

L′(i) :=

L(L(i)− 1) + z(L(L(i)− 1)) (E → E) ∧ skipped (Ci) ∧ CL(i)−1 = E (1)

L(i)− 1, (E → E) ∧ skipped (Ci) ∧ CL(i)−1 = A (2)

L(i) + z(L(i)), (E → E) ∧ not skipped (Ci) (3)

L(L(i)) + z(L(L(i))), (E → A) (4)

L(i− 1) + z(L(i− 1)), (A → E) ∧Ci−1 = E (5)

i− 1, (A → E) ∧Ci−1 = A (6)

L(i) + z(L(i)), (A → A) (7)

v′(i) :=

E, (E → E) (8)

z(L(i)), (E → A) (9)

E, (A → E) (10)

z(i), (A → A) (11)

z′(i) :=

−, (E → E) (12)

max[min[z(L(i)) + 1, L(L(i)) + z(L(L(i)))− i− 1]−R, 0], (E → A) (13)

−, (A → E) (14)

max[min[1, L(i) + z(L(i))− i− 1]−R, 0], (A → A) (15)

Figure 5: GCA algorithm for traffic simulation. Rules for new link L’, new speed v’, new precomputed
speed z’.

cond(E → E) : L(i) + z(L(i)) 6= i

cond(E → A) : L(i) + z(L(i)) = i

cond(A → E) : z(i) 6= 0

cond(A → A) : z(i) = 0

skipped(Ci) : L(i) + z(L(i)) > i

Figure 6: Conditions for the GCA algorithm in figure 5

The block z is used by an agent to represent the precomputed speed in the next generation
(z(t) = v′(t) = v(t + 1)). It is not used by empty cells. So the new speed does not need to be
computed in the current generation as it was already computed in the previous generation and is
given by z. It can also be used as an offset to determine the next empty cell that will become
an agent cell. Using the link L and the precomputed speed z it is possible to compute the next
generation without searching. At start-up an additional generation is needed to interconnect the
agents by the links L and to compute the precomputed speed z. The initial generation is regarded
to be given.

The GCA algorithm is shown in figure 5. Figure 6 shows the conditions for the GCA algo-
rithm. For each cell Ci the new link L′(i) (rules 1-7), the new speed v′(i) (rules 8-11) and the new
precomputed speed z′(i) of an agent (rule 12-15) is computed synchronously in parallel.

In case of the movement of an agent, the rules 5, 6, 10 apply for Agent (A → E) and the rules 4,
9, 13 for Empty (E → A). If an agent moves from position i to k (from agent cell Ci to empty cell
Ck) then Ci := E and Ck := A. The condition (E → A) for cell k is L(k) + z(L(k)) = k, meaning
that the empty cell E points back with L to an agent A which in turn moves with offset z forward
to E. The corresponding condition for the involved agent is L(i+ z(i)) = i, meaning that the agent
moves to an empty cell which in turn points back to the agent. As the specific destination cell is
not important for the agent’s cell, the condition can be substituted by z(i) 6= 0.

An agent does not move (A → A) if its precomputed speed z is zero (rules 7, 11, 15). An empty

11

Efficient Traffic Simulation Using Agents within the Global Cellular Automata Model

cell remains empty if the agent behind it cannot reach it (rules 3, 8), or jumps over it (rules 1, 2, 8).
In the GCA model random access to the information of another cell is standard, e.g. z(L(i)).

Not standard is the double indirect access, e.g. z(L(L(i))). This extension can be allowed and can
be supported by hardware using one more memory in a hardware implementation (pipeline with
three cascaded memories: read cell contents including pointer p1, read global cell including pointer
p2 at pointer p1, read next global cell including pointer p2; see hardware pipeline of a data parallel
architecture [13, 15]. If the extended model is mainly sequentially simulated on a p processor system
(see section 4), then the double indirection is no principal problem but may slow down the execution.
If the algorithm is executed fully in parallel using p = N processors (one for each of the N cells),
then the parallel complexity is O(1). When the algorithm is sequentially executed (simulated), then
the sequential complexity is O(N), as in the CA model with a fixed vmax. But the reason to prefer
the GCA model is its faster execution on a p processor system, as will be shown in section 4.

i = 0 1 2 3 4 5 6 7

direction of movement

z = 2

v = 1

z = 1

v = 1

z = 1

v = 2

z = 2

v = 1

L
L

L

L L L L L

L
L

L

L L L

Figure 7: GCA algorithm with links

Example: Figure 7 shows the movement of the agents and the changes of the link L and the
precomputed speed z. In generation t = 0 the left agent has a speed of one (v = 1) and the
precomputed speed is two (z = 2). The offset z determines the destination cell for that agent and
the agent is copied by the empty cell (generation t = 1). The precomputed speed z was reduced to
the new gap size between the two agents in generation t = 1. An agent at position i computes its
new precomputed speed z′ by the data it can directly or indirectly access through the links (rule 13,
15).

