

Thesis

Reference

A domain-specific language approach to hybrid cps modelling

KLIKOVITS, Stefan

Abstract

The recent advent of cyber-physical systems (CPSs) in end-user applications extends the

need for sophisticated model creation, simulation and system verification to new application

areas. CPSs such as smart homes seamlessly integrate technology into every-day life,

rendering their safety and correctness paramount. The intricacy of these systems’ modelling

stems from the merging of two opposing views: While flows of physical energy are mostly

described using mathematical methods such as differential equations, engineered

applications are usually best expressed using discrete formalisms. This thesis describes the

creation of the Continuous REactive SysTems language (CREST), a domain-specific

language (DSL) dedicated to the combined modelling of physical resource flows and

engineered behaviour. The language coherently merges architectural concerns, reactive

dataflow and non-determinism. Its Python implementation allows convenient system modelling

and supports advanced concerns such as the simulation and formal verification of hybrid

systems based on sound theoretical foundations.

KLIKOVITS, Stefan. A domain-specific language approach to hybrid cps modelling.

Thèse de doctorat : Univ. Genève, 2019, no. Sc. 5354

DOI : 10.13097/archive-ouverte/unige:121355

URN : urn:nbn:ch:unige-1213552

Available at:

http://archive-ouverte.unige.ch/unige:121355

Disclaimer: layout of this document may differ from the published version.

 1 / 1

http://archive-ouverte.unige.ch/unige:121355

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

Département d’Informatique Professeur D. Buchs

A Domain-Specific Language Approach to
Hybrid CPS Modelling

THÈSE

présentée à la Faculté des sciences de l’Université de Genève

pour obtenir le grade de

Docteur ès sciences, mention informatique

par

Stefan Klikovits

de

Autriche

Thèse No 5354

Genève

Atelier d’impression ReproMail

2019

Für meine Familie –
Ich wäre weder wer ich bin, noch wo ich bin,

wäre es nicht wegen der Möglichkeiten, Unterstützung
und Liebe, die ihr mir gegeben habt.

To Paul –
Thank you for all your help, support and friendship.

Acknowledgements

This thesis concludes a long, fulfilling journey that formed me as a researcher and as

a person. I am delighted to have found so many lovely people who encouraged me

and helped me reach my destination.

First, I would like to express my gratitude to Professor Didier Buchs. You trusted

me in finding my own way and were available whenever I needed guidance. Thank

you for giving me the opportunity to grow as a researcher and to travel, to meet and

exchange with other researchers, and to create a wide academic network. I could not

have asked for a better environment to start my scientific career.

I am heavily indebted to Dr Paul Burkimsher, who has helped me ever since I

first arrived at CERN as a Technical Student. You have been an inspiring supervisor,

supportive colleague and dear friend – I learned a lot more than just computer science

from you. Thank you for sharing your experience with me.

Marthe deserves special recognition in this list. Thank you for believing in me

and encouraging me on a daily basis. You were my biggest supporter, you reassured

me when I was in doubt. I am grateful for the many adventures we had on the way.

To my colleagues in the SMV lab, Dimitri, Alban and Damien, who I could not

have done it without: Thank you for the fun, help and encouragement. I also thank

the former members of the group David, Edmundo, Maximilien and Steve, and all

members of the CUI department. You made me feel welcome from the first day.

My supervisor at CERN, Manuel Gonzalez-Berges: Thank you for giving me the

opportunity to start my PhD at CERN and learn so many lessons. I am also deeply

grateful to my friends and colleagues at CERN. Daniel, James, Josef, Łukasz, Matej,

Valentin and all other members of the (former) EN-ICE group: Thank you for keeping

me sane. I look back happily to the entertaining lunch and coffee conversations.

I want to thank all my friends in and around Geneva, Austria and across the globe

who I cannot possibly all list here. You have provided me with the often-needed

opportunities to distract myself from work. Thank you to everybody who joined me

for skiing and climbing, played football with or against me, joined BBQs in the park,

swims in the lake and concerts. I will treasure these memories forever.

Finally, I would like to express my gratitude to the Hasler Foundation and the

Swiss National Science Foundation for enabling me to perform my research.

vii

Summary

The recent advent of cyber-physical systems (CPSs) in end-user applications extends

the need for sophisticated model creation, simulation and system verification from

classical systems engineering domains to new application areas. Since CPSs such

as smart homes and office automation seamlessly integrate technology into every-

day life, their safety and correctness become paramount. The intricacy of modelling

these systems stems from the merging of two opposing system views: While flows

of physical energy and resources are mostly described using mathematical methods

such as differential equations, engineered applications are usually best expressed us-

ing automata and similar discrete formalisms. Many tools that support such hybrid

models lean toward academic use, requiring extensive modelling experience, and ne-

glect usability. Commercial platforms try to mitigate these shortcomings but involve

significant financial investment. Additionally, tool creators aim to maximise their

products’ versatility and application areas, thereby widening the distance between

software and target domain. This introduces complexity and configuration effort and

increases the risk for errors not directly related to the system itself.

This thesis explores the use of domain-specific languages (DSLs) to bridge the gap

between systems and models. It describes the creation of the Continuous REactive

SysTems language (CREST), a DSL dedicated to the combined modelling of physical

resources and engineered behaviour. The language offers architectural concepts such

as hierarchical system composition and typed ports, reactive dataflow aspects that

assert a synchronous model behaviour, continuous variable evolution and support

for non-deterministic systems.While the language is certainly themain contribution,

CREST’s design considerations provide additional value to themodelling community.

The findings of this project are described according to three research phases.

First, an initial analysis investigates the requirements of CPSs whose behaviour is

based on the flow of resources such as heat or electricity and extracts the properties

that must be provided by a modelling language or tool. These results are then used

to evaluate current modelling software and formalisms.

The second part builds upon these insights to design CREST, a hybrid modelling

DSL. CREST reuses well-established concepts from existing formalisms and merges

them into a coherent language, whose formal semantics open the door towell-defined

execution and simulation. CREST is implemented as crestdsl, a Python-based, in-

ternal DSL that allows efficient modelling and simulation.

The last research topic describes the application of formal verification on CREST

models. This advanced use case is explored from theoretical and practical points of

view. Additionally, it has been implemented in crestdsl proving its viability. The

positive result of the approach highlights the capabilities of CREST, the practicability

of the hybrid DSL modelling approach and confirms their effectiveness.

ix

Résumé

L’avènement récent des systèmes cyber-physiques (CPSs) dans les applications

proches d’utilisateurs finaux a accentué le besoin d’outils sophistiqués, pour la créa-

tion, la simulation et la vérification de système dans ces nouveaux domaines. En

particulier, la domotique et la bureautique intelligente intègrent de manière trans-

parente diverses technologies modernes d’automatisation dans la vie quotidienne, en

faisant de leur sécurité et leur exactitude une priorité. La complexité de la modélisa-

tion de tels systèmes provient de la fusion de deux vues opposées. Tandis que les flux

d’énergie et les ressources physiques sont principalement décrits à l’aide deméthodes

mathématiques telles que les équations différentielles, les applications d’ingénierie

sont mieux exprimées à l’aide d’automates et de formalismes discrets. De nombreux

outils supportent se mariage, mais s’adressent à une utilisation académique, nécessi-

tant ainsi une vaste expérience en modélisation, au détriment de la facilité

d’utilisation. Il existe certes des plate-formes commerciales qui pallient à ces man-

ques, mais celles-ci induisent généralement des investissements financiers significat-

ifs. De plus, on observe que la plupart des créateurs d’outils mettent l’accent sur des

atouts tels que la polyvalence et le nombre de domaines d’applications de leurs pro-

duits, élargissant ainsi la distance entre logiciel et domaine ciblé. Ceci a pour effet

d’introduire de la complexité et des efforts de configuration, augmentant d’autant

plus le risque d’erreurs non relatives au système lui-même.

Cette thèse explore l’utilisation de langages spécifiques à un domaine (DSL) pour

combler le fossé entre systèmes et modèles. Elle décrit la création de CREST (Con-

tinuous REactive SysTems language), un DSL qui combine à la fois des ressources

physiques et des comportements d’ingénierie. Le langage offre des aspects architec-

turaux tels que la composition de systèmes hiérarchique et de ports typés, des aspects

de réactivité sur les flux de données pour assurer un comportement synchrone, ou

bien encore l’évolution continue de variables et le support de systèmes non déter-

ministes. La contribution de cette thèse inclus des détails sur le développement de

CREST, apportant une valeur non négligeable à la communauté de modélisation et

de simulation. Les résultats sont décrits selon trois phases de recherche.

D’abord, une analyse initiale examine les exigences des CPS, dont le comporte-

ment est basé sur des flux de ressources tels que l’électricité. L’analyse permet ainsi

d’extraire les propriétés qui doivent être fournies par un langage de modélisation.

Ces résultats sont ensuite utilisés pour évaluer les logiciels de modélisation actuels.

La deuxième partie poursuit sur ces informations pour la conception de CREST.

CREST réutilise des concepts bien établis issus de formalismes existants et les fu-

sionne dans un langage cohérent, dont la sémantique formelle ouvre la porte à une

exécution et une simulation bien définie. Celui-ci est implémenté sous la forme de

crestdsl, un DSL interne basé sur Python.

Un dernier sujet de recherche décrit l’application de la vérification formelle sur les

modèles CREST, en l’explorant d’un point de vue théorique et pratique. Les résultats

positifs de l’approche mettent en évidence les capacités de CREST, son accessibilité

en tant que modèle DSL hybride et démontre la faisabilité de l’approche.

xi

To speak another language
is to possess another soul.

Avoir une autre langue,
c’est posséder une deuxième âme.

CHARLEMAGNE

Contents

Abstract vii

Résumé ix

1 Introduction 1
1.1 Motivation . 1

1.2 Approach and Contributions . 4

1.2.1 Properties of a Resource Flow Model 4

1.2.2 Evaluation of Existing Languages 5

1.2.3 Creation of a Modelling DSL 6

1.2.4 Simulation . 7

1.2.5 Verification . 8

1.3 Organisation of the Dissertation . 9

2 State of the Art: Systems Modelling 11
2.1 Preliminaries: The Systems Modelling World 11

2.1.1 Viewpoints, Formalisms and Languages 11

2.1.2 The Modelling Universe . 12

2.2 Overview of Systems Modelling Concerns 13

2.3 Existing Languages and Formalisms 16

2.3.1 General Purpose and Software Modelling Languages 16

2.3.2 Architecture Description Languages 17

2.3.3 Hardware Description Languages 18

2.3.4 Synchronous Languages . 19

2.3.5 Automata . 19

2.3.6 Discrete Event System Specification 21

2.3.7 Petri Nets . 22

2.3.8 Bond Graphs . 23

2.4 Summary . 23

3 Resource Flow Modelling – Analysis 25
3.1 Case Study Systems . 26

3.1.1 Smart Home . 27

3.1.2 Office Automation . 29

3.1.3 Automated Gardening . 31

3.2 Modelling Criteria . 32

xv

3.3 Evaluation of Languages and Formalisms 34

3.3.1 Additional Selection Criteria 35

3.3.2 Language Evaluations . 36

3.3.3 Discussion . 40

3.4 Summary . 40

4 The CREST Language 43
4.1 Syntax . 44

4.1.1 Formal Language Structure 49

4.1.2 Global State of a CREST System 56

4.1.3 CREST Syntactic Structure . 57

4.1.4 Changes to the System State 57

4.1.5 Semantic Constraints . 58

4.2 CREST Semantics . 60

4.2.1 Modifiers and Precedence – Formalisation 64

4.2.2 Formal Operational Semantics 68

4.3 Language Extensions . 74

4.3.1 Influences . 75

4.3.2 Transition Actions . 76

4.4 Language Analysis . 77

4.4.1 Language Design and Modelling Considerations 78

4.4.2 Zeno Behaviour . 79

4.4.3 Modifier Execution Order and Parallel Computation 80

4.4.4 Structural vs. Temporal Non-Determinism 82

4.4.5 Composition Aspects . 84

4.4.6 Commonalities with Hybrid Petri Nets 86

4.4.7 Relationship to DEVS . 90

4.5 Summary . 90

5 CREST Implementation 91
5.1 Overview . 92

5.2 crestdsl – CREST’s Python Implementation 94

5.3 Simulation . 99

5.3.1 Different Simulators . 100

5.3.2 Calculating the Next Behaviour Change Time 102

5.3.3 Limitations . 107

5.4 Tool Implementation & Architecture 109

5.4.1 Interactive Visualisation . 110

5.4.2 Trace Plotting . 112

5.5 Summary . 113

6 Verification 115
6.1 TCTL and Timed Kripke Structures 119

6.1.1 Model Checking . 122

6.1.2 Applied Model Checking . 126

6.2 CREST Model Checking . 126

6.2.1 CREST Kripke Construction 128

6.2.2 Ensuring Left-Total Transitions 132

6.2.3 Replacing ε-values . 132

6.3 crestdsl Verification . 133

6.3.1 Checks . 133

6.3.2 Simple API . 134

6.3.3 TCTL Model Checking . 136

6.3.4 Limitations . 138

6.4 Summary . 138

7 Conclusion 139
7.1 Summary . 139

7.2 Perspectives . 142

A GrowLamp Model – Function Implementations 145

B CREST Time Base 149

C Code listings 153
C.1 crestdsl – Listings . 153

C.2 Simulation – Listings . 155

C.3 ThreeMasses – A Non-linear System 157

D Acronyms and Symbols 163

Scientific Work and Publications 169

Bibliography 173

Chapter 1

Introduction

1.1 Motivation

Cyber-physical systems (CPSs) are combinations of software programs and hard-

ware interfaces such as sensors and actuators. From large-scale industrial applica-

tions, such as e.g. automated assembly lines and modern transport applications, to

personal systems, such as health appliances and smart homes gadgets, the number of

CPS installations is growing continuously. As these systems become ever more inter-

twined with our life, asserting their correct functionality has become indispensable.

The producers of complex, industrial and safety-critical systems developed

model-driven engineering (MDE) approaches [Sch06; BCW12], formal verification

techniques [CW96] and rigorous development best-practices [VB04] to prevent sys-

tem failures and damage to wealth, health and human life. The caveat of these so-

phisticated but intricate approaches is their high cost in terms of time and money.

Thus, in practice, these solutions are mainly employed by financially potent clients

and in projects where the cost of failure justifies the elevated investment cost.

Creators of small or non-critical systems, such as home or office automation in-

stallations and automated farming applications, often lack the knowledge and re-

sources to use these tools. As a result, less critical systems are often not formally

verified or only unsatisfyingly tested. Despite the low risk to health, these applica-

tions can still have an enormous impact on individuals’ lives. For example, a miscon-

figured system might experience disturbing power outages when too many devices

are started at the same time. Automated plant hydration systems can damagewooden

floors and electrical appliances if they spill water, or kill plants and destroy harvests.

The goal of this project is to provide the means for system creators in these domains

so that they can easily model and verify their CPSs.

The systems that are targeted by this research project have a strong focus on the

transfer of physically measurable entities such as light, heat or water. We refer to

such systems as custom assembly systems, since they are typically compositions of

several off-the-shelf components that are connected via loosely documented or pro-

prietary means of communication, such as informal transmission protocols or smart-

phone application controllers. Components within such CPSs influence one another

by producing, consuming and transforming physical resources such as heat or wa-

1

2 Chapter 1. Introduction

ter. A lamp for example transforms electricity to light by continuously consuming

an electrical current and creating light as output flow. Each component’s created re-

source flow depends primarily on its state but is also affected by inputs from other

components and the environment. For example, an automated light system’s output

depends on whether its lamps are switched on or off (i.e. the local state), the electri-

cal current (which is provided by another component) and the information whether

the sun is shining or not (i.e. environmental factors). From an abstract point of view,

the CPS can be seen as a network of continuous resources flows that connect system

components which act upon these flows by transforming or consuming them.

To prevent faulty system setups and reduce the risk of financial and physical

harm, it is important for users to be able to simulate the evolution of their systems

when facing changing system influences, and verify that undesired system states will

not be reached (e.g. the lamps are on during the day and their power consumption

therefore amounts to a high electricity bill). Other examples of verifiable scenarios

include the discovery of electrical network overloads, simulation of soil moisture

evolution to prevent drought on farmland, and the assertion that plants will receive

enough sunlight before the automated sun blinds shut.

Modelling languages that are provided to the builders of such CPSs must be ex-

pressive enough to efficiently describe and model these verification scenarios. Natu-

rally, the first research question therefore aims to discover the requirements towards

modelling languages and tools so that resource flows in custom assembly CPSs can

be modelled and analysed.

Research Question 1. What are the properties required from a language or
tool to model the resource flows and behaviour of custom assembly CPSs?

In over fifty years of research, the modelling and simulation community has pro-

duced various approaches for CPS and real-time and embedded (RTE) systems [ECT03]

modelling. Powerful formalisms, languages and tools have been developed, adopted

and used to model concerns such as the treatment of time, the synchronism of com-

munication and the composition of components. There is, however, a growing crit-

icism of the complexity of these approaches. Publications such as [Fri09] critique

that users require months of training to develop MDE skills, and [Hei98] demanded

already over two decades ago that formal methods need to become practicable. In

many cases, it is necessary to employ several modelling languages to test individual

aspects of the system (e.g. architecture and behaviour) and to create separate models

in each one, since they are usually not compatible. The cause for these issues often

lies in the wide gap between a generic modelling language or tool and the application

domain itself. This poses the question, whether existing solutions are too generic and

operate on a too high level of abstraction to be useful.

The criticism is the basis for the next research question. This dissertation will

evaluate existing modelling languages and examine whether these solutions offer

adequate usability and sufficiently low entry barriers for novice users, provide ac-

ceptably high expressiveness for the modelling of practical systems and investigate

the semantic gaps between language and model.

1.1. Motivation 3

Research Question 2. Are existing CPS languages suitable for the creation of
useful models that remain close to their application? Do they constrain the ex-
pression of domain-specific features and thereby increase the entry barriers for
novice users?

Experience has shown that most languages and tools suffer from high complexity

requirements. The authors of [Whi+13] conclude that many tools do not help appli-

cation experts, but instead impose a particular way of thinking on the user, which is

often very distant from the system domain. Oftentimes, the high temporal effort for

the adaptation to the specific domain discourages even expert modellers from apply-

ing MDE techniques to small applications. Novice users are even more deterred by

the steep learning curves and financial burden of expert tools.

To overcome the criticism of complexity, the modelling and simulation commu-

nity started pushing towards the use and deployment of domain-specific languages

(DSLs) [Völ09]. This trend is carried by the goal to empower domain experts with

the necessary means to model, simulate and verify their applications themselves. The

target audience of such DSLs is often very narrow, and the development and main-

tenance costs of standalone DSLs are high [DK08; vDKV00]. The development effort

can be reduced, however, by building upon existing languages instead of opting for

entirely new creations, as advocated in [Völ+13].

The third research question therefore aims to investigate whether it is possible to

either create a new or adapt an existing modelling language to appropriately model

the flows of physical resources within CPSs.

Research Question 3. How can we create or adapt a language to fill the need
of modelling domain-specific aspects such as resource flows in CPSs? How can
existing language features and implementations be reused to lower development
and maintenance efforts?

Evidently, the possibility to model the domain-specific system aspects has many

benefits, such as a focused system view due to the abstraction of irrelevant infor-

mation, facilitated reasoning due to the modelling of influences and effects, and the

improved understanding of the system. Especially in dynamic resource flow systems,

however, it is of importance to execute the models and assess their evolution. Simu-

lation is a valuable means to answer “What happens if . . . ”-questions. It permits the

exploration of system evolution and analysis of individual execution scenarios.

For such a simulation it is necessary to provide a well-defined model behaviour,

for example in the form of a formal semantics. Commonly, such a formalisation is

specified on the language level, so that all modelswritten in that language can benefit.

Therefore, the next research question aims to provide a formal syntax and semantics

for the developed DSL.

Research Question 4. How should the formal syntax and semantics of the DSL
be characterised, so that the created CPS models are well-defined and can be sim-
ulated and analysed?

4 Chapter 1. Introduction

In addition to the evaluation of one particular execution scenario, it is usually

of high interest to verify specific properties in all possible system evolutions. Most

systems expose for example behaviour that should either always or never occur.

The plant growing system, for example, should always assert that the soil is hu-

mid enough for the plants and prevent dryness damage. On the other hand, it should

never occur that the plants are brightly lit for more than 18 hours per day. The anal-

ysis of system models with the goal of asserting such properties is commonly per-

formed through formal verification [DKW08]. These techniques operate on amodel’s

formally defined syntax and semantics and analyse all possible system evolution sce-

narios to prove that a favourable system behaviour is attainable, or that unwanted

settings can never occur. The last research question is thus:

Research Question 5. How can we use formal verification approaches to verify
system behaviour and which techniques can be used for verification of our DSL’s
CPS models?

1.2 Approach and Contributions

The following section elaborates on the research approach I followed throughout the

project, the results that I obtained, and the contributions made thereby.

1.2.1 Properties of a Resource Flow Model

The main purpose of this research is to enable a system’s domain users (as opposed

to modelling and simulation experts) with the necessary means to model, simulate

and verify custom CPSs assemblies such as home automation systems. Thus, it is

necessary to evaluate the systems that should be modelled, the aspects that must be

represented and the properties that the modelling formalism should have. I therefore

performed an evaluation on three case study systems. The first one is a smart home

application that models a water boiler, a hot water shower and Internet of Things

(IoT) appliances (e.g. an autonomous vacuum robot, “smart” TV, dishwasher). Dur-

ing the day, the system uses solar panels and a battery to generate electricity. Next,

an office system with automated presence detection for energy-efficient regulation

of light and temperature was developed. Lastly, an automated indoor gardening sys-

tem that uses light, temperature and soil moisture readings to automatically control

growing lamps and watering systems was modelled.

These systemswere analysed from behavioural and architectural viewpoints. The

focus lies on the representation of physical resource flows between components to

assert availability/absence of physical resources (e.g. light, water, noise, electricity).

The analysis of these systems led to the discovery of six key aspects which should

be supported by a CPS language. I further discovered four more properties for the

evaluation of existing languages. The reason behind separating these is to help create

an ordering in case several, equally good candidates are found. Thus, the usability of

a language was evaluated from a domain expert’s point of view, and the evaluation

1.2. Approach and Contributions 5

of suitability was performed with resource-intense CPSs in mind. My contributions

towards Research Question 1 are summarised as follows:

Contribution 1. I analysed three customCPSs and extracted their common prop-

erty needs towards modelling languages.

C 1.1 (Analysis). I designed and analysed typical CPS case studies which can

be used as references for future research. I confirmed that resource flows are

essential parts of these systems [KLB18a; KLB17; KLB18b; KCB18].

C 1.2 (Key property extraction). Based on C 1.1, I extracted six key properties

and four additional language features that should be supported by a modelling

language to model the resource flows in CPSs [KLB18a; KLB18b].

1.2.2 Evaluation of Existing Languages

Based on the findings of the case studies, I analysed various existing languages for

their suitability. The list of key aspects (C 1.2) served as a reference guide for the

search of a good candidate. Next to the comparison of these properties, additional

language features such as expressiveness and availability of formal semantics were

examined. Further, an analysis of non-functional aspects such as simplicity, usability

and target domain suitability (i.e. the complexity of expression of domain concepts)

was added. The aim of the evaluation of the latter was to perform the analysis of

non-functional properties from the viewpoint of non-expert modellers.

I chose twelve languages for this evaluation. The selection consists of actively

used and representative solutions for modelling and simulation of CPSs, comprising

different modelling paradigms. For groups of similar languages (e.g. Unified Model-

ing Language (UML) [UML17] and SystemsModeling Language (SysML) [SysML17])

only one representative was chosen. The evaluation provided valuable insights and

can be summarised as follows: All evaluated candidates allow modelling of reactive

behaviour. Almost all of them also support locality of information and provide some

form component composition. When comparing other features, several drawbacks

were found. Certain modelling languages do not support continuous behaviour, lack

the expression of parallelism, non-determinism or synchronous means of communi-

cation. Themost promising hybrid system tools lack formal semantics for verification

purposes or have deficits in terms of usability. Even though some languages support

all required key aspects, their complexity renders them far from simple or beginner-

friendly. Further, only few languages are equipped with support of resource flow

concepts (e.g. definition of resource types), or allow extension to add them.

The conclusion of the analysis is that current languages and tools are complex to

use and require significant adaptation to our use cases. Formally, my contribution to

Research Question 2 is:

Contribution 2 (Language Evaluation). I evaluated existingmodelling languages

based on the properties from C 1.2 and their non-functional aspects [KLB18a].

6 Chapter 1. Introduction

1.2.3 Creation of a Modelling DSL
The evaluation of features showed that existing languages and tools are not fully

suitable for modelling resource flows in CPSs, especially when considering domain

users as a principal audience. Therefore, the goal was set to create a DSL to fill this

lack. The comparison of different languages provided a valuable overview of other

languages’ design choices, that could be harnessed as references.

This led to the definition of my language’s requirements prior to its actual devel-

opment. First, the DSL requires a graphical syntax to allow visual representation and

analysis by users. Additionally, there must be a textual syntax to speed up the de-

velopment process for experienced users and an interface to a general-purpose pro-

gramming language (GPPL) for the creation of complex behaviours by power users.

Based on these requirements, I created the Continuous REactive SysTems lan-

guage (CREST), a DSL for the modelling of resource flows of continuous-time CPSs.

The language focuses on the definition of architecture and behaviour. The compo-

nent behaviour is specified using finite-state machines. Within each state, update
functions are responsible for the continuous evolution of the system. Components

are modelled as entities with well-defined interfaces (ports). System composition is

expressed using a strictly hierarchical entity structure, and the resource transfers are

modelled using influence functions that connect the entities’ ports. Figure 1.1 shows
a CREST entity with two states, one input and one output port and update functions

that modify the output port.

light_element≪LightElement≫

electricity:

0 (RWatt)

light:

0 (NLumen)

on offoff_to_on

on_to_off
set_light_off

set_light_on

Figure 1.1 – A light element entity in CREST’s graphical syntax. The figure shows

states, input and output ports and update functions that modify the output.

The language is, similar to SystemC, developed as an internal DSL [Völ+13], using
the Python GPPL as a host language. Entities are modelled as classes and instanti-

ated into standard Python objects. Similarly, classes for resources, ports and states

are provided in a library and can be used after importing it. Update functions and in-

fluence behaviour are expressed using annotated class methods in standard Python

syntax. Listing 1.1 shows a brief example of a CREST entity class.

The choice of Python as a host language is founded in its simplicity, flexibility

and supportive community. The use of this wide-spread programming language al-

lows the uncomplicated extension through numerous community-provided libraries.

It also permits the use of existing infrastructure such as code editors, source anal-

ysis systems and unit test tools without the need for separate developments. The

contributions towards Research Question 3 are as follows:

1.2. Approach and Contributions 7

Contribution 3. I created a graphical DSL for the specification of resource flows

within a CPSs. The language and simulator are implemented in Python for the

reuse of its syntax and ease of extension.

C 3.1 (DSL). I developed CREST, a graphical language that allows the expres-

sion of resource flows and component behaviour. [KLB17; KLB18b; KLB18a]

C 3.2 (Textual Syntax). I implemented CREST in the form of an internal DSL
using Python as a host language [KLB17; KLB18a].

