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A B S T R A C T

Policy making for complex Social-Ecological Systems (SESs) is a multi-factorial and multi-stakeholder decision
making process. Therefore, proper policy simulation in a SES should consider both the complex behavior of the
system and the multi-stakeholders’ interventions into the system, which requires integrated methodological
approaches. In this study, we simulate impacts of policy options on a farming community facing water scarcity in
Rafsanjan, Iran, using an integrated modeling methodology combining an Agent Based Model (ABM) with Fuzzy
Cognitive Mapping (FCM). First, the behavioral rules of farmers and the causal relations among environmental
variables are captured with FCMs that are developed with both qualitative and quantitative data, i.e. farmers'
knowledge and empirical data from studies. Then, an ABM is developed to model decisions and actions of
farmers and simulate their impacts on overall groundwater use and emigration of farmers in this case study.
Finally, the impacts of different policy options are simulated and compared with a baseline scenario. The results
suggest that a policy of facilitating farmers' participation in management and control of their groundwater use
leads to the highest reduction of groundwater use and would help to secure farmers’ activities in Rafsanjan. Our
approach covers four main aspects that are crucial for policy simulation in SESs: 1) causal relationships, 2)
feedback mechanisms, 3) social-spatial heterogeneity and 4) temporal dynamics. This approach is particularly
useful for ex-ante policy options analysis.

1. Introduction

Environmental management and policy making for complex Social-
Ecological Systems (SESs) are multi-factorial and multi-stakeholder de-
cision-making processes. This has two important implications. First,
SESs include multiple, interacting social and ecological factors (vari-
ables), e.g. natural resources, climate change, human interventions,
emigration and social vulnerability. Interactions between these factors
influence the behavior of the whole system. Therefore, policy analysis
methods for SESs should be able to simulate the ex-ante impact of po-
licies by considering the dynamic behavior and interactions of all im-
portant factors. Second, SESs involve many different stakeholders, from
resource consumers to policy makers and managers, all of whom have
different interests, which sometimes leads to conflicting decisions and
actions. This heterogeneity may change the impact of policy options in
different contexts (Levin et al., 2013; Mease et al., 2018).

This study aims to support policy making in an SES of a farming

community in Rafsanjan, Iran, which is facing severe water scarcity.
Rafsanjan is among the top producers and exporters of pistachios in the
world. Being in an arid and semi-arid region, pistachio farmers in
Rafsanjan depend entirely on groundwater to irrigate their orchards,
however, their production has been severely threatened by water
scarcity in recent years (Mehryar et al., 2015, 2016). Water scarcity in
Rafsanjan is clearly a multi-factorial and multi-stakeholder problem.
Many social and ecological variables are influencing or being influ-
enced by water scarcity in this region e.g. precipitation, groundwater
use, pistachio production, land cover change, farmers' social-economic
vulnerability, land subsidence, etc., dynamics of which should be con-
sidered in water scarcity policy making. Also, different groups of
farmers (based on their social-spatial situations) take various and
sometimes conflicting adaptive actions to satisfy their water demand
for water scarcity. The buying-out of small farmers by large-farmers,
water marketing between small and large farmers, integrated farming,
installing desalination system, deepening well and reducing orchard
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extents are among the famers’ adaptive actions to water scarcity. For
water scarcity policy making in Rafsanjan, such actions and interactions
between multiple stakeholders should also be considered (Mehryar
et al., 2016, 2017). The objective of this study is to develop a model to
compare the impacts of water scarcity policy options on overall
groundwater use (i.e. rank policy options) in Rafsanjan, Iran, through
multi-factorial and multi-stakeholder approach.

This paper is organized as follows. Section 2 provides a literature
review of the modelling techniques used in this study. Section 3 in-
troduces an overview of our model development and implementation of
the model in the case study. Section 4 represents and discusses the
results of the policy simulation in the case study. Sections 5 and 6 re-
flect on the final results and the model, and conclude.

2. Literature review

To consider the two aspects of multi-factorial and multi-stakeholder
decision-making, two approaches have been developed in simulating
the impacts of policy options in SES: A factor-based (system-level) ap-
proach that represents changes in factors (variables) of a system and
their interactions (Macy and Willer, 2002), e.g., Fuzzy Cognitive
Mapping (FCM) (Kosko, 1986) and an actor-based (individual-level) ap-
proach that represents decisions, behaviors and interactions of stake-
holders, e.g., Agent-Based Modelling (ABM) (Gilbert et al., 2008).

2.1. Fuzzy Cognitive Mapping

FCM, a combination of fuzzy logic and cognitive mapping, is widely
used in environmental management and SES studies to represent
knowledge of systems under conditions of data scarcity and data un-
certainty (Özesmi and Özesmi, 2004; Papageorgiou and Kontogianni,
2012; Reckien, 2014). Structurally, it consists of a set of nodes1 (re-
presenting various variables) and fuzzy signed directed edges (re-
presenting the strength of the causal relationships between variables)
(Kosko, 1986). Thus, it encodes multiple causal relationships between
variables of a system. FCM models are usually developed with a par-
ticipatory approach. Stakeholders who are familiar with the operation
and behavior of a system or specific problem of a system are asked to
mention the most important variables (e.g. environmental, social,
ecological or economic variables), their causal relations, and the
weights of the connections (i.e., how much a change of one variable
causes a change in another variable) (Özesmi and Özesmi, 2004). A
range of individual mental models of stakeholders is developed and
aggregated into a semi-quantitative and standardized FCM model for
simulation (Mehryar et al., 2017; Vasslides and Jensen, 2016). Thus,
the connections in participatory FCMs represent causality perceived by
participants.

FCM uses individuals as the units of data collection and analysis but
aggregates their knowledge to provide a macro-level view of an entire
system's behavior. Thus, FCM does not represent individuals' dynamic
interactions with their environment. Besides, FCM provides semi-
quantitative output data from qualitative stakeholders' knowledge,
which may be used in combination with mathematical models.
Therefore, FCMs are potentially useful in modelling aggregate human
behavior and decisions (An, 2012). However, their lack of stakeholders'
interactions, as well as temporal and spatial explicitness are their main
limitations.