An empty cell uses its link L to point backwards to the next agent A behind it. The empty cell
at i = 3 is skipped therefore rule (1) is applied and for the empty cell i = 1 the rule (3) is applied.
The empty cell at i = 7 is not skipped, therefore rule (3) of the algorithm applies, L′ is incremented
by z, (L′(i) := L(i) + z(L(i))).

12

International Journal of Networking and Computing

3.2.1 NIOS II Cell Rule / C-Code

The NIOS II cell rule implements the equations given in figure 5. Each cell needs four blocks to store
the relevant informations Ci = (r, L, z, v). The allocation is as follows: Block 0 holds the cell type.
For agent cells the cell type is the current speed. Block 1 holds the link L (address). Block 2 holds
the relative speed for the next generation (speed vector). Block 3 holds the random number, used for
individual agent behavior. Listing 1 shows the NIOS II cell rule including the custom instructions
defined in section 2.3.

Listing 1: Cell rule for linked agents

0 int recalcIndexInLine(int p, int pInLine)
1 {return (p%MAXX+(pInLine/MAXX)∗MAXX);}
2

3 inline int abs(int a) {return (a>=0) ? a : −a;}
4

5 inline int min(a,b) {return (a<b) ? a : b;}
6

7 int main(){ //beginning of the cell rule
8 int g, i, speedtype, L, Z, tmp;
9

10 CI(NEXTGEN,0,0); //startup synchronization
11 CI(NEXTGEN,0,0);
12

13 for(g=0;g<GENS;g++){ //GENS: Generations to run
14 for(i=SC;i<LOCL CELLS+SC;i++){ //SC: Start Cell
15 speedtype = CI(RD B0,i,0);
16

17 if(speedtype==CELL FREE) //cell type is empty
18 {
19 L = CI(RD B1,i,0);
20 if(L!=i) //at least 1 agent per row
21 {
22 Z = CI(RD B2,L,0);
23 if(recalcIndexInLine(L+Z,i)==i){ //copy agent, update L, Z & V
24 CI(WR B0,i,Z);
25 tmp=recalcIndexInLine(
26 CI(RD B1,L,0)+CI(RD B2,CI(RD B1,L,0),0),i);
27

28 CI(WR B1,i,tmp);
29 if(i<tmp)
30 tmp=min(min(Z+1, (tmp−i)−1),MAXSPEED);
31 else
32 tmp=min(min(Z+1,(MAXX−abs(tmp−i))−1),MAXSPEED);
33

34 CI(WR B2,i,(tmp>0 && CI(RD B3,L,0)<P) ? tmp−1: tmp);
35 }
36 else{ //stay empty, update L
37 CI(WR B0,i,CELL FREE);
38 tmp=L+Z;
39 //check if empty cells are left out
40 if((i>L && i<tmp) | | (i+MAXX>L && i+MAXX<tmp)){
41 tmp=recalcIndexInLine(L−1+MAXX,i);
42 if(CI(RD B0,tmp,0)==CELL FREE){ //predecessor empty
43 L = CI(RD B1,tmp,0);
44 CI(WR B1,i,recalcIndexInLine(L+CI(RD B2,L,0),i));
45 }
46 else
47 CI(WR B1,i,tmp);
48 }

13

Efficient Traffic Simulation Using Agents within the Global Cellular Automata Model

49 else
50 CI(WR B1,i,recalcIndexInLine(tmp,i));
51 }
52 }
53 else{ //complete row is empty
54 CI(WR B0,i,CELL FREE);
55 CI(WR B1,i,i);
56 }
57 }
58 else{
59 if(speedtype<=CELL AGENT) //cell type is agent
60 {
61 Z = CI(RD B2,i,0);
62 if(Z>0){ //move agent
63 CI(WR B0,i,CELL FREE);
64