Listing 1.1 – Example of an entity modelled in crestdsl. Language elements are

expressed as standard Python classes, objects and annotations.� �
1 import crestdsl . model as crest
2 class LightElement (crest . Entity) :
3 # port definitions with resouces and an initial value
4 electricity = crest . Input (resource=electricity , value =0)
5 light = crest . Output (resource=light , value =0)
6

7 # automaton states - one is the current (initial) state
8 on = crest . State ()
9 off = current = crest . State ()
10

11 # transitions and guards (as lambdas)
12 off_to_on = crest . Transition (source=off , target=on ,
13 guard =(lambda self : self . electricity . value >= 100))

14 on_to_off = crest . Transition (source=on , target=off ,
15 guard =(lambda self : self . electricity . value < 100))

16

17 # updates are specified using decorators
18 @crest . update (state=on , target=light)
19 def set_light_on (self , dt =0) :
20 return 800

21

22 @crest . update (state=off , target=light)
23 def set_light_off (self , dt =0) :
24 return 0� �
1.2.4 Simulation
Both CREST’s structure and its semantics are formally specified, so that the simu-

lation is well-defined and crestdsl’s simulator can be used for the study of system

models with passing of time. It uses an approach that calculates the exact time at

which the next state transition will occur. This strategy avoids unnecessary calcula-

tions for points in time where the system is not changing its behaviour. My approach

avoids classical, step-based simulation, where guard functions and system updates

are only evaluated in predefined intervals. It removes the risk of missing the correct

transition time, the need for iterative recalculation, backtracking and trial-and-error

step sizes. The crestdsl simulator’s calculation of the next transition time (and hence
step size) is based on the analysis of transition guards, updates and influence func-

8 Chapter 1. Introduction

tions and the subsequent expression thereof as constraint sets. By using a satisfiabil-

ity modulo theories (SMT) solver (e.g. the Z3 theorem prover [DB08]) the constraints

can be evaluated and the minimal time in which a transition will become enabled is

found. This solution provides the precise next transition time, without the need for

iterative search. The contributions towards Research Question 4 are thus:

Contribution 4. I provided a formalisation of CREST and used it for the simu-

lation of CREST models. The module is also implemented in crestdsl and can

therefore be used and extended easily.

C 4.1 (Formalisation). I defined the language’s syntax and semantics formally,

so that CREST models can be is formally analysed and the language supports

well-defined simulation [KLB18b].

C 4.2 (Simulation). I developed a simulator for crestdsl, so that it can be used

to study the evolution of CPS models. The simulator itself uses predictions of

transition times to avoid fixed-step-size exploration [KLB17; KLB18a; KCB18].

1.2.5 Verification

The verification of CREST systems requires careful analysis of its temporal aspect.

Due to their continuous time nature, CREST systems can advance in arbitrarily small

timesteps. Despite this fact, CREST’s semantics enable the verification of timed sys-

tem properties. These are translated to timed computation tree logic (TCTL) [AH92]

formulas that express at what point in time the property should hold. Next, the pos-

sible system evolutions are encoded in directed graphs called timed Kripke struc-

tures [LÁÖ15]. These graphs represent the state of systems (e.g. CREST models) as

graph nodes and use time-annotated transitions to model the amount of time that

needs to pass before reaching the next state. Similar to the simulation, the creation

of the graph structures also uses the next transition time function. Since each graph

node is labelled with the set of system properties that hold within its state, the verifi-

cation of TCTL formulas on timed Kripke structures is equivalent to verifying graph

properties, such as the existence of paths between two nodes with a certain label.

TCTL and timed Kripke structures have been shown to be useful for the verification

of timed systems such as hybrid and timed automata. The thesis introduces an ap-

proach to create CREST Kripke structures, which are timed Kripke structures that are

favourable for the verification of CREST models. For example, CREST Kripke struc-

tures use the next transition time function to assert that each graph node identifies

a single system state.

Based on this Kripke structure, I show the use of a model checking algorithm

that allows the evaluation of TCTL formulas and provides an efficient verification

solution. My contributions towards Research Question 5 are listed below:

1.3. Organisation of the Dissertation 9

Contribution 5 (Verification). I developed and implemented a formal verifica-

tion technique for CREST models.

C 5.1 (Formal Approach). I formalised a model checking approach for the veri-

fication of CREST systems. The solution is based on CREST’s formal semantics,

uses adapted timedKripke structures for the representation of the system’s state

space and TCTL for the specification of system properties.

C 5.2 (Implementation). I implemented the verification approach in crestdsl.

The implementation provides a simple application programming interface (API)

for unfamiliar users and classical TCTL operators for expert users. Both APIs

build upon the exploration of state spaces encoded as timed Kripke structures.

1.3 Organisation of the Dissertation
The rest of this thesis is structured as follows: Chapter 2 reviews the state of the art

in the domain of CPS modelling and analyses several modelling concerns that have

to be addressed. Subsequently, a discussion of different CPS modelling formalisms

and languages provides a general overview over current approaches. Building upon

this outline, Chapter 3 defines three example systems that are representative of the

CPSs that are targeted by my research. The systems are analysed to extract a set of

core features that need to be provided by a modelling language that is appropriate

for our target domain and users. Chapter 3 ends with an extended analysis of the

suitability of existing languages. Chapter 4 provides details of the development of

CREST, a novel language for the modelling and analysis of resource-intense CPSs,

such as smart homes, office automation or plant growing systems. The chapter intro-

duces the language’s graphical syntax using a concrete example and defines CREST’s

formal syntax and semantics. Chapter 5 showcases crestdsl, CREST’s implementa-

tion as internal DSL, which uses the Python programming language as host. The

chapter focusses on crestdsl’s syntax and its SMT solver-based simulation. Finally,

CREST’s interactive development and simulation environment is presented. Chap-

ter 6 provides details of the formal verification solution that is based on CREST’s

semantics. It describes the use of TCTL and timed Kripke structures for the verifica-

tion of CREST systems using model checking techniques, as well as their concrete

implementation in crestdsl. Finally, Chapter 7 summarises this dissertation’s find-

ings and provides an outlook on possible future developments.

10 Chapter 1. Introduction

Research Questions and Thesis Chapters Table 1.1 shows a mapping between

the research questions and the dissertation chapters in which they are addressed.

Note that Chapter 4 and Chapter 5 both describe the CREST language, including its

formalisation and the correct simulation. The theoretic part of these subjects provides

the formal foundation of the language in Chapter 4, while Chapter 5 is concerned

with the language’s implementation.

Table 1.1 – Research questions and the chapters that address them

Dissertation Chapter
Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 6

RQ 1 CPS Requirements •

RQ 2 Language Evaluation • •

RQ 3 CPS DSL • •

RQ 4 Simulation •

RQ 5 Verification •

Chapter 2

State of the Art: Systems Modelling

In general, “systems modelling” refers to the creation of a representative model of a
system. This model is an abstraction that can be used instead of the original system to

analyse and study the latter. Abstraction refers to the simplification or disregarding of

some system aspects to facilitate its analysis. Next to abstraction, models require four

other key characteristics to be useful. Models must be understandable, accurate (i.e.

represent the system faithfully), predictive (i.e. conclusions can be drawn based on

the model) and inexpensive (i.e. significantly cheaper to create and analyse) [Sel03].

Throughout the years, many types of models have been used and introduced to

serve different tasks. For example, some models can be representations of physical

systems, using differential equations to describe physical phenomena. Other models

hold information about the logical architecture of computer systems or facilitate the

analysis of business processes. Numerous modelling languages, formalisms and as-

pects have been developed to support the creation and analysis of such models, each

dedicated to aid a certain type of task. This chapter first reviews some basic defi-

nitions in Section 2.1 and then provides a brief overview of the systems modelling

domain in Section 2.2. The section provides a more thorough introduction of differ-

ent types of models and modelling approaches. The focus of this chapter, however,

is put on analysing and comparing existing modelling solutions for CPSs. Section 2.3

descends deeper into the topic and introduces noteworthy languages and formalisms.

2.1 Preliminaries: The Systems Modelling World

Before reviewing the current state of system engineering, it is necessary to introduce

some vocabulary that is used in the world of CPSmodelling and systems engineering.

2.1.1 Viewpoints, Formalisms and Languages

This dissertation follows the terminology provided in the Object Management Group

(OMG)’s model-driven architecture (MDA) guide [MDA14]. This means that models

are created to serve the stakeholders’ viewpoints and are implemented in a language

with a given syntax and semantics.

11

12 Chapter 2. State of the Art: Systems Modelling

Viewpoints Formalisms Languages and Tools

supported by implemented by

based on

Figure 2.1 – Framework for the relation of Viewpoints, Formalisms, Languages and

Tools. Reprint from [Bro+12].

Broman et al. [Bro+12] provide a more thorough structure, where they distin-

guish between viewpoints, formalisms, and languages and tools. In their framework,

they additionally define that viewpoints are supported by formalisms, which are

mathematical constructs and baselines, expressed through a formal syntax and se-

mantics. These formalisms allow the description and analysis of systems. To facilitate

their use, languages and tools implement these formalisms to enable the interaction

with models, as shown in Figure 2.1 (originally published in [Bro+12]).

Note that these relations are not exclusive and there can bemany formalisms sup-

porting a viewpoint. Similarly, a language can implement different formalisms and

thereby express many viewpoints. The final choice of an appropriate language and

formalism depends on the individual stakeholders and their specific system interest.

This thesis adheres to the classification presented above. For simplicity, however,

formalisms and languages are treated in the same manner, since their differences are

often subtle, where formalisms operate on an abstract rather than a concrete syntax.

Furthermore, many formalisms (e.g. automata and Petri nets (PNs)) developed de-

facto standard notations, thereby slightly blurring the line between abstract formal-

ism and concrete language. Nonetheless, this thesis acknowledges their difference

and uses the appropriate terminology where needed.

2.1.2 The Modelling Universe
In the systems engineering domain, models appear in various forms throughout the

lifetime of a system. Depending on the specific task, models can be used to validate

specifications before the actual creation of the system, verify the system’s correct-

ness during its implementation or even support the analysis of system properties

after the system construction has been completed. Depending on the extent of the

model’s involvement in these phases, the terms model-driven architecture (MDA),

model-driven development (MDD), model-driven engineering (MDE) ormodel-based

engineering (MBE) are used to refer to the different employment methods of models

in systems engineering. The difference between the terms is often subtle and usually

depends on the user’s point of view – in some literature the terms are even used in-

terchangeably. This thesis follows the classification provided in [BCW12]. Using this

framework, MBE is the most generic form of model use. It refers to using a model in

the engineering process, although it might not be the driving force of the process.

MDE is a subset of MBE, where models are the main artefact of the engineering pro-

cess. In situations where MDE is used purely for the development of a system, rather

2.2. Overview of Systems Modelling Concerns 13

MDA

MDD

MDE

MBE

Figure 2.2 – The MD* Jungle of Acronyms. Reprint with permission from [BCW12].

than generic analysis or study, one might use the termMDD. MDA is the OMG’s spe-

cific view of this approach. Figure 2.2 depicts the relation between the four concepts.

Over the years, various publications and surveys evaluated the practicality, ben-

efits and disadvantages of MDA, MDD, MDE and MBE. Starting points for a more

profound exploration of this subject can be found in dedicated publications such

as [Val15; Sel03; Est08; HWR14; Sta06; Rod15].

2.2 Overview of Systems Modelling Concerns

The success of a modelling task is heavily influenced by the choice of model type,

modelling language and modelling concerns that should be represented. Sargent

identifies four basic types of models: iconic, graphical, analogue and mathemati-

cal [Sar15]. Of these four types, the iconic approach (i.e. the creation of a repre-

sentative miniature), is rarely used for modern, computer-driven CPS tasks. The use

of analogue models, where values are represented through measurable physical phe-

nomena (e.g. electrical voltage or a water integrator [Ken12]), became outdated with

the rise of digital computers. Graphical (i.e. graph based) models are used to repre-

sent the relations between various system concepts and usually serve as high-level

abstractions, which allow analysis through well-established algorithms and transfor-

mation of the models into other representation forms (e.g. code). The arguably most

important model type in the CPS domain are mathematical models, where behaviour

is expressed using a set of mathematical equations, e.g. as ordinary differential equa-

tions (ODEs). In most cases, specialised software is then used to execute such models

and trace the behaviour by observing measurement variables.

The digital modelling of analogue behaviour is deeply intertwined with the un-

derlying computation system. Finding precise solutions to complex equation sys-

tems is non-trivial and oftentimes relies on various numerical ODE solving tech-

niques [But08]. There exist many other CPS modelling challenges that also have to

be addressed. Examples include reliability issues of computing and communication

architectures, distributed computation and concurrency concerns, and challenges of

time representation. See [DLS12] and [Lee08] for a more profound discussion of ad-

ditional current CPS modelling problems and potential solutions.

14 Chapter 2. State of the Art: Systems Modelling

Due to the vastness of the CPS modelling field, it is difficult to provide a complete

classification of modelling approaches. Thus, this chapter’s focus is put on explor-

ing CPS modelling concerns and the languages that allow the expression of certain

stakeholder viewpoints. For a complete introduction to modelling and simulation,

the reader is referred to more exhaustive reviews of the domain, such as [Nan94],

[BA07] and [ZKP00]. A comparison of different modelling approaches for embedded

systems is provided in [ECT03].

Note that the choice of modelling concerns for any application highly depends on

the involved stakeholders, their interests in the system and the system itself [Hil99].

The rest of this section will therefore be restricted to a subset of important aspects

in the domain of CPSs modelling.

Architecture Architectural concerns refer to the logical setup of a CPS. The term

architecture can refer to either the software, i.e. the grouping of software code and

packages into logical units, to hardware, where it describes the separation and group-
ing of physical components on a logical level, or to the combination of both, such as

the assignment of computing tasks to available hardware. Formalisms and languages

that address this concern usually also allow the modelling of system composition to

larger systems-of-systems and definition of communication interfaces (although not

the communication itself).

Synchronism An important aspect of the system architecture is the modelling

of communication between individual parts of the system. Communication, i.e. the

passing of information from one part of the system to another, can be modelled as

either synchronous or asynchronous [CMT96]. For synchronous communication,

sender and receiver maintain the same communication pace and the sender waits

with further computation until the message has been received. Hence, it is possi-

ble to establish efficient, well-coordinated communication between components. In

asynchronous communication systems, on the other hand, there is no guarantee at

what point messages are sent and received. This makes systems more flexible as the

individual system parts are more independent and can operate “at their own pace”.

Nonetheless, certain systems (e.g. physical systems) have components that need to

treat messages/signals whenever they arrive. Such components/systems are often-

times reactive, which means that they wait for certain messages to perform com-

putation, rather than performing their activity in a periodic manner. The choice of

communication strategy heavily influences the expressiveness of the language and

thus the kind of models that can be created. This choice also has severe impacts on

the system itself if the models are used as basis for the system development, such as

in MDD or MDE approaches [Cri96].

Time Manymodels and formalisms disregard the time aspect in general, as it is not

important for their purpose. For such applications the order of actions is of higher

importance than the actual timing and interval information itself. When thinking of

an automated transport system for instance, it is important to verify that a certain or-

der of actions cannot occur (e.g. that a train cannot leave before its doors were shut).

2.2. Overview of Systems Modelling Concerns 15

t

z

(a) Discrete Events

t

z

(b) Continuous Time

Figure 2.3 – Two plots showing observations of the function sin(x)− sin(x2

4)+1. Sub-
figure (a) shows the step-function that created by sporadically measuring at discrete

points in time, (b) shows its continuous evolution.

The delay between the “doors shut” signal and the train leaving is not of interest, as

long as the one always precedes the other.

On the other hand, some models put high emphasis on a system’s temporal as-

pect. Such models deal with time and its effects on a system. Especially for safety-

critical applications, time is an essential factor in the decision whether a system be-

haves correctly or not. Airbags need to inflate within a certain maximum time span,

train crossing controllers must not open the barriers before a safety interval passes

and traffic light phases need to adhere to a predefined schedule.

Time itself can be introduced in various forms, such as discrete or continuous

(see [Lop15; Zei76] for exhaustive discussions). Discrete time evolution is modelled

by observing discrete events and associating eachwith a timestamp (e.g. an integer or

real value) and creating a chronological order of these events [GG15]. The passing of

time is the iterative reaction to these events in the defined order. Typically, the time

between events is disregarded, as it has no importance to the model and simulation.

The resulting value observations can be visually represented as step functions, as

shown in Figure 2.3a.

Continuous time [Reg15], on the other hand, describes continuously evolving

clocks and variables whose values steadily increase according to a pre-defined spec-

ification (e.g. a set of ODEs), as shown in Figure 2.3b. Even though computation is

more complex, for some system models the use of continuous time is indispensable.

Determinism The behaviour of models can be expressed in various forms using

formalisms such as finite state machines (FSMs), decision trees or as rule-based sys-

tems [HW15]. However, arguably one of the most important properties is the dis-

tinction between deterministic and non-deterministic models. Determinism refers

to the fact that, given it is in the same state and receiving the same input, a model

will always produce the same output. Contrary to this view, non-deterministic mod-

els can expose different behaviour at each execution. In its simplest form, a non-

deterministic model will randomly execute an action from a set of options (e.g. en-

16 Chapter 2. State of the Art: Systems Modelling

abled transitions in an FSM). This means the probability of each choice is p = 1
n ,

where n is the number of choices. More complex models can include probability the-

ory in form of stochastic behaviour descriptions, Markov chains and similar.

Causality In most situations, the influences between individual model compo-

nents are known. The model itself expresses a source’s impact onto a target, or in

mathematical terms: the change of one variable causes another one to change, too.

However, sometimes it might be of greater interest to express the relation be-

tween variables. This is especially useful in situations where it is not clear which

values will be known at runtime. Such a definition is referred to as acausal.
As an example, we might look at the calculation of the electrical resistor equa-

tion. A causal model might define that R := v
i (where “:=” is the variable assignment).

In traditional GPPLs this statement means, that the resistance value R is always cal-

culated based on the voltage v and the current i. In modelling languages that allow

acausal definitions, this statement can be used to determine the value of any variable,

provided the other two are known. Hence, the language will implicitly calculate one

of the following formulas, depending on which variables’ values are known:

(
R = v

i ;

v = R · i; i = v
R

)
. The use of acausal modelling increases the reusability of mod-

els [BF08] but also leads to unwanted and difficult to debug model behaviour.

2.3 Existing Languages and Formalisms
The rest of this chapter outlines some existing modelling approaches in the CPS field.

Due to its extent, however, a complete discussion cannot be provided. Amore exhaus-

tive list of CPS formalisms, languages and tools is provided for instance in the COST

Action report on “Multi-Paradigm Modelling for Cyber-Physical Systems” [Kli+19].

2.3.1 General Purpose and Software Modelling Languages
Since the late 1990s the software engineering community has thoroughly embraced

the OMG’s UML [UML17] as one of the de-facto standard modelling languages for

systems engineering. Its flexibility, combined with publications about the language’s

benefits (e.g. [And+06]), led to UML’s high popularity
1
and replacement of other lan-

guages, such as the Integrated DEFinition (IDEF) Method family [IDEF18] and Speci-

fication and Description Language (SDL) (see below). UML also allows more flexibil-

ity in the data modelling than the simpler entity-relationship (ER) diagrammodelling

language [Che76]. Nowadays, UML is omni-present and included in virtually every

computer science course syllabus. Its versatility manifests itself by offering over a

dozen different diagram types to express various views and allowing the description

of a system’s structure (e.g. class and package diagrams), behaviour (e.g. activity and

state diagrams) and interactions (e.g. sequence and communication diagrams).

The Specification and Description Language (SDL) [SDL16], a predecessor of

UML, provides many features for the modelling of systems. It persuades by offering a

1
To an extent, where it has even been called a disease [Bel04].

2.3. Existing Languages and Formalisms 17

clear, hierarchical entity composition using agents, sequential behaviour definitions
and data descriptions [Fis+00]. The language creates reactive system models whose

agents perform computation upon receipt of asynchronous signals. Lastly, SDL’s rig-

orous formal basis [Esc+01] is a compelling advantage that allows formal verification

(e.g. [Vla+05; MIJ14; SS01]) and tool-independent simulation.

One often-criticised weak point of SDL and UML – next to the latter’s lack of a

formal semantics – is their missing support for real-time and embedded (RTE) con-

cepts such as timing and performance. SysML [SysML17] is a language that adapts

and extends a subset of UML to include embedded systems modelling capabilities.

The OMG’s UML Profile for Schedulability, Performance, and Time Specification

(SPT) [SPTP05] is another extension of standard UML that was developed to over-

come the lack of RTE concepts by providing standardised diagram annotations and

quantitative analysis techniques. However, both SysML and SPT lack flexibility and

require improvements [Dem+08].

The UML Profile for Modeling and Analysis of Real Time and Embedded systems

(MARTE) [MARTE11] is a more recent and extensive approach to add fundamen-

tal RTE modelling capabilities, such as expression of non-functional properties and

execution platform specification, to the language. It is customisable, flexible, shows

promising successes [Iqb+12; Vid+09; Aul+13] and continues to follow its destiny as

a replacement for SPT [Obj18]. Experience also shows that combining UML, MARTE

and SysML allows merging their benefits [SSB14], provided that the semantic gap

between the languages can be bridged [Iqb+12].

By taking RTE concerns such as performance, timing and architecture into ac-

count, MARTE enters the realm of architecture description languages (ADLs).

2.3.2 Architecture Description Languages

ADLs are languages that primarily focus on the structural aspect of systems. De-

pending on the system under study, different ADLs can be considered, each spe-

cialised to a certain type of system. An early classification and survey of ADLs is

given in [Cle96]. Well-known ADLs include the Embedded Architecture Descrip-

tion Language (EADL) [Li+10] and EAST-ADL [EAST13]. In the CPS and RTE do-

main, the most widely used ADL is the Architecture Analysis & Design Language

(AADL) [AADL17; FGH06], which has been successfully used for various projects

(e.g. [Per+12]). It supports both textual system descriptions and an intuitive graph-

ical syntax. It is also worth mentioning the π-ADL [Oqu04], which is based on the

π-calculus and can be used for modelling of mobile and dynamic systems.

One often-criticised shortcoming of ADLs is their lack of behavioural specifica-

tion. To overcome this issue, some ADLs are extended to include such behaviour

descriptions. AADL’s Behavioural Annex [Fra+07b], for example, enriches the for-

malism with hybrid automaton (HA) capabilities (see below), which are based on the

language’s partially formalised execution model. A similar approach is used by Mon-

tiArcAutomaton [RRW15], which extends the capabilities of the MontiArc [HRR14]

ADL using finite state automata (FSAs). Both AADL and MontiArcAutomaton have

shown good initial results for RTE systems modelling [Fra+07a; RRW13; RRW14].

18 Chapter 2. State of the Art: Systems Modelling

Despite the benefits of employing ADLs inMDD engineering, the languages have

only seen moderate industrial interest. This is attributed to the low number of sup-

porting tools and restricted modelling views [WH05]. A different explanation can

be found in the fact that ADLs in general and AADL specifically, can be (at least

partially) replaced by UML [Pan10] and MARTE [Fau+07].

2.3.3 Hardware Description Languages

Hardware description languages (HDLs) have been extensively employed for the

modelling and simulation of embedded systems, low-level hardware and system-on-

a-chip designs since the early 1970s. VHDL [VHDL11; Ash08] and Verilog [Ver06;

TM96] are two of the most common representatives. Aptly named, HDLs target

transaction-level modeling (TLM) and register-transfer level (RTL) designs, which

can be used in the verification and validation of hardware. HDLs provide built-in

support for various embedded systems concepts, such as mutexes, semaphores and

four-valued logic, and measure time in sub-second granularity, e.g. in picoseconds.

Nowadays, SystemC [SysC12; Bla+10], an IEEE standardised language, is a popu-

lar addition to the HDL family. Contrary to the former two languages, SystemC is not

a complete language by itself but rather a set of C++ classes and macros, that allow

the representation of HDL-concepts. Indeed, the use of a GPPL as foundation pro-

vides SystemCwith out-of-the-box flexibility, adaptability and extensibility. SystemC

programs are written as regular C++ code, the according HDL concepts are created

using classes and functions provided by the library. Models are composed of modules

which specify ports, communication signals and channels. Behaviour is modelled in-

side modules as functions, which execute at predefined events and threads.

The language’s advantage is that existing integrated development environments

(IDEs), compilers and tooling (e.g. for testing and analysis) can be used. This increases

convenience for developers and allows the use of agile, tool-enabled development

styles. Furthermore, complete beginners can first focus on learning the C++ language

by using a plethora of available resource, before becoming familiar with the specific

modelling concepts. Users who are already proficient programmers can skip this step

and go straight to acquiring the required modelling skills.

SystemC’s pragmatic approach as internal DSL is reflected in the absence of

a formal semantics. Several proposals have been made, however, (see e.g. [Sal03;

Mue+01]), and there exist approaches to formally verify (subsets of) SystemC [HG15].

One disadvantage of HDLs is their lack of continuous time concepts and analogue

modelling capabilities. This issue has been addressed by providing AMS (analogue

and mixed-signal) extensions to the respective languages [IEEE99; Ver14; SysC16].

However, despite these extensions, the languages’ focus, as well as most tooling and

verification support is geared towards the generation and verification of TLM and

RTL designs. This is too low-level for larger CPS that focus on system composition.

2.3. Existing Languages and Formalisms 19

2.3.4 Synchronous Languages
In many situations CPSs need to react to changes in their environment. Systems that

perform actions based on input changes are commonly referred to as reactive [HP85].
The Statechart formalism [Har87] is a prominent representative of such languages.

It allows the modelling of system behaviour using a graph syntax (i.e. as state au-

tomata), where each node represents a system state and directed arcs symbolise state

changes. Statechart’s simple, yet highly expressive syntax and semantics increased

the formalism’s popularity and adapted forms have therefore been included in vari-

ous other languages, e.g. to UML as state diagrams.
Synchronous languages [Hal98] such as SIGNAL [BGJ91], Lustre [Hal+91] and Es-

terel [BG92] are prominently used to create and verify executable models of reactive

systems. These languages are based upon a synchrony hypothesis, i.e. the assump-

tion that computation can be performed infinitely fast and hence executed in zero

time. Practically, the computation only needs to be finished before the next inputs

arrive. Synchronous languages perform computations according to recurring logical

signals (clocks). A base clock provides the source interval rate, other computations

are based thereon. The three languages are distinguished by the fact that Esterel is an

imperative language, while SIGNAL and Lustre are declarative. This means that Es-

terel provides calculation blocks that are executed according to the clock status. The

latter two declarative languages express relations between variables in the form of

simple equations. A program is valid, if there is a non-deterministic assignment that

does not contradict any relation between calculation blocks. The difference between

the latter two languages is that Lustre operates on sequences of inputs and outputs,

while SIGNAL focuses on relating inputs and outputs of its operators, thereby con-

straining the program until it is deterministic. A more thorough differentiation of

these languages, including an introduction of each one is provided in [Hal93].

Synchronous languages have been used extensively for the verification of RTE

systems [Ray10; BKS03], but lack one important feature: the capability to model con-

tinuous time. To analyse steady system evolutions, e.g. described by ODEs, it is nec-

essary to introduce the concept of continuous time advances. To overcome this issue,

several attempts have been made to combine the advantages of continuous tools and

languageswith the synchronous system view [LZ07; Ben+11]. Recently Zélus [BP13],

which builds upon the advances of Lustre and Esterel, was developed as a standalone

solution to overcome the limitations and support continuous model behaviour.