2.2. Agent Based Modelling

ABM provides a micro-level view of a system since each agent is
explicitly represented and interacts with other agents as well as with

the environment (Giabbanelli et al., 2017). Typically, ABMs are spa-
tially explicit and simulate dynamics over time, which makes them
appealing to model SESs. However, ABMs face the challenge of ac-
quiring data for describing: 1) agents' behavioral options, 2) decision-
making processes (the way an agent makes decisions), and 3) decision
outcomes (impacts of their actions on others and on the environment).
Due to the complexity of human decisions and actions, ABM studies
regularly rely on rational choice theory to describe agents’ behavior
(Schlüter et al., 2017; Groeneveld et al., 2017). However, actual human
behavior is subjective and has bounded rationality due to limitations of
information access, time, personal beliefs and perceptions (Elsawah
et al., 2015). This is particularly important in models for policy support
(Schlüter et al., 2017). As a result, many modelers using ABMs try to
replicate actual human behaviors and decision-making as closely as
possible (Filatova et al., 2013) via participatory methods (An, 2012)
such as role-playing games (Bousquet et al., 2002; Castella et al., 2005),
Bayesian belief networks (Sun and Müller, 2013), cognitive mapping
(Elsawah et al., 2015) or ethnographic methods (Ghorbani et al., 2015).
Yet, the formulation and parametrization of qualitative knowledge
gained through such approaches, their combination with quantitative
data, and the identification and calibration of causal feedback me-
chanisms of a SES remain key challenges (Robinson et al., 2007; Sun
and Müller, 2013; Ghorbani et al., 2015; Venkatramanan et al., 2017).

2.3. Techniques used in the present study

FCM and ABM are complementary in supporting SES policy making.
Surprisingly, there have been only a few attempts to combine these two
methods for SES modelling. Two studies have suggested distinct ap-
proaches to combine FCM and ABM. Elsawah et al. (2015) proposed a
methodology that developed cognitive maps for use in ABM develop-
ment. More specifically, they used cognitive maps to translate the sub-
jective qualitative description of decision-making into formal rules in
the ABM. In contrast, Giabbanelli et al. (2017) proposed two options for
creating hybrid models, in which FCM and ABM are coupled and co-
exist over a model run. In one option, an ABM represents the mental
model of each agent as an FCM that can change through interactions
with other agents. In another option, selected parts of an FCM are in-
formed by an ABM. To our knowledge, no study has yet reported on
implementing a combination of an FCM and an ABM such that the FCM
informs both the agents’ behavioral rules at the micro-level and the
human-environment interaction rules at the macro-level. This is where
our study steps in. For our case of water management in Rafsanjan we
used FCMs to conceptualize an actor-based ABM. This ABM allows for
testing the effects of different policy options and thus enables us to
investigate dynamic processes and interactions among agents; a process
which an FCM alone cannot do.

Similar to Elsawah et al. (2015), our focus is on structuring and
using the collected qualitative data from a set of FCMs to develop an
ABM. Yet, our approach significantly differs in two ways from theirs.
First, we use FCMs instead of cognitive maps. Second, we use FCMs to
model the whole system, including and not limited to stakeholders’
actions. Thus, the FCM provides a macro-level view of the system i.e.,
the perceived interactions between social, ecological, environmental
and economic variables, and also provides information for micro-level
decision-making of agents i.e., type of actions and impacts of actions on
the environment. The same variables collected in FCMs are used in ABM
as environmental parameters and behavioral rules of agents. The out-
come of our proposed modelling framework is useful for ex-ante policy
options analysis.

3. Model building

3.1. Overview of model development

Our methodology consists of three main steps (Fig. 1): 1. FCM
1 Known as “Concept” in FCM literature. In this paper we refer to the FCM's

concept by using the general term of “variable”.
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Fig. 1. Main steps and sub-steps of methodology. Coding scheme - A: Action, C: Condition, I: Impact, CAI: Condition-Action-Impact, UML: Unified Modeling
Language. In FCMs: red connections: weighted based on objective data, black connections: weighted based on subjective data, dashed lines: impact connections, solid
lines: driving connections. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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modelling, 2. Translating FCM to ABM, and 3. ABM implementation
and assessment. In step 1, the individual maps are first collected by
interviewing stakeholders (step 1.1). Then, the individual maps are
merged to create one FCM for each specific group of stakeholders (step
1.2). Finally, the time-series data is added to these subjective group
FCMs to create the subjective-objective FCMs (step 1.3). In step 2, first
the Overview, Design concepts, and Details (ODD) protocol is used to
define the main elements required for ABM development in this study.
Then, a Condition-Action-Impact (CAI) diagram is introduced and de-
veloped to translate and categorize the FCMs’ variables into the set of
available actions, and conditions-impacts for each action. Finally, a
UML activity diagram is used to represent the sequential steps of actions
and spatial-temporal aspects of decision-making processes by using the
outcome of the CAI diagrams. In step 3, the ABM model is simulated
and the results are validated with the historical data. The validated
ABM is used to simulate the possible impacts of policy options via
“what-if” analysis and compare their results with those of the baseline
scenario. Finally, a sensitivity analysis is applied to the parameters of
the model.

In the following sub-sections, each of these steps is discussed in
more detail.

3.2. Step 1: FCM modeling

3.2.1. Collecting individual maps
There are different methods for individual FCMs' data collection,

e.g. extracting data from transcripts of interviews, remotely online
mapping with stakeholders, and face-to-face semi-structured interviews
that can be done via either individual or group discussions with sta-
keholders (Özesmi and Özesmi, 2004; Gray et al., 2014; Jetter and Kok,
2014). While all of these methods can be valid, different contexts may
require specific methods. In this case study, due to 1) the multi-variable
and multi-aspect environment of water scarcity, and 2) the farmers’
mistrust to share their information and perceptions, we chose to collect
data with face-to-face interviews. These were useful in building a
trustful relationship with interviewees, making the interview purpose
explicit, and repeatedly offering explanations to the interviewees
(Rahimi et al., 2018). Furthermore, due to the diversity of farmers in
the area, and the heterogeneous impacts of water scarcity on different
farmers, we chose individual interviews. In this way, we could capture
the diverse, individual perceptions and local knowledge of farmers
without them being influenced by larger, more powerful farmers
(which could be the case in focus group discussions). Thus, we con-
ducted individual interviews with 60 farmers (20 in each category of
small, medium and large farmers) in August–September 2015—for
demographic description of the interviewees see supplementary E. All
the interviews were done with in-depth, open-ended questions. Inter-
viewees were selected to represent different farm sizes (large, medium
and small), from different sub-regions of Rafsanjan. A sample of the oral
consent script alongside the interview questions can be seen in sup-
plementary D.

The interviews were led by two main questions and two sub-ques-
tions:

1. What have been the main causes and impacts of water scarcity in
your region/farm?
1.1. How much has each of these variables caused an increase or

decrease of other variables?
2. What have been your adaptive actions to combat water scarcity in

your farm, and what have been the conditions to implement each
action?
2.1. How much has each action impacted other variables mentioned

earlier?