65 tmp=recalcIndexInLine(i−1+MAXX,i);
66

67 if(CI(RD B0,tmp,0)==CELL FREE){ //predecessor empty
68 L = CI(RD B1,tmp,0); //copy new L from predecessor
69 CI(WR B1,i,recalcIndexInLine(L+CI(RD B2,L,0),i));
70 }
71 else //predecessor is agent, set L to that cell
72 CI(WR B1,i,tmp);
73 }
74 else{ //do not move agent
75 CI(WR B0,i,Z);
76

77 L=CI(RD B1,i,0);
78 tmp=recalcIndexInLine(L+CI(RD B2,L,0),i);
79 CI(WR B1,i,tmp);
80

81 if(i<tmp)
82 tmp=min(1, (tmp−i)−1);
83 else
84 tmp=min(1, (MAXX−abs(tmp−i))−1);
85

86 CI(WR B2,i,(tmp>0 && CI(RD B3,i,0)<P) ? tmp−1: tmp);
87 }
88 }
89 else //undefined cell types are treated as obstacles
90 CI(WR B0,i,CELL OBSTACLE);
91 }
92 }
93 CI(NEXTGEN,0,0); //generation synchronization
94 }
95 return 0;}

4 Speed-up on an FPGA Multiprocessor System

In order to test the performance of the algorithms in a practical environment, an FPGA multipro-
cessor system was configured on an Altera Cyclone II FPGA. It consists of p NIOS II processors
enhanced with special instructions supporting the GCA model and the access to all the memories.
The processors are connected by a bus system with dynamic arbitration with each other. In a
previous investigation [26] it turned out that the bus network performs better for agent simulations
than other networks for this architecture, therefore this network is also used here. Here the previous
multiprocessor system was modified in such a way that each cell memory was separated into memory

14

International Journal of Networking and Computing

Table 3: Clock cycles, execution time and speed-up (one lane, 10% agents)
CA Algorithm

processing cycles cycle execution real
units per speed-up time per speed-up
(p) generation generation (ms)

1 400,731 - 2.862 1.00
2 201,399 1.99 1.576 1.82
4 102,250 3.92 0.954 2.99
8 51,450 7.79 0.554 5.17
16 26,179 15.31 0.349 8.20

Table 4: Clock cycles, execution time and speed-up (one lane, 10% agents)
GCA Algorithm

processing cycles cycle execution real
units per speed-up time per speed-up
(p) generation generation (ms)

1 187,791 - 1.431 1.00
2 95,203 1.97 0.788 1.82
4 49,077 3.83 0.475 3.01
8 24,980 7.52 0.281 5.09
16 12,729 14.75 0.174 8.21

Table 5: Clock cycles, execution time and speed-up (one lane, 50% agents)
CA Algorithm

processing cycles cycle execution real
units per speed-up time per speed-up
(p) generation generation (ms)

1 237,911 - 1.699 1.00
2 121,983 1.95 0.955 1.78
4 62,271 3.82 0.581 2.92
8 34,502 6.90 0.372 4.57
16 16,591 14.34 0.221 7.68

Table 6: Clock cycles, execution time and speed-up (one lane, 50% agents)
GCA Algorithm

processing cycles cycle execution real
units per speed-up time per speed-up
(p) generation generation (ms)

1 201,793 - 1.537 1.00
2 101,783 1.98 0.842 1.83
4 50,882 3.97 0.492 3.12
8 25,638 7.87 0.288 5.33
16 12,973 15.55 0.178 8.66

15

Efficient Traffic Simulation Using Agents within the Global Cellular Automata Model

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

1 2 4 8 16

ga
in

processing units

 10% agents
 50% agents

Figure 8: Gain of the GCA algorithm over the CA algorithm. GCA algorithm executes roughly two
times faster for 10% agents

blocks (modules), one for each cell field (block). Thereby the cell blocks can be accessed in parallel
and can separately be modified. A special instruction was defined for barrier synchronization.