2.3.5 Automata
The domain of automata (a.k.a. abstract machines) is concerned with the study of

problems using system abstractions that are expressed as directed graphs. In au-

tomata theory the graph’s nodes are referred to as states, edges as transitions. Classi-
cal automata types include FSMs [Gil62], pushdown automata [ABB97] and Turing

machines which are capable of recognising and accepting regular, context-free and

recursively enumerable languages, respectively.

The use of discrete transitions and variable modification at transition times al-

lows automata to express complex system behaviour using a high level of abstrac-

20 Chapter 2. State of the Art: Systems Modelling

tion. The analysis of automaton evolution is often performed by using a technique

called state space exploration. Thereby, the states of an automaton are iteratively

evaluated for enabled transitions, that lead to new global configurations of the au-

tomaton. Depending on the specific automaton, it is possible that its state space is

very large or even infinite. The set of system states in a state space, connected by

transitions, can be seen as a directed graph. For the analysis of the state space for

reachability (or non-reachability) of certain states, the description of recurring pat-

terns and similar analyses fall into the domain of temporal logic specifications, such

as the computation tree logic (CTL) [CE81] and linear temporal logic (LTL) [Pnu77].

These formalisms allow the expression of properties using formulas, whose validity

can be verified or disproven for state spaces using e.g. model checking [CGP99].

Though, the use of discrete transitions and variables leads to efficient property

analyses and the reduction in the number of possible system states, it does not allow

the modelling of continuous time or continuous variable evolution within a system.

Timed automata (TAs) [AD94; BY03] are a method to add such continuous evolution

to the automata formalism. This adaptation uses so-called clock-variables, which con-
tinuously grow their value. To control the automaton’s evolution, transitions can be

guarded by constraints (i.e. Boolean expressions) over clocks and it is also possible

to reset clock values to zero upon transition triggering.

TA have also been extended to add more capabilities to the clock interactions,

such as stopwatch automata [CL00] (clock advances can be paused), interrupt au-

tomata [BH09] (different interrupt levels and only one active clock per level) and

hourglass automata [Osa+14] (clocks have maximum values and can run backwards).

There are also techniques describing TAwith independently evolving clocks [Aks+08].

Modifications of the formalism also influence its language properties. While reacha-

bility is decidable for classic TA [Hen+98], for many extensions it is not.

Most of these extensions modify the expressive power of TA. In general, these

kinds of systems are commonly referred to as hybrid automata (HA) [Ras05] and

larger, more complex models as hybrid systems (HSs). In fact, the TA formalism is

a specialisation (subclass) of the more generic HS formalism. HSs are quite similar

to TA, but they allow maximum flexibility on the interaction with clocks. Clocks –

here referred to as continuous variables – can evolve at arbitrary rates (rather than at

a constant grow rate of 1 per time-unit). These rates are usually defined using ODEs

and specified by providing the derivative of the variable value at each state separately.

Additionally, at state transitions, variables can be set to any value, as opposed to just

being reset to zero in TA. Due to the infinite and unbounded state space of HSs,

their properties (e.g. reachability or liveness) have been shown to be undecidable in

the general case. Some subclasses, however, such as linear and rectangular HA, are

analysable. The boundaries between decidability and undecidability of HA have been

eagerly studied [Hen+98; PV94; Alu11; AHH96].

The popularity of TA and HSs has also led to the development of various tools

which allow the simulation and verification of continuous-time-discrete-state sys-

tems. Well-known representatives are UPPAAL [LPY97] and Kronos [Yov97] for TA

and Simulink/Stateflow [Raj+18], Modelica [FE98], and HyVisual [Bro+05] for HSs.

A thorough comparison of various popular HSs tools is available in [Car+06].

2.3. Existing Languages and Formalisms 21

2.3.6 Discrete Event System Specification

Discrete event simulation [Pag95] has been widely studied in the past for its simplic-

ity and efficiency in model simulation. This family of formalisms is based on classic

automata theory but extends the concepts and introduces additional features such as

time information or logical hierarchies. One highly popular representative of these

systems is the Discrete Event System Specification (DEVS) [Zei76] formalism family

which allow the modelling of discrete event systems and timed system evolution.

Models are specified using discrete states with continuous time advancements.

Classic DEVS specifies models, consisting of states and transitions, that define

input and output events. Each state is associated with a (non-negative) real number

or infinity (∞) that constitutes its lifetime. State transitions can be of two kinds, in-

ternal and external. Internal transitions are activated when the system spent enough

time, i.e. the state’s lifetime, within the corresponding state. External transitions are

triggered upon observation of input events. The formalism distinguishes between

atomic (single-component) systems and hierarchical compositions of DEVS compo-

nents, called coupled DEVS. There exist simulation algorithms for both atomic and

coupled DEVS [Zei84]. DEVS is based on determinism and can only specify reactive

behaviour but does not allow the continuous evolution of variables.

Over the years, various extensions of DEVS have been proposed to overcome

certain limitations. STDEVS [CKW10] provides the semantics of stochastic transi-

tions and extends the formalism by adding non-determinism. [Hwa11] identifies that

DEVS’s determinism renders it in fact a subclass of more general (non-deterministic)

timed event systems (TES). [CZ94] introduces parallel execution and simulation to

the formalism and [Hon+97] proposes the addition of real-time modelling.

Hybrid DEVS is another modification of DEVS that allows continuous evolu-

tion of state variables. While there exist several ways to do so, the solutions come

with drawbacks in complexity (e.g. the quantized state system (QSS) [ZS98; KJ01] ap-

proach) or require external data structures and calculation of continuous behaviour

(i.e. the wrapper solution). The latter also needs adaptation of the simulation algo-

rithms. A comparison of these two approaches can be found in [DP12]. The verifi-

cation of DEVS (see below) has been studied in [DG05]. The reachability of general

DEVS has been shown to be undecidable [HG05], but some analysis and verification

techniques have been found for a few subclasses [SW09; HZ09].

Due to the popularity of DEVS, many tools have been created to help in the

modelling and simulation of discrete event models. PythonDEVS [BV01] is an im-

plementation of DEVS in Python that also offers support for parallel DEVS. Due to

its GPPL-basis, PythonDEVS is very flexible. PowerDEVS [BK11] is a graphical tool

for the modelling of DEVS systems and QSSs, the latter allowing for seemingly con-

tinuous value evolution.ModelicaDEVS [BC06] is a reimplementation of PowerDEVS

in the Modelica language. SimPy [Tea18] is another Python library that focuses on

the general modelling and simulation of discrete event systems [Mat08].

22 Chapter 2. State of the Art: Systems Modelling

2.3.7 Petri Nets

Petri nets (PNs) [Pet62] are a family of formalisms which allow the efficient repre-

sentation of concurrent processes within complex systems [BKL19]. The models are

defined using a graphical syntax, consisting of places (circles) and transitions (rect-
angles) which are connected to a directed, bipartite graph using arcs. Data, resources

and control flows are modelled as tokens (represented as dots) which are stored in

places and can be produced/consumed by “firing” transitions. The operational se-

mantics are based on one simple rule: when firing a transition, it consumes tokens

from all its precondition places, i.e. the places that have an outgoing edge to the

transition, and produces tokens in all postcondition places, i.e. the places that have a

directly incoming edge from the transition. To specify the number of produced/con-

sumed tokens, pre- and postcondition arcs can be annotated with natural numbers,

specifying their respective weights. These kinds of basic PNs are often referred to as

place/transition nets, to distinguish them from more complex PN types.

Such complex PN extend the base formalism by allowing the specification of dif-

ferent kinds of tokens. One of the most studied extensions are coloured Petri nets

(CPNs) [Jen96], where each token is a value from a value type (a.k.a. “colour”). The

use of colours in CPNs allows themore compact modelling and representation of sys-

tems. Various other extensions of the formalism allow the representation of complex

values and data as tokens in high-level Petri nets (HLPNs). In HLPNs, transitions and

arcs are extended with guards, which evaluate the token values and assert a certain

token configuration before transition firings. Algebraic Petri nets [Vau86] are a spe-

cial form of CPNswhich specify token types using algebraic data types [EM85]. These

special type specifications allow the efficient customisation of data and use of theo-

rem proving techniques. Time has been added to the PNs in several forms [Pop13]

such as Time Petri nets, where transitions can only fire at certain times, Timed Petri

nets, where time is a token parameter, and Petri nets with Time Windows, where

transitions can only fire within certain time frames.

Many algorithms exist to efficiently simulate PNs and effortlessly obtain model

properties such as reachability, liveness and boundedness [JLL77]. One often-

encountered issue when analysing Petri nets is state-space explosion [Pel09]. Over

the years many techniques have been developed and applied to PNs to render them

more easily analysable. These include for instance symmetry [CGP99] and partial or-

der reductions [God91; KP89; Val92], the employment of Büchi automata [VW86] or

the use of bounded [Bie+99], distributed [GMS01; Bar+05b; Bar+05a], parallel [SD97;

BBR07] and symbolic [Bur+94; Bur+92; CBM90]model checking techniques. Another

helpful technique is the use of decision diagrams (DDs) [Bry86], which allow the

compact representation of states and optimised state space exploration.

Recently there is a growing trend towards the representation of continuous and

hybrid behaviour in Petri nets. Continuous Petri nets [RHS07; AD98] are models

where transitions consume and produce infinitesimal amounts of tokens when fired.

Thus, the actual behaviour can be evaluated by the observation of the net over time.

The transitions should therefore be interpreted as streams of tokens exiting and

entering places, the rates are defined in the transitions. The merging of discrete

2.4. Summary 23

Petri nets with time and continuous Petri nets results in the creation of hybrid Petri

nets [DA01; DA10]. The formalism extends classic Petri nets to achieve a powerful

modelling formalism that is comparable to hybrid automata. In fact, there exist trans-

lations between these formalisms, so that the simulation and verification of hybrid

Petri nets can benefit from existing HA-tools and algorithms [GAS05].

2.3.8 Bond Graphs
Bond graphs [Pay61; Bro99] are a modelling technique that focuses on the flow of

energy in different forms. The formalism’s foundation is the acknowledgement of

the similarities of different energy domains (electrical, hydraulic, mechanical) and

the dual forces of “flow” (e.g. current, velocity) and “effort” (e.g. voltage, force) that

in combination create power. Bond graphs are created domain-independently, which

means that the formalism uses the same notational form for all energy domains.

Domain switches are trivial e.g. using gyrator and transformer elements.

The models represent idealised forms of energy influences, where nodes model

idealised subsystems and edges (a.k.a. “bonds”)model the energy transfers, each bond

expressing effort and flow. Bond graphs use a graphical notation with directed edges.

Each edge is annotated with a “harpoon” tip, which shows the positive flow of energy

and a perpendicular line that indicates the causality of the bond. The formalism is

actively used in engineering domains where it is used for prototyping of a system’s

energy flows. From an initial design it is possible to further refine the subsystems by

decreasing the granularity until a precise enough model is obtained. Furthermore,

bond graphs can also be used for causality determination within complex systems.

2.4 Summary
This chapter examines the current state of the art of CPS modelling. Initially, a gen-

eral understanding of modelling approaches including systems concerns and aspects

is provided, alongside the introduction of essential vocabulary. The second part of

the chapter reviews different approaches to systems modelling and describes various

formalisms and languages to highlight their respective strong points and differences.

Note that this summary does not create a dedicated comparison of the presented ap-

proaches. The next chapter provides a thorough evaluation of these languages to find

the most appropriate candidate for the modelling of resource flow CPSs.

24 Chapter 2. State of the Art: Systems Modelling

Chapter 3

Resource Flow Modelling – Analysis

The previous chapter introduces numerous formalisms, languages and tools that are

actively used by the modelling and simulation community for the design and analy-

sis of CPSs. Oftentimes choosing the right one is non-trivial and requires trade-offs,

as each has its own specific advantages and strengths. The choice of the most appro-

priate candidate for a given modelling project or domain depends on many factors. A

major influence are the system aspects to be modelled (e.g. architecture, behaviour,

security). Good candidate languages and tools allow the expression of these aspects

for the target domain at hand and support the user during their modelling. Another

factor are the individual model developers themselves, as their pre-existing knowl-

edge or familiarity with certain tools might ease the learning phase.

One of the main goals of this research project is to enable the rapid modelling,

efficient simulation and precise verification of systems that are based on the flow

of physical resources. Indeed, expert modellers should be provided with the means

to quickly prototype their systems and novice users with a low-entry-barrier frame-

work
1
to experience the benefits of systemsmodelling. Additionally, both user groups

share the common need of creating their models using language concepts that are

semantically close to the target domain. To find such a formalism, it is necessary to

analyse the systems that should be modelled and find the features and properties that

need to be expressed and hence must be supported by a candidate language.

This chapter investigates the modelling aspects of CPSs such as inter-connected

smart homes, interactive office automation applications and automated gardening

installations. As each modelling language is geared towards the support of different

viewpoints, it is necessary to find an appropriate language for such resource-flow

CPSs. The search for appropriate candidate languages is guided by the analysis of

three case study CPSs. The systems were designed so that the required properties of

the target systems can be evaluated. Section 3.1 introduces the set of case studies,

which comprises three sample systems from different domains:

1
Evidently, the difficulty to learn a formalism is a soft-criterion that is hard to evaluate objectively.

Nonetheless, Section 3.3 introduces properties to judge languages using published experience studies,

usability reports and key metrics. More thorough analysis frameworks have been proposed by other

researchers (e.g. [BAG18]). Their systematic application on the languages in this thesis is considered

future work.

25

26 Chapter 3. Resource Flow Modelling – Analysis

1. The first one, a smart home system, studies observable influences such as elec-

trical power, hot water and noise. It features a standard electrical power mains

for power supply and solar power system, an electrical hot water heater, a

shower and various “smart” home appliances (such as an autonomous vacuum

cleaner, IoT television and dishwasher). During the day, the system uses solar

panels to produce and a battery to stock electricity.

2. The second case study, an office automation system, monitors the temperature

and consumption of electricity in a part of an office building (e.g. one floor).

The system controls lamps, blinds and air conditioning units to influence the

light and temperature, and asserts safety in the building, based on presence

and environmental sensors.

3. Lastly, an automated gardening application is under study. The application uses

light, temperature and soil moisture sensors to automatically control growing

lamps and watering systems to grow plants indoors. The system’s aim is to

provide the best environment for plants to grow for maximum harvest.

Next to expressing the components’ state and evolution over time, each of these

applications requires a modelling language or tool that is capable of representing the

flow of physical resources (e.g. light, water, electricity, noise) between components.

Experience has shown that not all languages and formalisms are suitable for the

modelling of systems that are defined by the flow of physical resources (“resource

flow systems”). Some of them lack essential features, others are highly complex and

require a lot of effort. Section 3.2 analyses the requirements on languages that are

apt for the modelling of resource flow CPSs. The resulting set of criteria is, extended

by other measures, used to evaluate existing languages and formalisms. Section 3.3

elaborates on this study and discusses its results.

3.1 Case Study Systems

This section introduces three case study systems to subsequently analyse their com-

mon modelling aspects and extract shared requirements. The systems are examples

of custom assembly CPSs whose behaviour is built on the flow of physical resources.

Before diving into the individual case studies, it is of interest to clarify the kind of

systems that are targeted by our research. In general, it is hard to provide a pre-

cise description of the systems that a language or formalism serves. Especially in

the domain of CPSs, the inherent variety and heterogeneity of components makes a

globally valid classification difficult, if not impossible. Nevertheless, the remainder of

this section will list indicators so as to more clearly judge which systems this project

is intended for. As previously mentioned, the systems in our focus consist of off-the-

shelf components, that are then composed to larger systems. Thus, the functionality

and interfaces are defined by the chosen devices and usually cannot be modified. The

three, aforementioned case studies are good representatives of such installations, but

they also provide good indicators for a range of other measures.

3.1. Case Study Systems 27

Size The first of these factors is the systems’ size. Our research targets applications

that would be classified as “small” when compared to CPSs in classical engineering

domains such as transportation, avionics or production line manufacturing. Both, the

number of devices, and the variety of component types remains easily manageable.

Typical systems are composed of a handful to a few dozen individual components,

with clear information about the resources and data flows between the devices.

Developers The system size is further reflected in the number of system develop-

ers. Our target systems are usually created and modelled by individual system de-

velopers (e.g. private projects such as smart homes), or small teams of two or three

modellers, for professional applications such as office automation. The target audi-

ence consists of newcomers to the domain, who are interested for instance simulating

and verifying that their smart homes systems are working as intended, and profes-

sional CPS creators who are in need of a simple, easy-to-use modelling tool for the

design and installation of e.g. automated control systems.

Connectivity The devices in our target systems are mostly connected by the con-

tinuous transfer of resources and simple communication interfaces. As opposed to

other modelling tools, this thesis does not aim for the simulation and verification

of complex communication protocols. The signals between e.g. IoT components are

modelled on an abstract level. Messages are simple and trigger actions (e.g. “start”

and “stop”). The focus lies clearly on the modelling of the reactive interplay between

devices, rather factors such as correctness or security of digital communication.

Non-Criticality A final characteristic of the systems in our focus is their non-

criticality. Specifically, this means that the systems under study do not fall into the

category of “critical systems”. Such installations are usually highly complex real-

time systems which require special attention to not endanger human life or health,

or can have significant impact on the infrastructure and financial well-being of large

organisations.While our systems still might be intended to verify the correctness and

safety of some systems (e.g. an backup lightning system in an office building), they

are not directly responsible for human life or health. Thus, for example, the modelled

backup lighting system might be triggered in case of power cuts. For emergency

situations such as fires, a dedicated, safety-critical system should be installed and

verified using expert tools that are intended for this specific purpose.

3.1.1 Smart Home

The smart home system is a home automation [Bru+11] (a.k.a. domotics) installation
using IoT gadgets and similar devices. The goal is to create a model thereof, to simu-

late system behaviour and resource consumption. Specifically of interest is the usage

of electricity and hot water within the system, and the discovery of potential for re-

source savings. The smart home uses a controller to schedule the execution of tasks

such as hot water provision and vacuum cleaning. Additionally, the model should be

28 Chapter 3. Resource Flow Modelling – Analysis

L L

L L

L L

L L

L L

L L

L L

Entrance

Kitchen Area

Living Room

Bathroom

Bedroom

Solar Panels

E

Boiler

T

V

V

L . . . Ceiling LampL

. . . Dishwasher

. . . Controller

. . . Shower

. . . Vacuum robotV

E . . . Power Mains

. . . Battery

. . . Electricity

. . . Light

. . . Data

. . . Water

Figure 3.1 – The floorplan of a smart home system with resource flow annotations.

Note that the lamps’ data connection (from the controller) and electricity connection

(from the battery) are not shown.

3.1. Case Study Systems 29

used to create execution schedules that take user comfort into account (e.g. perform

noisy jobs when the user is not at home).

The assumed physical environment is a house, consisting of four rooms (entrance,

living room, bedroom and bathroom) as shown in Figure 3.1. The house is connected

to the central power grid and has therefore a theoretically unlimited source of elec-

tricity, except for times of power outages. To save money, there are photovoltaic

power cells installed on the roof, which produce electricity on sunny days. These

panels are connected to a battery that accumulates the solar power if the house’s con-

sumption is lower than the solar production. The battery has a direct pass-through

connection to the power mains and switches automatically when it is depleted. For

emergency purposes the battery always keeps a certain minimum charge (about 10 %

of its capacity). This reserve is only used during a power outage, i.e. when power sup-

ply is shut down and therefore cannot be used.

Hot water is produced in an electrical water boiler, which has a very limited

capacity (e.g. 60 litres) and is set to heat the water (e.g. to 55 °C). The hot water is

used by the dishwasher and when the home-owner takes a shower.While the shower

continuously draws water (e.g. 8 litres per minute), the dishwasher quickly fills its

local reservoir once before and once halfway through a washing cycle.

The house possesses large windows in every room and is therefore well lit

throughout the day. In the evenings and during the night there is a need for ad-

ditional light sources. All lamps in the house are remote controllable through soft-

ware APIs. The house further features other “smart” devices such as an autonomous

vacuum cleaner, a TV and a dishwasher, which can be observed and controlled us-

ing APIs. These interfaces can be polled for the current device status (e.g. on, off or

cleaning for dishwasher and vacuum) and used to execute various actions (e.g. start

cleaning). The vacuum robot is assumed to be very noisy and therefore should not

be running when the user is at home. Its battery is limited so that it can clean about

half of the house’s surface before having to return to its base station for charging.

The dishwasher is less noisy and can be run while the home-owner is present. There

are however certain time periods when its activation is disturbing, namely when the

user is watching TV or when she is in bed. The TV is manually controlled, its API,

however, can be used to discover if the dishwasher should not be running.

3.1.2 Office Automation

The office automation system’s purpose is to monitor and control the light and tem-

perature of an office building (or a part of it, such as a floor). The system consists of

three offices which are all located along a hallway on the same floor. Each room has

at least one window through which sunlight can enter. The lights in each office can

be controlled using a switch with the three options on, off and auto. The hallway’s
switch is always set to auto. The first two settings turn the offices’ lights on and

off. Auto regulates the lamps depending on the amount of sunlight and guarantees a

certain minimum brightness in the room. The auto-mode is further using a presence

sensor, so that the lamps are not turned on when the workforce is not present (e.g.

during the night). Upon detection of user presence, the lamps are turned on immedi-

30 Chapter 3. Resource Flow Modelling – Analysis

Rest of Building

E

E

E

E

E

E

E

E

E

E

E

E

E

Hallway
Office

Office

Office

. . . Ceiling Lamp

E . . . Emergency LampE

. . . Light Switch

. . . Air condition

. . . Controller

E . . . Power Mains

. . . Battery

. . . Data

. . . Electricity

. . . Emergency Electricity

. . . Light

. . . Heat

Figure 3.2 – The floorplan of the office system, annotated with the resources that

flow between the system components.

ately and left on until five minutes after the user left the office, or immediately when

the light switch has been set to on/off manually. For security purposes the lights in

the hallway should always be on when a user is in the hallway or in an office.

Next to the lighting system, each office and the hallway are equipped with an

air conditioning (A/C) unit. There are four different power settings for the A/C’s fan

(off, 1, 2 and 3). Depending on the setting, the device requires a different amount of

electricity (0, 500, 700 and 900 watts for off, 1, 2 and 3, respectively).

The temperature inside each room of the building depends on the A/C’s out-

put, the office size (i.e. the volume of air in the office), the outside temperature and

3.1. Case Study Systems 31

whether the sun shines into the office. This means that during periods of sunshine

a certain amount of heat energy (measured in watt) is added to the office. To avoid

the sunshine, the window blinds can be regulated to open, half open and closed. No

heat/sunshine is added to the office when the blinds are closed
2
. Another influence,

however, is the outside weather which interacts through the large, single glazed win-

dows. Due to this impact the temperature rises (respectively sinks) when it is warmer

(resp. colder) outside than in the office.

The office system is powered by electricity through a three kilowatt electrical

power mains. If the electricity usage exceeds 3 kW, the system’s fuse trips and cuts

off all electricity in the system. This situation can occur during peak usage (i.e. all

A/C units use maximum power, all lamps are turned on, the motors for the window

blinds are activated). Occasionally, the circuit breaker also triggers when a light bulb

burns out and the electricity surge spikes. In this model, we assume that this can only

happen at the moment when a lamp is turned on, not during the lamp’s operation.

In any way, as soon as the electricity is cut – due to a tripped fuse or a general

power cut – an emergency system is activated. This backup system uses an alterna-

tive electrical circuit to run emergency lamps which point the way to the outside.

The energy is drawn from a battery which is kept full by the main power supply.

The model is used to simulate the system behaviour during various scenarios

such as power outages and tripped fuses. Additionally, the energy consumption from

temperature control and lighting throughout normal operation can be studied and

used to develop better, more energy-efficient controller configurations.

3.1.3 Automated Gardening

The last case study is an automated gardening application. Its purpose is to support

the growth of fruit, vegetables and herbs indoors. The plants are grown in a south-

facing room with large windows, in soil-filled trays, pots and boxes of different sizes.

As the plants’ requirements differ from species to species, a controller is respon-

sible for ensuring that each plant’s growing conditions match its specific needs. This

means that a plant should receive enough light and water per day, while at the same

time respecting minimum and maximum constraints. Additionally, each plant type

has its specific preferred temperature range. To ensure that these parameters are met

for each individual plant, the system’s controlling unit uses various sensor measures,

including temperature, soil moisture and light intensity. To modify the plants’ envi-

ronment, several actuators can be triggered to provide light, shade and water. The

actuators include ceiling lamps, window blinds, special growing lamps with inte-

grated heat modules, and watering systems.

Figure 3.3 shows a schematic representation of one plant subsystem. The hydra-

tion system consists of a pump which fills a water reservoir. Small pipes are used

to transport the water to the individual plants from there. At regular intervals the

controller activates a relay, which triggers a small water pump to fill the reservoir.

2
We assume that any increased temperature between blinds and windows is read through the

temperature sensor.

32 Chapter 3. Resource Flow Modelling – Analysis

The filling of the reservoir can be delayed due to the length of the inflow hose, i.e.

when the hose’s volume itself is large.

The automated gardening system is also equipped with a germination subsystem,

that is used to grow grains into seedlings. This germination module contains several

germination boxes in which batches of grains are kept moist and warm until they

germinate and grow large enough to be transferred to the larger systems. Each ger-

mination box is a semi-closed container (with ventilation openings) and has a small,

electrical heater built in, that can be used to regulate the temperature.

The purpose of model creation (i.e. its modelling intent) is to verify that the con-

troller is correctly programmed and creates a schedule which asserts that each plant

receives the optimal amount of light, water and heat.

Su
n

Plants

Growing Lamp

Pump

Reservoir

Ou
tfl
ow

Inflow

Figure 3.3 – Schema of a plant growing subsystem. The lamp produces heat and light

for the plants directly underneath. The hydration system supplies the plants with

water. The figure does not show the germination subsystem and the ceiling lamps.

3.2 Modelling Criteria

Even though the case studies represent different usage scenarios and serve different

tasks, many of the concepts that need to be modelled are similar. All three systems’

behaviour is largely based on the flow of resources such as electricity, light andwater.

This section describes the aspects that should be met by a language or tool to allow

3.2. Modelling Criteria 33

the modelling of these and similar systems.

Reactivity As the main goal of CPSs is to create components and systems that

adapt their behaviour according to changes in their environment, the probably most

dominant feature of such systems is reactivity. For example, in all three case study

systems, light sensors are used to capture the intensity of environmental light and,

in case the measured value is too low (e.g. at sunset), the systems’ controllers will

open the window blinds or turn on lamps.

Next to observing the system’s general environment, some system components

modify their behaviour as a consequence of changes in other components or other

parts of the system. In the smart home case study, we can observe that starting dish-

washer requires a certain amount of hot water. Taking the hot water from the boiler,

however, triggers its replenishing with fresh, cold water. This reduces the water tem-

perature within the reservoir and initiates the heating process. The heating itself

draws electricity from the battery, if possible, and the power mains otherwise. The

example shows that a small action in a subsystem can easily cause (chained) reactions

in many other parts of the system.

Synchronism While most system tasks happen over certain time periods (e.g. wa-

ter heating, charging a battery), the signals within the system are propagated imme-

diately. For example, a room is virtually instantly illuminated by a lamp. The actual

time delay (i.e. the speed of light) is negligible for our target applications. Even for

energy saving lamps, whose luminosity increases over time, the transition to the

on-state and the start of light dissipation is immediate. The synchronism criterion

requires that as soon as one value changes, the entire system is checked for possible

changed influences between components. This assumption of quasi-immediate re-

sponses with negligible delays can also found in real-time systems which guarantee

to respond within minimal delays (i.e. before so-called “deadlines”).