The interviewees were free to mention any variables related to the
questions 1 and 2: causes and impacts of water scarcity (e.g.

precipitation, irrigation efficiency, agricultural productivity, economic
situation, etc.), their adaptive actions (irrigation system change, dee-
pening wells, integrated farming, etc.), and conditions of actions which
could be a word or a phrase (e.g. having government loan for irrigation
change, having permission for well's deepening, willingness of neighbor
farmers for integrated farming, etc.). The variables related to question 1
and 2 provided environmental variables, and condition/action/impact
variables, respectively (Fig. 1, step 1.1).

The interviewees were also asked about the degree of influence of
each variable (i.e. actions or environmental variables) on other vari-
ables (questions 1.1 and 1.2). They were asked to identify causal
weights of relations based on the linguistic values of “very low”, “low”,
“average”, “high” and “very high”. Later on, such values were equated
with a five point numerical scale: very low = 0.1, low = 0.3,
average = 0.5, high = 0.7, very high = 0.9—While the transformation
from a linguistic variable into a crisp number often uses fuzzy mem-
bership function, our study applied a simpler process but acknowl-
edging that approaches examining uncertainty in answers are an im-
portant objective for future work (section 5.2). A positive value
indicated that an increase in one variable caused an increase in another.
A negative value indicated that an increase in one variable caused a
decrease in another variable (Mehryar et al., 2017).

Regarding the second question, farmers were also asked to specify
the frequency of each action, i.e., if the action is repeated every month,
every year, etc. or taken only once (e.g. desalination). Moreover,
farmers were asked about the situation that leads them to take each
specific action, which could be constant variables. Therefore, the in-
terviewer wrote down the fixed, i.e. true/false, conditions as input
variables into the actions e.g. having documents or legal permission.
For such variables, we used the structure of cognitive maps, i.e. in-
cluding connections without weights where connection arrows re-
present implication and are interpreted as “may lead to” (Elsawah et al.,
2015).

Important variables and causal connections were drawn on paper
during the interviews by the researcher who constantly validated these
with interviewees (an example from one of the interview maps can be
seen in supplementary F). The result of this step is many individual
maps including the environmental network and actions of farmers. Each
map is then stored as an adjacency matrix.

3.2.2. Generating group specific FCMs
To develop an FCM model, all of the individual maps are aggregated

to a single unified model that encompasses all of the individual's
knowledge. The individual maps are merged through matrix algebra,
whereby each entry of the merged model is the average of the con-
nection weights assigned by individuals (Vasslides and Jensen,
2017)—other approaches for group-level aggregation of FCMs are
proposed in Gray et al. (2014) and Lavin et al. (2018). However, sta-
keholders may differ in their preferences, decisions and rules of beha-
vior. By aggregating all individual maps, the heterogeneity of stake-
holders is lost. To preserve the diversity of decision makers' mental
models, the individual cognitive maps can be aggregated into different
groups of FCMs. Categorizing FCMs can be based on the structure of the
maps' outputs (e.g. centrality, number of inputs and outputs, etc.) or
content of the outputs (e.g. specific variables that are important for
different research objectives).

In our case, the action variables mentioned by farmers (in their
FCMs) were significantly different among three groups of small,
medium and large farmers mainly due to the size of their lands and
their economic situation. For instance, large farmers (> 80 ha) can buy-
out small and medium farms that have little access to irrigation water,
or set up a water desalination system which is a very expensive option
for providing good quality irrigation water, or purchase surplus water
from small and medium farmers who are no longer harvesting their
orchards. Whereas medium farmers (15–80 ha) tend to integrate their
farms and irrigation systems amongst themselves to increase the
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efficiency of their lands' irrigation water use and productivity, or
modify their irrigation systems from flood irrigation into drip irrigation,
something that most large farmers have already done. Small farmers
(< 15 ha) have fewer options to adapt to water scarcity: these are ba-
sically changing the irrigation system or turning off their well pumps
during the night or over the winter. There are also some common
adaptive actions among all groups of farmers, e.g. deepening wells or
shrinking the orchard size. The extent of shrinking differs based on the
location and size of the farms. Because of such differences in behavior,
we aggregated the individual maps in three groups of large, medium
and small farmers (Fig. 2 and supplementary A).2 In the ABM, we used
the numerical values for the group-specific weights for the agents’ de-
cision-making.

3.2.3. Combining subjective and objective data in FCM
In modeling SESs, many social and ecological variables interact with

each other. For some of these variables, we may lack accurate objective
data but have information about stakeholders' knowledge and

perceptions, e.g. individual land productivity and farmers' vulner-
ability. For other variables, we may have access to objective data
measured by formal scientific methods, e.g. precipitation and ground-
water levels. Therefore, both subjective and objective data are crucial
and complementary to enable a full understanding of the system
(Gosselin et al., 2018), particularly for building an ABM. In this step, we
combined both subjective knowledge derived from farmers and the
objective knowledge derived from formal scientific studies. First,
among all available connections between variables in farmers' FCMs,
we identified the connections that can be measured more accurately
with available empirical data, e.g. hydrological and ecological vari-
ables. Then, such connections received a data-driven value based on
correlation coefficients between two variables' time-series data (sup-
plementary C). Since the correlation coefficient alone does not imply
causation, we only applied the correlation values to the connections for
which the causality has already been determined by farmers.3 The re-
sults of this step are group specific FCMs containing two groups of
connections: 1) those perceived by farmers (black connections in Fig. 1,
step 1.3), and 2) those for which the causality is perceived by farmers
and the correlation values are derived from time-series data (red con-
nections in Fig. 1, step 1.3). Therefore, such group specific FCMs are
combinations of farmers’ perceptions and data-driven knowledge cov-
ering different aspects of an SES.

Fig. 2. Large-farmers’ FCM combined with objective data. The red squares show farmers' actions and their size shows the number of farmers who took this action i.e.
level of preference or priority of actions. Yellow diamonds are conditions and green circles are either impacts or condition for some variables and impacts for other.
Dashed and solid lines represent impact and driving connections, respectively. Black and red lines represent perceived connections and data-driven connections,
respectively. FCMs of medium and small farmers are given in supplementary A. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

2 The initial FCM model that we developed in the field work included a much
larger number of variables indicating causes and impacts of water scarcity than
what we used in this study. Since the aim of this study was to investigate the
impact of farmers' actions on groundwater use and emigration, we only kept the
variables relevant to this objective. However, considering the objective of
policy makers and researchers, the size of FCMs can be larger or smaller, by
using different simplification methods in FCM (Hatwagner et al., 2018; Lavin
and Giabbanelli, 2017).

