
A Real�Time Linux

Victor Yodaiken and Michael Barabanov
New Mexico Institute of Technology �

Abstract

The paper describes the design� implementation� experimental results� and possible

applications of a real�time version of the Linux operating system� We have used the idea

of virtual machines for running a standard time�sharing OS and a real�time executive

on the same computer� Services provided by the real�time kernel are described� The

comparison of our solution with other work on real�time UNIXes is also presented�

� Introduction

We have developed a small� real�time executive that runs the Linux operating system as a
completely preemptable task� The executive schedules and runs real�time tasks at a rela�
tively high level of time precision and with low latency and overhead� The Linux task sup�
ports network services� GUI� development tools and a standard programming environment�
Our system has been designed to require little modi�cation of Linux itself � essentially
changes are limited to the low level interrupt �wrappers� and the routines to disable and
enable interrupts� As a result� we are able to take advantage of the rapid pace of develop�
ment of Linux and Linux tools� On the other hand� our system has been designed to allow
real�time programmers to make nearly full use of the available hardware and processing
power� without paying the price normally associated with more sophisticated operating sys�
tems� While our immediate interests are in the control of scienti�c instruments� we believe
this method to be generalizable to other operating systems and to other real�time problems�
We also believe that this method o�ers an alternative avenue to modularity that may be of
interest in general operating system design�

Real�time operating systems should be small� fast� and predictable� Because of the
great variety of demands on real�time scheduling� a real�time operating system should also
include a 	exible and reprogrammable task scheduling discipline� These requirements are
not easy to satisfy� but it has been increasingly clear over the last several years that real�
time operating systems also need to satisfy user requirements for sophisticated development
tools� graphical user interfaces� and networking support� We have attacked this problem
of apparently contradictory requirements using a simple version of the well known �virtual
machine� technique 
��� Linux interacts with a software emulation of the interrupt control
hardware� The emulation supports the synchronization requirements of the Linux kernel
while preventing Linux from disabling interrupts� Interrupts that are handled by Linux are
passed through to the emulation software after any needed real�time processing completes�
If Linux has requested that interrupts be disabled� the emulation software simply marks
the interrupts as pending� When Linux requests that interrupts be enabled� the emulation

�Email address� yodaiken�nmt�edu�

The research described here was partially funded under NSF grant CCR���������

�



software causes control to switch to the Linux handler for the highest priority pending
interrupt� Linux is then able to provide sophisticated services to the real�time system
without increasing interrupt latency�

A virtual machine layer has been advanced as a technique for making UNIX real�
time as far back as ���� 
�� but our use of the technique di�ers from previous e�orts in
both scope and purpose� Our virtual machine �layer� emulates only a speci�c hardware
component � interrupt control� Linux is able to otherwise directly control the hardware
both for run�time e�ciency and in order to minimize the need for modi�cations to the
Linux kernel� The real�time executive which acts as the ��level operating system does not
provide any basic services that can be provided by Linux� Instead the real�time executive
is intended to provide services that Linux cannot provide� Thus� �primitives� for process
creation and switching or memory management are not provided by the real�time executive�
Only real�time services are provided�

The remainder of this paper is in four parts� Section � describes the applications
we have in mind� the constraints we have� and the experimental results we have obtained�
Section � details the services provided by the real�time executive� Section � describes our
virtual machine implementation on the x�� architecture� The conclusion compares this
approach to other work on real�time OS design and points out the directions for future
work�

� Goals� barriers� and measured results

Our immediate goal was to develop a Linux kernel that would support real�time control of
scienti�c instruments� The limitations of standard time�shared operating system for this
purpose are obvious� but we should mention both unpredictability of execution and high
interrupt latency as critical problems� General purpose time�shared operating systems have
schedulers that are intended to balance response time and throughput� As a result the
execution of any process depends in a complex and unpredictable fashion on system load
and the behavior of other processes� These problems are compounded in Linux and most
other UNIX derivatives� because kernel mode execution is non�preemptable 
� and because
disabling interrupts is used as the primary means of synchronization�

By locking process pages into memory and requiring use of a round�robin scheduler
as in the POSIX��b standard 
� one can gain a certain degree of predictability� but still
not meet the requirements of even moderately demanding hard real�time systems 
��� Low
interrupt handling latency is critical for any real�time operating system� But interrupt
latency is high in in Linux� On a ���MHz Pentium based PC� we measure up to ���
�sec latency in handling of �fast� Linux interrupts� It has been reported that the Linux
console driver disables interrupts for as long as several milliseconds when switching virtual
consoles� Clearly� a frame�bu�er that must be emptied every millisecond is then beyond the
capabilities of the system and this timing requirement is one of the least demanding that
we can expect to see�

The fundamental limits for real�time processing are determined by the hardware� For
example� on our test system we measure a time of approximately ����sec for setting a bit on
the parallel port� Obviously we cannot then support a requirement for a data rate of over

�



��� KHZ no matter what we do with the operating system� Similarly� the minimal interrupt
latency is bounded by the hardware interrupt processing time� On a Pentium processor�
at least �� cycles is needed to enter and exit the interrupt� and some time is also needed
for the interaction with the interrupt controller� Devices that need more rapid response
or more precise timing call for dedicated� or at least di�erent� hardware� But modern PC
hardware is capable of handling the real�time requirements of a wide range of devices�

The current version of RT�Linux is a modi�cation of Linux ������� E�orts are cur�
rently underway to move to a ��� Linux kernel and we hope to port the system to a PowerPC
box in the next month or so� Our test system has a ���MHZ Pentium processor� a ���KB
secondary cache and ��MB of main memory� All I�O devices� other than the video display
and keyboard are DMA devices� Non�DMA controllers for mass storage devices are di�cult
to integrate into a real�time control system� The

To validate the performance of our real�time Linux� we have concentrated on periodic
tasks such as those needed to control a stepper motor or to sample sensors� The most
demanding test of real�time scheduling was a task with a ����sec period that did nothing
but toggle a bit on the parallel port� We attached the output pin to a digital storage
oscilloscope to measure timing and latency� Our measurements show a square wave with
a maximum variation of ���sec even during very heavy system load� This ���sec includes
the time to process an interrupt from the clock� detect that the toggle task needed to run�
and start the toggle task�

seconds

��� micro�

A second experiment used two periodic tasks with ����sec periods where one set and
one cleared the same bit on the parallel port� This experiment also showed a maximum
variation of �� �sec� Both experiments measured timings under high system demand� a
recursive disk copy was running under Linux� a network connection was driving a remote
X�windows display� and the Netscape browser program was both started and used to display
graphics� The changes in Linux work�load had no e�ect on the timing of the real�time tasks�
At periods of signi�cantly less than ���sec Linux performance became too poor to be of
much use� A single real�time task with a scheduled period of ���sec essentially prevents
Linux from progressing� This performance characteristic is the desired one� the non�real�
time system gets whatever processing time is not needed by the real�time system� The perils
of measuring timing on a system with a signi�cant cache and complex pipeline are not to
be discounted� but these experiments do indicate that the real�time OS makes it possible
to control devices at quite a precise level of timing�

�



� Interface

Real�time processes are light�weight threads executing each in its own address space� The
context of a real�time process consist only of integer registers� This ensures fast context
switch� which� together with the overhead of a system call to the RT�kernel takes ���
processor cycles��

Currently only periodic real�time tasks are supported� Essentially this this means
that we dispatch the timer interrupt� Dispatching other interrupts can be added trivially�

RT�Linux provides the following system calls for the process control�

� int RTload�const char �file� loads a RT�program �FILE�� creates a process and
returns its pid� The process is suspended until RTrun is called�

� int RTrun�int pid� starts execution of the RT�process at a low priority level� the
process must be �rst loaded with RTload routine

� int RTkill�int pid� kills a RT�process

� int RTget�time�RTime �t� returns current time� time is a �� bit integer �long
long int�� containing number of clock ticks passed since system booted The constant
RT�TICKS�PER�SEC contains the number of clocks per second�

� int RTset�params�RTime � start� RTime � period� int priority� changes
the scheduling parameters of the process

� int RTwait�start�RTime � start� RTime � period� int priority�

suspends the process until its start time� when start time comes� set the priority
of the process to the requested value�

� int RTwait�period�� suspends the execution of the process until the beginning of
the next period�

Real�time Linux does not use the hardware context switch mechanism that Intel x��
processors provide � it saves too much state and so is not fast enough� Instead we save the
context on the stack and then switch stacks�

A simple priority�based preemptive scheduler is currently used in real�time Linux� It
is implemented as a routine which chooses among the ready process the highest�priority one
and marks it as a next process to execute� Tasks give up the processor voluntarily� or are
preempted by a higher�priority task when its time to execute comes�

Typically there is a tradeo� between the clock interrupt rate and the task release

jitter 
��� In most systems tasks are resumed in the periodic clock interrupt handler� High
clock interrupt rate ensures low jitter� but at the same time incurs much overhead� Low
interrupt rate causes tasks to be resumed either too early or too late� In RT�Linux this
tradeo� is resolved by using a one�shot timer instead of periodic clock� Tasks are resumed
in the timer interrupt handler precisely when needed�

�These were calculated for the Intel ��	 Processor
 no cache and TLB misses was assumed

�



Note that all task resources are statically de�ned� In particular there is no support
for dynamic memory allocation� Our basic approach here is that any sophisticated services
that require dynamic memory allocation should be moved into Linux processes� In keeping
with this approach the Real�time kernel itself is not preemptable�

Since the Linux kernel can be preempted by a real�time task at any moment� no
Linux routine can safely be called from real�time tasks� However� some communication
mechanism must be present� Simple FIFOs are used in RT�Linux for moving information
between Linux processes or the Linux kernel and real�time processes� In a data�collecting
application� for example� a real�time process would poll a device� and put the data into a
FIFO� Linux process can then be used for reading the data from the FIFO and storing it in
the �le� or displaying it on the screen� Currently� interrupts are disabled when a RT�FIFO
is accessed� Since data are transmitted in small chunks� this does not compromise a low
response time� Other approaches� notably using lock�free data structures 
�� 
� are also
possible and are being considered�

The following are the system calls related to RT�FIFOs�

� int RTfifo�create�unsigned int fifo� int size� creates a RT�FIFO �FIFO� of
size �SIZE� bytes� FIFOs� numbers are global� FIFOs are numbered from � to
RT�MAX�FIFO��� Applications must agree on the use of the FIFOs available�

� int RTfifo�destroy�unsigned int fifo� destroys a FIFO�

� int RTfifo�get�unsigned int fifo� char � buf� int count� reads �COUNT�
bytes from �FIFO� to �BUF�� return �� if there is not enough data in the FIFO�
otherwise return �COUNT��

� int RTfifo�put�unsigned int fifo� char � buf� int count� writes �COUNT�
bytes from �BUF� to �FIFO�� return �� if there is not enough space in the FIFO�
otherwise return �COUNT��

Our next version of RT�Linux will abandon the separate address space for real�time
tasks and will place real�time tasks within the Linux Kernel address space� The original
design was motivated by a desire to have relatively user�safe real�time facilities� Real�time
tasks loaded into their own address space cannot overwrite Linux data structures although
they are capable of crashing the system in other ways� Our next system will sacri�ce some of
this safety for speed and the convenience of using Linux modules to allow dynamic loading
and replacement of real�time tasks and the real�time scheduler�

� The Virtual Machine

The RT�executive has been implemented on the x���PC architecture 
� 
���

��� Interrupt handling

Modi�cations to the Linux kernel are primarily in three places�

�



� The cli routine to disable interrupts is modi�ed to simply clear a global variable
controlling soft interrupt enable�

� The sti routine to enable interrupts is modi�ed to generate emulated interrupts for
any pending soft interrupts�

� The low�level �wrapper� routines which save and restore state around calls to handlers
have been changed to use soft return from interrupt code instead of using the machine
instruction�

When an interrupt occurs� control switches to a real�time handler� The handler does
whatever needs to be done in the real�time executive and then may pass the interrupt on to
Linux� If the soft interrupt enable 	ag is set� then the stack is adjusted to �t the needs of
the Linux handler and control is passed� via a soft interrupt table� to the appropriate Linux
�wrapper�� The �wrapper� saves additional state and calls the Linux handler � a program
usually written in C� When the handler returns control to the �wrapper� a soft return from

interrupt is executed� Soft return from interrupt restores state and then checks to see if any
other soft interrupts are pending� If not� a hard return from interrupt is executed� If there
are interrupts pending� then the highest priority one is processed�

Linux is reasonably easy to modify because� for the most part� the kernel code controls
interrupt hardware through the routines cli�� and sti��� In standard x�� Linux� these
routines are actually assembly language macros that generate the x�� cli �clear interrupt
bit� and sti �set interrupt bit� instructions for changing the processor control word� Because
interrupts can be disabled and enabled individually in the interrupt controller� and because
some Linux drivers directly access the interrupt controllers and the hardware timer� we also
had to modify some driver code� All in all� our changes required under ���� lines of new
code� and modi�cation of a few hundred lines of the Linux code�

Figure � shows the code for three macros�
Interrupt handlers in the RT�executive perform whatever function is necessary for the

RT system and then may pass interrupts on to Linux� Since the real�time system is not
involved in most I�O� most of the RT device interrupt handlers simply notify Linux� On
the other hand� the timer interrupt increments timer variables� determines whether a RT
task needs to run� and passes interrupts to Linux only at appropriate intervals�

If software interrupts are disabled �SFIF �� 	�� control simply returns through iret�
Otherwise� control is passed to S�IRET� This macro invokes the software handler corre�
sponding to the interrupt that has the highest priority among pending and not masked
ones�

The S�IRET code begins by saving minimal state and making sure that the kernel
data address space is accessible� In the critical section surrounded by the actual cli and
sti we apply the software interrupt mask to the variable containing pending interrupts�
and then look for the highest�priority pending interrupt� If there are no software interrupts
to be processed� we re�enable software interrupts� restore the registers� and return from the
interrupt� If we �nd an interrupt to process� we pass control to its Linux �wrapper��

Each Linux �wrapper� has been modi�ed to �x the stack so that it looks as if control
has been passed directly from the hardware interrupt� This step is essential because Linux
actually looks in the stack to see if the system was in user or kernel mode when the interrupt

�



Figure �� �Soft� cli� sti and iret


� These are macros �


S�CLI� movl �	� SFIF

S�IRET� push ds

pushl eax

pushl edx

movl �KERNEL�DS� edx

mov dx�ds

cli

movl SFREQ�edx

andl SFMASK�edx

bsrl edx�eax

jz not�found

movl �	�SFIF

sti

jmp SFIDT ��eax���

not�found�

movl ���SFIF

sti

popl edx

popl eax

pop ds

iret

S�STI� pushfl

pushl �KERNEL�CS

pushl �done�STI

S�IRET

done�STI�

occurred� If Linux believes that the interrupt occurred in kernel mode� it will not call its
own scheduler� The body of the wrapper has not been modi�ed� but instead of terminating
with an iret operation� the modi�ed wrapper invokes S IRET� Thus� wrappers essentially
invoke each other until there are no pending interrupts left�

On re�enabling software interrupts� all pending ones� of course� should be processed�
The code simulates a hardware interrupt� We push the 	ags and the return address onto
the stack� and use S�IRET �see Figure ���

Individual disabling�enabling of interrupts is handled similarly�

�



� Conclusion

Our approach to building a real�time operating system can be contrasted two two more
well�known methods� One method is add real�time support to a general purpose operating
system� The Real�Time Unix of 
� is a good example of this approach and illustrates the
e�ort needed to make a Unix kernel fully preemptive� Other examples include VAX VMS