Parallelism While synchronism and reactivity prescribe each individual subsys-

tem’s behaviour and its patterns of change, CPSs usually consist of combinations of

many components. Such systems often execute tasks and react to inputs in parallel. In

the office system for instance, a tripped fuse will shut down all electrical appliances

and start the emergency system at the same time. It is important that the modelling

language, as well as its underlying formalism and semantics, support the definition of

parallel events and actions, such as the parallel state change of all electrical devices.

Locality, Compositionality & Architecture Despite the exchange of data and

resources, the behaviour of a system component is usually based on its internal state

and data that is local to the component. For instance, the internal state of the office

system’s air-conditioning units is not known to other components. Hence, in the

model, this state and any other information, which is used to produce its output

should also remain encapsulated within the component. This supports the coherent

interaction with components through interfaces and enables abstraction.

34 Chapter 3. Resource Flow Modelling – Analysis

Locality therefore refers to the language features that allow the clear definition

of a communication interface and the “hiding” of internal data. Obviously, encap-

sulation can be also expressed by e.g. imposing usage conventions
3
. This strategy

can become problematic when the guidelines are ignored (e.g. by unknowing novice

users). Instead, languages should provide explicit means to control the visibility of a

component features and protect data from outside modification.

The enforcement of locality also requires architectural aspects and means to al-

low communication and synchronisation between the system’s components. Besides

the pure horizontal connection (i.e. components on the same level), it is also neces-

sary to allow hierarchical compositions of components. This allows the creation of

larger systems-of-systems but also the decomposition of components.

Continuous Time Asmentioned before, manyCPSs’ actions occur over time. This

means that additionally to instant data transfers the jobs need to take the passing of

time into account. For example, while discharging a battery, the amount of stored

energy decreases over time, taking a shower continuously reduces the amount of

hot water within the boiler, and plants require every day a certain a minimum light

intensity for a given time period. Ideally, the chosen formalism allows arbitrarily

large or small (e.g. real-valued) timesteps so that all points in time can be analysed

(not just the ones that coincide with ticks). The time concept must further support

continuous influences between components (e.g. a pump filling a water tank).

Non-determinism When it comes to real-world applications, the evolution of a

system is not always predictable. The wireless communicationwith the smart home’s

robot vacuum cleaner is not always reliable, for instance. This means that messages

can be lost and need to be repeated. Potentially, the robot is not responding at all,

meaning that the system has to adapt its behaviour. Similarly, when turning on the

office system’s light bulbs, they can either produce light or, alternatively, burn out due

tomaterial imperfections and cause a spike in power usage. CPSmodelling languages

should make it possible to express such scenarios and thus the unpredictability of

certain systems, as non-determinism is inherently part of the physical world.

3.3 Evaluation of Languages and Formalisms

The above list of key aspects provides a solid basis for the evaluation of modelling

languages. This section explores existing solutions, in the search for an appropriate

candidate language or tool for the implementation of resource flow CPSs.

3
Python’s convention for example is that class attributes starting with an underscore (“_”) are

internal and not part of an object’s interface. (https://www.python.org/dev/peps/pep-0008/
#descriptive-naming-styles)

https://www.python.org/dev/peps/pep-0008/#descriptive-naming-styles
https://www.python.org/dev/peps/pep-0008/#descriptive-naming-styles

3.3. Evaluation of Languages and Formalisms 35

3.3.1 Additional Selection Criteria

The six key features cover the functional aspects of the evaluation, but do not take

other factors into account that could sway users. Thus, four more aspects are in-

troduced to decide between modelling languages. Note that the definitions of these

additional properties have been adapted to the types of systems we plan to model,

i.e. systems with a focus on the flow of resources. An appropriate language or for-

malism should therefore be easy to master for novice users, but also offer quick nav-

igation and configuration so that it can be used efficiently by professional system

developers. The goal is to provide a language that can be used for the precise model

analysis of small CPSs and the prototyping of larger applications likewise. Other re-

search projects might put different emphasis on these factors if they target other user

groups (e.g. experienced modellers of highly complex or dedicated analyses) or aim

to model different systems (e.g. untimed systems require different expressiveness).

Usability & Simplicity The term “usability” describes the ease of a language’s

or formalism’s use. In the context of non-experts, usability also describes the diffi-

culty of starting to exploit a language’s features. Influencing factors can be e.g. the

necessity of using a proprietary programming language or a lacking intuitiveness

of the modelling approach. Simplicity is a specific part of the usability and refers

to the number of modelling constructs that need to be learned before being able to

effectively and efficiently use the language. Although these properties are often sub-

jective, the review of existing languages is based on experience reports, the number

of different language concepts (e.g. required diagram types), and similar data to per-

form an as objective evaluation as possible.

Expressiveness Another factor is the expressiveness of a language or formalism.

It evaluates which components and systems can be modelled, and which features

cannot be expressed. An example for this might be the possibility to model syn-

chronous and asynchronous communication. Some languages and formalisms even

support the expression of several views within the same model and are thus more

flexible and versatile. However, the increased expressiveness comes at the cost of a

larger number of language concepts and therefore a steeper learning curve and more

complex simulation and verification.

Suitability Expressiveness and usability are factors that predominantly evaluate

languages in general. Suitability, on the other hand, relates the modelling language to

concrete target domains. It refers to the availability of required domain features (e.g.

the possibility to model resource types and transformations) within the language.

The aspect also includes the complexity of the extension process, i.e. how difficult it

is to add new concepts if they are not provided by default. Lack of suitability results

in a wide semantic gap between the model and the system that should be expressed,

which in turn causes communication and interpretation issues at best, and flawed

verification and wrong system behaviour in the worst case.

36 Chapter 3. Resource Flow Modelling – Analysis

Formal Basis The availability of a formal syntax or semantics is of high impor-

tance, especially for the analysis and verification of CPS models. Formal verification

is a powerful tool that can be used to guarantee that certain unfavourable system

configurations can never be reached. An example use case is to prove that the emer-

gency power system can always run for at least 15 minutes, irrespective of the cir-

cumstances. Thus, it can be used to assert the confidence in a system and avoid un-

wanted system design flaws. More formally expressed, formal verification techniques

can establish the proof for reachability and liveness properties.

3.3.2 Language Evaluations
The rest of this chapter uses the above criteria to evaluate some of the languages

and formalisms of Chapter 2. The focus is placed on a selection of representative

candidates that are actively used for CPS modelling. The most promising candidates

were chosen, based on an informal upfront evaluation.

UML & MARTE UML has been successfully used to model numerous projects.

The availability of various diagram types – each dedicated to a specific purpose –

renders the language powerful and versatile. UML diagrams offer features that allow

the specification of reactive, synchronous, parallel and non-deterministic systems.

MARTE, UML’s extension for RTE systems, adds missing features for the modelling

of resource flows and the ability to express continuous actions and timing constraints.

The biggest drawback of UML andMARTE is their complexity. UML itself defines

over a dozen different diagram types, each with its own syntax and abstract seman-

tics. MARTE extends the language, but also requires the use of further languages,

such as the Object Constraint Language (OCL) [WK98]. The result is a highly ex-

pressive but very generic language, whose capabilities often exceed the required fea-

tures [ERG08] and lead to complexity and confusion of newcomers. An adoption of

MARTE poses difficulties when integrating with UML, for example when trying to

bridge the semantic gap between the two languages [Iqb+12]. In general, the use of

UML, similar to SysML, is complicated and experience shows that novice users need

several months to obtain even moderate modelling skills [Fri09].

Another caveat is the fact that the semantics are not formally specified [Inf06].

While this vouches for reuse of the language for various projects with different se-

mantics (e.g. using UML profiles), it effectively makes the exact meaning of models

ambiguous unless specifically clarified. The lack of formal semantics also poses prob-

lems for simulation, verification and code generation, as the tools developed for one

project, might not be reusable for another without significant adaptation.

SDL SDL is a strong candidate for themodelling of the systems. Its graphical syntax

is easy to learn and understand. Component behaviour is specified using extended fi-

nite state machines and encapsulated in agents. Systems are specified through a hier-

archical architecture that is based on the composition of agents. Its design is reactive,

as agents can perform their processing upon receipt of input signals. SDL’s timing

constraints are modelled using timers that also trigger a signal upon expiration. The

3.3. Evaluation of Languages and Formalisms 37

language’s formal basis is a significant strong point and allows simulation and for-

mal verification [Dol03]. SDL’s weak point with respect to our requirements, is that

all signals are asynchronous. This contradicts our view of CPS, where influences and

signals are synchronous, and messages are processed immediately. Another minor

drawback is that SDL was developed for communication systems, hence its concepts

are geared towards the representation of data, rather than physical units.

SDL experiences weaknesses when it comes to the expressiveness of its real time

concepts and the usability in some situations. The authors of [Boz+00] highlight some

issues and propose a profile-based approach which uses different semantic profiles

for tasks such as simulation and formal verification. This solution, however, further

adds complexity by varying SDL’s semantics, which is challenging for newcomers.

Architecture Description Languages In general, ADLs are dedicated to solv-

ing a specific task. However, by adding behaviour descriptions to these architecture

models the formalisms become very powerful. For example, AADL’s Behavioural An-

nex is one such expansion which uses hybrid automata to add behaviour modelling.

The extension integrates various features to the text-based language, including en-

hanced data type definitions and the specification of subprogram behaviour, but lacks

a formal definition. The available formalised parts allow for some analysis and eval-

uations, but do not support any formal verification techniques. For the purpose of

modelling resource flow CPSs, AADL is not an ideal fit in terms of suitability, as the

language focuses on a lower abstraction level (memory, processes, hardware). The

lack in suitability is emphasised in its additional shortcomings at other aspects (e.g.

component compositions) [Did+07]. The authors of this publication also highlight

the difficulties of starting to model with AADL.

MontiArcAutomaton is another extension of an ADL, in this case the MontiArc

ADL. It too uses automata to add behaviour to the system descriptions. The lan-

guage’s advantage is that MontiArc itself is based on the formal semantics of FO-

CUS [Bro+92], which can therefore be leveraged. This means that languages which

are based onMontiArc can be used for formal verification and evaluations.MontiArc-

Automaton however lacks support for continuous time evolution. Instead, it is based

on time-synchronous or cycle-based (tick) evolution and lacks support of clocks and

similar time concepts. Further, it only supports MontiArc’s asynchronous message

passing system and hence contradicts the synchronism requirement.

SystemC SystemC is the probably most flexible representative of HDLs. It con-

vinces through its C++ basis, which is a great advantage for users that are already

familiar with programming in general and C++ in particular. One problem of using

SystemC for resource flow systems is that most predefined concepts are defined for

low-level electronic circuits and that the language therefore lacks support for higher-

level concepts. However, using a GPPL as basis has the advantage that user-defined

additions can be integrated, and highly complex systems designed (even though the

creation of domain-libraries might require significant effort).

The drawbacks of SystemC include the lack of true support for parallelism. In

fact, its concurrency concept is based on cooperative multi-threading (a.k.a. “corou-

38 Chapter 3. Resource Flow Modelling – Analysis

tines”). This means that a SystemC thread executes until it voluntarily yields con-

trol and another thread is chosen to take over. This choice is based on a reactive

paradigm, where each thread specifies a time interval that has to pass or a system

event that needs to be observed, at which it aims regain control. Even though no time

passes during thread execution (this concept is called delta cycles), it is impossible to

truly execute threads in parallel. The execution order of threads is under-specified by

the language and varies depending on the chosen SystemC simulator and compiler.

This can lead to different results when modelling dependencies between “parallel”

threads. This design concept also influences the synchronism of the language. While

signals are sent immediately, they are only acted upon by the receiver thread when

it is triggered by the simulation kernel. As the choice of which thread to run next is

not predefined by SystemC, it is possible that different simulation tools will choose

different execution orders, which can potentially lead to unforeseen behaviour and

race conditions. Finally, SystemC neither offers built-in support for continuous time

nor explicit non-deterministic behaviour specification. While latter can be simulated

using the underlying C++ mechanisms, support for continuous time concepts is dif-

ficult to add and involves extensive modification of the base language.

Synchronous Languages Esterel is a synchronous language which defines op-

erator nodes that execute in regular intervals according to the base clock. The syn-

chronous hypothesis (uponwhich the language is based) assumes that all node inputs

are available at the start of the function. Operators are defined in a network which

cannot contain loops (similar to Kahn networks [Kah74]), to uphold the theory of

zero-time computation. Though Esterel’s syntax is imperative and should be easy-to-

learn for experienced programmers, the language itself comes with a steep learning

curve, due to the underlying synchronous, iteration-based paradigm. The language

is powerful, but requires much experience and the learning of best practices which

can be somewhat tedious for newcomers. Similar to most synchronous languages,

Esterel supports reactivity and parallel programming. On the other hand, the syn-

chronism principle voids all support for non-determinism. Its lack of an integrated

concept of time further removes the support for continuous evolution. Instead, the

language requires external signals to provide the computation points. Hence, peri-

odic computations need to be triggered by an external time signal.

Lustre is another representative of the synchronous languages. The language

builds on the declarative programming paradigm. Lustre provides a sound model of

computation with predictable performance, property verification methods (liveness,

deadlock freedom), and predictable buffering. The language’s declarative paradigm

is difficult to grasp for novice users, however. Furthermore, extensions for new con-

cepts and data types (e.g. resources in our case) are difficult to implement.

Recently, Zélus [BP13], a Lustre-inspired synchronous language, aims to over-

come the limitations of classical synchronous languages by adding support for ODEs

to model continuous behaviour. However, just as Lustre, Zélus too suffers from a

steep learning curve, partially owed to its difficult syntax. Being a very recent devel-

opment, the full scope of Zélus’ capabilities has not been entirely studied yet, and

future extensions and improvements of the language are likely. At the time of writ-

3.3. Evaluation of Languages and Formalisms 39

ing however, Zélus lacks support for the local encapsulation of information. To the

best of my knowledge, it appears that non-deterministic system models are not sup-

ported. Further, as the language is still under active development, its expressiveness

is hard to estimate and is likely to change with future versions.

Hybrid Automata Tools The powerful expressiveness of hybrid automata (HA)

led to the development of various tools and languages for their specification and

analysis. One of the most commonly used ones is Simulink. Simulink is a graphical

programming environment for the modelling and analysis of dynamic systems. After

an initial effort to become familiar with Simulink, the tool convinces through large

libraries of predefined components, powerful numerical solvers and industry-proven

simulation capabilities. The tool is extended by Stateflow, a plugin that allows the def-

inition of discrete automata based on non-deterministic Harel Statecharts [Har87].

In combination, Simulink/Stateflow can be used to model HA. The tool’s language al-

lows reactive and parallel modelling and supports system compositions with data en-

capsulation. The biggest drawbacks of Simulink/Stateflow are the lack of formal ex-

ecution semantics (although proposals exist; e.g. [HR04]). Depending on the choice

of numerical solver, the tool can produce different and, in corner cases, unexpected

results. This also impacts the model’s synchronism, as sent messages are relayed by

the simulation engine which can lead to unforeseen behaviour.

HyVisual is a hybrid systems (HSs) application based on the Ptolemy II multi-

formalism simulation and verification platform. It allows the definition of HSs with

causal influences. Its academic development background led to high flexibility, so

that it supports all key aspects described in the previous section. It further convinces

through its formal semantics, which can be leveraged for simulation and verification.

However, it also resulted in a lack of usability. The exclusively graphical modelling

environment is difficult to understand for newcomers, while at the same time being

a tedious burden for advanced power-users, as pointed out in [Car+06].

Modelica is a textual language specification for the creation of multi-domain sys-

tems. It supports the acausal definition of complexmodels. The language’s popularity

led to the creation of a large standard library, rendering Modelica suitable for many

domains such as mechanical, thermal and electrical applications. A caveat however

is that the creation of user-defined libraries is non-trivial and requires proficiency in

the language. Another drawback of Modelica is that it is a pure language specifica-

tion and does not offer a reference implementation or formal semantics. Tools such

as OpenModelica [Fri+06] and Dymola [Brü+02] can therefore produce different re-

sults, despite using the same syntax and model. This can become problematic when

it comes to the formal verification of models that require numerical equation solv-

ing. In terms of usability the language suffers from the fact that its target audience

are modelling experts with good domain knowledge. This leads to a steep learning

curve, requiring the learning of many particular language features.

DEVS PowerDEVS is one of the many tools and libraries that have been devel-

oped to support the creation, simulation and analysis of DEVS models. It implements

the classic DEVS algorithm, which supports atomic and coupled models and thereby

40 Chapter 3. Resource Flow Modelling – Analysis

keeps information local. The tool’s graphical user interface (GUI) is based on the

graphical DEVS representation and thus easy to learn and use. Further, the tool offers

the programmatic extension of functionality, even if it requires strong knowledge of

the tool’s internal processes. PowerDEVS prominently features the use of the QSS

method, which approximates continuous variable evolution and support for ODEs.

On the negative side, important missing features include the support of parallel and

non-deterministic models, as neither is part of the classic DEVS formalism. There are

extensions to support parallel and stochastic DEVS, and several approaches try to add

model checking and formal verification (e.g. DEv-PROMELA [YHF16]). Despite the

research in these directions and attempts to approximate continuous evolution us-

ing time and state discretisation (see [Van00]), the application of DEVS to modelling

continuous resource flows requires a good grasp of the formalism’s details. This in-

creases complexity and lowers the usability for modelling newcomers. There exist

other, easy-to-use DEVS tools and libraries that make up for some of these short-

comings (e.g. PythonDEVS), but they do not support the continuous time and ODEs.

3.3.3 Discussion

The results of the individual languages’ analyses are summarised in Table 3.1. Since

the evaluation only considered the most promising candidates for CPSs modelling,

most languages support reactivity and, except for Zélus, some form of local encapsu-

lation of information. However, when comparing other features several drawbacks

can be found: Certain languages do not support continuous behaviour (MontiArcAu-

tomaton, SystemC, Esterel, Lustre), lack expression of parallelism (AADL, SystemC,

PowerDEVS), non-determinism (Esterel, PowerDEVS) or synchronous communica-

tion (SDL, MontiArcAutomaton, Simulink). The most promising hybrid system can-

didates lack formal semantics (Simulink, Modelica) or usability (e.g. HyVisual’s te-

dious graphical editor) and often require large efforts to add domain-concepts.

Even thoughUML/MARTE andHyVisual tick all boxes for the key aspects, UML’s

complex web of diagrams, MARTE’s OCL-based annotations and HyVisual’s com-

plex adaptation procedure are far from simple or beginner-friendly. The table also

highlights that few languages are equipped with or allow user-friendly extension to

support resource flow concepts (e.g. definition of own resource types) .

3.4 Summary
Custom assembly CPSs such as smart homes, office automation systems and auto-

mated gardening installations require modelling languages/tools that are capable of

representing the flow of physical influences (e.g. light, water, electricity) between

components, in addition to expressing the component’s state and evolution over

time. This section describes three case study systems and extracts similarities and

basic modelling aspects. The analysis of the three systems led to the discovery of six

key concerns whose representation should be supported by a CPS language:

1. Reactivity; to allow system models to react to environment changes.

3.4. Summary 41

2. Parallelism; for the modelling of concurrent phenomena and behaviour.

3. Synchronism; since CPS behaviour changes are primarily instantaneous.

4. Locality & Architecture; for component separation and system composition.

5. Continuous Time; to model continuous resource flows and behaviour over time.

6. Non-determinism; as it is inherent to many physical systems.

The above list, extended by the factors simplicity, expressiveness and availability

formal semantics, as well as usability and suitability, served as a reference guide for

the search of a suitable, existing modelling language. The analysis of several existing

candidates, representing various modelling paradigms, revealed that very few lan-

guages support all six key features, and that the ones that do show severe lacks in

terms of usability and suitability for our target domain.

Table 3.1 – Evaluation of several modelling languages for resource flow intensive

CPSs such as home and office automation or plant growing systems.

Formalism/Tool R
ea
ct
iv
it
y

Sy
nc

hr
on

is
m

Pa
ra
ll
el
is
m

Lo
ca
li
ty

C
on

ti
nu

ou
s

N
on

-d
et
er
m
in
is
m

U
sa
bi
li
ty

Ex
pr

es
si
ve

ne
ss

Su
it
ab

il
it
y

Fo
rm

al

UML / MARTE ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ∼ ∼

SDL ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ∼ ✓

AADL + Beh.Ann ✓ ✓ × ✓ ✓ ✓ × ∼ × ∼

MontiArcAutomaton ✓ × ✓ ✓ × ✓ ✓ ∼ ∼ ✓

SystemC ✓ × ∼ ✓ × ∼ ∼ ✓ ∼ ×

Esterel ✓ ✓ ✓ ∼ × × × ∼ × ✓

Lustre ✓ ✓ ✓ ✓ × × × ∼ × ✓

Zélus ✓ ✓ ✓ × ✓ ? × ? × ×

Simulink/Stateflow ✓ × ✓ ✓ ✓ ✓ ∼ ✓ ✓ ×

HyVisual ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ∼ ✓

Modelica ✓ ∼ ✓ ✓ ✓ ✓ × ✓ ∼ ×

PowerDEVS ✓ ✓ × ✓ ∼ × ✓ ∼ × ✓

Key aspects Add. criteria
Symbol meaning: ✓ (Yes) × (No) ∼ (to some extent) ? (unknown)

42 Chapter 3. Resource Flow Modelling – Analysis

Chapter 4

The CREST Language

The previous chapter highlights the need for a modelling language that allows the

efficient description of resource flows within a cyber-physical system (CPS). The

analysis also revealed that only few modelling solutions exist for CPSs within our

specific application area. The latter discovery suggests the use of DSLs [Völ+13] to

overcome the distance between tool and system domain. DSLs are “dedicated to a par-
ticular domain or problem” [Rev+00] and aim to facilitate expression of target domain

concepts and problems by providing specialised model and language constructs. A

well-known example of a DSL is the Structured Query Language (SQL). Its purpose

is to simplify the interaction with relational database systems by offering dedicated

features for the efficient insertion and querying of database entries.

Following the DSL methodology, the modelling and simulation community em-

braces the approach by creating domain-specific modelling languages (DSMLs).

These languages are, opposed to GPPLs, dedicated to modelling of domain-specific

concepts and usually designed by modelling and language design experts in com-

bination with specialists from the target domain. The goal is to create a modelling

language or tool that helps domain users to learn and use modelling concepts easily,

and ideally to adapt the DSML to the users’ existing knowledge.

This chapter introduces the Continuous REactive SysTems language (CREST).

CREST was developed for the modelling of resource flow intensive CPSs such as

smart homes, office automation and intelligent gardening systems. Its design focuses

on the support of the six core-principles (reactivity, parallelism, synchronism, local-

ity, continuous time and non-determinism), as identified in the previous chapter. The

language’s purpose is the modelling of the reactive behaviour of CPS components

and the transfer of physical resources and signals between those components. It en-

forces the distinction of resources by their type (e.g. light, electricity, heat or switch

position) and modelling of their transfer as influences between system components

(“entities”). Entities are structured in a strictly hierarchical system view which en-

courages composition and system-of-systems designs. Their behaviour is modelled

using automata, continuous value updates take real-valued time into account. The

language semantics preserve dynamic behaviour with arbitrary time granularity, to

allow the modelling, precise representation and faithful verification of CPS.

43

44 Chapter 4. The CREST Language

This chapter is structured as follows: Section 4.1 introduces CREST’s graphical

syntax, formal language structure andmodelling restrictions. Section 4.2 provides de-

tails of the language’s semantics, first informally then using structured operational

semantics (SOS) rules. Section 4.3 describes the formal basis of syntactic extensions,

which increase CREST’s usability without altering its expressiveness. Finally, Sec-

tion 4.4 analyses CREST’s properties and compares the DSL to related formalisms.

Related Publications The content of this chapter, especially the syntax, se-

mantics and formalisation has been the subject of previous publications, which

were composed primarily by the thesis author [KLB18b; KLB18a; KLB17]. This

chapter revisits these early works and builds upon them to provide a completed

and extended language description.

4.1 Syntax

CREST is a modelling DSL that combines a system’s architectural and behavioural

aspects in a coherent language. Its graphical concrete syntax, the CREST diagram,

was developed to facilitate legibility and allow design discussions. CREST diagrams

aim to highlight the transfer of resources between components. The language was

created by following well-established design practices such as the Physics of Nota-
tion [Moo09]. In particular, CREST diagrams establish a one-to-onemapping between

semantic concepts and their graphical representations. The choice of symbols as-

serts that the displayed concepts are easily visually distinguishable by their shape

and colour, as suggested by the authors. The reuse of well-known notation forms

(e.g. circles and arrows for states and transitions) further increases legibility. The po-

sitioning of the symbols within the diagram should highlight the flow of resources

throughout the system. Hence, the ordering of elements should “flow” from one side

to the other (e.g. left to right). Tool implementations that offer automatic layouting

should also follow this strategy. Figure 4.1 displays the complete CREST diagram of

a growing lamp, as used by the automated plant growing system (see Section 3.1 –

Case Study Systems). It serves as a running example throughout this chapter.

List of Symbols The specification and formalisation of a language’s syntax and

semantics usually require the definition of numerous language concepts. CREST

is no exception to this rule. To avoid confusion or getting lost in the jungle of

symbols and definitions, the first-time reader is strongly advised to keep the list

of symbols (Appendix D) close at hand for lookup purposes.

As shown in Figure 4.1, CREST components clearly define their scope. Visually

this is represented by a black border, indicating the scope’s limits. A component’s

communication interface is drawn on the edge of this scope, while its behaviour and

internal structure are placed on the inside.