3 Another recommended approach is using statistical techniques such as
Granger causality test to test whether there is a causal impact among the time-
series data.
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All data-driven connection values developed by available time-
series data and validated by farmers’ perceived FCM are listed in sup-
plementary C. These data-driven values were used instead of perceived
values in all three group-specific FCMs, to cover the ecological and
data-abundant part of the system (red connections in Fig. 2). Yet all
other connections, including those representing the impacts of actions,
remained with their perceived values obtained from farmers (black
connections in Fig. 2).

3.3. Step 2: Translating FCM to ABM

3.3.1. ODD protocol
We used the ODD protocol for describing the ABM (Grimm et al.,

2010). The ODD protocol is a standard framework of elements that need
to be covered when developing and describing an ABM. It requires
descriptions of entities in the model, their characterized attributes and
behavioral rules (which entity does what, in what order, what rules do
entities have for making decisions or changing their behavior in re-
sponse to environmental changes), and model rules (what are the direct
interactions among entities and indirect interactions via environmental
variables) (Grimm et al., 2017). The behavioral rules of agent, and
model rules were extracted from FCM models developed in step 1. The
agents, their characterized attributes, initial values for environmental
parameters and process overview (model updates and activities in each
time step) are the new ABM elements.

A full ODD description is given in supplementary A. Below, we
provide a summary of the ODD.

Agents represent a total of 154 farmers in three groups: 21 large-
farmers, 49 medium-farmers, and 84 small-farmers (section 3.2.2).
These farmers are distributed across a stylized representation of the
Rafsanjan landscape, distinguished by nine sub-regions in the ABM, out
of which two represent non-vegetated areas (i.e., arid land). Each sub-
region consists of 15 by 15 cells, leading to a total of 45*45 cells (Fig. 3,
details on initialization based on empirical data are given in supple-
mentary A). Each cell can be owned by one farmer; each farmer may
own 1 or more cells. Agents are distributed equally in the seven sub-
regions (mainly because there is no significant difference in the number
of farmers in these 7 sub-regions) and randomly within each region
(Fig. 3). Each cell represents 5ha of pistachio land. Cells are char-
acterized by: 1) Depth of groundwater level, 2) Groundwater quality, 3)
Land subsidence level, 4) Groundwater use 5) Well depth, and 6) Al-
lowed well depth.

Temporal resolution: The time step is 1 month. Actions in reality can
be repeated at different time intervals, therefore, we took the smallest
time interval (i.e. 1 month) for the temporal resolution. The time hor-
izon of the model is 15 years, i.e. 180 time steps. This time horizon is
chosen to be able to see some effect, but not go too far into the future
since new technologies we cannot foresee now might emerge as well as
other political and economic uncertainties which would make these
simulations useless.

Process overview: Within each time step two main activities take
place in the following order:

1) Cells' update: There are two types of updates for each cells' prop-
erties: 1) based on variables' dynamic changes collected from em-
pirical data, e.g. groundwater level change and land subsidence
level change, 2) based on impacts of actions from the previous step
on environment variables.

2) Agents' decision-making: First, each agent checks its groundwater
access. If the agent is not satisfied with the groundwater access, it
enters a decision making process to adapt its groundwater access.
Otherwise, it exits this time step.

Agents' decision-making: At each time step, agents observe the en-
vironmental situation of their cells and make a decision. Therefore, all
agents have full knowledge about the state of their groundwater access,

groundwater quality, land subsidence, their neighbors’ willingness to
sell their water/lands, and the execution of different policies. The
possible actions that each group of agents can take are listed in Table 1.
Their decision-making is described using CAI diagrams (section 3.3.2)
and formalized in UML activity diagrams (section 3.3.3).

3.3.2. CAI diagrams
At an abstract level, the behavior rules in an ABM constitute the set of

actions that agents might take, the conditions under which these ac-
tivities take place, and actions’ outcomes (impacts). The set of actions
and order of actions stemming from the FCMs can be used in con-
structing the behavioral rules, and conditions and impacts of actions can
be defined by inputs and outputs of those actions in FCM. Therefore, a
set of Conditions-Action-Impacts (CAI) for each group-specific FCM is
produced in this step, covering three main components of decision
making:

● Set of actions: represent different actions taken by each group of
farmers. The priority of actions is represented by the number of
times they have been mentioned by farmers as their chosen adaptive
action (shown by the size of action variables in FCM, Fig. 2).
Therefore, higher priority actions have a higher preference for
farmers/agents to be implemented. However, the preference order
may not be the actual order of decisions taken by farmers, since
some actions cannot be performed in some locations or during some
months of the year). These two aspects are added later in the ABM
implementation.

● Conditions of actions: are input variables of each action representing
driving forces or situations that should be satisfied to make that
action available. Condition of actions can be either dynamic e.g.
groundwater level in Fig. 2 (accompanied with weighted connec-
tions to actions), or fixed (true/false) variables, e.g. proximity of
farm in Fig. 2 (accompanied with connections without weight).

● Impact variables: are output variables of each action along with their
causal network, i.e. direct and indirect impacts of that action.
Impact variables are dynamic variables (with changing states).4

Fig. 4 indicates the series of CAI diagram transferred from large
farmers FCM. The CAI diagrams for medium and small farmers are
shown in supplementary A. For example, for the first action of large
farmers i.e. buying small/medium farms the conditions are proximity of
small/medium farms to the large farm and willingness of their owners to
sell-off their farms. Thus, this action is possible for large farmers when
there is at least one small or medium farm in their proximity whose
owner is no longer willing to harvest pistachio and who is also willing
to sell the land. This action affects pistachio production and groundwater
use with different levels of influence, based upon the large-farmers’
FCM. Likewise, these two variables affect groundwater level, groundwater
quality, pistachio production and land subsidence, which are the indirect
impacts of action 1. Moreover, actions are prioritized based in their
variable size for each group separately, and the variables with the same
or similar variable size have the same priority.