The used size of the whole CA/GCA array was 1 × 2048 (one traffic lane), and a data segment
of 2048

p
was assigned to each processor. The number of agents was 204 and 1024, corresponding to

a density of 10% and 50%. The maximum speed was set to vmax = 5. The probability to reduce
the speed was π = 0.5. The algorithms were programmed in C, using a set of specific designed
custom instructions (e.g., generation synchronization, internal and external memory accesses). A
hardware counter was also included, counting the number of ticks (clock cycles) for the execution of
an application. The reached clock frequency is 140 MHz (p = 1), 75 MHz (p = 16) for two blocks
per cell (used in the CA model), and 131 MHz (p = 1), 73 MHz (p = 16) for four blocks per cell
(used in the GCA model). The decrease of the clock frequency with a higher number of processors
is a normal effect, because the complexity of the logic and the length of the data paths (especially
the network) are increasing.

Tables 3, 4, 5 and 6 show the clock cycles, execution time, cycle speed-up and real speed-up for
the CA and the GCA algorithm implemented on the multiprocessor system. The cycle speed-up for p
is defined by the number of cycles for p = 1 divided by the number of cycles for p. So the decreasing
clock frequency is not taken into account. The real speed-up is defined by the execution time for
p = 1 divided by the execution time for p. Whereas the execution time of the GCA algorithm is
relatively independent of the agent’s density, the execution time of the CA algorithm is depending
significantly on the density, because in the case of high density the searching of the gap is faster (the
gap is smaller). The gain

gain =
execution time for the CA algorithm

execution time for the GCA algorithm

is shown in figure 8. For a density of 10% the GCA algorithm is around two times faster. Further
simulation with a density of 1% (20 agents) with different maximum speeds have been performed.
For higher maximum speeds vmax = {5, 10, 20, 40, 80} a gain of {2.3, 4.1, 7.9, 14.9, 29.3} was reached
using p = 16 processors and 20 agents (figure 9). So the GCA algorithm performs much better
compared to the CA algorithm if the agent’s density is low and the speed is high. In [21] the
maximum speed was defined by the mean length of a vehicle. A higher maximum speed does not
seem to be reasonable. However it can be used for a higher resolution of the grid or very fast agents.

16

International Journal of Networking and Computing

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

5 10 20 40 80

ex
ec

ut
io

n
tim

e
pe

r
ge

ne
ra

tio
n

(m
s)

maximum speed vmax

 CA algorithm
 GCA algorithm

Figure 9: Time per generation for different maximum speeds. Agent density is 1%

5 Conclusion

The Nagel-Schreckenberg algorithm for traffic simulation was mapped onto the GCA computing
model. In the GCA algorithm an agent (vehicle) is directly connected to its agent in front and an
empty cell is connected to its following agent. An additional block in the cell is used holding the
precomputed speed for the next generation. Thereby the new cells’ state (movement, new type, new
precomputed speed, new links) can directly be computed without any searching. For comparison
also an optimized CA algorithm was developed that searches backwards for empty cells and forwards
for agent cells. Both algorithms were implemented on an FPGA multiprocessor system. It turned
out that the GCA algorithm executes significantly faster, especially for a low traffic density and a
high vehicle speed. The cycle speed-up for a 16 processor system was 14.75 for 10% agents (out
of 2048) and 15.55 for 50% agents, meaning that the GCA algorithm scales very well. Taking the
decreasing clock frequency into account, a real speed-up of 8.21 for 10% agents and a real speed-up
of 8.66 for 50% agents was reached on the 16 processor architecture.

References

[1] Altera, Datasheet Cyclone II.
http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf, 2006. Last visited: 2010-
12-20.

[2] Altera, NIOS II Website.
http://www.altera.com/products/ip/processors/nios2/ni2-index.html, 2009. Last vis-
ited: 2010-12-20.

[3] Altera, NIOS II Website.
http://www.altera.com/literature/lit-nio2.jsp, 2009. Last visited: 2010-12-20.

[4] C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz. Simulation of pedestrian dy-
namics using a two-dimensional cellular automaton. Physica A: Statistical Mechanics and its
Applications, 295(3-4):507 – 525, 2001.

17

Efficient Traffic Simulation Using Agents within the Global Cellular Automata Model

[5] A.K. Dewdney. Sharks and fish wage an ecological war on the toroidal planet Wa-Tor. Scientific
American, December 1984.

[6] R.M. D’Souza, M. Lysenko, and K. Rahmani. SugarScape on Steroids: Simulating over a Million
Agents at Interactive Rates. In Proceedings of Agent 2007 Conference, Chicago, IL, 2007.