4.1. Syntax 45

≪
Gr
ow
La
mp
≫

e
l
e
c
t
r
i
c
i
t
y
:

0
(
R
W
a
t
t
)

s
w
i
t
c
h
:

o
ff
(
{o
n
,o
ff
}S
w
i
t
c
h
)

h
e
a
t
s
w
i
t
c
h
:

o
ff
({
on
,o
ff}
Sw

itc
h)

r
o
o
m
-
t
e
m
p
e
r
a
t
u
r
e
:

7
1
.6
(
R
F
a
r
e
n
h
e
i
t
)

l
i
g
h
t
:

0
(
N
L
u
m
e
n
)

t
e
m
p
e
r
a
t
u
r
e
:

2
2
(
R
C
e
l
s
i
u
s
)

O
n

O
ff

on
-g
ua

rd

off
-g
ua

rd

o
n
-
t
i
m
e
:

0
(
R
T
i
m
e
)

o
n
-
c
o
u
n
t
:

0
(
R
T
i
m
e
)

u
p
d
a
t
e
_
o
n
_
t
i
m
e

i
n
c
r
e
m
e
n
t
_
c
o
u
n
t

l
i
g
h
t
i
n
g
≪
Li
gh
tE
le
me
nt
≫

e
l
e
c
t
r
i
c
i
t
y

L
:

0
(
R
W
a
t
t
)

l
i
g
h
t
L
:

0
(
N
L
u
m
e
n
)

O
n

L
O
ff

L
on
-g
ua

rd
L

off
-g
ua

rd
L

o
ff
_
u
p
d
a
t
e

o
n
_
u
p
d
a
t
e

h
e
a
t
i
n
g
≪
He
at
El
em
en
t≫

e
l
e
c
t
r
i
c
i
t
y

H
:

0
(
R
W
a
t
t
)

s
w
i
t
c
h
:

o
ff
(
{o
n
,o
ff
}S
w
i
t
c
h
)

h
e
a
t
H
:

0
(
R
C
e
l
s
i
u
s
)

S
t
a
t
e

h
e
a
t
_
o
u
t
p
u
t

a
d
d
e
r
≪
Ad
de
r≫

h
e
a
t
-
i
n
:

0
(
R
C
e
l
s
i
u
s
)

t
e
m
p
-
i
n
:

2
2
(
R
C
e
l
s
i
u
s
)

t
e
m
p
e
r
a
t
u
r
e

A
:

2
2
(
R
C
e
l
s
i
u
s
)

A
d
d

a
d
d

l
i
g
h
t
_
e
l
e
c
t
r
i
c
i
t
y
_
z
e
r
o

h
e
a
t
_
e
l
e
c
t
r
i
c
i
t
y
_
z
e
r
o

u
p
d
a
t
e
_
l
i
g
h
t
_
e
l
e
c
t
r
i
c
i
t
y

u
p
d
a
t
e
_
h
e
a
t
_
e
l
e
c
t
r
i
c
i
t
y

f
o
r
w
a
r
d
_
l
i
g
h
t

f
o
r
w
_
t
e
m
p

f
a
h
r
e
n
h
e
i
t
_
t
o
_
c
e
l
s
i
u
s

f
o
r
w
_
h
e
a
t

h
e
a
t
s
w
i
t
c
h
_
i
n
fl
u
e
n
c
e

F
i
g
u
r
e
4
.1
–
A
C
R
E
S
T
d
i
a
g
r
a
m

o
f
a
g
r
o
w
i
n
g
l
a
m
p
e
n
t
i
t
y
w
i
t
h
s
u
b
e
n
t
i
t
i
e
s
.
U
p
d
a
t
e
s
,
t
r
a
n
s
i
t
i
o
n
s
a
n
d
i
n
fl
u
e
n
c
e
s
a
r
e
a
n
n
o
t
a
t
e
d
w
i
t
h
t
h
e
i
r

r
e
s
p
e
c
t
i
v
e
f
u
n
c
t
i
o
n
n
a
m
e
s
.
T
h
e
b
e
h
a
v
i
o
u
r
o
f
t
h
e
s
e
f
u
n
c
t
i
o
n
s
i
s
p
r
o
v
i
d
e
d
i
n
A
p
p
e
n
d
i
x
A
.

46 Chapter 4. The CREST Language

System Structure Most non-trivial CPSs are physically and logically structured

into subsystems, which can be further divided into components and subcomponents,

and so on. Each individual part belongs to exactly one bigger component. CREST

follows this system view where CPS are defined as hierarchical compositions. This

concept is expressed through the definition of components (called “entities”) in a

nested tree-structure. Each CREST system model contains one single root entity,

which represents the “entire system”. This entity can define arbitrarily many subenti-

ties, which can contain child entities themselves, etc. The growing lamp for example,

contains three subentities: one for light production (LightElement), one for heating
(HeatElement) and an Adder, which calculates the sum of two input values.

The strict hierarchy asserts a simplified, localised view on the entity level. Each

entity encapsulates its internal structure and can hence be treated as a black box. This
view facilitates composition, as the entity’s parent can treat it as coherent instance,

disregarding the entity’s internal structure.

The black box view is completed by the definition of the entity’s communication

interface, which consists of input () and output () ports. Ports are required

for the modelling of the resource flow within the system. CREST offers a third kind

of port: locals (). This port type is not part of the interface, but rather serves as

internal storage of data. In the example on-time and on-count are internal ports.
All instances of the three port types are associated with a specific resource.

Resources combine the information of a port’s unit and domain, such that any

port clearly states which values it can be assigned. The growing lamp specifies units

such as watt or lumen. Domains are sets of values, e.g. the natural numbers N, reals
R or a set of discrete values such as {on, off} (for Switch in the example). Thus, a

port that specifies NWatt as its resource, can be assigned the value 3Watt, but not
3.14Watt or 2Lumen. Next to the resource itself, each port specifies a value from its

respective resource as its current value binding.

Entity Behaviour CREST uses FSMs to specify behaviour. Each entity defines a

set of states and guarded transitions between them. Transitions relate source states

with target states and the names of transition guards (e.g. OffL OnL

on-guardL

). The tran-

sition guard implementations are functions over an entity’s set of port value bind-

ings bind and previous port bindings pre. The functions’ codomains are Boolean

values (True, False), indicating whether the transition is enabled or not. CREST

does not provide a syntax for the definition of guard functions. Instead, the language

prescribes the functions’ signature, leaving users to choose a suitable language for

the guard specification. Evidently, the choice of transition guard language impacts

the expressiveness of the overall CREST models. Chapter 5 presents a Python-based

CREST implementation, where transition guards and other language constructs are

expressed using program code. It is also possible to use mathematical notation for

the guard specification. The following formula shows growing lamp’s on-guardL,

for instance.

on-guardL(bind, pre) =

False if bind(electricityL) < 100Watt

True if bind(electricityL) ⩾ 100Watt

4.1. Syntax 47

In most situations pre is explicitly not used. However, there are particular scenarios

in which access to these values is necessary. For instance, they have to be used to dis-

cover and analyse port value changes (i.e. bind(port) , pre(port)). Second, in certain

situations they are also required to resolve cyclic dependencies between components

(so-called algebraic loops), which otherwise could not be supported in CREST. The

concept of supporting previous values is present in other languages such asModelica,

Lustre and Esterel through the pre operator. CREST’s implementation automatically

manages pre for the user and in most cases uses it automatically when necessary.

Resource flow The transfer of resources between entity ports can be modelled

using updates (). Updates are defined for a specific state and target port, relat-

ing them to an update function name. If the automaton is in the given state, the

update’s function (identified by its name) is permanently executed, and models con-

tinuous change. The update’s function implementation operates on the entity’s port

values to calculate its target port’s new value. The function has to be written so

that the returned value matches the target port’s resource domain. Conceptually,

updates are continuously executed, so that the system’s ports always hold the cor-

rect values. This means that theoretically, an infinitesimal amount of time passes

between two executions of an update. Practically, CREST’s operational semantics as-

sert that the evaluations are performed as often as necessary, as detailed later on in

this chapter. The growing lamp defines several updates, such as update_on_time,
update_light_electricity (both in GrowLamp) or heat_output (in HeatEle-

ment). Updates further enforce CREST’s synchronism principle. Provided the automa-

ton is in the update’s state, the continuous evaluation of update functions always

guarantees that the target port’s value is the result of the update function execution,

without delay or explicit message passing.

Similar to transition guards, the update functions’ syntax is not strictly defined

but constrained by a predefined signature. This means users are free to choose any

suitable language to define the functionality. Update functions are executed with the

current and previous port bindings bind and pre, such that pre holds the port values
before the execution of the update. Additionally, the functions also have access to

another parameter δt. This is a value of the system’s time base T (see Appendix B

for details on the time base) and holds the information about the amount of time

that has passed since last executing the update function. Hence, update functions

can be used to model continuous behaviour and value updates. However, it is prac-

tically impossible to simulate systems with infinitesimal time increments. Thus, in

implementations of CREST the simulator decides on appropriate δt-intervals, as will
be explained in the semantics section. In the growing lamp’s example, the time base

is the domain of non-negative real values (i.e. T = R⩾0). As an example for an up-

date function, we look at the mathematical definition of update_on_time, which
continuously accumulates the amount of time that the automaton spent in state on:

update_on_time(bind, pre, δt) = pre(on-time) + δt

48 Chapter 4. The CREST Language

In CPSs, resources are often continuously transferred from one port to another,

independent of their entity’s state or the time that has passed. In the example above,

the value of growing lamp’s heatswitch is transferred to the HeatElement’s switch
input port, disregarding whether the lamp is turned on or off. To avoid repeating the

specification of the same update function for every state of the entity, CREST offers

influences () as a syntactic shortcut. Influences relate a source port to a target

port and a function name. The behaviour of influences is similar to updates, with

the difference that only one source’s value is used for calculation of the target port

value. Neither δt nor any other port values are considered for the calculation. In the

growing lamp the influence fahrenheit_to_celsius is defined as follows:

fahrenheit_to_celsius(bind) = (bind(room-temperature) − 32) × 5/9

Finally, a third type of resource flow is available in CREST: actions (). Actions

define update functions that are executed during the triggering of transitions. Similar

to influences, actions are not allowed to access the δt parameter of the related update

functions. The growing lamp scenario defines one action (increment_count) that
is executed every time the transition from Off to On is triggered. It is used to count

the number of times the lamp has been switched on.

Entity Abstraction CREST diagrams allow complexity management via mask-

ing of component internals. This means that an entity can be drawn by display-

ing only its communication interface. In this case, the masked component should

“hide” any subcomponents, states, transitions, local ports, updates and actions.

Instead, an icon is shown to indicate that some information is masked. Figure 4.2

shows the CREST diagram of the growing lamp, where information has been hid-

den. Note that this feature is mostly of notational importance and intended to

simplify the legibility of complex system diagrams. It does not carry any partic-

ular semantic meaning, except that it potentially abstracts over some underlying

behaviour. Thus, no formal syntax and semantics will be defined.

≪GrowLamp≫

electricity:

0 (RWatt)

switch:

off ({on, off}Switch)

heatswitch:

off ({on, off}Switch)

room-temperature:

71.6 (RFarenheit)

light:

0 (NLumen)

temperature:

22 (RCelsius)

Figure 4.2 – Alternative, masked CREST diagram of the growing lamp, which only

shows its communication interface, but masks its internals (states, transitions,

subentities, etc.).

4.1. Syntax 49

4.1.1 Formal Language Structure

Based on the above introduction of the CREST diagram syntax, we will subsequently

explore the formal definition of a CREST system’s structure and the definition of

the sets and functions it is constructed of. To make the concepts easier to grasp,

the GrowLamp system (Figure 4.1) is used to explain the concepts. As a complete

description would exceed the purpose of illustration, only a few representative ex-

amples are presented for each concept instead. It is also important to keep in mind

that CREST’s formalisation (structure and semantics) is defined on a system-global

level. This means that states, transitions, ports, etc. are first defined as a system-wide

set and then divided into mutually exclusive sets for each entity to preserve locality.

Notation (Notational convention). To increase the legibility of the various notions,
the rest of this chapter uses the following styling convention and notations for

mathematical concepts:

• Sets are Capitalised;

• Functions are lowercased;

• Sets of function names are Calligraphed.

This chapter also uses the notion of non-overlapping set partitions (denoted by

the

⊔
operator) to define mutually exclusive set partitions.

Notation (Partition of sets). Given a set S , the subsets S 1, . . . , S n are defined to be

a partition of S =
⊔

i S i or S = S 1 ⊔ . . . ⊔ S n iff ∀i, j, i , j =⇒ S i ∩ S j = ∅ and

S =
⋃

1⩽i⩽n
S i.

Definition 1 (Time Base). CREST is a language that offers the continuous evolu-

tion of variables according to time advances. Thus, it is necessary to define the time

base T that a system operates in. Note that T is not a part of the CREST system itself,

but rather an orthogonally defined concept.

Formally, a time base T is required to satisfy the theory TIME
∞
ε (see Appendix B).

Accordingly, T is a linearly ordered commutative monoid (Time,+, 0, <) with in-

finitesimal element ϵ, infinity element∞ and monus operator −̇1. Depending on the

specific use of the CREST system and the variables, it might be of interest to define

further operations (e.g. multiplication, division) on the time base.

Common time bases are the set of positive real numbers R⩾0 or rational numbers

Q⩾0, extended by ε and ∞. In this dissertation the time base is assumed be the set

R⩾0 ∪ {ε,∞}, unless specified otherwise. We will also make use of common mathe-

matical operations of this value domain such as multiplication, division, and similar
2
.

1
Monus “−̇” is an operator defined for some commutativemonoids. Inmost time bases (e.g.R,Q,N)

the monus operator is the subtraction “–”.

2
These operations are assumed to be common knowledge and are thus not be formally defined.

50 Chapter 4. The CREST Language

Definition 2 (Types and Values). GivenUnits, a set of resource units, andDomains,
a set of value domains, the set of resource types is defined as Types ⊆ Domains×Units.
The values of a resource type type are {⟨v, unit⟩ | v ∈ domain, ⟨domain, unit⟩ ∈ Types},
where type = ⟨domain, unit⟩. The set of all resource values is defined as Resources =
{⟨v, unit⟩ | ∃⟨domain, unit⟩ ∈ Types ∧ v ∈ domain}. It contains all possible couples of
values and units.

For legibility, CREST diagrams often use the simplified notations domain unit and
v unit for a resource type and value. It is therefore possiblewrite e.g.NWatt and 3Watt

for ⟨N,Watt⟩ and ⟨3,Watt⟩. Figure 4.1 shows the use of the following resource types:

Units ={Watt, Switch, Celsius, . . .}
Domains ={R,N, {on, off}}

Types ={RWatt, {on, off}Switch,RCelsius, . . .}
Resources ={0Watt, onSwitch, 22Celsius, . . .}

We also define the ∈ operator on resource values and resource types, to test for

compatibility between a value and a type. The compatibility check is used to verify

that only appropriate values can be written to a port of a certain resource type. For-

mally we define that a value is part of a resource type, iff the value is an element of

the type’s domain, and the value’s unit and the type’s unit match:

∀res = ⟨value, unit1⟩ ∈ Resources,∀type = ⟨domain, unit2⟩ ∈ Types,
res ∈ type⇔ value ∈ domain ∧ unit1 = unit2

Hence, we see that e.g. 3Watt ∈ NWatt and 3Watt ∈ RWatt, but 3Watt < NLumen.

Familiar readers might discover similarities to the way SysML 1.4 implements

units. In contrast to SysML, however, CREST explicitly states the value domain,

but does not define the “quantityKind” to specify what the unit is used for (e.g.

“mass”). This means that values can be formally checked for validity but transla-

tions between different resource types (e.g. different temperature measures such

as Fahrenheit and Celsius) are not directly possible without e.g. the use of up-

dates or influences. Nevertheless, its support would significantly increase usabil-

ity and is currently being investigated. Our planned approach is built “on top” of

the existing language structure and uses ontologies (e.g. of the SI units) for the

specification of types and domains. This should allow for instance the possibil-

ity for extended checks such as e.g. resource type compatibility and translation

correctness. The research results are still preliminary at the time of writing.

Definition 3 (Hierarchy of Entities). CREST components are modelled as enti-
ties. Each entity can contain other entities, which are referred to as children or suben-
tities. An entire CREST system’s structure forms a rooted tree. The system’s entity

tree is defined by a set of entity names Entities, and a function parent : Entities →
Entities ∪ {⊥}, which returns the parent of an entity or ⊥ if it has no parent. The

4.1. Syntax 51

function children : Entities → P(Entities) returns the direct children of any entity,

and the constant root : Entities provides the system’s root entity.

children(e) = {e′ | e′ ∈ Entities ∧ parent(e′) = e}
root = e s.t. e ∈ Entities ∧ parent(e) = ⊥

CREST’s strict entity structure asserts that there is exactly one entity without

parent, which we refer to as the system’s root. Formally, the constraint is expressed

as:

∣∣∣ {e | e ∈ Entities ∧ parent(e) = ⊥}
∣∣∣ = 1.

Furthermore, we use the terms ancestors to refer to the set that is composed of an

entities e’s parent, e’s parent’s parent, etc. Thus, it is inductively defined as

ancestors(root) = ∅
ancestors(e) = {parent(e)} ∪ ancestors(parent(e)) ∀e ∈ Entities \ {root}

Similarly, the term descendants identifies the set of entities that includes an entity’s

children and its children’s descendants.

descendants(e) = children(e) ∪
⋃

e′ ∈ children(e)

descendants(e′) ∀e ∈ Entities

These two definitions permit the assertion that the hierarchy forms a tree, where

the root is an ancestor of all nodes (except the root itself):

∀e ∈ Entities \ {root}, root ∈ ancestors(e)

Inversely, it would also be possible to define a similar constraint so that all entities

(except root) are descendants of root:

descendants(root) = Entities \ {root}

The growing lamp example consists of one root entity that defines three suben-

tities for lighting, heating and an adder. The functions thus return, for instance:

Entities = {GrowLamp, LightElement,HeatElement,Adder}

root = GrowLamp

children(GrowLamp) = {LightElement,HeatElement,Adder}

ancestors(GrowLamp) = ∅
descendants(GrowLamp) = {LightElement,HeatElement,Adder}

Definition 4 (Ports). CREST systems use ports for the transfer of resources and

storage of values and information. These ports are defined by a set of port names

Ports, and a function type : Ports → Types that assigns the resource type of each

port.

In the example above, the port names of the growing lamp system are:

Ports = {electricity, switch, on-time, light, temperature, . . .}

52 Chapter 4. The CREST Language

The types associated with these ports are:

type(electricity) = RWatt
type(switch) = {on, off}Switch

type(light) = NLumen

The system’s port names are partitioned into inputs, outputs and local ports:
Ports = PortsI ⊔ PortsL ⊔ PortsO

. Each port is also assigned to exactly one entity:

Ports =
⊔

e ∈ Entities

Portse

The intersection of these partitions defines an entity’s inputs, outputs and locals:

∀e ∈ Entities

PortsI

e = PortsI ∩ Portse

PortsO
e = PortsO ∩ Portse

PortsL
e = PortsL ∩ Portse

To enforce the locality principle, CREST allows only a subset of ports to be used

in transition guards and update functions. Thus, an entity can only read certain ports

called sources. Further, an entity’s updates can only write to specific targets ports.
The function sources : Entities → P(Ports) provides the ports of an entity, that

can be used to calculate transition guards or the value of update functions. The set

is composed of an entity’s inputs, the entity’s local ports and, to access data from

subentities, the direct subentities’ output ports.

∀e ∈ Entities, sources(e) = PortsI
e ∪ PortsL

e ∪
⋃

e′ ∈ children(e)

PortsO
e′

In the growing lamp we find for example

sources(GrowLamp) = {electricity, switch, heatswitch, room-temperature

on-count, on-time, lightL, heatH, temperatureA}

sources(Adder) = {heat-in, temp-in}

targets : Entities → P(Ports) is a function that returns the set of possible targets

of update functions for an entity. Targets can be an entity’s local ports, outputs and

all direct subentities’ input ports.

∀e ∈ Entities, targets(e) = PortsO
e ∪ PortsL

e ∪
⋃

e′ ∈ children(e)

PortsI
e′

Definition 5 (Bindings). During the execution of a CREST system, each port is as-

sociated with a value of its respective resource type. The mappings from ports to

values are defined by the set Bindings = {b : Ports→ Resources | ∀p ∈ Ports, b(p) ∈
type(p)}. The initial port bindings for some ports in Figure 4.1 are for instance:

b(electricity) = 0Watt b(switch) = offSwitch

b(on-time) = 0Time b(light) = 0Lumen

4.1. Syntax 53

Definition 6 (States and Transitions). The behaviour of a CREST entity e is de-

fined by an automaton consisting of Statese and a global, guarded transition relation.

The set of all states is partitioned into distinct subsets for each entity:

States =
⊔

e ∈ Entities

Statese

Each entity further has to have at least one state: ∀e ∈ Entities, Statese , ∅.
In Figure 4.1we find the following states: States = {On,Off,OnL,OffL,Add, State}.

These states are split up for each individual entity as follows:

StatesGrowLamp = {On,Off}

StatesLightElement = {OnL,OffL}

StatesHeatElement = {State}

StatesAdder = {Add}

The Transitions relation associates a source state to a target state and a guard

function name. CREST requires a transition’s source and target states to be part of

the same entity. T is the set of all guard function names. The global set of transitions

is accordingly defined by:

Transitions ⊆
⋃

e ∈ Entities

(
Statese × Statese × T

)
In Figure 4.1 the following transitions are defined:

Transitions = {⟨On,Off, off-guard⟩, ⟨Off,On, on-guard⟩, . . .}
T = {on-guard, off-guard, on-guardL, off-guardL}

The function τ : T → (Bindings×Bindings→ B) maps the guard function names

to guard function implementations. Guard implementations use a current port bind-

ings binding and a previous port bindings pre (binding, pre ∈ Bindings) to calculate

a Boolean codomain value (True/False). This value states whether a transition is

enabled. The guard function must only use the values of the entities’ sources ports to
compute its result. (See Section 4.1.5 – Semantic Constraints for details.)

The growing lamp example’s τ(on-guard) points to the following guard function
implementation, for instance:

τ(on-guard)(binding, pre) =

 False if binding(electricity) < 100Watt

True if binding(electricity) ⩾ 100Watt

Definition 7 (Updates). Updates are CREST’s means to perform modification of

port values. Each update specifies an automaton state and evaluates continuously

while that state is active. Updates specify functions that calculate the values that

are assigned to their target ports. These functions use the current and previous port

bindings as domain, which makes it possible to modify a port value based on other

ports’ values. In the example above, we see that the Adder defines an update add.

54 Chapter 4. The CREST Language

add reads the values of Adder’s two input ports, sums them up and writes them to

the output port.

Updates can also be used to model variable evolution over time, since update

functions have access to δt ∈ T, the amount of time that passed since they were

last executed. Hence, this value can be used to model timing aspects and time-based

changes. Formally, Updates associates states, ports and update function namesU:

Updates ⊆
⋃

e ∈ Entities

(
Statese × targets(e) ×U

)
Only one update definition is allowed for each combination of target port and

state, to avoid write-conflicts when two updates try to write to the same port:

∀p ∈ Ports, s ∈ States, | {⟨s, p, u⟩ ∈ Updates} | ⩽ 1

The function υ : U → (Bindings × Bindings × T → Resources) maps the update

names to their implementations. Applied to port bindings bind, the previous port

bindings pre (bind, pre ∈ Bindings) and a passed time span δt ∈ T, they provide a

new value for the specified target port.

The execution of the update function (identified by υ) can only change ports that

are targets of the entity which contains the associated state. Further, only sources
ports are allowed for the calculation of the returned value (see Section 4.1.5 – Se-

mantic Constraints). The growing lamp model defines the following updates:

Updates = {⟨On, electricityL, update_light_electricity⟩,

⟨On, on-time, update_on_time⟩, . . .}

U = {update_on_time, update_light_electricity, . . .}

In some formalisms (e.g. DEVS) the outputs of a system or component are

only updated after certain actions (e.g. after “internal” transitions in DEVS). Since

CREST’s update functions model the continuous propagation of values indepen-

dent of time advances or state automaton changes, updates have to be executed

after anymodification to any entity port, automaton transition or time advance to

assert a correct and coherent system state. The details of this process are described

in CREST’s semantics in Section 4.2.

The CREST diagram also displays a special kind of update functions: influences.
Influences are static updates that connect two ports unconditionally, i.e. independent

of an entity’s automaton state and the time that passed. Since such influences are a

purely syntactic addition (they can be expressed through a set of “normal” updates),

they are not directly part of the structure and semantics of a CREST system. See

Section 4.3.1 – Influences for the formal introduction of influences.

Definition 8 (dependencies). The function dependencies : U → Ports returns a

set of ports for each update function name. We add a constraint that an update’s

dependencies can only be source-ports of the update’s entity.

∀⟨s, p, u⟩ ∈ Updates,∀e ∈ Entities, s ∈ Statese, p ∈ targets(e),
dependencies(u) ⊆ sources(e), p < dependencies(u)

4.1. Syntax 55

The dependencies function is used to determine the execution order of updates

within the operational semantics.

Note, that CREST entities are not allowed to specify circular dependencies be-

tween ports. This means that if a dependency e.g. reads a port A and writes B, then
there cannot be an update reading B and write A. Such behaviour has to be resolved

using a port’s previous values pre as explained in Section 4.2
3

Resolving Circular Dependencies CREST’s semantics (see Section 4.2), de-

fine the execution order of subentities, based on the information of the depen-
dencies function. The locality principle defined by CREST treats subentities as

black boxes that read their input ports and write values to their respective out-

puts. However, this black box view might mislead to the naive conclusion that all

of a subentity’s output ports depend on all its inputs.

When looking at Figure 4.3, it becomes evident that this assumption can eas-

ily produce false circular dependencies which cannot be simulated or verified in

CREST. The displayed system is composed of a power source and an electric heat-

ing device, each modelled as separate subentity. The heater is controlled by a

switch input, which decides how much electricity it needs to operate (e.g. zero

in case of off, 1000 watt if it is on). Accordingly, this information is propagated

to the power source using the electricity_draw influence. The power source
provides the requested electricity to its power output, which is transferred to the
heater’s electricity input. The power supply can also switch to an error state,

if drawP exceeds a certain threshold. In this case no electricity is provided.

It is immediately visible that the heater’s electricity input depends on the

power supply’s output, but the power supply’s drawP input in turn depends on

the heater’s drawH output. The above assumption – all entity outputs depend on

all entity inputs – results in a circularly dependent system where the heater de-

pends on the power supply and the power supply depends on the heater. Such

a system cannot be simulated. One solution to this issue would be to remove

CREST’s black box view of subentities, which prevents the analysis of subentity

internals. This approach clearly violates the locality principle, which is one of our

key requirements. Another possibility is to structurally change the subentities to

avoid such dependencies (e.g. by splitting the heater). The problem is that the en-

tity, which is supposed to model real-world components, is replaced by artificial

components where neither maps to a real system part. It further creates addi-

tional subentities and thereby weakens the model’s maintainability, since more

entities have to be considered, replaced and maintained. Thus, we dismiss these

approaches and require more information to be provided instead. CREST there-

fore uses a function that explicitly specifies such dependencies inside subentities.

Definition 9 (io-dependencies). io-dependencies : Ports→ P(Ports) is a function
that specifies the dependencies of an output port on its input ports. Clearly, it is

necessary to restrict these dependencies, so that any output port can only depend

3
Other modelling languages and tools use time delays to resolve such situations in a similar fash-

ion. The use of pre makes this choice explicit.

56 Chapter 4. The CREST Language

system≪System≫

system-switch:

off ({on, off}Switch)

heat:

0 (RWatt)

State

powersupply≪PowerSupply≫

drawP :
0 (RWatt)

output:

0 (RWatt)
OK

Error

heater≪Heater≫

electricity:

off (RWatt)

switch:

off (RWatt)

drawH :

0 (RWatt)

heat-output:

0 (RWatt)

StateH

calculate_output

calculate_draw

electricity_draw

Figure 4.3 – Example of a circular dependency between subentities. The subentities’

internal structure and behaviour (drawn in semi-opaque) reveal however, that the

circular dependency does not exist in the real system.

on a subset of input ports of the same entity. Thus, the function is implemented

according to the following criterion:

∀e ∈ Entities,∀p ∈ PortsO
e , io-dependencies(p) ⊆ PortsI

e

In the example system in Figure 4.3, we can observe the following io-dependencies:

io-dependencies(drawH) = {switch}
io-dependencies(heat-output) = {electricity}

io-dependencies(output) = {drawP}

io-dependencies(heat) = {system-switch}

In situationswhere the original, uninformed black box view is required, one could

easily define that each of an entity e’s outputs depends on all its inputs:

∀p ∈ PortsO
e , io-dependencies(p) = PortsI

e

This assumption can be of useful when interacting with models that cannot be anal-

ysed by CREST, e.g. due to their complexity, their use of subroutines or proprietary

libraries or are implemented e.g. as Functional Mock-up Units [Blo+12]. Evidently,

the modelling of such “uninformed black boxes” might cause difficulties to the sim-

ulation and verification, due to semantic differences. The io-dependencies solution is

thus only from a syntactic viewpoint. Developers are still required to analyse the

component thoroughly and assert that the created model corresponds to the under-

lying system model (e.g. using a data-driven approach).