To implement the direct impact of actions X onto variables A of the
FCM model (represented as X w A), in each time step that action X has
executed the value of Variable A in that time step is calculated as:

= + ×+A A A w( )t t t1 Equation 1

For example, when we have desalination 0.7 groundwater use (in
Fig. 2), whenever that action desalination is executed, it impacts
groundwater use by 0.7 of its current value. So Groundwater use
t+1 = Groundwater use t + (Groundwater use t * 0.7). Please note that

4 One variable in FCM can be a condition for some actions and impact for
others. The function of each variable is defined in relation to its connection
(input or output) with action variables (Fig. 1, steps 1.1 and 1.3).
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this equation may cause the variables to get infinitely large or negative
in a large number of runs (time steps). However, the result of our model
did not reach infinite or negative values in 180 time steps. Moreover,
due to the objective of this study, i.e. ranking policy options, we are not
looking at the exact values of groundwater use, rather, we are exploring
the order of policies by comparing their impacts on groundwater use.
Thus, the results required for this objective are not affected by un-
bounded values. Yet, in other studies, to calculate the accurate values of
variables over time one may need a clipping function that maps the
infinite values into an operating range (which is missed in this equa-
tion).

All indirect impacts of actions are calculated at the beginning of the

next step (in the cell's update step in section 3.3.1). Indirect impacts of
actions are the impacts of variables affected by actions on other vari-
ables in FCM. To implement the impact of Variable A onto the Variable B
(represented as A w B) the value of Variable B in the new time step is
calculated as:

= + × ×+B B B A A
A

wt t t
t t

t
1

1

1 Equation 2

The direct and indirect impact of actions may also take the role of
condition for the same or other actions in the next time step, which
represent feedback loops in FCM (e.g. loop of water purchase →
groundwater use → groundwater level → water purchase, in Fig. 2).

Fig. 3. Set-up and allocation of farmers and farms in Netlogo. Green, orange and yellow cells represent large, medium and small farms, respectively. The two black
regions in the middle are not farming regions (to represent the real U-shape landscape of Rafsanjan). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

Table 1
The set of possible actions that can be taken by large, medium and small farmers.

Action Description Farmers who take this action

Buying small/medium farms Buying farms from medium or small farmers who are not willing to continue pistachio production Large farmers
Desalination Set up desalination system on farms with saline groundwater to remove salt and minerals Large farmers
Water purchase Buying water from medium or small farmers who are not using their well's water for irrigation Large farmers
Deepening wells Digging water wells to get access to groundwater Large/Medium farmers
Irrigation area reduction Shrinking (dry-off) small part of the farm to increase the efficiency of water use for rest of the farm Large/Medium/Small farmers
Integrating farms Integrate irrigation systems of several farms to increase their efficiency Medium farmers
Irrigation system modification Changing traditional flood irrigation to drip irrigation Medium/Small farmers
Well's turn-off Increasing the wells' off-time (overnight or during winter) Small/farmers
Relocating farms Leave the region and buy a farm in another area with a better water situation Large farmers
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3.3.3. UML diagram
Unified Modeling Language (UML) was used to develop the ABM

structure. UML proposes a set of well-defined and standardized dia-
grams to design and describe a system before coding it (Bersini, 2012).
One of the most commonly used UML diagrams with ABM is the activity
diagram, which represents the sequential steps of actions and timing of
processes (Bersini, 2012; Elsawah et al., 2015). To transfer CAI dia-
grams into UML diagrams, there are some crucial aspects that cannot be
collected and represented in FCM, i.e., randomness, temporal and spatial
dimensions. We know from FCMs what are available actions, the con-
ditions that make those actions available and the possible impact of
those actions. However, human decision-making is not based on a linear
and simple “what-if” relationship. In addition to conditions, decision
making of farmers depends on their locations, what type of actions they
have taken in previous steps, their relations with their neighbor
farmers, etc. We captured part of such decision-making process by

adding randomness, temporal and spatial dimensions. Such aspects
have been added to each actions’ priorities, conditions and initial values of
parameters by using quantitative data from studies and government
reports, and estimates based upon local knowledge collected during
interviews.

● Time scale: Actions may be taken by farmers every month, every six
months or every year. Moreover, some actions can be taken by
farmers only once (e.g. desalination or irrigation system change),
whereas other actions can be taken several times until their limits
are reached (e.g. well deepening or land shrinking). Therefore, the
time scale (i.e. frequency and one-time or repetitive) are added to
the condition of each action. Thus, if an action is executed annually,
the condition for this action is to be in time step multiples of 12.

● Randomness: Randomness is added to the priority set of actions in
the behavioral rules of agents as well as in the initialization of

Fig. 4. CAI of large farmers that represents set of conditions and impacts for each specific action. S/M: Small/Medium, ph: per hectare.
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parameters' values. In the priority set of actions, some actions have
the same or very similar priority.5 In these cases, one action is
randomly chosen to have priority over the other. Applying ran-
domness in the agent's behavior also helps to include the outliers'
behavior who may not follow the same behavior rules as other
agents. Randomness is also used in the distribution of agents over
the seven sub-regions, as well as their farm sizes within the ranges of
small, medium and large farms' area mentioned in section 3.2.2. For
the initialization of parameters' values, an interval of initial values
was collected for each parameter in each sub-region and randomly
distributed over the farm patches (supplementary A, section 3.1).

● Spatial dimension: Some environmental properties have sig-
nificantly different values in different regions of Rafsanjan. For ex-
ample, groundwater quality and land subsidence level are different
in each of the seven sub-regions and thus have a different impact on
farmers' decisions. This spatial heterogeneity is represented in the
cells' properties and added to the conditions of each action.

In supplementary A, the UML activity diagram of large farmers (i.e.
the sequence diagram of farmers' decisions and actions) is shown as an
example. This UML diagram shows that at each step, agents first check
their actions’ conditions through their priority order of actions. If the
conditions are confirmed they execute the action, giving rise to asso-
ciated impacts. If the conditions are not met, they go to the next action.
If a small or medium farmer reaches the end of the action list the final
action is to sell the farm to a large-farmer and leave the region. For
large farmers, their final action is to leave the region.

3.4. Step 3: ABM implementation and assessment

In this step, the ODD and UML activity diagram from the previous
section was used to build the pseudo-code and then translate it into an
actual code implementation. We used the Netlogo 6.0.1 platform to
implement the ABM (Wilensky, 1999). The source code of this model
can be found online in “CoMSES Computational Model Library”
(https://doi.org/10.25937/rxqn-4g38).

For building the model, we followed the stepwise-design approach
suggested by Sun et al. (2016) i.e. starting with a simple model version
that captures basic processes and then, adding more detailed processes
and components to the model structure such that the relative im-
portance of each component could be quantified and assessed along the
way. For example, we started first with the same initial well's depth and
groundwater level for all cells of each region. This resulted to a stair-
case-like groundwater use for each region since all agents would lose
groundwater access and start taking action at the same time. Therefore,
we added variety of wells' depth and groundwater level in different cells
(and applied randomness) to model the heterogeneous reactions of
farmers at each time step. When adding more details in a stepwise
process, a point was reached eventually at which further additions had
no impact on groundwater use or farmers migration (which are the
main outcomes of our model). That is where we stopped adding more
details to the model—other approaches are proposed in Edmonds and
Moss (2004) and Sun et al. (2016).