[7] Ioakeim G. Georgoudas, P. Kyriakos, Georgios Ch. Sirakoulis, and Ioannis Th. Andreadis. An
FPGA implemented cellular automaton crowd evacuation model inspired by the electrostatic-
induced potential fields. Microprocessors and Microsystems, 34(7-8):285–300, June 2010.

[8] Wolfgang Heenes, Rolf Hoffmann, and Sebastian Kanthak. FPGA Implementations of the
Massively Parallel GCA Model. In International Parallel & Distributed Processing Symposium
(IPDPS), Workshop on Massively Parallel Processing (WMPP), 2005.

[9] Wolfgang Heenes, Klaus-Peter Völkmann, and Rolf Hoffmann. Architekturen für den globalen
Zellularautomat. In 19. PARS Workshop, Gesellschaft für Informatik (GI), 2003.

[10] Rolf Hoffmann, Klaus-Peter Völkmann, and Wolfgang Heenes. GCA: A massively parallel
Model. In International Parallel & Distributed Processing Symposium (IPDPS), Workshop on
Massively Parallel Processing (WMPP), 2003.

[11] Rolf Hoffmann, Klaus-Peter Völkmann, and Stefan Waldschmidt. Global cellular automata
GCA: an universal extension of the CA model. In ACRI 2000 “work in progress” session,
Karlsruhe, Germany, 2000.

[12] Rolf Hoffmann, Klaus-Peter Völkmann, Stefan Waldschmidt, and Wolfgang Heenes. GCA:
Global Cellular Automata, A Flexible Parallel Model. In Proceedings of: 6th International
Conference on Parallel Computing Technologies PaCT2001, Novosibirsk, Russia, 3. bis 7. Sept.,
2001, Lecture Notes in Computer Science (LNCS 2127), Springer Verlag, 2001.

[13] J. Jendrsczok, P. Ediger, and R. Hoffmann. A scalable configurable architecture for the mas-
sively parallel GCA model. Int. J. Parallel Emerg. Distrib. Syst., 24(4):275–291, 2009.

[14] Johannes Jendrsczok, Patrick Ediger, and Rolf Hoffmann. The Global Cellular Automata
Experimental Language GCA-L. http://www.ra.informatik.tu-darmstadt.de/fileadmin/
user_upload/Group_RA/papers/JEH08b.pdf, 2007.

[15] Johannes Jendrsczok, Rolf Hoffmann, and Thomas Lenck. Generated horizontal and vertical
data parallel gca machines for the n-body force calculation. In ARCS ’09: Proceedings of the
22nd International Conference on Architecture of Computing Systems, pages 96–107, Berlin,
Heidelberg, 2009. Springer-Verlag.

[16] Charles Kim. Cellular Automata Modeling of En Route and Arrival Self-Spacing for Au-
tonomous Aircrafts. In 50th Annual Meeting of Air Traffic Controllers Association, pages
127–134, August 2005.

[17] W. Knospe, L. Santen, A. Schadschneider, and M. Schreckenberg. A realistic two-lane traffic
model for highway traffic. volume 35, pages 3369–3388, April 2002.

[18] Ari Kulmala, Erno Salminen, and Timo D. Hämäläinen. Evaluating Large System-on-Chip
on Multi-FPGA Platform. In S. Vassiliadis et al., editor, International Workshop on Systems,
Architectures, Modeling and Simulation (SAMOS), pages 179–189. Springer, 2007.

[19] Anna T. Lawniczak and Bruno N. Di Stefano. Development of road traffic ca model of 4-way
intersection to study travel time. In Jie Zhou, editor, Complex (2), volume 5 of Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering,
pages 2040–2049. Springer, 2009.

[20] A.T. Lawniczak and B.N. Di Stefano. Digital laboratory of agent-based highway traffic model.
In Acta Physica Polonica B Proceedings Supplement, volume 3, pages 479–453, 2010.

18

International Journal of Networking and Computing

[21] Kai Nagel and Michael Schreckenberg. A cellular automaton model for freeway traffic. Journal
de Physique I, 2(115):2221–2229, 1992.

[22] M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour. Two lane traffic simulations using
cellular automata. Physica A: Statistical and Theoretical Physics, 231(4):534–550, October
1996.

[23] Kyeong Keol Ryu, Eung Shin, and Vincent J. Mooney. A Comparison of Five Different Mul-
tiprocessor SoC Bus Architectures. In DSD ’01: Proceedings of the Euromicro Symposium on
Digital Systems Design, pages 202–209, Washington, DC, USA, 2001. IEEE Computer Society.