4.1.2 Global State of a CREST System
Definition 10 (State of the system). The global state w ∈ W of an entire CREST

system is a combination of the current states of all entity automata, the bindings of

all ports, the previous bindings of the ports, and a global time.

W = Currents × Bindings × Bindings × T

4.1. Syntax 57

Each CREST system further needs to define its initial state w0 ∈ W .

The set of current automata states (not to be confused with the global system

state) is given by Currents = { f : Entities→ States | ∀e ∈ Entities, f (e) ∈ Statese}. In

the growing lamp example of Figure 4.1 current ∈ Currents is initially defined as

current(GrowLamp) = Off

current(LightElement) = OffL

current(HeatElement) = State

current(Adder) = Add

The need for pre The pre binding stores all ports’ previous value bindings. It

can be used for various functionality in CREST systems where knowledge of the

previous value is required. Without access to the ports’ pre values, implementa-

tion of such behaviour would not be possible.

The most basic example for the use of pre is the implementation of an up-

date function that does not alter a port’s value. For example, an update ⟨s, p, u⟩’s
function could be implemented as

υ(u)(b, pre, δt) = pre(p)

Another update could calculate the change rate of another port p2’s value using

an implementation as follows:

υ(u)(b, pre, δt) =

 p2−pre(p2)
δt if δt , 0

pre(p) otherwise

Assuming that p is the port whose value is assigned by the update, the function

calculates p2’s linear change rate if δt is not zero, otherwise it leaves the value

unchanged (i.e. writes its own pre-value).

4.1.3 CREST Syntactic Structure
Based on the previous definitions, a CREST system is specified as a structure S con-

taining information about the resources (data types), entity hierarchy, ports, states

and transitions, updates, dependencies, io-dependencies, and the initial global state:

S = ⟨Units,Domains, Entities, parent, Ports, type, States, Transitions,T , τ,
Updates,U, υ, dependencies, io-dependencies, w0⟩

4.1.4 Changes to the System State
Definition 11 (Change of automata states). The state transition of an entity e to
a state s is represented by w[e 7→ s]. This change within one entity creates a new

58 Chapter 4. The CREST Language

(global) system state w′ where the current automaton state of all entities remains the

same, except for e (the entity to be updated), which now maps to s.

∀w ∈ W,w = ⟨current, bind, pre, t⟩,
∀e ∈ Entities,∀s ∈ Statese,w[e 7→ s] = ⟨current′, bind, pre, t⟩

where ∀e′ ∈ Entities, current′(e′) =

s if e′ = e
current(e′) otherwise

Definition 12 (Change of port values). Changes to port bindings are denoted by

w[ps], where ps is a set of port-value mappings (p 7→ r) such that there is at most one

mapping for each p4
. We define the value assignment to be the creation of the global

state where the bindings for all ports p appearing within ps are the new values and

all ports not specified within ps remain unchanged.

∀w ∈ W,w = ⟨current, bind, pre, t⟩,
∀ps ∈ { f : P′ → Resources | P′ ⊆ Ports ∧ f (p) ∈ type(p)},
w[ps] = ⟨current, bind′, pre′, t⟩, where

∀p ∈ Ports,

bind′(p) = r ∧ pre′(p) = bind(p) if ∃p 7→ r ∈ ps
bind′(p) = bind(p) ∧ pre′(p) = pre(p) otherwise

Note that the previous port values pre of the ports in ps have to be updated, so

that efficient dataflow modelling is possible and value changes can be observed.

To modify the GrowLamp’s inputs we could for example call

w[{electricity 7→ 500Watt, switch 7→ onSwitch}]

The definitions above specify the modification of individual automata and port

values. The effects of such changes on a CREST system and the upkeep of a well-

formed system state require more complex behavioural routines that are defined as

CREST’s semantics in the next section.

4.1.5 Semantic Constraints

As briefly outlined before, CREST systems have certain constraints on update func-

tions and transition guards. These constraints limit the implementations of update

functions and transition guards. As CREST neither prescribes the syntax nor seman-

tics for the implementation of these functions, it is important that these constraints

are upheld, so that the semantic correctness of the system can be preserved. The

constraints, that are imposed on function implementations, are presented below.

4
i.e. there cannot be a mapping ps = {p 7→ r, p 7→ s}

4.1. Syntax 59

Transition Guard Locality This constraint states that the guard conditions can

only use ports that are part of an entity e’s source ports sources(e) for evaluation.
The requirement formalisation below expresses this using the condition that the ap-

plication of a guard function onto two bindings b1 and b2 produces the same result,

when b1 and b2 are equal for all sources ports.

∀e ∈ Entities,∀⟨s, t, g⟩ ∈ Transitions, s, t ∈ Statese,∀b1, b2, pre1, pre2 ∈ Bindings, ∀p1 ∈ sources(e),

b1(p1) = b2(p1), pre1(p1) = pre2(p1)

 =⇒ τ(g)(b1, pre1) = τ(g)(b2, pre2)

This means, that transition guards also have to evaluate to the same result, even

if there are non-sources ports whose bindings do not match, i.e.

∃p2 ∈ Ports, p2 < sources(e), b1(p2) , b2(p2) ∨ pre1(p2) , pre2(p2)

When looking at the growing lamp example of Figure 4.1, we observe that any

transition defined for the GrowLamp entity can only read the following ports:

sources(GrowLamp) = {electricity, switch, heatswitch, room-temperature,

on-count, on-time,

lightL, heatH, temperatureA}

Update Function Locality Similarly to the transition guards, update functions

also can only use ports within an entity e’s source ports sources(e).
The constraint below expresses that given any entity and update writing to a port

p, the update’s function implementation υ(u) has to produce the same result when

applied onto a binding that is equal in the entity’s sources port bindings.

∀e ∈ Entities,∀⟨s, p, u⟩ ∈ Updates, p ∈ targets(e),∀b1, b2, pre1, pre2 ∈ Bindings,∀δt ∈ T ∀p1 ∈ sources(e),

b1(p1) = b2(p1), pre1(p1) = pre2(p1)

 =⇒ υ(u)(b1, pre1, δt) = υ(u)(b2, pre2, δt)

This also implies that the update functions have to produce the same result, even

if there exist non-sources ports whose value bindings differ, i.e. if

∃p2 ∈ Ports, p2 < sources(e), b1(p2) , b2(p2) ∨ pre1(p2) , pre2(p2)

Update Resource Type Finally, CREST requires that update functions always

have to produce a value of the update’s target’s resource type.

∀⟨s, p, u⟩ ∈ Updates,∀δt ∈ T,∀b, pre ∈ Bindings, υ(u)(b, pre, δt) ∈ type(p)

60 Chapter 4. The CREST Language

4.2 CREST Semantics

CREST’s semantics allow two basic forms of interaction with the system: setting the

root entity’s input values and advancing the system time. After either of these is

performed, the system might be in an unstable state. The term “unstable” refers to a

system state, where, due to the interaction, a transition might have become enabled
5

or an update’s target port value outdated. To correct this situation, the system must

be stabilised. Stabilisation is hence the process of bringing a system into a state where

all updates have been executed, and no transitions are enabled.

In the following, we describe the stabilisation process after changing port val-

ues and advancing time. To facilitate the understanding of the processes and their

interconnections, Figure 4.4 presents the semantic processes and the individual

steps taken as UML 2.5 activity diagrams [UML17]. The figures were collectively

placed on a single page, so that the relations between diagrams can be followed

more easily. For facilitated understanding of the semantics, the reader is advised

to keep Figure 4.4 at hand while navigating through this section.

Setting Values The most basic form of interaction with a CREST system is the

modification of its input port values. As stated, any external modification of input

values requires a subsequent stabilisation phase to assert that the system is in a sta-

ble state. All value modifications have to be propagated to dependent ports through

updates. The ad:SetValues activity diagram (Figure 4.4a) visualises this process.

For an example, we can imagine a modification of the electricity value in the

growing lamp model. This value change has to be propagated to the corresponding

inputs of the lighting and heating components’ input ports. These modules will in

turnmodify their respective internal behaviour and update output port values, which

will trigger further propagation of the values.

The stabilisation process (ad:Stabilise, Figure 4.4c) outlines the tasks per-

formed to assert correct value propagation and subsequent triggering of enabled

transitions. As even a minimal change of one value can have a significant impact on

the entire system’s behaviour, the execution of updates and stabilisation of subenti-

ties has to be performed in the correct order. For instance, stabilising the GrowLamp
entity involves the orchestrated triggering of the stabilisation process in each suben-

tity. From the (partial) CREST diagram in Figure 4.5, we see that the growing lamp’s

temperature output is modified by forw_temp. Since forw_temp accesses the out-
put of the Adder entity, it is necessary that this subentity is stabilised before

forw_temp is executed. However, stabilisation of Adder requires that its inputs have
been set correctly, etc

6
. We see, that a complex network of dependencies must be es-

tablished and considered so that the system’s outputs are correctly calculated.

In general, the simulation of a system requires that the modifiers (updates and

5
CREST uses “must”-semantics, whichmeans that a transitionmust be triggeredwhen it is enabled.

6
Note that the GrowLamp uses influences for the propagation of port values. Since influences can be

translated into update functions though, the underlying ordering concept is the same. See Section 4.3.

4.2. CREST Semantics 61

ad:SetValues

Change port values

Stabilise→

δt: T
{δt = 0}

→

entity: Entity

{entity=root}

(a)

ad:Advance(δt : T)

Calculate next

transition time (ntt)

Stabilise→

δt: T
{δt = δt }

→

entity: Entity

{entity=root}
Advance→

δt: T
{δt = ntt}

→

entity: Entity

{entity=root}

Advance→

δt: T
{δt = δt-ntt}

→

entity: Entity

{entity=root}

[ntt ⩾ δt] [ntt < δt]

(b)

ad:Stabilise (entity: Entity, δt : T)

«iterative»

modifier

Update→
δt: T

{δt = δt }

Stabilise→

δt: T
{δt = δt }

→

entity: Entity

{entity=modifier}

[type(modifier) = Update][type(modifier) = Entity]

Get ordered modifiers

Transitions→

entity: Entity

{entity = entity}

(c)

ad:Update (δt : T)

Execute update→

δt: T
{δt = δt }

Write update value to port

(d)

ad:Transitions(entity: Entity)

Find enabled transitions

Select and execute

one transition

[# enabled

transitions > 0]

Stabilise→

δt: T
{δt = δt }

→

entity: Entity

{entity = entity}

[
#
e
n
a
b
l
e
d
t
r
a
n
s
i
t
i
o
n
s
=
0
]

(e)

Figure 4.4 – Informal, schematic representation of the semantics as UML activity

diagrams. Activities represent semantic processes and arrows indicate triggering of

other processes. Note that not all parameters (UML object pins) that are passed be-

tween activities are displayed.

62 Chapter 4. The CREST Language

temperature:

22 (RCelsius)

heating≪HeatElement≫

electricityH :

0 (RWatt)

switch:

off ({on, off}Switch)
heatH :

0 (RCelsius)

adder≪Adder≫

heat-in:

0 (RCelsius)

temp-in:

22 (RCelsius)

temperatureA :
22 (RCelsius)

forw_temp

fahrenheit_to_celsius

forw_heat

Figure 4.5 – Excerpt of the growing lamp CREST diagram highlighting dependencies

between outputs and subentities. Note that some parts of the GrowLamp have been
omitted and subentity behaviour has been masked.

subentities
7
) which read a certain port have to be executed after the modifiers that

write to that port. The creation of this execution order is closely related to the con-

cepts of dataflow modelling and Kahn process networks [Kah74]. Synchronous lan-

guages (e.g. Lustre and Esterel), similarly rely on the appropriate ordering of their

operator nodes for a correct behaviour simulation.

Due to the required total order of modifiers, CREST systems must not define

circular dependencies. If there are interdependencies between values, they cannot

all reference their current values. Instead, the circular dependencies have to be

broken using a port’s pre value. This means that at least one of the dependencies

is on a port’s previous value, instead of it’s current, thereby stopping the cycle.

The solution is inspired by other languages, e.g. Lustre’s pre operator, Simulink’s

Unit Delay blocks and Modelica’s pre instruction.

Once the modifiers have been arranged, they are triggered in this order. The spe-

cific execution is based on the modifier’s type. If the modifier is an update, the spec-

ified function is executed and the value written to the target port (ad:Update, Fig-
ure 4.4d). In case it is a subentity, the stabilisation is recursively performed inside

that subentity, before continuing with the rest of the modifier list. In the activity dia-

gram, the choice of the correct modifier treatment is visualised in the UML expansion
region, which iterates over the ordered modifiers and selects the correct action based

on the modifier’s type.

If after the execution of all modifiers any FSM transitions are enabled, one of

them is chosen to be executed (ad:Transitions, Figure 4.4e). CREST does not pre-

scribe a selection procedure in case multiple transitions are enabled, meaning that

non-determinism may occur. If a transition was enabled and executed, another sta-

bilisation is started to execute the updates that are related to the new FSM state. In

the end, this stabilisation will again look for enabled transitions, potentially trigger

one and stabilise once more, until no enabled transitions are found.

The stabilisation process operates recursively. This means that if an entity trig-

7
When subentities are treated as black boxes, they can be seen as an abstract form of update

functions that read their input ports and write to their outputs.

4.2. CREST Semantics 63

gers a subentity stabilisation, the subentity’s modifiers are executed in the correct

order and the enabled transitions within that subentity are triggered (followed by

stabilisations) until no transitions are enabled. Only then, the control is returned

back to the parent entity to continue. As a result of this locality, modifiers of the

same entity could be safely executed in parallel, provided that they are independent,

i.e. if they do not have dependencies between their inputs and outputs. For simplic-

ity purposes, this feature will not be considered by the semantics described in this

section, but can be considered in a tool implementation for performance reasons
8
.

It is important to remember that CREST operates synchronously and no time

passes between the update of port values and the end of the stabilisation process,

whereas some other languages (e.g. Simulink) introduce a small time delay at ev-

ery modification. CREST’s synchronism concept can also be found in languages such

as Esterel. CREST’s semantics differ from Esterel’s, however, in that CREST always

stabilises the entire system instead of just the affected subset.

Hierarchical Encapsulation CREST’s system view, where an entity is respon-

sible for the execution of modifiers in the correct order supports the locality prin-

ciple. However, this local encapsulation of data and control, in combination with a

hierarchical system view is alsowell-known in themodelling and simulation com-

munity. In last decade, this design pattern was used for co-simulation [Gom+17]

and in standards such as FMI [Blo+12]. FMI imposes the use of explicit orches-
trators. These are components trigger computation in subcomponents and are

responsible for calculating the ideal step size of time advances. They are also in

charge of relaying the communication between the individual system components

so that the required data is available when andwhere it is needed. It is obvious that

this pattern is related to the way CREST implements the stabilisation of system

states. Each CREST entity can be seen as the orchestrator of its direct subentities.

Similar to FMI orchestrators, a CREST entity is charged with triggering the prop-

agation of values and asserts correct execution order so that the system’s state

remains valid.

Advancing Time The prior part of this section states that updates allow the mod-

ification of a system over time using a δt parameter. In fact, the semantics of time

advances are based on the same stabilisation process as SetValues, except that
SetValues triggers stabilisation with δt = 0, while Advance specifies a δt > 0.

There is one particularity of time advances that has to be considered though:

CREST implements eager transition triggering (“must” semantics). This means that

a transition has to be executed as soon as it becomes enabled. Hence, CREST can

only advance to the next point in time when a transition becomes enabled, before

stabilisation is needed.

When trying to advance time further than that, CREST needs to find the next

transition time first, advance to it, stabilise and then advance the remaining time.

CREST’s semantics adheres to a continuous time concept, that does not require “ticks”

8
A discussion of the parallel execution of modifiers is presented in Section 4.4.

64 Chapter 4. The CREST Language

as synchronisation points at which transition guards are evaluated. In order not to

“miss” the exact moment when a transition becomes enabled, CREST makes use of a

function that calculates the precise duration ntt that has to pass until any transition

will be enabled. ntt is in the range [0, . . . ,∞], where 0 states that a transition is

currently enabled (and that the system is not stable), and∞means that no transition

can become enabled by just advancing time. Note that the implementation of a next-

transition-time function is non-trivial and depends on the concrete implementation

of updates and guards. It’s functionality involves complex tasks such as the creation

of inverse functions or the expression of the functionality as sets of constraints.

As depicted in the activity diagram (ad:Advance, Figure 4.4b), the information

of the next transition time ntt creates two possible scenarios:

1. ntt ⩾ δt: This means that the next transition time is further away than (or at

least as far away as) the time we plan to advance δt. CREST advances δt and
calls the stabilisation action to execute updates and transitions until the system

reaches a stable state.

2. ntt < δt. In this case, we plan to advance past the point where a transition

becomes enabled. CREST divides such an advance into two steps: First a recur-

sive call to Advance(ntt) advances time to the point where a transition becomes

enabled (i.e. triggering scenario 1 above). All updates and transitions are trig-

gered, followed by stabilisation until the system is stable. Next, CREST recurses

on the remainder of the time, by triggering Advance(δt − ntt). Depending on

the next transition time of the new system state and the remaining time to

advance, CREST will again trigger one of these two scenarios.

CREST’s time semantics allow the simulation and verification based on real-

valued clocks with arbitrary time advances. This is essential for the precise simula-

tion of CPSs without the need for an artificial base-clock. The continuous time-based

enabling of transitions extends the language and adds a continuous behaviour to the

otherwise purely reactive system.

4.2.1 Modifiers and Precedence – Formalisation

Before delving into the actual semantics provided with SOS rules, we first have to

formalise vital concepts, such as the modifier ordering and the discovery of enabled

transitions, as discussed above.

To establish themodifier precedence, the formal semantics make use of the prece-

dence operator ≺. This operator expresses an order between ports, updates and child

entities that arises from the updates’ dependencies. Further, a function active-modifiers
identifies the set of updates and subentities that have to be executed to stabilise a

CREST system and to recursively propagate time advances throughout an entity. Due

to potential interdependencies between update functions, i.e. one update might read

a port which is written by another update, it is necessary to execute the stabilisation

in a specific order. This subsection defines functions and operators that are used in

the semantic rules for this stabilisation process.

4.2. CREST Semantics 65

Port Precedence The ≺ operator defines a partial order between ports, based on

the dependencies-function (introduced in Definition 8), and the input-output de-

pendency function io-dependencies (Definition 9). We say that for any two ports

p1, p2 ∈ Ports p1 ≺ p2 iff one of the following cases applies:

1. there exists an update whose target is p2 and p1 is a dependency of that update

(i.e. the update function reads the binding of p1 to calculate the value of p2);

2. there exists an entity, and p1 is an input, p2 is an output and there exists an

io-dependency between the two;

3. there exists a port p′ so that p1 ≺ p′ and p′ ≺ p2 (i.e. p1 ≺ p2 by transitivity).

Formally this operator is expressed as follows:

∀p1, p2 ∈ Ports, p1 ≺ p2 iff

∃⟨s, p2, u⟩ ∈ Updates, p1 ∈ dependencies(u)
p1 ∈ io-dependencies(p2)
∃p′ ∈ Ports, p1 ≺ p′ ∧ p′ ≺ p2

The partial order operator also satisfies the anti-symmetry constraint which re-

quires that ∀p1 ∈ Ports,∄p2 ∈ Ports, p1 ≺ p2 ∧ p2 ≺ p1. Hence, circular dependencies

between ports, subentities and updates are impossible. This constraint is further im-

portant so that at runtime all subentities and updates respect the notion of order.

active-modifiers Modifiers are those parts of the system that have the capability

of altering a port’s value. From an entity’s point of view, they are either updates,

defined to change the entity’s ports, or subentities, because they alter the subentity

output ports (which can also be read by the entity). To facilitate the subsequent def-

initions, we define the set of all modifiers to be the union of all entities and updates.

Modifiers = Entities ∪ Updates

When performing changes within CREST entities, it is important to execute all

“active” updates (the ones linked to an entity’s current automaton state) and to prop-

agate the action “down-stream” towards the entity’s children. The function active-
modifiers returns all such updates and child entities as a set.

active-modifiers : W × Entities→ P(Modifiers)
active-modifiers(⟨current, bind, pre, time⟩, e) =

{⟨s, p, u⟩ ∈ Update | s = current(e)} ∪ children(e)

The list below shows the active modifiers of the GrowLamp entity in Figure 4.1.

Note that some updates of the list are modelled as influences in the growing lamp. As

influences are a special kind updates, they are indirectly also considered as modifiers.

See Section 4.3 for details on the syntax and semantics of influences.

66 Chapter 4. The CREST Language

active-modifiers(w0,GrowLamp) = {
lighting, adder, heating,
⟨Off, electricityL, light_electricity_zero⟩, ⟨Off, electricityH, heat_electricity_zero⟩,
⟨Off, light, forward_light⟩, ⟨Off, heat-in, forw_heat⟩,
⟨Off, temperature, forw_temp⟩ ⟨Off, temp-in, fahrenheit_to_celsius⟩
}

The functionmodified-ports returns the list of ports that are actively beingwritten
in an entity. This means, it consists of all ports that are the targets of the update

functions of the current automaton state or outputs of a subentity.

modified-ports : W × Entities→ Ports
modified-ports(⟨current, bind, pre, time⟩, e) =

{p | ∀⟨s, p, u⟩ ∈ Updates, s = current(e)} ∪ {p | ∀e′ ∈ children(e), p ∈ PortsO
e′}

For example, the modified ports of the GrowLamp in Figure 4.1 are:

modified-ports(w0,GrowLamp) = {
lightL, temperatureA, heatH, electricityL, electricityH,

light, heat-in, temperature, temp-in
}

ordered-ports The function ordered-ports creates a total order of ports that are

modified according to their precedence.

ordered-ports : W × Entities→ PortLists
ordered-ports(w, e) : [p0, p1, . . . pn] s. t. ∀pi, p j, i < j, pi ≺ p j

The list of ports is defined by the PortLists type:

PortLists =

∅⟨Ports, PortLists⟩
For clarity reasons, the common notation [p0, p1, p2, p3, p4] is used to denote a

list of modifiers instead of the formal notation ⟨p0, ⟨p1, ⟨p2, ⟨p3, ⟨p4,∅⟩⟩⟩⟩⟩, where
i ∈ N is a port’s list index.

Further, an operator “:” can be used to separate a list’s head (its first element)

from its tail (the rest of the list) as follows: [p0 : tail] such that p0 is the first element

of the list and tail = [p1, p2, . . . , pn] is the rest.
Note that CREST does not prescribe an algorithm for creating this total ordering

of ports, but instead only provides the constraints above to assert that any CREST

4.2. CREST Semantics 67

port is updated after the ports it depends on. For unrelated ports, i.e. ports where

neither one specifies a precedence over the other, the order of modification is irrel-

evant. Without provision of a formal proof, one can easily see that order relevance

is only given in situations of port dependencies. Thus, in these situations there must

be a modifier (or a sequence of modifications) that creates a dependence from one

port to another, and hence a precedence order would have to be defined.

ordered-modifiers The list of ordered ports is used for the creation of a list of

modifiers (updates and subentities) that specifies their correct execution order, so

that all dependencies are satisfied and no port value is assigned a wrong or outdated

value. The type ModifierLists is used to describe such lists. Its formal signature is

ModifierLists =

∅⟨Modifiers,ModifierLists⟩

We define the notational form [m0,m1,m2,m3,m4] and the “head-tail” operator “:” for
lists of modifiers, similar to the PortLists type above.

The function ordered-modifiers returns a list of modifiers so that for each port in

the ordered-ports list there is a modifier that updates it.

ordered-modifiers : W × Entities→ ModifierLists

ordered-modifiers(w, e) : [m0,m1, . . .mn,mn+1, . . . ,mn+k] such that for each port pi,

there is an entry in the modifier-list with the same index that alters this port’s value

∀pi ∈ ordered-ports(w, e),∃mi ∈ active-modifiers(w, e)∧

mi = ⟨s, pi, u⟩ ∈ Updates
mi = e′ ∈ children(e), pi ∈ PortsO

e′

and that all additional active modifiers are appended at the end of the list.

∀mn+ j ∈ active-modifiers(w, e), 0 < j ⩽ k,∄p ∈ ordered-ports(w, e),

mn+ j = ⟨s, p, u⟩ ∈ Updates ∧ mn+ j = e′ ∈ children(e), p ∈ PortsO
e′

Note that ordered-modifiers is based on the (non-deterministically defined) ordered-
ports function. This means, that ordered-modifiers provides one of possibly many or-

derings, whose exact list of modifiers is not precisely specified but constrained to

assert a correct system evolution.

Modifierswithout Precedence Information Additional activemodifiers are such

modifiers for which no precedence information is available. Specifically, they are

subentities whose inputs are not written by any update or which do not provide out-

put ports. Two examples of such subentities are shown in Figure 4.6. Assuming that

the update up does not read any ports, there is no dependency and hence no prece-

dence. no_input also does not specify any dependency, as there is only one output

port and no input ports. Hence, from the system entity’s point of view, there are no

dependencies defined.

68 Chapter 4. The CREST Language

system≪System≫

State

no_output≪Entity≫

in:

0 (RResource)

up

no_input≪Entity≫

out:

0 (RResource)

Figure 4.6 – Example of a subentities without precedence specification.

Even though the effects of such subentities are not observable (e.g. due to lack of

output ports or updates that read them), it is important that they are still executed

to preserve the system’s complete correctness. However, the execution order of such

modifiers does not impact the further behaviour of the system.

enabled-transitions Each CREST entity defines guarded transitions between its

automata states. To discover all currently enabled transitions of an entity, the func-

tion enabled-transitions is used. Given a current state and an entity, the function re-

turns the set of transitions whose guard functions evaluate to True.

enabled-transitions : W × Entities→ P(Transitions)
enabled-transitions(⟨curr, bind, pre, time⟩, e) ={

⟨s, t, g⟩ ∈ Transitions | s, t ∈ Statese ∧ s = curr(e) ∧ τ(g)(bind, pre) 7→ True
}

4.2.2 Formal Operational Semantics

This section takes a closer look at the formal aspect of CREST’s operational seman-

tics. CREST’s semantics describe modifications of the global system state (w ∈ W).

All system modification information has to be propagated from the root entity to-

wards the leaves of the CREST model’s entity tree . The locality principle further

demands that an entity is responsible for the upkeep of its own state and can only

trigger stabilisation of its direct subentities. Thus, an entity does not directly influ-

ence the stabilisation process of its ancestor entities. This behaviour is important for

the locality and black box view of entities, as it supports the clean composition and

decomposition of entities.

4.2. CREST Semantics 69

The global semantics of a CREST system are based on the concept of reaching a

fixed point (“fixpoint”) after each system modification. Fixpoints are states in which

the system is stable, i.e. the system does not change unless time passes or external

factors modify the system inputs.

set-values The fixpoint concept is applied for example when modifying the value

of ports, as shown in Rule 4.1 below. The change of the port value bindings of a

CREST system’s global state w ∈ W is defined according to the set-values SOS rule:

set-values

−−−−−−→⊆ W × {Ports → Resources} × W . The relation operates on a system state

w and updates it according to a port-value mapping vs = {Ports → Resources}. This
operation requires the subsequent application of the stabilise rule on the system’s

root after the modification (

stabilise

−−−−−→⊆ W × Entities × T ×W). The routine triggers an

entity’s updates and automaton transitions until a fixpoint (stable state) is reached.