3.4.1. Validation
Historical data on groundwater use for 2004 to 2011 were used to

validate the simulation model since no other time series data (e.g. about
farmers leaving the region, or groundwater use per each sub-region)
was available. The idea was to see how well this model replicates the
historical reality. To align with reality, the validation model only si-
mulates the implementation of actions that were available in the past,

but with the same level of impact, conditions, etc. as the present. First,
the four environmental parameters (groundwater level, well's depth,
groundwater quality, and land subsidence) were initialized with their
values in the year 2003. Second, desalination, water marketing, and land
integration were removed from the validation model, since such actions
are recent adaptation actions taken by farmers. Moreover, irrigation
system change was still an option for large farmers over the period
2004–2011, so this action is included in the action set of large farmers
for the validation.

The setup of the simulation experiments is as follows. The validation
covers the period from 2004 to 2011, thus 84 time steps. 100 simula-
tions were run, and confidence intervals for the acquired mean values
of overall groundwater use suggest that this amount of simulation runs
led to satisfactorily precision for this output variable (Fig. 5A). The
values of both simulation and reality data-sets were normalized to show
the percentage of changes. We then compared the results of ground-
water use in the simulation and reality via running (1) Feasible Gen-
eralized Least Square (FGLS) and (2) FGLS with linear time trend spe-
cifications (details in supplementary G).

3.4.2. Baseline scenario and policy options
First, the baseline scenario was simulated. In this scenario, agents

decide and act based on their current situation and without any policy
interference. Besides simulating the current situation, we also need a set
of simulations to compare the impact of different policies that influence
farmers’ decisions and actions. Among current government policies
toward water scarcity (Kerman Provincial Government and Affairs,
2014; Mehryar et al., 2015), we chose three that aim to reduce
groundwater use by changing behavior and actions of farmers:

Policy of shrinking lands: This policy focuses on decreasing the irri-
gation water use by reducing the areas used for pistachio production.
To implement this policy, the government buys-off parts of the farms
and changes their land use to non-agriculture activities. Based on our
field work experience and due to the severity of water scarcity in
Rafsanjan, many farmers agree to sell-off some of their lands, but only
to an extent that still enables them to profit from production.

We implemented this policy by removing actions of land marketing
and water marketing between large and small farmers, since as a result of
this policy, small and medium farmers sell their lands to the govern-
ment instead of large farmers.

Policy of irrigation system change: This policy focuses on replacing
current flood irrigation systems with a drip irrigation system. To en-
courage farmers, the government provides an irrigation modification
subsidy for farmers with land tenure documents. Currently, about 50%
of the small farmers and 30% of the medium farmers do not have land
documents due to the informal exchange of lands during the 1978 re-
volution. Therefore, the lack of land documents is the main obstacle for
farmers who cannot afford to independently finance expensive drip
irrigation systems. In this policy, the government aims to remove the
land document problem and provide a subsidy to all farmers.

We implemented this policy by removing the condition of land
documents for small and medium farmers. Therefore, all medium and
small farmers who reach this action in their priority list execute irri-
gation system change.

Policy of farmer participation: This policy focuses on encouraging and
involving farmers to reduce their water use by decreasing the priority of
actions that increase their groundwater use like desalination and well
deepening, as well as increasing the priority of actions that reduce their
water use like integrated farming.

Implementation of this policy was done by removing desalination,
water purchase and well-deepening, and adding farm integration to
large farmers.

These new policies were simulated for the time period of 2015–2030
(i.e., 180-time steps), and the environmental parameters were in-
itialized with their values in 2015. Similar to the validation runs, 100
simulation runs were analyzed for each scenario, leading to large

5 We consider two actions' priorities as similar priority when the number of
times that the two actions are mentioned by farmers differs by less than 3 i.e.
0.05 of the total population.
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standard deviation for groundwater use in some regions (Figs. 5B and
6). The reason for the large standard deviation in those regions is the
randomness used in choice of actions (with similar priority but different
impacts) in these regions (more details in section 4.4). To identify the
adequate number of simulation replications, we tested the model with
larger number of simulation runs (i.e. 200, 300 and 500) and compared
their results with the result of 100 simulation runs (the results are
shown in supplementary H). The result of our experiments showed that
while the confidence intervals of the mean values decreased with in-
creasing simulation runs, the order of policies (exploring which is the
main objective of this study) would stay the same. Therefore, we con-
cluded that this number of simulation suffices for the purpose of this
study, i.e. the qualitative comparison of different policies.

3.4.3. Sensitivity analysis
We applied one-factor-at-a-time (OFAT) sensitivity analysis to ex-

plore the relationships between the model output and input parameters.
OFAT consists of varying one parameter at each time over a wide range
of its possible values while keeping all other variables fixed (Ten Broeke
et al., 2016) and thereby, monitoring changes of the simulation model
output. OFAT helps to identify those parameters that have a strong
influence on model output, and are therefore most important (Thiele
et al., 2014). However, OFAT does not take into account the simulta-
neous variation of input variables, thus does not detect the presence of
interactions between input variables. To show the form of relationship
between the interacting variables and the output other methods such as
Regression-based analysis, and Sobol model (Ten Broeke et al., 2016)
can be used.

We used OFAT to evaluate the influence of: 1) parameters’ changes
on groundwater use including impact values derived from FCM model
and thresholds derived from hard data and estimated data, 2) sto-
chasticity in our model results (i.e. random processes used in the initial
distribution of farm sizes, initial well depths and choosing between
actions with the same priority). A full list of parameters with their range
of values used for sensitivity analysis is shown in supplementary B.

4. Results

4.1. Validation

We used the FGLS estimation procedure to compare simulation run
and historical data of groundwater use per each time step (considering
the run time autocorrelations). Results show that our simulation model
explains around 81% of variation in historical data, though the re-
lationship is not one to one and the simulation does not explain all the
temporal trend in data (details of the FGLS can be seen in supplemen-
tary G). There are two specific peaks of groundwater use, both in the
simulation and in the real data (Fig. 5A). Such peaks (in reality) are
because of significant well deepening in different regions (i.e. first in
sub-regions 1 and 2 and later in sub-regions 6 and 7), where around
2015 most of the wells have already reached their maximum depth.

4.2. Baseline scenario

The result of the baseline scenario (i.e. the impact of aggregated
farmer's decisions and actions on overall groundwater use), is shown in
Fig. 5B. Due to a lack of space, we do not report on actions taken by
individual farmers. We explain these results in pairs of regions that
show similar results.

Regions 4 and 5: Farmers in these two regions still can deepen their
wells at the beginning of the simulation, while other regions have either
very poor water quality or very high land subsidence that prohibit more
well deepening (supplementary A). Well deepening and water marketing in
regions 4 and 5 results in a rapid rise in their aggregated groundwater
use. The peaks of groundwater use in these two regions occur when
farmers reach their permitted well depth, at which time further

deepening stops. Hereafter, trends of groundwater use are followed by a
slight decrease due to actions like shrinking lands and buying/integrating
farms. Since region 5 has better access to groundwater than region 4
(supplementary A), farmers in region 5 start taking adaptive actions
later than those in region 4. Therefore, the groundwater use in region 5
lags slightly behind that of region 4.

Regions 1 and 2: These two regions have very poor water quality in
the lower layer of their aquifer, thus deepening wells is not a useful
option for their farmers. Facing low water access, large farmers install a
desalination system which has a very high, though short duration, im-
pact in increasing their groundwater use. Thus, after a short term peak
in groundwater use, region 1 shows a steady decrease of groundwater
use due to buying/integrating farms, land shrinking and irrigation system
change. In region 2, after the initial peak, there is another slight increase
in groundwater use because of water marketing between small and large
farmers which is feasible in the southern part of this region.

Regions 3 and 6: Parts of regions 3 and 6 do not allow for more well
deepening due to poor water quality and land subsidence, respectively.
Farmers in both regions start with buying/integrating land and irrigation
system change at the beginning (when the water scarcity is less). With
these two actions, they reduce their water use and increase their water
access, both at a relatively low level. After about 5–6 years, farmers
who can, deepen their wells and purchase water, which increases
groundwater use. After meeting their allowed well depth and the buy-

Fig. 5. A) Validation using groundwater use of whole Rafsanjan in simulation
and reality over the period 2004–2011. Due to difference in initial values of
simulation and reality, their data-sets are normalized to show the percentage of
changes. The bars depict confidence intervals (with confidence level of 95%) of
the mean estimate over 100 replicated simulations. B) Groundwater use per
region (for all groups of farmers) in the baseline scenario (2015–2030). The
shaded areas depict standard deviation for each region over 100 time simula-
tions. R: region.
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Fig. 6. Groundwater use per region and overall groundwater use in three policy options scenarios compared to the baseline. The shaded areas depict standard
deviation for each scenario over 100 replicated simulations.
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out and emigration of small/medium farmers, they continue mostly by
shrinking lands in order to steadily reduce their groundwater use.

Region 7 has the best water situation, in terms of both access and
quality, but faces high land-subsidence which prohibits more well
deepening. When farmers face water scarcity, their available actions are
buying/integrating lands, shrinking lands and irrigation system change, all
of which reduce groundwater use to some extent. Therefore, region 7
shows a constant decrease of groundwater use.

Overall, all regions face a slight and constant decline of ground-
water use after meeting their peaks—either at the beginning or in the
middle of simulation process, at which time the farmers have no other
options than shrinking farms or selling their farms to the farmers who still
have access to groundwater. This only happens after farmers meet
limitations of other actions e.g. well deepening and well termination and/
or accomplish all one time actions e.g. desalination, irrigation change and
farms’ integration. Therefore, such groundwater use reduction only
happens after a large increase of groundwater consumption by farmers
which is followed by emigration of farmers.

4.3. Policy options simulations

Simulating the impact of different policy options revealed striking
impacts on groundwater use overall and in the different regions (Fig. 6):

The policy of shrinking lands has a strong impact on reducing
groundwater use because it also implies that water and land marketing
are no longer feasible in the region. Yet, it results in higher emigration
of farmers than in the other policy scenarios (Fig. 7).

The policy of irrigation system change is very similar to the baseline
scenario. This is due to the past experience of irrigation system change
among large farmers. According to large farmers’ perceptions (Fig. 2),
changing the irrigation system to drip irrigation has not changed their
water consumption, but has been used by farmers to expand their pis-
tachio area and/or increase the productivity of their lands. Therefore,
this policy has a positive impact in encouraging medium-farmers and
small-farmers to stay in the region, since it helps to improve their
production quantity and quality.

The participation policy has the highest impact on reducing
groundwater use and keeping farmers in the region. Stopping the high
water consumption actions e.g. well deepening and desalination, be-
sides focusing on reducing water demand by farm integration and re-
ducing farm areas shows the largest reduction on overall groundwater
use compared with other scenarios. Moreover, it has the least impact on
emigration of large farmers and after the irrigation change the least
impact of emigration of medium and small farmers.

The results of baseline and irrigation change scenarios in regions

2–6 have a large standard deviation range (Fig. 6). The sensitivity
analysis of all parameters for such policies indicates well deepening as
the most sensitive parameter. Regions 1 and 7 are the only regions that
do not have the action of well deepening, and thus simulation of all
policies in these two regions shows a small standard deviation range.
Similarly, policy options of land shrinking and farmer participation are
the only scenarios that do not change the execution or impact of well
deepening, thus they also show a small standard deviation range in all
regions (orange and yellow lines in Fig. 6).

4.4. Sensitivity analysis

The results of the sensitivity analysis (shown in supplementary B)
indicate that well deepening and land shrinking on groundwater use have
the largest influence on the overall groundwater use in Rafsanjan. By
contrast, desalination has the least impact on groundwater use, though it
has a high impact value in the FCM. This is because very few farmers
actually execute this action either because of their farms’ location (i.e.
being in good groundwater quality regions), or because of their eco-
nomic situation (i.e. not being able to afford to install and operate
desalination systems).

Sensitivity analysis of random processes shows that changes in the
spatial distribution of farm cells during initialization and initial values
of well depths per cell do not lead to distinctly different outcomes,
meaning that the model is not sensitive to these two random processes.
However, the results show high sensitivity to the random choice be-
tween actions 3 and 4 of large farmers (i.e. water purchasing and well
deepening). Specifically, if the model always executes action 3, water
purchasing, the results show little sensitivity (standard deviation),
whereas, if the model executes either always action 4, well deepening, or
a random choice between these two, the results show high sensitivity
(standard deviation). This highlights again the important role of the
well deepening action on the overall groundwater use.