�� the POSIX ��b standard �and the similar work in 
��� and the Maruti real�time OS

�� The second approach is to design an operating system speci�cally to support real�time�
VX�Works
�� is a particularly successful example of such a system� Other examples include
the QNX microkernel 
� and OS�
���

We have chosen a third path� Real�time POSIX standards alone are not �hard�
enough for our purposes� To make Linux fully pre�emptable was too time consuming and
would cut us o� from the mainstream of Linux development� We are interested in real�
time operating system design and want very much to leave TCP�IP� NFS� GUIs� and other
important general purpose operating system components to others� But the special purpose
operating systems have the same problem� Vendors are rapidly adding support for general
purpose operating system utilities� In fact� several vendors are now advertising �POSIX
compatibility�� Grafting POSIX to a real�time operating system seems to us to be no less
complicated and time consuming than grafting real�time on to an existing general purpose
operating system� With both approaches� we were concerned that the interaction between
the real�time and non�real�time subsystems would cause problems that our approach avoids
through its clear separation between real�time and general purpose components�

Finally� although we have made an e�ort to modify Linux as little as possible� the
real�time executive approach might be used as a basis for a signi�cant redesign of Linux and
similar operating systems� For example� device drivers often have real�time constraints� If
the real�time requirements of the drivers were made explicit and moved into the RT�kernel�
then con�guration programs could attempt to �nd a feasible schedule rather than allowing
users to �nd out by experiment whether device timing constraints are feasible� It may
also be possible to simpli�y design of the general purpose kernel by giving the emulation a
cleaner semantics than the actual hardware�

References


� Borko Furht et al� Real�time UNIX systems� design and application guide� Kluwer
Academic Publishers Group� Norwell� MA� USA� �����


� Bill O� Gallmeister� POSIX�� � Programming for the Real World� O�Reilly � Asso�
ciates� �����


� P� M� Herlihy� Wait�free synchronization� ACM Transactions on Programming Lan�

guages and Systems� ������ January �����


� Dan Hildebrand� An architectural overview of QNX� In USENIX Workshop on Micro�

Kernels and Other Kernel Architectures� pages �������� Seattle� WA� April ����� �����
USENIX�

�




� Intel Corporation� Pentium Processor Family Developer�s Manual� Order Number
�����������


� Samuel J� Le�er� Marshall Kirk McKusick� Michael J� Karels� and John S� Quarterman�
The Design and Implementation of the ���BSD UNIX Operating System� Addison�Wes�
ley� Reading� MA� USA� �����


� S��T� Levi� S� K� Tripathi� S� D� Carson� and A� K� Agrawala� The MARUTI hard
real�time operating system� ACM Operating Systems Review� SIGOPS� �������������
July �����


� H� Lycklama and D� L� Bayer� Unix time�sharing system� The MERT operating system�
Bell System Technical Journal� ���������������� �����


� Henry Massalin� Synthesis� An E	cient Implementation of Fundamental Operating

System Services� PhD thesis� Columbia University� �����


�� Muhammad Ali Mazidi and Janice Gillespie Mazidi� Design and Interfacing of the

IBM PC� PS� and Compatibles� Prentice Hall� �����


�� OS� Real�Time Operating System� http���www�gespac�com�html�os� arch diagram�html�


�� L� H� Seawright and Mackinnon R� A� VM���� � A Study of Multiplicity and Use�
fulness� IBM Systems Journal� �������� �����


�� Sang H� Son� editor� Advances In Real�Time Systems� chapter ��� pages ��������
Prentice Hall� Englewood Cli�s� NJ� �����


�� J� A� Stankovic� Misconceptions about real�time computing � A serious problem for
next�generation systems� IEEE Computer� ������������� October �����


�� Gabriel A� Wainer� Implementing Real�Time services in MINIX� Operating Systems

Review� ������������ July �����


�� Wind River Systems� Inc�� ���� Atlantic Avenue� Alameda� CA ����������� USA�
VxWorks Programmer�s Guide 
��� December �����

�


