
CoFluences: Simulating the Spread of Social Influences via a
Hybrid Agent-Based/Fuzzy Cognitive Maps Architecture
Philippe J. Giabbanelli∗

Furman University
Computer Science Department

Greenville, SC, USA
giabbanelli@gmail.com

Michele Fattoruso
Northern Illinois University

Department of Computer Science
DeKalb, IL, USA

michele.fattoruso@gmail.com

Max L. Norman
Furman University

Computer Science Department
Greenville, SC, USA

max.norman@furman.edu

ABSTRACT
Social influences are key drivers of many human behaviors, and
have been the focus of an abundance of discrete simulation models.
In participatory modeling, the emphasis is on developing models
in an intuitive and transparent manner. Fuzzy Cognitive Mapping
(FCM) provides such an intuitive and transparent process, but it can
only simulate the thinking of one entity rather than how entities
influence each other. Hybrid architectures based on FCM and Agent
Based Modeling (ABM) can bridge this gap, but current software
implementing these architectures either restricted the models (e.g.,
limiting agent heterogeneity by requiring that they all follow the
same rules) or required extensive coding (which participatory mod-
eling avoids). In this paper, we contribute to software development
by presenting CoFluences, and to the theory of modeling and sim-
ulation by better characterizing hybrid ABM/FCM architectures.
CoFluences is the first software to develop and simulate hybrid
ABM/FCM models in a participatory setting, and where agents can
follow different rules. Although we take a User-Centered Design
approach to develop CoFluences, a comprehensive usability study
will be necessary to fully evaluate it in context. In addition, the
growing interest in developing simulation software involving FCM
will call for more standardization, and for a better understanding
of how an FCM behaves in a hybrid simulation.

CCS CONCEPTS
• Computing methodologies → Simulation environments;
Agent / discrete models; Modeling methodologies;

KEYWORDS
Cognitive Architecture; Mental Models; Simulation Software; Soft
Computing
ACM Reference Format:
Philippe J. Giabbanelli, Michele Fattoruso, and Max L. Norman. 2019. CoFlu-
ences: Simulating the Spread of Social Influences via a Hybrid Agent-
Based/Fuzzy Cognitive Maps Architecture. In SIGSIM Principles of Advanced

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6723-3/19/06. . . $15.00
https://doi.org/10.1145/3316480.3322887

Discrete Simulation (SIGSIM-PADS ’19), June 3–5, 2019, Chicago, IL, USA.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3316480.3322887

1 INTRODUCTION
Human behaviors are partly shaped by how we expect others to
behave (descriptive social norms) and how we perceive whether
others will approve of a behavior (injunctive social norm). The
influence of social norms on behavior has long been documented
in psychology, sociology, and cognitive science. However, their
application is not limited to such fields. For instance, social norms
are important in public health: cross-sectional studies, experimental
studies, and meta-analysis have consistently observed that social
norms could provide effective levers to encourage individuals in
adopting healthy behaviors [59, 61].

An abundance of simulation models has thus been devoted to
social norms. In particular, discrete models are routinely employed:
individuals are represented through discrete entities, and their be-
haviors are updated over discrete time units. Networkmodels [4, 43]
andAgent-BasedModels (as exemplified by thework of Epstein [13],
Axelrod [2], and others [3]) have both been particularly popular ap-
proaches to simulate social norms under often interchangeable key-
words such as ‘spread’, ‘cascade’, ‘contagion’, or ‘reaction-diffusion
processes’. Agent-BasedModels (ABMs) differ from networkmodels
by allowing for an explicit representation of the space, such that the
influence of social norms on an agent’s behavior may be mediated
by local environmental drivers. However, many models portrayed
as ABMs may simplify the environment to a single variable [60]
thus blurring the line between ABMs and network models. In this
paper, our focus is on heterogeneity in decision-making rather than
on heterogeneity in the locations/movements of agents in space.

An advantage of using individual-level models is their ability to
represent relevant differences among agents in a given application
context. For instance, a simulation of eating behaviors is unlikely to
include differences in the agents’ eye colors or their political beliefs.
Conversely, it would be typical to represent differences in how
agents value the taste or healthiness of food items [37, 68] because
such factors shape how the agents form decisions. A model may
achieve heterogeneity in decision-making by giving the same rules
and variables to all agents, and only assigning different values to
variables that the output behavior is highly sensitive to. Behaviors
have occasionally been described as chaotic, meaning that such
minute differences in variables can be sufficient to set individuals to
entirely different trajectories [58]. However, individuals may follow
different rules, which explains why they make different decisions
when facing the same evidence. Consider a socio-environmental
system such as fishery management, in which the agents include

Session on Agent Based Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

71

https://doi.org/10.1145/3316480.3322887
https://doi.org/10.1145/3316480.3322887

recreational fishermen, managers of fishing clubs, or environmental
experts. The same evidence may be presented to these agents (e.g.,
over-fishing and decreasing catch), but their differentmental models
will result in favoring different actions (e.g., bring in fish from
elsewhere, temporarily ban fishing) [41]. Such contexts warrant
models in which agents follow different rules, in addition to having
different feature values.

There is no shortage of architectures or software approaches
to create a population of agents equipped with different rules. For
instance, there are hundreds of cognitive architectures elaborating
how humans think [40], and several of them have been operational-
ized into modeling toolkits for agents such as the Belief-Desire-
Intention (BDI) approach [8]. The modeling challenge is to have
a transparent and systematic process to map the heterogeneous
decision-making processes of humans onto heterogeneous rules
for agents. Having a systematic process supports the comparison
of models and the replication of a study, which is an important
ongoing goal in modeling and simulation [64]. Transparency is
important in participatory modeling, which involves those who are
affected by decisions that stem from a model. A transparent pro-
cess would allow participants to straightforwardly provide their
mental models and see how they are used by a simulation, thus
contributing to both the realism of the simulation and building
trust in its outcomes. A fundamental assumption of a transparent
process is that participants are actually aware of their mental mod-
els. While this assumption has historically been questioned, recent
evidence suggests that participants are indeed able to externalize
mental models for familiar situations [21]. Consequently, debates
in participatory modeling have gradually shifted from whether par-
ticipants can externalize mental models to how they may do it most
accurately and transparently [36].

On the one hand, the methodology of Agent-Based Modeling
can represent interactions between agents with different rules, but
it does not provide a transparent and systematic process to obtain
these rules by externalizing the mental models of participants. On
the other hand, soft systems methodologies such as Fuzzy Cognitive
Maps (FCMs) provide a transparent and systematic process to elicit
the mental model of a participant or group, but do not provide a way
for these models to interact. Metaphorically, the FCM methodology
can provide the agents’ brains, but brains cannot directly interact:
theymust be placed inside bodies. Several works have thus proposed
hybrid models combining ABM and FCMs, for application contexts
as diverse as simulating species in an ecosystem [26, 27], model-
ing participants in fisheries management [22] or healthy eating
programs [23], or the spatial spread of insurgency [18, 55]. While
there are widely used software for ABM (e.g., NetLogo, Repast,
AnyLogic, Mason) and a variety of software supporting FCM (e.g.,
MentalModeler [30], FCM Wizard [48], FCM Expert [49]), there is
a paucity of software combining ABM and FCM. The main two
options are EcoSim [26], which is specific to ecosystem simulations
(e.g., emphasis on reproduction and mutations of models), and our
own prototype [22], which constrained agents to all have the same
mental model and only differ in parameter values.

In this paper, we present CoFluences, the first simulation envi-
ronment for the spread of social norms that creates heterogeneous
rules in an Agent Based Model (ABM) using Fuzzy Cognitive Maps
(FCM). Specifically, our primary contributions are two-fold:

• Previous hybrid simulation software creating ABM rules
using an FCM required that all agents had the same FCM.
We address the algorithmic, design, and implementation
challenges of simulating agents with different FCMs.
• While FCMs are particularly useful in participatory model-
ing, the primary audience for previous ABM-FCM software
was simulation experts rather than participants. We lever-
aged the usability lessons learned from participant-centric
tools and our prototype to create a software that can be used
in facilitated modeling sessions with participants.

The organization of this paper is as follows. In section 2, we
provide a background on FCMs and how they have been combined
with ABMs in previous simulation software. Section 3 starts the pre-
sentation of our software, by exposing the desired functionalities,
mapping them onto a design mindful of usability by participants,
and formally specifying the simulation using pseudocode. Building
on this, we present our implementation in section 4 along with
remarks on its verification. Lastly in section 6, we examine the
strengths of our software and discuss possible solutions to its limi-
tations, followed by our closing remarks.

2 BACKGROUND
Section 2.1 characterizes the intended audience for our software,
and the specific modelling techniques that they tend to use. As sim-
ulation experts are often most familiar with Agent Based Modeling,
we instead focus on the fundamentals of Fuzzy Cognitive Maps
both intuitively (2.1) and formally (2.2) before combining them with
agents (2.3).

2.1 Fuzzy Cognitive Maps for Participatory
Modeling

The Participatory Modeling process supports participants to “use
modeling to describe the problem, to identify, develop and test
solutions, and to inform the decision-making and actions of the
group” [67]. Approaches suitable for participatory modeling thus
target non-computer scientists [6, 67], and must provide an accessi-
ble means to (i) design, such that participants can externalize their
knowledge into formal, shared representations of reality; (ii) imple-
ment, without coding; and finally (iii) test questions of interests via
‘what-if’ scenarios. The idea that participants must take ownership
of the design precludes a ‘model coding’ stage done solely by mod-
elers, as may be found in facilitated simulation approaches [63].
The model’s code thus has to be automatically generated from an
intuitive design process, which explains why participatory model-
ing rarely involves sophisticated modeling approaches such as the
Discrete Event System Specification (DEVS) or frameworks using
abstract state machines (e.g., CoreASM [14]). Instead, participatory
modeling involves qualitative techniques (e.g., rich pictures, causal
loop diagrams) and (semi-)quantitative techniques (e.g., cellular
automata, agent based models, system dynamics, fuzzy cognitive
maps) [67]. Purely qualitative techniques have limited support for
analysis as they cannot quantify effects. For example, analyzing a
causal loop diagram can reveal central factors or unexpected group-
ings [19, 20], but it cannot compute the effect that an intervention
may have on a specific target. Fuzzy Cognitive Maps (FCMs) stand
apart among quantitative techniques by their relative simplicity.

Session on Agent Based Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

72

They can be developed quickly, at low cost, with little data, and
require a medium expertise of both stakeholders and modelers [67].
The relative simplicity to build FCMs is a common theme to several
reviews and books on FCMs [1, 25, 35, 52, 53].

Intuitively, a Fuzzy Cognitive Map can be seen as an augmented
causal loop diagram. Similarly to a causal loop diagram, an FCM rep-
resents factors as nodes and causes as labeled directed edges. The
label specifies whether the target node increases (‘+’) or decreases
(‘-’) when the source increases. An FCM goes beyond causal loop di-
agrams in two ways that are instrumental to producing quantitative
outcomes. First, they quantify the values of nodes and edges. Node
values are assigned based on a specific case: in Figure 1, an FCM
models a subject whose baseline level of stress or propensity to obe-
sity would set the node values. Edge values can be assigned in many
ways by using machine learning [51], parsing documents [54, 56],
or asking participants in a participatory setting [23, 55]. Second,
given a case (i.e. node values) and causal structures (i.e. edge val-
ues), an FCM can compute what will eventually happen. This is
performed by updating the node values in discrete steps, which
do not map to physical time. Nonlinearities in the update process
(section 2.2) prevent reverse causality, thus an FCM cannot be used
to answer why questions (i.e. backward chaining) by starting from
a desired end state and find what achieves it. Instead, FCMs can
only start from a case and work out the implications (i.e. forward
chaining), which answers what-if questions [9]. The main appli-
cation of FCMs is thus to support participants in analyzing future
scenarios [35] where the evidence base is qualitative, changing, and
lacks a commonly accepted ‘truth’ [34].

There are many participatory approaches to build an FCM [33]
whose commonality is to keep the process accessible. For instance,
participants are rarely asked to directly provide a number as weight
of an edge. Instead, they may be asked to use linguistic variables
(e.g., ‘very high’, ‘low’) which are turned into numbers using Fuzzy
Logic [23, 55], choose from a range (e.g., from ‘+’ to ‘+++’) which
is implicitly numerical [28], or the simulation expert may assign
weights based on the emphasis of participants [57]. Despite these
differences in the building process, all resulting FCMs work in the
same manner. Consequently, there exists many FCMs to capture
the mental models of participants in medical decision-making [1],
socio-ecological system management [29], of smart cities [10]. This
resource is an important asset to develop agent-based models: rules
for agents readily exist in a broad variety of social applications.

2.2 Mathematics of Fuzzy Cognitive Maps
An FCM is a nonlinear dynamical system akin to a neural network.
Its structure is a fuzzy signed digraph with feedback, where nodes
are fuzzy sets taking values in [0, 1] and edges are fuzzy rules [9].
Nodes are updated based on the value of neighboring nodes and
causal edges between them (Equation 1). As updates are repeatedly
applied, an FCM converges to “a fixed point, limit cycle, limit torus,
or chaotic attractor” [9]. In the first case, we consider that the
long-term behavior of the model is known. We thus stop updating
an FCM when a desired subset S of output nodes changes from
one update to the next by less than ϵ (Equation 2). This halting
condition may not be met in the other cases, thus an additional
halting condition is a maximum number of steps tmax .

Definition 2.1. A Fuzzy Cognitive Map F t = (V t ,E, f) at step t
is composed of [41, 42]:
• A setV t of n nodes representing concepts. The value of node
i is represented by V t

i ∈ [0, 1] where 0 and 1 respectively
indicate the absence and presence of the concept.
• A set E of edges. Their causal weights are represented by the
adjacency matrixAwhereAi, j is the weight of the edge from
i to j. When Ai, j is positive then an increase in i causes an
increase in j. Conversely, when Ai, j is negative, an increase
in i causes a decreases in j.
• A clipping function f also known as transfer function. It
ensures that updated node values remain the range [0, 1].

The FCM F t+1 is updated from F t by changing the node values:

V t+1
i = f

(
V t
i +

∑
j=1, j,i

V t
j ×Aj,i

)
, (1)

The update stops when the outputs stabilize, or an exceedingly high
number of steps suggests the presence of a chaotic attractor.

The FCM stops when:

{
|Vi (t + 1) −Vi (t)| ≤ ϵ,∀i ∈ S ⊆ V , or
t = tmax

(2)
Note that alternative definitions for an FCMmay use a 4-tuple [48]

instead of the 3-tuple in definition 2.1. The difference is often due
to using separate notations for the concepts as nodes, and for their
values. Here, the nodes and their values are conflated using V t .
Another variation is to provide Equation 1 as part of an FCM itself,
in replacement of the clipping function f . Intuitively, this allows
each FCM to use a different inference engine [27]. In rare cases, an
FCM can be specified with as many as 6 tuples [65].

The clipping function f must be monotonic to preserve the
order of nodes’ values. The choice of f has important consequences
on the dynamics and performance of an FCM. A discrete f can
produce a finite number of states, such that the FCM converges
either to a fixed point or a limit. A continuous f can also lead
an FCM to a chaotic attractor [50, 66]. Typical options include a
hyperbolic tangent [21, 31, 41, 44, 46], which is also commonly used
as activation function of artificial neurons, and the sigmoid function,
which performs best in simulation benchmarks [7] and produces a
unique fixed point when using a small slope [39].

2.3 Simulating Hybrid ABM/FCM Models
While ABMs and FCMs have occasionally been studied together,
one may have been used on the way to achieving the other as a
final product [12], or one may serve as an abstraction of the other
such as when each node of an FCM is simulated as an agent [44, 62].
In contrast, a hybrid model requires the co-existence of several
modelling techniques. In a hybrid ABM/FCM model, the objective
is to “quickly developing the system’s rule in a participatory way
from FCM while obtaining temporal and spatial explicitness from
ABM” [22]. This objective can be achieved in two broad ways. First,
several ABMs could be embedded within an FCM. For instance,
concepts requiring spatial interactions could be simulated using an
ABM, whose aggregate value are reflected in the FCM [22]. Second,

Session on Agent Based Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

73

Figure 1: A Fuzzy Cognitive Map in the 2013 HYbridFuzzy-Agents Simulator (HYFAS) software [18].

we can embed an FCM within each agent to represent decision-
making processes. We have applied this approach to health [23]
and security scenarios [18, 55] while others used it to simulate
ecosystems [27, 38] or the negotiation surrounding the price of
goods [45]. This approach of designing the rules of agents using
FCMs is the focus of this article.

A variety of software solutions have been employed where FCMs
provide the mental models of agents. The model of Nachazel and
the Multi-Agent based MObile Negotiation framework (MAMON) are
both built in NetLogo [45, 47], although the former expressed an
interest to “transfer the model from NetLogo to AnyLogic, which
should improve performance” [47]. Although NetLogo is an acces-
sible modelling platform, the design of a model requires coding,
which participatory approaches avoid. The open-source EcoSim
platform1 writes models in C++, which contributes to efficiency
as it can “manage several hundreds of thousands of such agents
simultaneously into the world with reasonable computational re-
quirements” [38]. The only solution that did not require coding was
our HYbridFuzzy-Agents Simulator (HYFAS)2 for Java 7. The paucity
of solutions may be partly due to the relative novelty (and hence
rarity) of hybrid ABM/FCM models in contrast to hybrids using
ABM, System Dynamics, or Discrete Events. This is exemplified by
the absence of FCMs among solutions considered by the 2018 panel
on hybrid simulations [11].

1https://github.com/EcoSimIBM
2Available at https://osf.io/z5rf2/ under ‘Previous Software’

HYFAS provided the backbone of several modelling studies [18,
22, 23]. It relied on a graphical user interface (Figures 1 and 2) to
create the model structure and automatically translate it into Java
code. Analytical capabilities were offered through several tools
to measure the network structure of either the FCM (Figure 1) or
the agents’ connections (Figure 2-b). Similarly, network generators
allowed users to quickly generate the basic structure of the FCM
(which often starts as a star graph with one central concept driven
by many others), or connect their agents using complex networks
with small-world and/or scale-free properties.

3 SOFTWARE SPECIFICATION
3.1 Core Requirements
The overarching aim of CoFluence is to empower participants in
creating hybrid models where the rules of interacting agents are
driven by different fuzzy cognitive maps. This aim translates to
three specific requirements, detailed as follows.

Requirement #1: No coding is required from the users to
create, run, and analyze a model.

Fuzzy Cognitive Mapping has achieved a successful track-record
in participatory modeling (Section 2.1) in part because it does not
require simulation expertise from participants. This removes barri-
ers to participation in a study (when additional training is required),

Session on Agent Based Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

74

https://github.com/EcoSimIBM
https://osf.io/z5rf2/

Figure 2: After creating their one FCM, users of HYFAS specify how concepts of an FCM are influenced (a-right) by concepts of
connected FCMs (a-left). Then, they set up connections between agents (b-1), and optionally visualize (b-2) or analyze them
(b-3; b-4) before investigating simulation results (b-5).

it preserves the transparency of the model building process, and it
contributes to buy-in for simulation outcomes. While the introduc-
tion of another modelling paradigm (ABM) necessarily increases the
complexity of model development, it is essential that it remains ac-
cessible for participants. A consequence of this requirement is that
any code has to be generated automatically by the software, which
may not be as efficient as if the code was written and optimized by
professionals.

Requirement #2: Usability requires an agile approach to
model development and support to reuse common model com-
ponents.

While usability is important for all users, participants may be
more sensitive to it than simulation experts [16]. Our experiences
with HYFAS revealed several usability challenges [18, 22, 23], lead-
ing to the requirement’s emphasis on agile development and reuse.
HYFAS used a six steps process to create an FCM, where each step
had to be completed before the next. For example, the map struc-
ture and node names had to be finished before users could provide
edge weights (Figure 1). In reality, participants do not necessar-
ily follow such a step-by-step approach to model development.
They may sketch some parts of the model, detail others, and revise
later. Out of seven recently reviewed FCM simulation software [15],
MentalModeler stands apart by its focus on helping participants
to intuitively build and use FCMs, rather than providing advanced
computational options such as machine learning. MentalModeler
is a case in point of a flexible approach as users can go back and
forth between setting edge values, creating new nodes, and so on3.

3A walkthrough of MentalModeler is provided at https://www.youtube.com/watch?
v=v1A_ZGO6fWk

In short, an agile approach is preferred instead of an overly rigid
guidance.

Participants may also realize that they often use the same tem-
plates (or ‘design patterns’) to express how agents influence each
other. In models of obesity, social norms on physical activity or
food behaviors are often captured by computing the average be-
havior of connected agents and, if it is above or below a threshold,
change the target agent’s behavior accordingly [5, 37, 68]. Rather
than providing a set, minimal list of building blocks for a model, we
thus need a software architecture that flexibly accommodates the
use of additional blocks. Examples include data flow software such
as Dataverse, in which the many building blocks are organized in
thematic collections and new ones can be created.

Requirement #3: Agents may have different rules.

This requirement is more stringent than asking for agents to
exhibit different behaviors, which may be obtained solely by having
different feature values across agents (Section 1). This was the
approach taken by HYFAS: all agents had the same FCM structure
(i.e., nodes and edge weights) and only differed in the node values.
For instance, obesity would always limit engagement in physical
activity (captured by the edge weight), but not all agents were obese
(captured by the node value). However, constraining all agents to
follow the same rules severely limits heterogeneity, and cannot
handle cases where agents of different types have different mental
models. Participatory approaches are particularly used for problems
involving multiple types of stakeholders, resulting in an FCM for
each type (e.g., an FCM for elderly patients and another one for
caregivers [57]). The simple requirement that different agents use
different FCMs has profound consequences on the design of agent
interactions (e.g., do we react to a prompt differently when it is

Session on Agent Based Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

75

https://www.youtube.com/watch?v=v1A_ZGO6fWk
https://www.youtube.com/watch?v=v1A_ZGO6fWk

expressed by a different type of agent?), and on setting-up the
virtual populations (e.g., which agents get which FCM?).

3.2 Design Process
In Spring 2018, requirements from the previous subsection were
mapped to user interactions by two independent groups, each com-
posed of two students taking a course on modeling and simulation
(cross-listed for graduate and undergraduate students). Each group
proposed software mock-ups (Figure 3), and was then given access
to the other group’s work to critique it. The implementation was
guided by a mock-up combining the strengths of both proposals.

Current designs for usability tend to minimize the number of
clicks to perform key operations and avoid distracting visuals such
as pop-up windows [16, 32]. These principles underlie the design
of CoFluences. Using a Property panel for each node of the FCM
(Figures 3 and 4) achieves a minimum number of clicks, does not
require pop-up windows, and supports an agile approach to model
design per requirement #2. Operations such as deciding that an
FCM node is an output are accomplished with a minimum of two
clicks by selecting the node and checking a box. Users can choose
to be more detailed about the design of some nodes (e.g., assigning
values and flagging for connection with other FCMs) than others
(e.g., just assigning names) as they gradually develop the model. In
contrast, HYFAS needed more clicks (due to pop-up windows) and
enforced model development in six consecutive steps.

As agents can have multiple rules (requirement #3), there can be
multiple FCM files within a single hybrid model. To emphasize that
a model is composed of multiple FCMs, the design of CoFluences
uses a project workspace similarly to simulation software such as
AnyLogic. All files are listed in a left panel per category (e.g., FCMs,
log files) and each open file is available in the central (main) space
as a tab (Figure 4) with a dedicated icon to differentiate individual
FCMs (Figure 3) from parts such as connecting FCMs (Figure 5).

The design of connections between FCMs is partly inspired by
HYFAS (Figure 2-a). In short, the user specifies for each node of
an FCM whether it will influence or be influenced by the FCMs
of connected agents. Such nodes become available when creating
connections, and their effect involves a transformation function.
Consider the example depicted in Figure 6: an agent cannot directly
drive the level of diabetes of another agent. Instead, diabetes in an
agent can contribute to ‘disease awareness’ in another agent.

Consequently, diabetes is an influencing factor, and disease aware-
ness is an influenced factor. Such influences can be a one-to-one
matching, such as when our diet is directly influenced by the diet
of peers. Alternatively, several influences can come together, as is
the case when ‘trust in local medicine’ is driven both by whether
other agents trust and use local medicine.

Requirements #1 and #2 strongly shaped our approach to the
design of connections. To ensure that users do not have to code, we
provide a set of transformation templates arranged in categories,
similarly to the building blocks of of AnyLogic or Dataverse. The
main space is divided into three parts, such that templates chosen by
the user are positioned in the middle to graphically emphasize that
they ‘filter’ the effect of influencing factors (left) onto influenced
factors (right). In line with the typical use of color codes, issues
are flagged by coloring a component in bright red. Note that this

is the first place where we can automatically identify, and thus
display, issues in the model developed by a user. An FCM reflects the
knowledge provided by participants, which may be improved (e.g.,
by additional evidence or trained facilitators), but cannot be deemed
wrong in a mathematical sense. In contrast, different transformation
functions can be mathematically inconsistent, which the user needs
to see and address before a simulation can proceed.

3.3 Simulation Pseudocode
To specify our simulation, we define the agents and how their
interactions are handled by transformations between subsets of
FCM nodes. We borrow the definitions of agents (3.1) and subsets of
FCM nodes (3.2) from Giabbanelli et al [22]. In contrast to previous
studies that only provided examples of transformations [22, 55], we
formally specify (3.3) and categorize (3.4) the transformations to
specify whether they are compatible (3.5).

Definition 3.1. At time step τ of the simulation, a population
A consists of agents, where each one has a Fuzzy Cognitive Map
FCMa (t),a ∈ A, and a set of agents with which it interacts, Ia (τ).

Definition 3.2. There are two categories of FCM nodes: influenced
and/or influencing. We represent them by two (possibly overlap-
ping) subsets FCMed and FCMinд respectively.

Definition 3.3. A transformation i is a variadic function
fi (edi , inд1,i , . . . , inдn,i ,p1,i , . . . ,pm,i) where edi ∈ FCMed is one
influenced factor, inд1,i , . . . , inдn,i are influencing factors, and
p1,i , . . . ,pm,i are function parameters.

Definition 3.4. The type type(fi) of a transformation is either
relative when its output depends on the influenced factor edi , or
absolute when it does not depend on edi .

Definition 3.5. The transformations in a set F are compatible if,
∀fi , fj ∈ F, edi = edj =⇒ (type(fi) = relative) ∧ (type(fj) =
relative).

We now briefly provide the intuition behind these definitions.
Definition 3.3 states that a transformation can affect only one influ-
enced concept, based on one or more influencing concepts. Consider
the following three examples of such a transformation. First, we
could replace the influenced concept by the average of an influenc-
ing concept among peers. Second, we could increase the influenced
concept by 10% whenever it is lower than the average of an influenc-
ing concept among peers. Third, we could decrease the influenced
concept by 5% whenever it is larger than the maximum for two in-
fluencing concepts among peers. The first case takes no parameter,
whereas the other two cases take one parameter (set to 10% and
5% respectively). The first case is absolute, because the influenced
concept is set to the group’s average regardless of its current value.
The other two cases are relative, as the next value is based on an
increase or decrease of the current one. The two relative cases are
compatible: the next value of an influenced concept c would be
c + 0.1c − 0.05c . However, the first case is incompatible with the
others because its result is not fully specified: would it consist of
replacing the value by the group’s average and then decreasing it
by 10%, or first decreasing the value by 10% and then replacing it
with the group’s average? While this issue can be solved by assign-
ing priorities to transformations, it would allow for superfluous

Session on Agent Based Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

76

Figure 3: CoFluences showing the same FCM as in Figure 1. Each concept node has a property panel to set its distribution of
values across the agents, enter notes, decide whether it’s part of set S of outputs (Eq. 2), and if it is influencing or influenced
by the FCMs of connected agents. Edge weights are set using a sliding scale (here showing 0.767). When an FCM file is open,
the top menu gives access to analytical tools such as the model’s outdegree distribution (top-right inset).

Figure 4: Sample of the mock-up produced in Balsamiq.

computations: there is no point in changing a variable by 10% if its
value is then replaced anyway. In Figure 5, the top two transfor-
mations are not compatible and the influenced factor is shown in
red: the topmost replaces the value by the one used in a randomly

selected neighbor, whereas the other can give it a relative increase
of 10% under certain conditions. In sum, compatibility ensures that
users either apply a series of relative changes (whose order does
not matter), or replace the value.

The simulation specified in Algorithm 1 takes turns between
applying compatible transformations between agents, and updating
their FCMs (Eq. 1) until halting conditions are met (Eq. 2). This
captures how agents pass on social norms, change their views of
the world accordingly, and continue to shape social norms.

There are two subtleties to Algorithm 1. First, we distinguish the
agents’ discrete time steps (τ) from the FCMs’ use of ticks (t) that
do not correspond to physical time. A time step of the simulation
increments τ , whereas t always starts at 0 (initial mental model
for this time step τ) and increases until the final mental model for
this time step is obtained (thus forming the initial mental model for
the next time step τ + 1). Second, the buffering of transformations
(line 9) is necessary both for the synchronicity of the updates, and
because the same influenced node may be modified many times in
the presence of multiple relative transformations.

4 SOFTWARE IMPLEMENTATION
The implementation took place from mid-spring to mid-fall 2018,
followed by verification and finally the preparation of educational

Session on Agent Based Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

77

Figure 5: Connecting FCMs in CoFluences consists of choosing transformation templates from categories (bottom tabs) to link
nodes that have been flagged as influencing and influenced factors (Figure 4; bottom). Errors are shown in red when design
choices are incompatible, such as using an absolute and a relative template to drive the same influenced concept.

Figure 6: To connect FCMs, we first need to identify nodes that influence or are influenced by others (a; Figure 3). Then, we
express how the value of an influenced node depends on the value of influencing node(s) (b; Figure 5). The simplified FCM is
adapted from a large model of aboriginal perspectives on diabetes [24].

material. The software was developed in Java 10 using NetBeans4.
Two libraries are extensively used. Jung (final release 2.0.1) provides
data structures, algorithms, and visualizations for graphs. We use it

4The source code and NetBeans project are available at https://osf.io/z5rf2/

both for the FCM and the agent population. That is, agents and FCM
concepts are both nodes, while social ties between agents and causal
FCM connections between concepts are both edges. JFreeChart
(version 1.0.14) provides 2D charts to visualize analytical results. We

Session on Agent Based Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

78

https://osf.io/z5rf2/

Algorithm 1 Updates the simulation for one time step
Require: Compatible transformations
1: //Agents interact (synchronous time step)
2: for i ∈ A do
3: for j ∈ Ia (τ) do
4: //for each neighbor j influencing an agent i
5: for f (ed, inд1, . . . , inдn ,p1, . . . ,pm) ∈ F do
6: if ed ∈ FCMed

i ∧ inд1, . . . , inдn ∈ FCM
inд
j then

7: //If there is a transformation f between their FCMs,
8: //then applies and buffers it.
9: V 1

ed = f (ed, inд1, . . . , inдn ,p1, . . . ,pm),Ved ∈ FCMi
10: //Agents update their mental models in parallel
11: for i ∈ A do
12: t ← 0 //We have the FCM’s initial state
13: //Loads the bufferized changes to the mental models
14: V 0

x ← Vx (1),∀x ∈ FCMed
i

15: repeat
16: Apply Eq. 1 on FCMi (t)
17: t ← t + 1 //One update of the FCM’s states is done
18: until Eq. 2 is satisfied
19: //The final worldview here will start the next time step
20: V 0

x ← V t
x ,∀x ∈ FCMi

21: //The agents have finished one step of the simulation
22: τ ← τ + 1

use it to display the results from simulating or analyzing the struc-
ture of a single FCM (Figure 3; top-right inset). We also leveraged
previously developed and verified code. The update of a single FCM
until convergence is managed by code shared with applications
such as HYFAS [18] and Computational Allocation of Participants
in Trials (CAPT) [21]5. The creation of social ties between agents
(Figure 7) draws from a large set of previously developed network
generators (e.g., small-world and/or scale-free) [17].

A defining feature of CoFluences is its reliance on transforma-
tion templates (Figures 5-6) to combine FCMs and ABM. Although
our intention is to provide participants with sufficient templates
to suit their needs, there is always the possibility of a unique sit-
uation or developers wishing to experiment with alternatives at
least for theoretical purposes. Consequently, the implementation
needs to support the addition of new templates. The worst scenario
would be to re-compile the whole application only to make new
templates. Instead, our implementation has a pluggable architec-
ture: developers can add new classes (to the ‘plugins’ folder), and
CoFluences will compile them at runtime. Consequently, adding a
template is achieved by adding a Java file into a folder. Running the
application will compile this file into a class file6, and add it to the
list of templates that participants can see. Similarly, creating a new
category of templates is achieved simply by making a new folder.

5To support reproducibility, the code for both applications can be freely accessed with-
out registration at https://osf.io/z5rf2/ and http://www.crutzen.net/capt/ respectively.
In addition, the two peer-reviewed publications of the methodology and software are
also open access.
6Because of the need to compile templates, CoFluences cannot be run with a Java JRE.
Instead, it requires the Java JDK. As participants are not assumed to be familiar with
these notions, or setting up system variables such as the Path, we provided a wrapper
(‘CoFluences.exe’) to ensure that the application starts with the installed JDK.

Figure 7: Social ties can be created using several network
generators, where each one includes a description with ex-
planations of its properties and links to references.

Mathematically (Def. 3.3) and for the participants, a transfor-
mation template is a function taking a list of influencing concepts,
a set of parameters, and one influenced concept. The simulation
algorithm is responsible for identifying which transformation(s)
can be applied between a given agent and its neighbors (Alg. 1, lines
5-6). The implementation must thus bridge the gap between the
high-level user specification of the model (which does not specify
any agent) and the simulation (which must update specific agents).
Consequently, executing a transformation template requires four
arguments: the agent being influenced, the agent population (to
retrieve the neighboring agents), the name of the FCM concept be-
ing influenced, and the name of the influencing concepts. Since the
execution method is written within the transformation’s class, pa-
rameter values are retrieved at simulation time from the graphical
components (e.g., drop-down menu, text fields) rather than given as
arguments. Executing a template typically starts by retrieving the
value of the influenced concept, and of the influencing concepts in
the neighbors. All of the transformation templates extend a ‘Trans-
formComponent’ which provides such retrieval functions. There
are two benefits to this technical choice. First, developers wishing
to create their own transformation templates can use such func-
tions to lessen their task. Second, a central gateway into retrieving
values simplifies the process of monitoring access, which can be
used to improve the simulation’s efficiency (e.g. by caching).

Session on Agent Based Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

79

https://osf.io/z5rf2/
http://www.crutzen.net/capt/

STEP A:Healthy eating A:Obesity A:Eating disorders B:Food intake B:Obesity B:Stress
0 0.3 0.2 0.1 0.5 0.6 0.8
1 0.25 0.22 0.13 0.45 0.50 0.8
2 0.2 0.23 0.15 0.43 0.49 0.8
3 0.2 0.23 0.16 0.43 0.49 0.8

Table 1: The population log consists of each concept of each FCM, averaged across all of the agents using it at each time step.

STEP 0 - Healthy
eating 0 - Obesity 0 - Eating

disorders
1 - Healthy
eating 1 - Obesity 1 - Eating

disorders
2 - Food
intake 2 - Obesity 2 - Stress

0 0.2 0.4 0.2 0.4 0 0 0.5 0.6 0.8
1 0.1 0.44 0.26 0.4 0 0 0.45 0.50 0.8
2 0.04 0.46 0.3 0.4 0 0 0.43 0.49 0.8
3 0.04 0.46 0.32 0.4 0 0 0.43 0.49 0.8

Table 2: The individual log shows the value of each FCM concept within each agent (0, 1, 2). In this example, the transformation
templates are between agents with FCMs A and B (Table 1). Assuming that agents 0 and 2 respectively use FCMs A and B, and
share a social tie, then they influence each other. In contrast, agent 1 is not changing either as it is not connected to other
agents, or only connected to agent 0 and there is no transformation function defined between agents having both FCM A.

A simulation produces three log files: the simulation setup (e.g.
network generator used), population averages over time (Table 1),
and each agent over time (Table 2). Note that time refers to the ABM
(τ) rather than the FCM (t) as we do not export the massive amount
of data generated when each FCM is iterated until stabilization.
While population averages would typically be used to report final
results, tracking each one of the agent allows to verify the results
at a more granular level.

Given that the code to generate the social ties or iterate an FCM
has been previously verified, the focus of our verification was on
the transformation functions. We generated small population of
agents with different FCMs, and checked that transformation func-
tions were correctly performed, for instance by randomly copying
values from connected neighbors. Upon verifying the software,
we produced two educational videos. One serves to explain the
mathematical underpinnings of an FCM and its combination with
ABM in our software7, while the other provides an introduction to
knowledge representation using FCMs8.

5 DISCUSSION
The discrete modeling technique of Fuzzy Cognitive Mapping has a
successful track-record in participatory modeling to externalize the
mental model of individuals, in applications ranging from socio-
environmental systems to health [1, 25, 35, 52, 53]. However, two
fuzzy cognitive maps cannot directly interact: our thoughts do not
directly influence others, so we need to translate these thoughts
into observable actions. Agent-based modeling is a commonly used
discrete modeling technique in which agents can interact with each
other. A challenge is to develop an agent-based model with the
level of transparency and intuitiveness required by participatory
modeling. In other words, we need a solution to elicit the mental
models of participants, and embed these mental models into inter-
acting agents. A hybrid approach based on fuzzy cognitive map and

7https://www.youtube.com/watch?v=laXOJWUDYZY
8https://www.youtube.com/watch?v=D-2Q2IHclo4

agent-based modeling was previously proposed [18, 22, 23], thus
contributing to the literature on cognitive architectures [40] and
their operationalization in agent-based modeling [8]. However, the
only two software aimed at creating suchmodels did not aim to both
support participatory modeling and represent agents with different
fuzzy cognitive maps. EcoSim [26] focused on ecosystems (thus em-
phasizing reproduction and mutation of models) rather than human
systems and required models to be written in C++ [27, 38]. HYFAS
could create models of human systems without programming, but
required all agents to use the same map, which cannot represent
settings where multiple stakeholders have different mental mod-
els [22]. In this paper, we present the design and implementation of
CoFluences, the first simulation software that can design hybrid
models without coding and allow agents to follow different rules.

CoFluences takes a User-Centered Design (UCD) approach to
map key software requirements (e.g., agile approach to model devel-
opment, emphasis on ‘building blocks’) onto a specific interface and
interactions. CoFluences also contributes to the nascent theory of
hybrid ABM/FCM models by detailing how agents influence each
other through transformation templates. In particular, we introduce
the concept of compatible transformations to automatically verify
whether the influences envisioned by the user can be simulated or
should be re-conceptualized.

There are several follow-up studies of interest regarding software
development. As we recently discussed, the usability of large FCM-
based software has to be evaluated in detail with participants [54].
A usability study would have at least a six months horizon, as it
involves (i) identifying key tasks and performance metrics, (ii) en-
rolling a representative sample of participants into the study, (iii)
analyzing recordings to compute the metrics when participants
perform the task, and finally (iv) assessing what design elements
drive the performance metrics. While CoFluences is based on cur-
rent design principles and lessons learned from other FCM-based
software, a usability study is necessary to examine how it supports
participatory modeling specifically.

Session on Agent Based Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

80

https://www.youtube.com/watch?v=laXOJWUDYZY
https://www.youtube.com/watch?v=D-2Q2IHclo4

Another follow-up is the matter of standardization across FCM-
based software. There are at least seven software to create fuzzy
cognitive mapping [15], several Python9 and R10 libraries, some
software relying on an FCM for analysis [21, 54], and software for
hybrid simulations involving FCM [22, 27, 38]. Despite the explosion
of software development in fuzzy cognitive mapping, there is no
standard file format, which particularly hampers efforts to re-use
previously developed FCMs or even to compare the performances
of different simulation software on the same model. Standardization
is thus essential for the maturity of the field.

A third interesting line of research consists of either broadening
what can be represented by hybrid ABM/FCM models, or under-
standing the consequences of limitations inherent to this model-
ing approach. In particular, hybrid ABM/FCM models work in a
time-stepped manner. Consequently, the model requires that social
interactions between an individual and peers take place at the same
time and with the same speed. However, heterogeneity in propaga-
tion speeds over different links does occur in the real-world, and
may affect the convergence of the FCMs.

Convergence is also at the heart of several theoretical questions
on the development of hybrid ABM/FCM models. Running an FCM
once is computationally inexpensive, thus it is straightforward to
detect when an FCM does not stabilize: it simply reaches the maxi-
mum number of iterations. A stochastic use of an FCM to represent
a population of agents significantly raises the computational costs
of detecting non-stabilizing cases. Indeed, given the probability
distribution associated with each FCM concept in a population, we
would have to instantiate an FCM for every combination of values,
and assess if it stabilizes. The computational burden could be less-
ened using Design of Experiments (DoE) techniques to identifying
which concepts truly need to be tested at different values [41]. New
situations may emerge in hybrid ABM/FCM models. Could the ex-
ternal inputs received from connected agents turn a stable FCM
into an unstable one? Conversely, could an unstable FCM become
stable when receiving inputs from connected agents? Characteriz-
ing situations in which an FCM gains or loses stability would help
to automatically verify the design of hybrid models.

Altering the design of a model to avoid non-stabilizing FCMs
would improve the computational efficiency of a simulation, since
the FCMs would take fewer iterations. But is the impact of non-
stabilizing FCMs only a matter of simulation performance, or also
a matter of correctness in the results? Instead of using the final
mental model of an agent to affect another, a non-stabilizing FCM
would lead to using the transient mental model of an agent. Intu-
itively, an agent would act before it has finished ‘thinking’. Future
research may thus characterize how the (expected) presence of non-
stabilizing FCMs impacts the confidence margin in the simulation
outcomes.

6 CONCLUSION
We presented CoFluences, the first software that supports partici-
pants in developing hybrid ABM/FCM models where agents can
follow different rules. Our software follows design principles that
favor usability in participatory modeling, and proposes technical

9See https://github.com/payamaminpour/PyFCM/wiki and https://osf.io/qyujt/
10https://cran.r-project.org/web/packages/fcm

innovations such as checking for compatibility in interactions be-
tween agents. We outlined several research questions pertaining to
either software development (e.g., standardization, usability testing)
or the theory of modeling and simulation (e.g., criteria and conse-
quences for the stability of FCMs in a hybrid setting). Addressing
these questions will provide a fertile agenda for fuzzy cognitive
mapping in the coming years.

CONTRIBUTIONS
PJG supervised the project, wrote the initial version of CoFluences
and of the manuscript. MF oversaw the re-design of the software,
and re-wrote it extensively. MLN prepared educational videos and
contributed to the writing.

ACKNOWLEDGMENTS
We are indebted to Michael Vick and his team at Furman Uni-
versity for producing a series of educational videos in support of
CoFluences. In particular, we thank Hans Stoetzer for presenting a
portion of these videos. The design of CoFluences benefited from
thework of Joseph Lee, Christopher Orsolini, and Austin Sommerlot
at Northern Illinois University.

REFERENCES
[1] Abdollah Amirkhani et al. 2017. A review of fuzzy cognitive maps in medicine:

Taxonomy, methods, and applications. Computer methods and programs in
biomedicine 142 (2017), 129–145.

[2] Robert Axelrod. 1997. Advancing the art of simulation in the social sciences. In
Simulating social phenomena. Springer, 21–40.

[3] Christopher L Barrett et al. 2008. EpiSimdemics: an efficient algorithm for
simulating the spread of infectious disease over large realistic social networks.
In High Performance Computing, Networking, Storage and Analysis, 2008. SC 2008.
International Conference for. IEEE, 1–12.

[4] Joshua Becker, Devon Brackbill, and Damon Centola. 2017. Network dynamics
of social influence in the wisdom of crowds. Proceedings of the national academy
of sciences (2017), 201615978.

[5] Rahmatollah Beheshti, Mehdi Jalalpour, and Thomas A Glass. 2017. Compar-
ing methods of targeting obesity interventions in populations: An agent-based
simulation. SSM-population health 3 (2017), 211–218.

[6] Pierre Bommel et al. 2016. Cormas: an agent-based simulation platform for
coupling human decisions with computerized dynamics. In Simulation and
Gaming in the Network Society. Springer, 387–410.

[7] Salvador Bueno and Jose L Salmeron. 2009. Benchmarking main activation
functions in fuzzy cognitive maps. Expert Systems with Applications 36, 3 (2009),
5221–5229.

[8] Philippe Caillou et al. 2017. A Simple-to-use BDI architecture for Agent-based
Modeling and Simulation. In Advances in Social Simulation 2015. Springer, 15–28.

[9] Julie A Dickerson and Bart Kosko. 1994. Virtual worlds as fuzzy cognitive maps.
Presence: Teleoperators & Virtual Environments 3, 2 (1994), 173–189.

[10] Sara D’Onofrio, Elpiniki Papageorgiou, and Edy Portmann. 2019. Using Fuzzy
Cognitive Maps to Arouse Learning Processes in Cities. In Designing Cognitive
Cities. Springer, 107–130.

[11] Tillal Eldabi et al. 2018. Hybrid simulation challenges and opportunities: a
life-cycle approach. Proceedings of the Winter Simulation Conference (2018),
1500–1514.

[12] Sondoss Elsawah et al. 2015. A methodology for eliciting, representing,
and analysing stakeholder knowledge for decision making on complex socio-
ecological systems: From cognitive maps to agent-based models. Journal of
environmental management 151 (2015), 500–516.

[13] Joshua M Epstein. 2001. Learning to be thoughtless: Social norms and individual
computation. Computational economics 18, 1 (2001), 9–24.

[14] Roozbeh Farahbod and Uwe Glässer. 2011. The CoreASM modeling framework.
Software: Practice and Experience 41, 2 (2011), 167–178.

[15] Gerardo Felix et al. 2017. A review on methods and software for fuzzy cognitive
maps. Artificial Intelligence Review (2017), 1–31.

[16] PJ Giabbanelli, RA Flarsheim, CX Vesuvala, and L Drasic. 2016. Developing
technology to support policymakers in taking a systems science approach to
obesity and well-being. Obesity Reviews 17 (2016), 194–195.

Session on Agent Based Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

81

https://github.com/payamaminpour/PyFCM/wiki
https://osf.io/qyujt/
https://cran.r-project.org/web/packages/fcm

[17] Philippe J. Giabbanelli. 2010. Impact of complex network properties on routing
in backbone networks. In GLOBECOM Workshops (GC Wkshps), 2010 IEEE. IEEE,
389–393.

[18] Philippe J Giabbanelli. 2014. Modelling the spatial and social dynamics of insur-
gency. Security Informatics 3, 1 (2014), 2.

[19] Philippe J Giabbanelli. 2018. Analyzing the Complexity of Behavioural Factors
Influencing Weight in Adults. In Advanced Data Analytics in Health. Springer,
163–181.

[20] Philippe J Giabbanelli and Magda Baniukiewicz. 2018. Navigating complex
systems for policymaking using simple software tools. InAdvanced Data Analytics
in Health. Springer, 21–40.

[21] Philippe J Giabbanelli and Rik Crutzen. 2014. Creating groups with similar
expected behavioural response in randomized controlled trials: a fuzzy cognitive
map approach. BMC medical research methodology 14, 1 (2014), 130.

[22] Philippe J Giabbanelli, Steven A Gray, and Payam Aminpour. 2017. Combin-
ing fuzzy cognitive maps with agent-based modeling: Frameworks and pitfalls
of a powerful hybrid modeling approach to understand human-environment
interactions. Environmental Modelling & Software 95 (2017), 320–325.

[23] Philippe J Giabbanelli, Piper J Jackson, and Diane T Finegood. 2014. Modelling
the joint effect of social determinants and peers on obesity among canadian
adults. In Theories and simulations of complex social systems. Springer, 145–160.

[24] Brian G Giles et al. 2007. Integrating conventional science and aboriginal per-
spectives on diabetes using fuzzy cognitive maps. Social science & medicine 64, 3
(2007), 562–576.

[25] Michael Glykas. 2010. Fuzzy cognitive maps: Advances in theory, methodologies,
tools and applications. Vol. 247. Springer.

[26] Robin Gras et al. 2011. EcoSim: an individual-based platform for studying evolu-
tion.. In ECAL. 284–285.

[27] Robin Gras, Didier Devaurs, Adrianna Wozniak, and Adam Aspinall. 2009. An
individual-based evolving predator-prey ecosystem simulation using a fuzzy
cognitive map as the behavior model. Artificial life 15, 4 (2009), 423–463.

[28] Steven Gray, Johanna Hilsberg, AndrewMcFall, and Robert Arlinghaus. 2015. The
structure and function of angler mental models about fish population ecology:
the influence of specialization and target species. Journal of Outdoor Recreation
and Tourism 12 (2015), 1–13.

[29] Steven A Gray et al. 2015. Using fuzzy cognitive mapping as a participatory
approach to analyze change, preferred states, and perceived resilience of social-
ecological systems. Ecology and Society 20, 2 (2015).

[30] Steven A Gray, Stefan Gray, Linda J Cox, and Sarah Henly-Shepard. 2013. Mental
modeler: a fuzzy-logic cognitive mapping modeling tool for adaptive environ-
mental management. In System sciences (hicss), 2013 46th Hawaii international
conference on. IEEE, 965–973.

[31] Peter P. Groumpos and Chrysostomos D. Stylios. 2000. Modelling supervisory
control systems using fuzzy cognitive maps. Chaos, Solitons & Fractals 11, 1âĂŞ3
(2000), 329 – 336.

[32] Vishrant K Gupta, Philippe J Giabbanelli, and Andrew A Tawfik. 2018. An
Online Environment to Compare Students’ and Expert Solutions to Ill-Structured
Problems. In International Conference on Learning and Collaboration Technologies.
Springer, 286–307.

[33] Patrick T Hester and Kevin MacG Adams. 2017. Complex Systems Modeling. In
Systemic Decision Making. Springer, 101–125.

[34] Antonie J Jetter. 2006. Fuzzy cognitive maps for engineering and technology
management: What works in practice? PICMET (2006).

[35] Antonie J Jetter and Kasper Kok. 2014. Fuzzy Cognitive Maps for futures studies–
A methodological assessment of concepts and methods. Futures 61 (2014), 45–57.

[36] Rebecca Jordan et al. 2018. Twelve questions for the participatory modeling
community. Earth’s Future 6, 8 (2018), 1046–1057.

[37] Amin Khademi et al. 2018. An Agent-Based Model of Healthy Eating with
Applications to Hypertension. In Advanced Data Analytics in Health. Springer,
43–58.

[38] Marwa Khater, Elham Salehi, and Robin Gras. 2012. The emergence of new
genes in ecosim and its effect on fitness. In Asia-Pacific Conference on Simulated
Evolution and Learning. Springer, 52–61.

[39] Christopher JK Knight, David JB Lloyd, and Alexandra S Penn. 2014. Linear
and sigmoidal fuzzy cognitive maps: an analysis of fixed points. Applied Soft
Computing 15 (2014), 193–202.

[40] Iuliia Kotseruba and John K Tsotsos. 2018. 40 years of cognitive architectures:
core cognitive abilities and practical applications. Artificial Intelligence Review
(2018), 1–78.

[41] Eric A Lavin et al. 2018. Should we simulate mental models to assess whether
they agree?. In Proceedings of the Annual Simulation Symposium. Society for
Computer Simulation International, 6.

[42] Eric A Lavin and Philippe J Giabbanelli. 2017. Analyzing and simplifying model
uncertainty in fuzzy cognitive maps. In Simulation Conference (WSC), 2017 Winter.
IEEE, 1868–1879.

[43] David Lazer et al. 2009. Life in the network: the coming age of computational
social science. Science (New York, NY) 323, 5915 (2009), 721.

[44] Kun Chang Lee et al. 2013. An agent-based fuzzy cognitive map approach
to the strategic marketing planning for industrial firms. Industrial Marketing
Management 42, 4 (2013), 552–563.

[45] Kun Chang Lee, Habin Lee, and Namho Lee. 2012. Agent basedmobile negotiation
for personalized pricing of last minute theatre tickets. Expert systems with
applications 39, 10 (2012), 9255–9263.

[46] Vijay K. Mago et al. 2013. Analyzing the impact of social factors on homelessness:
a Fuzzy Cognitive Map approach. BMC Medical Informatics and Decision Making
13, 1 (2013), 94.

[47] Tomá Nacházel. 2015. Optimization of decision-making in artificial life model
based on fuzzy cognitive maps. In Intelligent Environments (IE), 2015 International
Conference on. IEEE, 136–139.

[48] Gonzalo Nápoles et al. 2015. A computational tool for simulation and learning of
Fuzzy Cognitive Maps. In Fuzzy Systems (FUZZ-IEEE), 2015 IEEE International
Conference on. IEEE, 1–8.

[49] Gonzalo Nápoles, Maikel Leon Espinosa, Isel Grau, and Koen Vanhoof. 2018. FCM
Expert: Software Tool for Scenario Analysis and Pattern Classification Based on
Fuzzy Cognitive Maps. International Journal on Artificial Intelligence Tools 27, 07
(2018), 1860010.

[50] Gonzalo Nápoles, Elpiniki Papageorgiou, Rafael Bello, and Koen Vanhoof. 2017.
Learning and convergence of fuzzy cognitive maps used in pattern recognition.
Neural Processing Letters 45, 2 (2017), 431–444.

[51] Elpiniki I Papageorgiou. 2012. Learning algorithms for fuzzy cognitive maps–
a review study. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 42, 2 (2012), 150–163.

[52] Elpiniki I Papageorgiou. 2013. Fuzzy cognitive maps for applied sciences and
engineering: from fundamentals to extensions and learning algorithms. Vol. 54.
Springer Science & Business Media.

[53] Elpiniki I Papageorgiou and Jose L Salmeron. 2013. A review of fuzzy cognitive
maps research during the last decade. IEEE Transactions on Fuzzy Systems 21, 1
(2013), 66–79.

[54] Venkata Sai Pillutla and Philippe J. Giabbanelli. 2019. Iterative generation of
insight from text collections through mutually reinforcing visualizations and
fuzzy cognitive maps. Applied Soft Computing 76 (2019), 459 – 472.

[55] Simon F Pratt et al. 2012. Rebel with many causes: A computational model of
insurgency. In Intelligence and Security Informatics (ISI), 2012 IEEE International
Conference on. IEEE, 90–95.

[56] Simon F Pratt et al. 2013. Detecting unfolding crises with visual analytics and
conceptual maps emerging phenomena and big data. In Intelligence and Security
Informatics (ISI), 2013 IEEE International Conference on. IEEE, 200–205.

[57] Noshad Rahimi, Antonie J Jetter, Charles M Weber, and Katherine Wild. 2018.
Soft Data Analytics with Fuzzy Cognitive Maps: Modeling Health Technology
Adoption by Elderly Women. In Advanced Data Analytics in Health. Springer,
59–74.

[58] Ken Resnicow and Roger Vaughan. 2006. A chaotic view of behavior change: a
quantum leap for health promotion. International Journal of Behavioral Nutrition
and Physical Activity 3, 1 (2006), 25.

[59] Amanda Rivis and Paschal Sheeran. 2003. Descriptive norms as an additional
predictor in the theory of planned behaviour: Ameta-analysis. Current Psychology
22, 3 (2003), 218–233.

[60] David A Shoham et al. 2015. Modeling social norms and social influence in
obesity. Current epidemiology reports 2, 1 (2015), 71–79.

[61] F Marijn Stok et al. 2014. Don’t tell me what I should do, but what others do:
The influence of descriptive and injunctive peer norms on fruit consumption in
adolescents. British journal of health psychology 19, 1 (2014), 52–64.

[62] Maja Stula, Darko Stipanicev, and Ljiljana Bodrozic. 2010. Intelligent modeling
with agent-based fuzzy cognitive map. International journal of intelligent systems
25, 10 (2010), 981–1004.

[63] Antuela A. Tako and Kathy Kotiadis. 2018. Participative Simulation (PARTISUM):
a facilitated simulation approach for stakeholder engagement. Proceedings of the
Winter Simulation conference (2018), 192–206.

[64] Simon JE Taylor et al. 2018. Crisis, What Crisis: Does Reproducibility in Modeling
& Simulation Really Matter? Proceedings of the Winter Simulation Conference
(2018).

[65] Jacques Tisseau et al. 2005. Comportements perceptifs d’acteurs virtuels au-
tonomes. Technique et Science Informatiques 24 (2005), 1259–1293.

[66] Athanasios K Tsadiras. 2008. Comparing the inference capabilities of binary,
trivalent and sigmoid fuzzy cognitive maps. Information Sciences 178, 20 (2008),
3880–3894.

[67] Alexey Voinov et al. 2018. Tools and methods in participatory modeling: Selecting
the right tool for the job. Environmental Modelling & Software 109 (2018), 232–255.

[68] Donglan Zhang et al. 2014. Impact of different policies on unhealthy dietary be-
haviors in an urban adult population: an agent-based simulation model. American
journal of public health 104, 7 (2014), 1217–1222.

Session on Agent Based Simulation SIGSIM-PADS ’19, June 3–5, 2019, Chicago, IL, USA

82

	Abstract
	1 Introduction
	2 Background
	2.1 Fuzzy Cognitive Maps for Participatory Modeling
	2.2 Mathematics of Fuzzy Cognitive Maps
	2.3 Simulating Hybrid ABM/FCM Models

	3 Software Specification
	3.1 Core Requirements
	3.2 Design Process
	3.3 Simulation Pseudocode

	4 Software Implementation
	5 Discussion
	6 Conclusion
	Acknowledgments
	References