5. Discussion

To support effective policy making in SESs, a policy simulation has
to consider the multi-factorial behavior of the system as well as multi-
stakeholders’ decision making and the impact of these decisions on the
physical system. This paper shows how a combination of FCM and ABM
methods for simulating impacts of policy options in the case of water
scarcity in Rafsanjan, Iran could be useful. In this section, we reflect on
our approach in developing the model by presenting its strengths,
limitations and suggesting possible future improvements.

Fig. 7. Number of large, medium and small farmers as a function of time in three policy scenarios compared to baseline. BL: baseline, SF: shrinking farms, IC:
irrigation change, FP: farmer participation. The shaded areas depict standard deviation for each scenario over 100 replicated simulations.
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5.1. Strengths

Our study showed that FCM and ABM are complementary and to-
gether can cover the four main features of an SES for policy making
purposes: 1) Causal relationships between human actions and their
surrounding social and ecological factors. FCM represents the decision
making process of stakeholders and their impact on the environment in
a causal directed graph. Therefore, it shows how each action causes
direct and indirect changes in environmental variables. 2) Feedback
mechanism: FCM's outcomes explicitly incorporate feedback in human-
environment interactions (e.g. the positive and negative impact of an
action on environment reinforce a subsequent action). 3) Social-spatial
heterogeneity: ABM incorporates various stakeholders' preferences,
available actions and long-term goals (i.e. part of individual hetero-
geneity) and it involves various environmental properties in different
locations (i.e. spatial heterogeneity). 4) Temporal dynamics: ABM can
represent time scale in agents' actions and environment variables, (e.g.
slowly changing variables such as population change) vs. fast-changing
variables (e.g. annual agriculture production) or high-frequency actions
(e.g. farm irrigation) and low-frequency actions (e.g. buying lands).

In addition, the combined use of FCM and ABM in a modeling
process is useful to formulate and parametrize the qualitative knowl-
edge gained by stakeholders, combine it with quantitative knowledge
from “hard” data and use both data types in simulating human-en-
vironment interactions. Our proposed modelling framework is parti-
cularly useful for policymakers to incorporate human perceptions,
preferences, decisions and actions in the process of ex-ante policy op-
tions analysis. Moreover, it provides the macro level observation of the
system's elements, (i.e. multi-variables interactions), as well as the
micro level view of the individual interventions and decision-making,
which supports comprehensive policy analysis.

5.2. Limitations and future studies

One limitation of the FCM method is its limitation in defining the
nonlinear relationships between variables (Voinov et al., 2018). For
example, using FCM gave us the immediate and fixed impact of actions
on variables, which resulted in presenting the linear relations among
variables. However, some actions' impacts may be nonlinear (i.e., adapt
dynamically and increase or decrease over time). In this study, we used
the traditional FCM method since the focus of our study was on
translating FCM causal relationships and feedback loops into behavioral
rules of ABM. However, there are some extensions to the FCM metho-
dology to capture nonlinearities. Rule-Based Fuzzy Cognitive Map
(RBFCM) (Mourhir and Papageorgiou, 2017; Carvalho and Tomè, 2000)
is an approach that captures and represents non-monotonic relations
between variables, thus can better show the dynamic impact of actions
on variables. Replacing FCM with RBFCM in this method is proposed
for future studies involving the dynamic impact of actions. Ad-
ditionally, fuzzy numbers could be used to incorporate sensitivity to the
linguistic weights (i.e. how fuzzy participants’ perceptions may be) in
the ABM; the impacts can be tested by using the fuzzy membership
function (Papageorgiou et al., 2009, 2011; Giabbanelli et al., 2012). In
our model, the uncertainty that participants have about the weights has
not been considered.

Second, an aggregated FCM represents the average of all individual
FCMs. In our study, the variability of farmers' preferences, decisions
and actions are represented by grouping FCM models for large, medium
and small farmers. In some applications, it is necessary to take into
account the distribution of stakeholders' perceptions even within each
group. Therefore, another interesting approach or extension to this
work would be to use interval (or standard deviation) instead of a fixed
average value for the FCM connections' weights and apply randomness
within the range of values in each time step. In this way, the variation
of collected data from stakeholders can be used in describing the impact
of agents' actions in ABM. However, we need larger sample sizes for

each group of stakeholders to estimate the standard deviations and
variances of their FCM connections’ weights (Harrell et al., 2015).

Third, building an ABM on FCMs means that connections between
variables are largely based on farmers’ perceptions and not calibrated to
fit past time series data. Therefore, they are proper for qualitatively
comparing potential impact of different policy options but not for
quantitatively predicting the future of the system.

Fourth, learning and prediction are two important properties of
many ABMs. In this study, we did not integrate these two aspects as
agents' properties. However, for future studies, farmers’ abilities to
learn from their experiences, adapt their actions and estimate future
consequences of their decisions could also be added to the simulation
model.

Fifth, validation of the model has been done for the whole region
due to the availability of historical groundwater use data only for the
whole region but not for each specific sub-regions. However, in the case
of data availability, validation of simulation for each sub-region sepa-
rately would provide more confidence in the model.

Last, ODD + D protocol (Müller et al., 2013) can also be used in this
methodology instead of standard ODD. This protocol rearranges the
design concepts to better capture human decision-making.

6. Conclusion

This study introduces a step-wise methodology to integrate a factor-
based modeling approach (i.e. FCM), with an actor-based modeling
approach (i.e. ABM), to support policy option analysis in SESs. In this
methodology: 1) FCM aggregates the qualitative stakeholders' knowl-
edge and perception to model the SES function and stakeholders’
adaptive reactions to the system, 2) the output of FCM is translated to
be used as ABM input data 3) ABM is developed to simulate and
compare the impacts of different policy alternatives considering
human-environment dynamic interactions. We applied this metho-
dology for the case of a farming community facing water scarcity in
Rafsanjan, Iran. The results show that this integrated methodology
takes into account aspects of complex SESs that cannot be fully covered
by either modelling approach if used individually.

Moreover, our case study indicates that among three policies of
shrinking farms, irrigation change and farmers' participation, the policy of
shrinking farms is a high incentive policy for farmers to reduce their
irrigation areas and thus decrease pressures on aquifer and ground-
water use. However, due to the high emigration of farmers in this
scenario, it is not a satisfactory policy from a socio-economic perspec-
tive. Rather a policy to facilitate farmers’ participation in the man-
agement and control of their groundwater use has the highest impact in
reducing overall groundwater use, and it reduces emigration.
Surprisingly, adopting new irrigation technologies does not have any
significant impact on reducing overall groundwater use in the region.
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