[24] Ernesto Sanchez, Giovanni Squillero, and Alberto Tonda. Evolving individual behavior in
a multi-agent traffic simulator. In Applications of Evolutionary Computation, pages 11–20.
Springer Berlin / Heidelberg, 2010.

[25] Christian Schäck, Wolfgang Heenes, and Rolf Hoffmann. A Multiprocessor Architecture with an
Omega Network for the Massively Parallel Model GCA. In Koen Bertels, Nikitas J. Dimopoulos,
Cristina Silvano, and Stephan Wong, editors, Embedded Computer Systems: Architectures,
Modeling, and Simulation, 9th International Workshop, SAMOS 2009, Samos, Greece, July
20-23, volume 5657 of Lecture Notes in Computer Science, pages 98–107. Springer Berlin /
Heidelberg, 2009. ISSN 0302-9743 (Print) 1611-3349 (Online).

[26] Christian Schäck, Wolfgang Heenes, and Rolf Hoffmann. GCA Multi-Softcore Architecture for
Agent Systems Simulation. In Erik Maehle Stefan Fischer, editor, Informatik 2009 Im Focus
das Leben, volume P-154 of Lecture Notes in Informatics, pages 278; 2268–82, 2009. ISSN
1617-5468.

[27] Christian Schäck, Wolfgang Heenes, and Rolf Hoffmann. Network Optimization of a Multipro-
cessor Architecture for the Massively Parallel Model GCA. In 22. PARS Workshop, Gesellschaft
für Informatik (GI), volume 26, pages 48–57, 2009. ISSN 0177-0454.

[28] Christian Schäck, Wolfgang Heenes, and Rolf Hoffmann. Multiprocessor architectures special-
ized for multi-agent simulation. November 2010. To be published in 2nd International Workshop
on Parallel and Distributed Algorithms and Applications (PDAA).

[29] Thomas Schmickl, Ronald Thenius, and Karl Crailsheim. Kollektive Sammel-Entscheidungen:
Eine Multi-Agenten-Simulation einer Honigbienenkolonie. Entomologica Austriaca, 13:15–24,
März 2006. ISSN 1681-0406.

[30] David Strippgen and Kai Nagel. Multi-Agent Traffic Simulation with CUDA. In High Perfor-
mance Computing & Simulation (HPCS), pages 106–114, Leipzig, Germany, 2009.

[31] David Strippgen and Kai Nagel. Using common graphics hardware for multi-agent traffic simu-
lation with CUDA. In Olivier Dalle, Gabriel A. Wainer, L. Felipe Perrone, and Giovanni Stea,
editors, SimuTools, page 62. ICST, 2009.

[32] Ronal Thenius, Thomas Schmickl, and Karl Crailsheim. Einfluss der Individualität bei Sam-
melbienen (Apis mellifera L) auf den Sammelerfolg. Entomologica Austriaca, 13:25–29, März
2006.

[33] Pablo Cristian Tissera, Marcela Printista, and Marcelo Luis Errecalde. Evacuation simulations
using cellular automata. Journal of Computer Science & Technology, 7:14, April 2007.

[34] Theo Ungerer. Parallelrechner und parallele Programmierung. Spektrum Akademischer Verlag,
Heidelberg, Berlin, 1997.

[35] Alan R. Weiss. Dhrystone benchmark - history, analysis, ”scores” and recommendations. http:
//www.ebenchmarks.com/download/ECLDhrystoneWhitePaper.pdf, 2002.

19

Efficient Traffic Simulation Using Agents within the Global Cellular Automata Model

[36] Kazuhiro Yamamoto, Satoshi Kokubo, and Katsuhiro Nishinari. New Approach for Pedestrian
Dynamics by Real-Coded Cellular Automata (RCA). In Samira El Yacoubi, Bastien Chopard,
and Stefania Bandini, editors, Cellular Automata, volume 4173 of Lecture Notes in Computer
Science, pages 728–731. Springer Berlin / Heidelberg, 2006.

[37] Shiwu Zhang and Jiming Liu. A Massively Multi-agent System for Discovering HIV-Immune In-
teraction Dynamics. In Massively Multi-Agent Systems I, volume 3446, pages 161–173. Springer
Verlag, 2005. ISSN 0302-9743 (Print) 1611-3349 (Online).

20