In the process it also recursively propagates the modifications to its child entities.

w1 = w[vs], ⟨w1, root, 0⟩
stabilise

−−−−−→ w2

⟨w, vs⟩
set-values

−−−−−−→ w2

(4.1)

stabilise As previously introduced, the propagation of system changes (port value

alteration or time advance) is based on the concept that after the modification, all

updates of an entity should be executed, and stabilisation should be triggered in child

entities. Rule 4.2 is called on a specific entity e whose stabilisation is to be triggered,

and a timestep size δt that should be executed. For stabilisation of the systemwithout

time advance, such as after the setting of port values (see set-values above), this
rule is initially called on the root entity with δt = 0, which will propagates values

but not execute any time advance of the system.

In detail, the rule first obtains the ordered list of modifiers and triggers their

execution using the apply-all rule (
apply-all

−−−−−−→⊆ W × ModifierLists × T × W). This is

followed by transitions (
transitions

−−−−−−−→⊆ W × Entities × W), which executes the state

automaton’s transitions until no further ones are enabled.

mods = ordered-modifiers(w, e),
〈
set-pre(w, e), e,mods, δt

〉
apply-all

−−−−−−→ w1

⟨w1, e⟩
transitions

−−−−−−−→ w2

⟨w, e, δt⟩
stabilise

−−−−−→ w2

(4.2)

The above rule uses a function set-pre, that, given w = ⟨curr, bind, pre, time⟩ (the
global system state) and an entity e, creates a new state, where the ports’ previous

value binding pre is updated. It returns a global system state whose pre bindings

are set to bind for all ports in targets(e). This function is used before executing any

modifiers of this entity, to assert that the modifiers inside the entity have access to

the port’s previous values (i.e. the values before the updates). Note that set-pre only
modifies the pre-bindings of an entity’s target ports, to maintain consistency with the

70 Chapter 4. The CREST Language

rest of the formalisation. This means that each entity is also responsible for setting

the pre values of its subentities’ inputs.

set-pre
(
⟨curr, bind, pre, time⟩, e

)
= ⟨curr, bind, pre’, time⟩

where pre′(p) =

bind(p) if p ∈ targets(e)
pre(p) otherwise

apply-all This rule is responsible for identifying the first modifier m0 within the

ordered modifier list, and then executing it. After the execution of the first modifier

m0 (see apply-one below), the rule recursively executes on the rest of the modifier

list mods. Using this approach, CREST propagates value changes iteratively, taking

the dependencies between ports into account.

Rule 4.4 is the break-condition of the recursion. It is called when the list of modi-

fiers is the empty list∅ and all applicable modifiers have been executed and removed.

In this case, no action is taken and the system state remains unchanged.

⟨w,m0, δt⟩
apply-one

−−−−−−→ w1, ⟨w1,mods, δt⟩
apply-all

−−−−−−→ w2

⟨w, [m0 : mods], δt⟩
apply-all

−−−−−−→ w2

(4.3)

⟨w,∅, δt⟩
apply-all

−−−−−−→ w
(4.4)

apply-one (

apply-one

−−−−−−→⊆ W × Modifiers × T × W) The two apply-one functions

(Rules 4.5, 4.6) execute the modifier (update or subentity) based on their type. If the

modifier is an update, the execution of the update is handed over to the specific

update rule (
update

−−−−→⊆ W ×Updates×T×W). Otherwise (if it is a child entity), it calls

stabilise on the child entity to propagate the changed system state and triggering

updates within the children.

mod ∈ Update, ⟨w,mod, δt⟩
update

−−−−→ w1

⟨w,mod, δt⟩
apply-one

−−−−−−→ w1

(4.5)

mod ∈ Entities, ⟨w,mod, δt⟩
stabilise

−−−−−→ w1

⟨w,mod, δt⟩
apply-one

−−−−−−→ w1

(4.6)

It is important to understand that the similar treatment of updates and child en-

tities is a significant feature of CREST. CREST sees a child entity as a complex form

of update which reads input values and writes output values. This black-box concept

encapsulates all child behaviour and allows every CREST entity to always rely on

the fact that its children are in a stable state.

4.2. CREST Semantics 71

update The execution of an update is relatively simple. The premises of Rule 4.7

extract the update function’s name u, current port bindings bind and previous port

bindings pre. The new system state created by this rule is the old state where the

update’s target port p is set to the value returned by the update function implemen-

tation υ(u) executed with the parameters bind, pre and δt.

⟨s, p, u⟩ = mod, w = ⟨curr, bind, pre, time⟩,

⟨w,mod, δt⟩
update

−−−−→ w[p 7→ υ(u)(bind, pre, δt)]
(4.7)

Effects of Continuous Time Update functions have access to δt, the time

that has passed since the current state was activated. This allows the modifica-

tion of port values over time and thereby potentially enabling transitions. Fig-

ure 4.7 shows such an enabling over time. It displays a water tank system that

contains a pump. When the pump is turned on, the volume of water is calcu-

lated by an update function which continuously evaluates as follows: volume =
pre(volume)+ in · δt− out · δt, where in is the amount of water being pumped into

the tank per time unit and out the water leaving the tank. The pump transitions to

Off when the water volume exceeds 75. In Off the update subtracts out · δt from
the volume. The pump starts as soon as the volume drops below 25. Assuming rea-

sonable in and out flows – the pump will alternate between the On and Off states.
Note that for simplicity reasons in this example we chose to annotate the updates

and transitions with their implementations, rather than their names. While this

“shortcut” allows for more expressive diagrams, it is important to understand that

these annotations are mathematical syntax, and not part of CREST.

waterunit≪Watering Unit≫

Off On

volume ⩽ 25

volume ⩾ 75in:

22 (RFlow)
out:

13 (RFlow)

volume:

45 (RVolume)

volume =
pre(volume) + in · δt − out · δt

volume =
pre(volume) − out · δt

Figure 4.7 – A water tank that can alternate between filling and emptying.

transitions The transitions rules are responsible for triggering transitions and
deciding whether further stabilisation is required. If there are transitions enabled

(Rule 4.8), the system state is modified by w[e 7→ t] and the semantics recurse by

triggering the stabilise rule. In case no transition was enabled (and thus none

was executed), no further action is taken (Rule 4.9).

⟨s, t, g⟩ ∈ enabled-transitions(w, e), w1 = w[e 7→ t], ⟨w1, e, 0⟩
stabilise

−−−−−→ w2

⟨w, e⟩
transitions

−−−−−−−→ w2

(4.8)

72 Chapter 4. The CREST Language

enabled-transitions(w, e) = ∅

⟨w, e⟩
transitions

−−−−−−−→ w
(4.9)

CREST implements eager transition evaluation. This means that a transitionmust

be fired if (at least) one is enabled. It is essential that update functions are triggered

immediately after the transition phase (using stabilise), as they otherwise risk being

executed at the wrong moments or not at all. This behaviour also forms the basis for

CREST’s implementation of transitions actions (See Section 4.3).

Non-Determinism It is also noteworthy that CREST does not prescribe a strat-

egy in the event where more than one transition is enabled. Thus, this is the place

where non-determinism is possible, e.g. if guard conditions “overlap”. Figure 4.8

for example displays the state automaton of a non-deterministic entity. The sys-

tem is assumed to be a watering unit which is connected to two plants. If a plant’s

soil is dry, the watering unit automatically waters that plant (Water Plant X).
We can easily imagine a scenario where both plants are dry at the same time, for

instance just after starting the system. Since CREST does not dictate any strategy,

the decisionwhich plant towater first is non-deterministic. This non-determinism

is an important and required to model many software systems.

waterunit≪Watering Unit≫

Off

Water

Plant 1

Water

Plant 2

plant-one-dry

plant-one-ok

plant-two-dry

plant-two-ok

Figure 4.8 – Example of a non-deterministic state automaton. In case both plants

are dry at the same time (and hence both transitions are enabled), the CREST

implementation will choose one of the transitions.

Time Advance We see from the above rules that updates allow the modification

of a system over time. The semantics of these time advances are defined below by the

relation advance (
advance

−−−−−→⊆ W ×T×W). The decision of which specific rule to apply

depends on the amount of time to advance δt ∈ T9. CREST only supports positive

δt-values, meaning that it is not possible to “step back in time”. In the semantics,

triggering advance with a δt < 0 has no effect, as shown in Rule 4.10.

δt < 0

⟨w, δt⟩
advance

−−−−−→ w
(4.10)

9
See Appendix B for details of CREST’s time base.

4.2. CREST Semantics 73

An advance of δt = 0 triggers a system stabilisation. Since the stabilisation pro-

cess searches for fixpoints, this means that the state w is only modified iff the system

was not stable.

δt = 0, ⟨w, root, 0⟩
stabilise

−−−−−→ w′

⟨w, δt⟩
advance

−−−−−→ w′
(4.11)

The advance of time requires the availability of next_transition_time : W → T.
Given a CREST system’s current state w this function tries to calculate the precise

amount of time δt that has to pass until updates enable any transition’s guard con-

dition. It returns ∞ in case it is not possible. CREST’s semantics do not prescribe

an implementation of this function. Depending on the available computation re-

sources, many ways to implementing next_transition_time are possible, such as a

search approach that naively tries to find values until it is “close enough”, or more

complex analysis techniques that include symbolic reasoning on the system. CREST’s

implementation for example transpiles the transition guards and update functions’

source codes into constraints, that are solved using an SMT prover, to find a min-

imum next transition time. A more detailed discussion of this implementation of

next_transition_time is provided in Chapter 5 – CREST Implementation.

Time advances with δt > 0 can be split into two possible scenarios, depending

on the amount of time to advance (δt) and the time ntt until a transition triggers a

discrete behaviour change. A visual aid is presented in Figure 4.9.

t
t0 ntt tntt

δt2
δt1

Figure 4.9 – Distinction of the two advance scenarios. Depending on δt and the point
where the next transition happens (i.e. t0 + ntt = tntt), different actions are taken. If

δt < ntt (e.g. δt1) then scenario 1 is chosen, otherwise scenario 2 is executed (e.g. δt2).

1. If the time we plan to advance (δt) is less than or equal to the next transition

time (ntt), Rule 4.12 applies. Since no transition can become enabled before the

δt timestep, CREST can safely advance to that point. Before the advance, the

rule sets the pre values of the current binding.

Subsequently stabilise is called on the root entity with parameter δt, to trig-
ger all system updates and stabilisation of entities (including potential transi-

tion triggering). Lastly (in the rule’s conclusion) the system’s global time is

updated.

δt ⩽ next_transition_time(w), ⟨set-pre(w, e), root, δt⟩
stabilise

−−−−−→ ⟨curr, bind, pre, time⟩

⟨w, δt⟩
advance

−−−−−→ ⟨curr, bind, pre, time + δt⟩
(4.12)

74 Chapter 4. The CREST Language

2. If δt is bigger than the next transition time ntt, Rule 4.13 will split the advance
into two steps: First, it will trigger advance with the value ntt, which activates

Rule 4.12, thereby triggering a stabilisation (including transition firing). Next,

CREST recursively advances the remaining time (i.e. δt − ntt).

δt > ntt, ntt = next_transition_time(w), ⟨w, ntt⟩
advance

−−−−−→ w1,

⟨w1, δt − ntt⟩
advance

−−−−−→ w2

⟨w, δt⟩
advance

−−−−−→ w2

(4.13)

CREST’s time semantics allow for the simulation and verification based on real-

valued clocks with arbitrarily small time advances. This feature is essential for the

precise simulation of CPSs and avoids the need for an artificial base-clock.

4.3 Language Extensions

The avid reader will have noticed that CREST’s formalised syntax and semantics

only describe the use of transitions and update functions for dynamic behaviour,

but omit the influence and action concepts that were informally introduced at the

beginning of Section 4.1. This is due to the fact, that CREST was designed to be

easily customisable and extensible. In this section we introduce the formal basis for

these language extensions.

In some situations, several design patterns occur repeatedly and it might be of

interest to add a dedicated modelling concept to express them. One example is the

static linking of two ports’ values by an update function. The basic idea of update

functions is the continuous modification of a port value if the automaton is in a cer-

tain state. In many systems, however, some update functions should be triggered in

every automaton state, to represent constant, state- and time-independent behaviour.

Such a link can be for instance the conversion of resource values, e.g. from degrees

Fahrenheit to Celsius, which should always be executed, independent of the entity’s

state. Another pattern that one repeatedly comes across is the need to execute update

functions when a transition is triggered. Although these patterns can be expressed

using the concepts introduced before, they lead to unnecessary repetition.

In this section, the two additional syntactic concepts of influences and transitions
with actions are formalised. Both build upon CREST’s syntax and semantics and nat-

urally translate into CREST’s formal system structure. Hence, these extensions are

purely syntactic and do not add further modelling power or expressivity
10
. For each

of these concepts, the formal definition (and translation to basic CREST) is presented

and eventual constraints are specified.

10
In the modelling community, such concepts are commonly referred to as “syntactic sugar”.

4.3. Language Extensions 75

4.3.1 Influences

As outlined, CREST uses the notion of influences to statically link the values of two

ports. In the growing lamp system, fahrenheit_to_celsius is an example for such

an influence. This influence continuously reads the room temperature, executes a

transformation and writes the calculated result to its target port, independently of

the current automaton state. In basic CREST the update would have to be specified

for each state. Instead, an influence is used to replace its equivalent set of updates

(that all refer to the same function) for each of the entity’s states. The benefit of

influences is that diagrams are more legible and an overload of updates is avoided.

Syntax Formally, an entity’s influences are defined as follows:

∀e ∈ Entities, Influencese ⊆ sources(e) × targets(e) ×U

Similar to updates, all of a CREST system’s influences are defined as the distinct

union of the entities’ influences.

Influences =
⊔

e ∈ Entities

Influencese

The definition of influences requires that for each influence there is an update

related to each state of the influence’s entity. Formally, the constraint is expressed by

the following implication:

∀e ∈ Entities, ⟨p1, p2, u⟩ ∈ Influencese =⇒ ∀s ∈ Statese,∃⟨s, p2, u⟩ ∈ Updates

For the calculation of the modifier precedence, we have to provide the function’s

dependencies. An influence’s dependency is only its source port.

∀⟨p1, p2, u⟩ ∈ Influences =⇒ dependencies(u) = {p1}

Semantic Constraint On the semantic side, an influence function’s output is re-

quired to be only influenced by the source port’s value. Thus, for any two bindings

and pre-bindings whose values are equal for the influence’s source port, the following
condition must hold:

∀e ∈ Entities,∀⟨p1, p2, u⟩ ∈ Influences,∀b1, b2, pre1, pre2 ∈ Bindings,

b1(p1) = b2(p1) ∧ pre1(p1) = pre2(p1) =⇒ υ(u)(b1, pre1, δt) = υ(u)(b2, pre2, δt)

The returned value of the influence’s function needs to be the same, even if there

exists a port where binding or pre-binding values differ, i.e. if

∃p ∈ Ports, p , p1, b1(p) , b2(p) ∨ pre1(p) , pre2(p)

76 Chapter 4. The CREST Language

4.3.2 Transition Actions
In some situations it is convenient to execute an update every time a certain tran-

sition is triggered. The concepts that were introduced before suffice to express such

behaviour. An example for such a situation is a counter that increments a value ev-

ery time a specific transition is fired, as modelled in Figure 4.10a. Instead of passing

directly from Off to On, an intermediate state Count is added. After transitioning
to this intermediate state, the plus_one update performs the value increment. The

Count-state is left immediately upon completion of the updates, since the next tran-

sition specifies a guard that always evaluates to True (here modelled by the function

true) and hence is triggered immediately.

To alleviate the burden of having to define an intermediate state for each such

action-update, the CREST syntax is extended to include transition-actions. The graph-

ical syntax of such an action is shown in Figure 4.10b. Actions are defined as updates

connected to a transition, rather than a state.

≪CountingEntity≫

On Off

Count

on
-gu

ard

true

off-guard

count:

0 (NCount)

plus_one

(a) Transition counter without action

≪CountingEntity≫

On Offon-guard

off-guard

count:

0 (NCount)

p
lu
s
_
o
n
e

(b) Transition counter with action

Figure 4.10 – Example of a counting entity with and without transition action. The

models increment count each time the Off-to-On transition is triggered.

Note that this feature strongly builds upon CREST’s semantics, which triggers

updates right after entering a state. If CREST were to first execute all enabled tran-

sitions and only trigger the updates when the automaton cannot not advance any

further, plus_one would never be executed and it would be impossible to imple-

ment a counter such as this one.

Syntax Structurally, each transition with actions is defined as a guarded transition

(using two states and a transition guard name) that is extended by a set of tuples

of the form ⟨target-port, update function name⟩. The tuples each map a target port to

one update function name.

TransitionsAct ⊆
⋃

e∈Entities

(
Statese × Statese × T × P(targets(e) ×U)

)
As explained above, the introduction of actions is syntactic sugar, added to the

language to increase usability. This means that each transition with actions can be

4.4. Language Analysis 77

also expressed through an extra state, two transitions and a set of updates (one update

per action), as shown in Figure 4.10a.

This translation is formalised by the following implication: For each defined action-

transition quadruple, there exists an extra (intermediate) state t′, a transition from

the source-state s to t′ that is guarded by the original transition guard and another

transition from t′ to the target-state t that is guarded by true, a guard function that

always returns True.
For each target port-action pair, a new update is introduced that is linked to t′ so

that the update is executed right after the automaton transitions to t′.

∀e ∈ Entities,∀s, t ∈ Statese

⟨s, t, g, pas⟩ ∈ TransitionsAct =⇒

∃t′ ∈ Statese, ⟨s, t′, g⟩, ⟨t′, t, true⟩ ∈ Transitions

∧

∀⟨p, a⟩ ∈ pas, ⟨t′, p, a⟩ ∈ Updates

Semantic Constraint Note that transition actions are always called with δt = 0.
This is because transitions are instantaneous and hence time can neither pass during

the execution of the transition nor the update. Therefore, actions should behave the

same, independent of the δt value.
Formally we require that an action always returns the same value, independent

of the timestep δt it is called with. We assume that for any two timespans δt1, δt2, ∈ T
the action’s return value is the same.

∀⟨s, t, g, pas⟩ ∈ TransitionsAct,∀⟨p, a⟩ ∈ pas,
∀bind, pre ∈ Bindings, ∀δt1, δt2, ∈ T, υ(a)(bind, pre, δt1) = υ(a)(bind, pre, δt2)

4.4 Language Analysis
CREST aims to provide a powerful language for the dedicated purpose of CPS mod-

elling. Before implementing the details of the language, however, many other lan-

guages were evaluated for their fitness to model resource flow CPSs. This knowledge

influenced the design of CREST, as existing languages’ strengths inspired CREST’s

features, while weaknesses of other DSMLs were avoided. CREST’s principle struc-

ture, including its entity hierarchy and port system, for instance, is inspired by archi-

tecture description languages (ADLs) and the specification of continuous behaviour

and variable evolutions is a key feature of hybrid automata (HA). However, similar

to these systems, CREST also imposes constraints.

This section analyses CREST and describes its handling of some well-known

modelling problems such as Zeno behaviour and parallel computation. Furthermore,

it outlines the relationship to three other formalisms, namely hybrid automata, Petri

nets and DEVS, by pointing out commonalities and differences between these for-

malisms and CREST.

78 Chapter 4. The CREST Language

4.4.1 Language Design and Modelling Considerations

CREST is based on several, deliberate design choices thatmight seem counter-intuitive

when regarding the general trends of modelling languages. One criticism could be

that it merges architecture and behaviour within the same language concepts and di-

agrams. Usually, modelling languages use viewpoints, to allow engineers to develop

individual system aspects independently. The separation of a system’s structure and

behaviour increases the complexity of the DSL, however, since it introduces new

needs for viewpoint synchronisation and the verification of system coherence. In re-

gard of CREST’s target users, which might not be familiar with such processes, this

increases complexity and lowers the language’s usability and suitability. Nonethe-

less, CREST offers a practical means to separate an entity’s architecture from its be-

haviour. Using entity abstraction (see Section 4.1), it is possible to model a component

by its scope and communication interface only. This behaviour-masking allows the

entity’s use for structural composition even before its dynamics have been defined.

Based thereon, the models can already be used for various analyses such as the dis-

covery of dependency cycles or resource incompatibility between ports.

The decision to merge structure and behaviour renders CREST a very pragmatic

modelling language. The DSL’s purpose is to help the design and creation of CPSs

such as smart homes. In most cases, such systems are built “bottom-up”, where users

select available devices according to certain requirements. For instance, if a system

should have automatic light controls, a smart home builder will purchase one of the

available IoT light bulbs. The system itself is then composed from the chosen devices.

This approach to CPS creation is reflected in CREST’s modelling process, which en-

courages the composition of entities to larger systems. As a result, the architectural

aspect of CREST models is imposed by the represented system components, while

the behaviour emerges from entity composition.

A final, generic point of discussion is that CREST is a DSL that aims to provide

a coherent means to CPS modelling. Based on this concept, the language enforces

the use of automata for behaviour specification and the use of a hierarchical entity

structure, encapsulation and ports for the structural aspect. Some researchers might

criticise that these means are not generically “the right” choices. Indeed, the multi-

paradigm modelling community embraces the view that in all situations the “most

appropriate” formalism or language should be used. The problem with this choice

is evidently the highly increased complexity of the modelling approach, that comes

with the expression of different components in different ways. To avoid confusion

or erroneous behaviour, modellers that work with such systems have to pay close

attention to the exact syntax and semantics of each component. As this reduces us-

ability and significantly steepens the modelling learning-curve, CREST avoids this

concept in favour of a streamlined, clear and unambiguous formalism.

Nevertheless, CREST embraces a limited multi-paradigm view to increase usabil-

ity. As it neither prescribes a syntax nor semantics for the definition of transition

guards and update functions, modellers can use any appropriate means to express

such behaviour. Thus, expert engineers might use differential equations, while users

of CREST’s Python DSL will use source code, for instance.

4.4. Language Analysis 79

4.4.2 Zeno Behaviour

One of CREST’s most vital constraints is the exclusion of Zeno-behaviour. Formally,

a system execution is called Zeno, if there is an infinite number of transitions that

are executed in a finite amount of time. In CREST for example, there could be a cycle

of transitions, where every transition is always enabled.

Figure 4.11 for example shows two entities that have Zeno behaviour. Figure 4.11a

exposes an entity whose transitions are both permanently enabled if port’s value
is below five. Stabilisation of this system would force CREST to repeatedly take any

enabled transition, and thus the model would transition infinitely often between the

two states A and B. Figure 4.11b shows a different kind of Zeno behaviour, where

infinitely many transitions occur in a finite amount of time. The entity iteratively

halves the amount of time it spends in state Wait. After an initial waiting time of one

time unit, the entity transitions to reset and back and uses the action

halve_wait_time to decrease wait-time to 0.5. After 0.5 time units the transi-

tions are activated again and wait-time is set to 0.25. This cycle continues, setting

wait-time’s values to 0.125, 0.0625, 0.03125, and so forth. It is however well-known
that for a finite number of iterations, the sum of the sequence 1 + 1

2 +
1
4 +

1
8 + . . .

approaches, but never reaches 2. Therefore, it is impossible to simulate an advance

of two time units, since an infinite number of transitions would have to be executed

before. Similar situations occur in loops of infinitesimal-transitions.

The modelling of Zeno behaviour has been studied previously in many publi-

cations (e.g. in [Mos07]). For the simulation and verification of CREST systems, we

forbid Zeno behaviour for the above reasons. Developers must pay attention to not

accidentally model such behaviour.

CREST’s implementation aims to help developers identify Zeno behaviour in

their models by analysing system traces for recurring patters. When discovered, an

implementation should offer the possibility to break this cyclic execution of transi-

tions (e.g. by manual suppression of transitions) or by defining thresholds for modi-

fication of values. In the example of Figure 4.11b this might be implemented by ceas-

ing to decrease wait-time in halve_wait_time if its value drops below a certain

minimum. Despite these naive attempts, the discovery of modelled Zeno behaviour

significantly more difficult for complex systems and is unsolvable in general.

≪Entity≫

port:

2 (RResource)

BA

port < 5

port < 10

(a)

≪Entity≫

time:

0 (RTime)

wait-time:

1 (RTime)

total-time:

0 (RTime)

ResetWait

time ⩾ wait-time

True

reset_timeincrease_time

increase_time halve_wait_time

(b)

Figure 4.11 – Zeno behaviour. Left: Both transitions are permanently enabled. Right:

total-time cannot reach 2 without infinitely many transitions.

80 Chapter 4. The CREST Language

4.4.3 Modifier Execution Order and Parallel Computation
The syntax and semantics sections introduce several concepts to define dependencies

between a system’s ports and to create an execution order for CREST’s modifiers (i.e.

its updates, influences and subentities). Although a complete proof of validity exceeds

the scope of this discussion, this section briefly revisits the subject and provides the

reasoning behind the concept.

The need for definition of an execution order is easily explained using the exam-

ple shown in Figure 4.12. The figure depicts a sequence of ports that are connected

by influences
11
. CREST’s semantics define, that all modifiers within an entity need

to be executed, so that no port value update remains pending.

In the example below, a modification of the input port’s value should be directly
reflected by the update of the local and output ports. It is however necessary that

propagate_A is obligatorily executed before propagate_B. If these two were to be trig-
gered in the wrong order, propagate_B would first write the (outdated) value to the

output port, before receiving its new value by propagate_A. Thus, output would

carry the wrong value, at least until the next stabilisation. Such situations can be

avoided by the use of the ordering created by ordered-modifiers.

≪MyEntity≫

input

20 (RResource)
local

20 (RResource)
output

20 (RResource)

propagate_A propagate_B

Figure 4.12 – A (partial) CREST diagram with a sequence of ports connected by in-

fluences. Note that the entity is not complete as it misses e.g. a state automaton.

Parallel Computation & Concurrency Evidently, the stabilisation and advance

of time in large systems can be computationally demanding and require significant

resources quantities. Next to the modification of the model itself, e.g. by increasing

the level of abstraction and thereby removing unnecessary details, computation can

be sped up by performing certain calculations in parallel. CREST’s semantics define

that the stabilisation process executes an entity’s modifiers in a certain order. This

order is based on port dependencies, such that a modifier m1 (an update or subentity)

whichwrites to a certain port p is executed before anym2 that reads p. As a result, the
semantics assert that behaviour is computed and executed in a logically correct order.

The formal semantics however do not elaborate on the fact that the computation of

such two components can be effectively calculated in parallel.

In case two modifiers m and m′ exist that do not have any dependencies between
their ports, they can be triggered in parallel. This is expressed by requiring that there

does not exist any port read by m that depends on any port read by m′ (thus also all

ports written by m′) and vice versa. Formally, p ⊀ p′ ∧ p′ ⊀ p for all ports p read

11
Note that influences were chosen for graphical simplicity. These dependencies could equally be

modelled using updates that read one port and write another, or subentities where the source port is

an input and the target is an output.

4.4. Language Analysis 81

by m and all ports p′ read by m′. We call these two modifiers m and m′ independent.
The theory of this parallel execution is closely related to Kahn process networks and

operator networks found in synchronous languages such as Esterel and Lustre.

≪MyEntity≫

input

20 (RResource)

local

20 (RResource)

local2
20 (RResource)

output

20 (RResource)

output2
20 (RResource)

propa
gate_A

propagate_B

propagate_C

propagate_D

Figure 4.13 – A (partial) CREST diagram with independent influences that can be

executed in parallel.

Figure 4.13 shows an example system that offers parallel execution possibilities.

The system consists of an entity with five ports that are connected by four influences.

As can be seen from the diagram, there exist no dependencies between the upper two

influences and the lower ones. This means that the execution of these influences can

occur in any order, as long as propagate_A is executed before propagate_C, and prop-
agate_B before propagate_D. However, provided that enough computation resources

are available, propagate_A and propagate_B could be executed in parallel and thereby

reduce the time needed for the entity’s stabilisation process.

In fact, as any two modifiers without dependencies can be executed in parallel,

the following pairs of influences can be safely executed at the same time:

• propagate_A and propagate_B,

• propagate_B and propagate_C,

• propagate_A and propagate_D, and

• propagate_C and propagate_D.

Race Conditions The parallelisation of computation is a complex subject for most

tools and languages. Guaranteeing semantic correctness usually requires significant

additional effort. Nonetheless, race conditions and so-called “dirty-reads” (i.e. use of

outdated values) and “dirty-writes” (i.e. overwriting values) remain problematic and

their avoidance is of high interest.

The ordering of modifiers is presented above as a means to avoid dirty-read sce-

narios, and to ensure that all updates and influences always access the latest value

binding of a port. As for dirty-writes, the problematic is completely resolved by

CREST itself. CREST’s formal system structure forbids that two updates that are re-

lated to the same automaton state write to the same target port. This constraint also

extends to influences, since they are syntactic sugar for a set of updates. Hence, a

model as shown in Figure 4.14 is not allowed. The two influences propagate_C and

propagate_D cannot both write to the output port, since CREST cannot decide which

influence’s modification is more important and CREST does not provide a dedicated

82 Chapter 4. The CREST Language

concept to resolve such write conflicts
12
. Instead, CREST encourages the use of up-

date functions that read the values of local and local2 and explicitly define which

value to write to output. Thus, the language is kept simple and easy to learn.

≪MyEntity≫

input

15 (RResource)

input2
0 (RResource)

local

15 (RResource)

local2
0 (RResource)

output

?? (RResource)ILLEGAL!

propagate_A

propagate_B

propagate_C

prop
agate

_D

Figure 4.14 – CREST forbids that two modifiers concurrently write to the same port.

4.4.4 Structural vs. Temporal Non-Determinism

CREST’s semantics describe the support of non-determinism by allowing two transi-

tions to be enabled at the same time. In such situations any one of the transitions can

be chosen to be executed – no selection strategy is imposed by the formalism. Such

constellations are referred to as structural non-determinism, since it is rooted in the

model’s structure. This means that if a CREST model does not have any reachable

state where two transitions are concurrently enabled, the model’s evolution is com-

pletely deterministic. This is due to the fact that CREST implementsmust-semantics,

where a transition has to be triggered if it is enabled.

When comparing CREST with hybrid automata (HA) however, it becomes evi-

dent that the latter supports another kind of non-determinism. In their most general

form, HA implementmay-semantics, where an automaton does not have trigger the

transition although it is enabled. Instead, the automaton may remain in its current

state and activate the transition at a later point. This is known as temporal non-
determinism, since it creates diverging execution traces based on the time that a

transition is executed. Depending on the time base T, there can be infinitely many

execution traces (e.g. if T = R⩾0).

A May-Semantics Automaton An example for a system with may-semantics is

shown in Figure 4.15. The model represents an automatic heater module and the evo-

lution of some temperature value. The HA consists of two states on and off (called

locations) and manages one continuous variable x. Each location specifies the evolu-

tion of x’s value via the ẋ variable. For example, on defines ẋ = 0.5, which means that

the variable’s value grows by 0.5 per time unit. Finally, locations are annotated using

invariants, which dictate how long an automaton can remain in a certain location.

For instance, on specifies that x has to be below or equal to 40 in this location.

Transitions allow the switching of locations and are labelledwith transition events,

guard conditions and variable updates. Events specify signals that is emitted when

the transition is taken (ON or OFF) and can be used to synchronise the transitions

12
Many HDLs overcome this problem by using “resolved” signals to make this logic explicit

4.4. Language Analysis 83

ẋ = 0.5

x ⩽ 40

on

ẋ = −1.5

x ⩾ 15

off

ON, x ⩾ 25 ∧ x′ = x

OFF, x ⩽ 20 ∧ x′ = x

Figure 4.15 – Example of a HA that models a very simple heater module using may-
semantics. x represents the temperature value and ẋ the rate at which x changes.

of several automata. Guards are invariants that specify when the transition can be

taken (e.g. x ⩾ 25). Variable updates are statements that discretely modify the values

when a transition is taken (similar to CREST’s actions). In the heater model, both

transitions define x′ = x, i.e. that the variable’s value after the transition x′ is equal
to its current value x (before the transition). Thus, no discrete “jumps” are modelled.

This simple HA highlights the effect of using may-semantics. For example, the

transition from on to off becomes enabled when x = 25. on’s invariant, however,
defines that the automaton may remain in the location until x reaches the value 40

(i.e. x ⩽ 40). This creates a certain time interval in which the automaton’s evolution

is non-deterministic, as the transition can be taken at any point.

For example, if the variable’s initial value is x = 15, the transition will become

enabled after spending 20 time units in state on. The location’s invariant states that
the location must be left after 50 time units, when x = 40. This means, that the HA

can transition to off at any of the infinitely many times in the interval [20, 50].

Approximation ofmay-Semantics CREST’s use ofmust-semantics does not per-

mit temporal non-determinism. This property renders simulation and verification

manageable, since the number of evolutions is limited by themodel’s structure. Thus,

it is impossible to model a transition that executes “at some point” in an interval.

However, CREST can be used to implement an approximation of this behaviour.

The general idea of this workaround is to create the possibility to delay a given tran-

sition by introducing another transition to an alternative state with the same guard

as the original transition. An example is presented in Figure 4.16. The model on the

left displays the CREST diagram of a heater model. It triggers transitions as soon as

they become enabled (i.e. when x reaches 25). To create an approximation of may-

semantics, an additional state on′ and a transition to on′, which becomes enabled

at the same time as the transition to off, is introduced. Thus, when x = 25, both
transitions are enabled and the automaton can transition to on′ instead of off. After
a pre-defined time τ, the automaton transitions back to on, where it can (again) ei-

ther switch to off or delay further by transitioning to on′. The τ-delay is modelled

using a local port time, whose value is reset to zero when transitioning to on′, and
continuously increased while in that state.

To avoid infinite delay possibilities, the invariant condition (e.g. x ⩽ 40) can be

added to the transition guard, thereby limiting the transitions to on′. To guarantee

the semantic correctness, on′ also has to define the same update functions as on.
This example shows that using the presented approach, a delay of a transition

84 Chapter 4. The CREST Language

Heater≪Entity≫

x:

15 (RTemperature)

offon

x ⩾ 25

x ⩽ 20

x = x + 0.5 · δt x = x − 1.5 · δt

(a)

Heater≪Entity≫

x:

15 (RTemperature)

offon

x ⩾ 25

x ⩽ 20

x = x + 0.5 · δt x = x − 1.5 · δt

time:

0 (RTime)

on
′ x ⩾ 25 ∧ x ⩽ 40

time = τ

time = 0

x = x + 0.5 · δt

time = time + δt

(b)

Figure 4.16 –Approximation of temporary non-determinism andmay-semantics. The

CREST model on the left uses classical may-semantics. The new version on the right

allows to delay the transition to off by switching to a on′ for τ time units.

can be simulated. The solution requires, however, a predefined delay granularity τ.
Depending on how small the value τ is chosen, this solution can severely impact the

simulation and verification performance of CREST. It also has to be pointed out that

τ needs to be a value from the time base T but cannot be zero or the infinitesimal

value ε, as this would introduce Zeno behaviour.

Modelling Must-Semantics with May-HA It is also worth mentioning that any

CREST system can always be modelled as a HA, even if the underlying semantics ex-

pose may-behaviour. To do so, it is necessary to define an invariant for each location

that limits the possible time spent to the point at which a transition is enabled. Thus,

each location’s invariant must be the conjunction of all negated transition guards.

As soon as any transition guard is enabled, the invariant is not satisfied any longer

and the newly enabled transition has to be taken. In the example of Figure 4.15, we

might replace the invariant for on with ¬(x ⩾ 25) and off’s invariant with ¬(x ⩽ 20)
and thereby model must-behaviour. Formally, such invariants can be expressed as

follows:

∀l ∈ Loc,∃i ∈ Inv, i =
∧
{¬g | ⟨l, l′, g⟩ ∈ Trans}

where Loc are the HA’s locations, Inv, its location invariants and Trans the transitions
between locations such that ⟨l, l′, g⟩ ∈ Trans is the transition from location l to l′ and
g is the transitions guard

13
.

Thus, CREST systemmodels can be potentially be expressed as HAwith must- as

well as may-semantics, which enables modellers to reuse simulation and verification

tools that were developed for HSs.

4.4.5 Composition Aspects

As shown at the beginning of this chapter, CREST uses a hierarchical approach to

assemble large systems. Hybrid systems (HSs), on the other hand, use a different

13
A complete formalisation of HA can be found in dedicated publications such as [Ras05]

4.4. Language Analysis 85

composition approach. Since they do not introduce hierarchy, they require a differ-

ent means to synchronise the discrete and continuous advances within their com-

ponents. The parallel execution of transitions in multiple automata is orchestrated

using events (a.k.a. synchronisation labels). Transitions that are labelledwith the same

event (e.g. ON and OFF in Figure 4.15) are executed in parallel and thereby advance

concurrently. The continuous evolution of an automaton’s state, i.e. its set of vari-

ables, is usually modelled via shared variables [AHH96]. This means, that several

automata can reference the same variable and use it e.g. in their respective transition

guards. However, it also means that all locations of all automata need to be synchro-

nised on the variable’s rate. If two concurrent locations specify contradictory rates,

the system is invalid and cannot be simulated. Resolving this issue often requires

some form of “ownership” concept or priority for variables.

CREST refrains from sharing variables to preserve its locality principle and in-

stead chooses to follow an alternative approach inspired by ADLs and dataflow lan-

guages. Each entity modifies only its own local ports and outputs and defines updates

and influences to propagate information. From a practical point of view, this means

that CREST remains closer to a CPS setup, where components encapsulate their in-

ternal values and only expose their output interface ports.

Hierarchical HA Composition Another approach is the use of hierarchical

hybrid automata [Jie+99]. This formalism proposes that a HA can encapsulate other

HA in its locations. Hence, the evolution of continuous variables in a location is not

described by ODEs, but by the embedded automata, which allows more complex be-

haviour. In CREST’s domain, this wouldmean that each automaton state could embed

subentities that are activated when their parent-automaton state is active.

The problem of this approach is the mixing of architectural and behavioural as-

pects. CREST’s methodology to entity composition treats subentities as explicit parts

of the hierarchy, similar to e.g. AADL. Thus, it logically separates the static architec-

ture (i.e. subentities) from the behavioural aspect (i.e. its state automaton).

If the subentities were to be modelled inside automata states, the system’s struc-

ture could change after every transition, since the new state might specify a different

embedded subentity structure. In the growing lamp system, for example, the light

module and heat modules always remain active parts of the system, independently

of the growing lamp’s FSM-state. When modelling this system with the hierarchical

HA approach, the light and heat module can be specified within the growing lamp’s

automaton states. In states where only the light module is used, the heat module’s

specification would even be omitted. This removal however, distorts the architectural

view of the system, since the actual heat module, including its ports and connections,

remains part of the system even if it is not active. Another problematic is the replica-

tion of information, as common functionality has to be replicated in each automaton

state. For example, the light module would have to be specified inside every individ-

ual state, since its functionality is required in all situations.

The problems of placing structural concepts inside the behaviour automaton states

increase further when large, nested automata with many states are required or when

multiple hierarchical layers have to be modelled.

86 Chapter 4. The CREST Language

4.4.6 Commonalities with Hybrid Petri Nets

Petri nets (PNs) are a family of formalisms that are well-suited for the modelling of

resource and control flows, especially in parallel and concurrent systems. One of the

main advantages of these formalisms stems from their simplicity. System models are

described as bipartite graphs using a set of places and transitions, which are con-

nected using weight-annotated arcs. Places can represent resources or control and

store tokens which e.g. specify the amount of the available resource. System evolu-

tion is modelled via transition “firings” that consume tokens from the transition’s

precondition places (i.e. nodes connected by incoming arcs) and produce new ones in

all its postcondition places (i.e. outgoing arcs). The number of tokens produced (resp.

consumed) is defined by the arcs’ weights annotations
14
.

Figure 4.17 shows a PN that models the state automaton of an electrical device.

Initially, there is one token in place OFF. Firing transition T0 causes this token to be

consumed and another token to be produced in place ON 15
. From place ON, the PN

can either transition back to OFF or to ERROR. By default, PNs do not hold informa-

tion about which transition is taken if more than one is enabled. This means that the

treatment of non-determinism is similar to CREST.

OFF ON ERROR

T0

T1

T2

(a)

OFF ON ERROR

T0

T1

T2

(b)

Figure 4.17 – A Petri net modelling a state automaton. The nets show the state before

firing transition T0 (left) and after (right).

Additionally, a PN can have several places with tokens at the same time. This

means that concurrency can bemodelledmore easily. In CREST, for comparison, only

one automaton state can be active at a time. To model the activation of two CREST

states in parallel, it is necessary to hierarchically separate these automaton states

and move them into different subentities. The result is that each subentity possesses

its own automaton. This design choice can be seen as a trade-off, since CREST’s

intuitiveness, where an automaton is always in one single state, comes at the cost of

having to introduce additional entity hierarchy levels to model concurrency.

Next to the representation of control flows, PNs can also be used to model the

movement of resources inside a system. For example, Figure 4.18 displays a very

abstract view of battery-powered growing lamp. The battery charge is modelled by

the number of tokens in the BATTERY place. Firing of T2 represents the operation

of the lamp, which consumes one battery token and creates three tokens for heat

14
By convention, the annotation is omitted for arcs with weight 1

15
To avoid confusion, the reader is reminded that tokens do not move in a PN. Transitions consume

tokens and produce new (different) ones.

4.4. Language Analysis 87

and fifteen for light. In this model, the HEAT and LIGHT places measure the total

amount of light and heat produced by this device. T2 also consumes the token from

ON, but immediately creates a new one. This is a common pattern in PNs to limit the

firability of T2. To fire a transition, enough tokens are needed in all its precondition

places. Thus, T2 can only be firedwith a token inON and it is disabled if the token is in

OFF. This small example visualises two things. First, PNs allow the expression of both

control and resource flow within the same net, using the same syntax and semantics.

Second, it highlights the activation of certain parts of the model (the resource flow)

based on the configuration of other parts (i.e. the control flow). CREST uses a similar

technique where updates are only active if the automaton is in their specified state.

OFF

ON

BATTERY

HEAT

LIGHT

T0 T1

T2

3

15

Figure 4.18 – A PN as resource flow model.

Timed Petri Nets When taking a closer look at this model, we see that there

is no information about the frequency in which T2 can be activated and how long

this transition takes. For instance, the consumption and production of energy takes

time, which needs to be modelled. There are discretisation techniques that express

time as tokens, although this solution only works well for trivial models. For more

complex cases, PNs have been extended in various ways to include this concept of

time [Pop13]. In this thesis, we focus on PNs with timed transitions, even though

other solutions could be used. This extension allows the annotation of each transi-

tion with a duration value. Setting T2’s duration to 60, for instance, means that T2

takes 60 minutes to execute and can only be fired once per hour.

The use of time in PNs allows us to specify how long a transition firing takes,

but it also introduces a new issue. The example PN only allows us to turn the lamp

on in one-hour intervals and does not allow for any finer time granularity. A naive

solution would be to “split” each token into smaller parts and thereby create a finer-

grained execution. For example, we could split each token in BATTERY into four

“smaller” tokens. By modifying T2’s duration equally, the transformation permits to

use the lamp in 15-minute intervals. Note that even though the arc weights remain

the same, the semantic “value” of the tokens produced in HEAT and LIGHT also has

to be adapted to a quarter of its original value. Based on this principle, we could split

tokens into smaller and smaller chunks until the required granularity is reached. In

the growing lamp example, a precision of one second times should suffice for most

application. However, we can easily imagine systems that require even more fine-

grained execution times, and therefore token values.

88 Chapter 4. The CREST Language

OFF

ON

4.0BATTERY

HEAT

LIGHT

T0 T1

T2

3.0

15.0

Figure 4.19 – A Continuous PN as model for the growing lamp.

To avoid dealing with large numbers of tokens and the need to split token val-

ues until a certain discrete granularity is found, Continuous Petri nets have been

defined
16
. Continuous PNs are the result of “splitting a token value infinitely often”.

In this situation, a place’smarking (the number of tokens inside) is represented using

a real number, rather than an integer token count. The resulting continuous places

and transition are shown in the lower part of Figure 4.19. Note that continuous (real-

valued) places and transitions use a slightly altered graphical syntax to visually dif-

ferentiate them. When triggering a transition in a continuous PN, it is necessary to

define a firing quantity. It is a real value in the interval [0, 1] and defines “how of-

ten the transition is fired”. For example, firing T2 with a quantity of 0.25, consumes

1 × 0.25 = 0.25 tokens from BATTERY. It further produces 3 × 0.25 = 0.75 tokens in

HEAT and 15 × 0.25 = 3.75 tokens in LIGHT.

Hybrid Petri Nets In fact, the PN shown in Figure 4.19 is a Hybrid Petri net, as

it mixes both continuous and discrete parts. Again, it is possible to highlight the

commonalities between Hybrid PNs and CREST, where a discrete formalism is used

to model the control part (CREST’s state automaton) and the continuous aspect (i.e.

CREST’s update mechanism) is used to model the flow of resources.

The flow of resources such as water and electricity within a PN can be easily

modelled as shown above. In fact, by adding a transition T3 to the growing lamp

system which reduces the tokens in HEAT at a constant rate, it is possible to model a

cooldown
17
. In this scenario,HEAT does not show the total amount of heat created by

the growing lamp, but the net added energy (i.e. the difference between heat added

and lost). Figure 4.20 displays the model of such a system.

However, we observe that with the means that were introduced so far, it is im-

possible to create a place that represents the amount of light that is currently being

produced. The reason is that, in contrast to heat, light disappears immediately when

the transition is not triggered. In the example, LIGHT holds the total energy that was

provided to the lighting function. A place that shows the current amount of light be-

ing produced (measured e.g. in watt) should hold a zero-marking at any time T2 is

not executed and the light bulb’s wattage value during T2 firings. With the presented

16
For a more thorough introduction of the concept, the reader is referred to [AD98].

17
This behaviour is expressed as sink transition, i.e. a transition without a postcondition.

4.4. Language Analysis 89

OFF

ON

4.0BATTERY

HEAT

LIGHT

T0 T1

T2

3.0

15.0

T3

Figure 4.20 – Adding a sink-transition T3 so HEAT always stores the net added heat.

Petri net formalisms, it is not (or only with highly complex nets) possible to model

this behaviour. PNs however have been extended to allow the expression of this be-

haviour in formalisms such as Petri nets with Inhibitor Arcs and Higher-Level Petri

nets [JR12]. The former allows the disabling of transitions based on precondition

markings and the latter the use of data and variables inside tokens.

Another problematic is the modelling of non-numeric data inside a PN. In the

models above, we saw that tokens represent Boolean and numeric values. A black

token can indicate a certain state by being present or not (see ON and OFF, above).
Other places count the number of resources available, to e.g. model the BATTERY
charge. CREST systems, however, also model more complex data and enumeration

types. The CREST growing lamp system introduced at the beginning of this chap-

ter uses an {on, off}Switch resource, for instance. Additionally, CREST’s updates
execute function calls, its transitions compare port values to evaluate whether they

are enabled. The modelling of these features in classic PNs is far from trivial, if not

impossible. CPNs [Jen96] however introduce types into the PN formalism family,

High-level Petri nets permit the implementation of complex transition guards and

evaluate functions, and CO-OPN [BG00] allow the expression of object-oriented as-

pects inside PN. Some of these formalisms have already used within Hybrid Petri

nets as documented in [Her+17] and [GU96].

Outlook In general, the integration of PNs for modelling is usually limited to a

lower abstraction level, where models are automatically generated. Since PN mod-

els often contain hundreds of places and transitions a manual creation is difficult

and error-prone, extensions of the base-formalism help this process only in a limited

way. The advantage of PNs, however, lies in their simplicity and the use of very few

syntactic and semantic concepts. This means that various system aspects (e.g. flow of

control and data) can be efficiently expressed within the same model, and that tools

can be implemented with fewer rules.

PNs are a tempting translation target for CREST models, since their popularity

led to the creation of numerous analysis methods and simulation implementations

that could be reused for the verification of CREST model properties.

90 Chapter 4. The CREST Language

4.4.7 Relationship to DEVS
CREST is also loosely related to other formalisms that combine discrete and continu-

ous behaviour, such as hybridDEVS [BK11]. Conceptually, it is easy to find the resem-

blance between DEVS and CREST. DEVS, by default, is a formalism that combines

time-based (internal) transitions with event-based (external) transitions. Similarly,

CREST continuously advances time between points where port values are externally

modified (set-values). However, while CREST uses continuous semantics for variable

values, DEVS is bound to discrete transitions between states. Quantized state systems

(QSSs) have been introduced to overcome this issue, where variable values are dis-

cretised into “quantized states”. Each quantized state thus represents an interval of

variable valuations. This allows the approximated simulation of hybrid behaviour

within the discrete formalism. Tools such as PowerDEVS provide capabilities to au-

tomatically create QSSs based on atomic or coupled DEVS specifications and use a

block diagram-based GUI to simplify modelling. Each block represents an atomic

DEVS model within a coupled DEVS system. ProDEVS, is another hybrid modelling

tool that supports state-machines [VFA15].

There are however certain other limitations to the representation of CRESTmod-

els in the DEVS formalism. For example, non-determinism is neither allowed in DEVS

nor QSSs, which means that only fully deterministic CREST systems could be trans-

lated. Furthermore, problems arise when it comes to the verification of such systems.

Even though some research effort has been put into the verification of hybrid DEVS,

the solutions mostly rely on mapping DEVS onto other formalisms such as timed

automata and performing verification thereon [SW12].

4.5 Summary
This chapter introduces CREST, a novel modelling DSL that focuses on representing

the transfer of resources within a CPS. The language features a graphical syntax that

merges structural concepts known from ADLs (e.g. ports and hierarchical compo-

nents) and behavioural specifications based on HA and dataflow languages. CREST’s

semantics is comparable to the must-semantics of HA. It also asserts that the six key
modelling aspects of resource flow CPSs are enforced. Thus, the important princi-

ples of locality, synchronism and non-determinism are maintained, while allowing

for parallelism and continuous variable evolution.

Both, the syntax and semantics are defined on top of a formal foundation that

strictly defines the general behaviour but allows for flexibility by underspecifying

e.g. the precise language of transition guards and update functions. Thus, modellers

can flexibly choose a specification formalism they feel comfortable with and use it to

define the behaviour. Hence, CREST behaviour can be defined in various forms, in-

cluding for example mathematical specifications using ODEs for modelling of precise

natural phenomena or, alternatively, common programming languages for practical

engineering systems with a focus on executable models. The next chapter describes

the use of Python as a host for the implementation CREST, and the use of standard

Python source code for the definition of entities, transitions and updates.

Chapter 5

CREST Implementation

The installation of custom assembly CPSs such as smart home systems usually goes

hand in hand with the setup of hardware, configuration of software APIs and devel-

opment of short code scripts to customise behaviour. Even though the majority of

devices promise plug&play solutions, most non-trivial system workflows still have

to be manually programmed. CREST’s target audience comprises expert modellers,

who are usually experienced programmers, and technophilic CPS creators, who are

familiar with the use of scripting languages and interested in applying their skills to

advanced use cases such as systems modelling.

CREST’s implementation leverages this situation by building on the existing pro-

gramming knowledge of its users and allowing the creation of models using an inter-

nal DSL [Völ+13] in the Python programming language. This reuse of a popular GPPL

provides many advantages for end-users and tool developers, such as the existence

of established development practices and the reuse of the language’s infrastructure.

In CREST’s case, the choice for Python is built upon several reasons. First, Python

is a popular language that is widely known to be versatile and easy to learn. It expe-

riences support from a large and active user community and is continuously growing

in popularity. The language is also pre-installed and readily available onmostmodern

operating systems. From a language development point-of-view, Python offers many

appealing opportunities, such as user-defined code annotations and a customisable

meta-class system (e.g. to influence the class creation mechanisms). Furthermore, it

features off-the-shelf compatibility with other languages (e.g. C, C++), tool bindings

for third-party software and numerous native library packages for e.g. graph plot-

ting, data analysis, machine learning and artificial intelligence. Another strongpoint

that should not be underestimated is the availability of an existing syntax that many

users are already familiar with. CREST uses Python’s native features (e.g. classes,

modules) for the representation of system architecture and its dynamic behaviour

(e.g. methods, functions) for the modelling of transition guards, updates and influ-

ences. Modellers can therefore focus on the development of their systems, rather

than learning a new programming language.

The rest of this chapter provides an overview of crestdsl, CREST’s Python im-

plementation. First, Section 5.1 outlines crestdsl’s capabilities and the supported

modelling activities. Section 5.2 then introduces crestdsl’s approach to systems

91

92 Chapter 5. CREST Implementation

modelling using the growing lamp as example. Section 5.3 provides details of CREST’s

simulation capabilities and the implementation of a function for the discovery of the

next discrete behaviour change time. Finally, Section 5.4 outlines CREST’s interactive

development and execution environment, which is based on Project Jupyter
1
.

This chapter provides various code listings to introduce crestdsl. These list-

ings are also available online, in a dedicated source code repository hosted at

https://github.com/crestdsl/thesis-code. In the same place, the reader

will find the possibility to launch a web-based execution environment for the

crestdsl code. Many thanks to the Binder
2
team for hosting their service.

5.1 Overview

Before discussing crestdsl’s capabilities in detail, it is of interest to relate it to the

CREST formalism and CREST diagrams that were introduced in Chapter 4. Further,

we take a general look at crestdsl’s support of various modelling tasks such as

simulation and syntax checking.

Chapter 4 describes the CREST formalism including its abstract syntax and for-

mal semantics. CREST diagrams are introduced as a modelling language implemen-

tation of CREST that uses a graphical, concrete syntax. It is evident that this rela-

tionship reflects the framework of formalisms and languages, that was defined by

Broman et al. [Bro+12]
3
. Without the use of CREST diagrams (or another concrete

syntax), the modelling process is a purely theoretical task that remains on an abstract

level. Although the created (abstract) models capture the modelling intent (the pur-

pose of the model) and its structure according to an abstract syntax definition, the

created models are not concretised or persisted
4
. To be useful for practical tasks, the

modelling process requires the use of a language with a concrete syntax.

Modelling crestdsl is an alternative implementation of a concrete syntax for

CREST. Its goal is the rapid prototyping of system models and to serve as a basis

for tasks such as simulation and verification. crestdsl expresses domain concepts as

Python objects. “Modelling” is therefore the process of creating the required domain

objects and their relationships, as shown on the right side of Figure 5.1. To simplify

the creation of models and speed up the development process, crestdsl implements

a convenient scripting API that can be used to programmatically create large models.

A complete discussion of crestdsl’s APIs exceeds the scope of this thesis, however.

Hence, only a small subset is discussed in Section 5.2.

1https://jupyter.org/
2https://mybinder.org/
3
A short review of this framework was also presented in Section 2.1.

4
This activity is different from conceptualisation [SB10], which captures the “generalized idea of

[. . .] interacting components and its desired functionality”. These models are “typically very informal

in terms of detail and accuracy”. Abstract models are accurate but not expressed in a language.

https://github.com/crestdsl/thesis-code
https://jupyter.org/
https://mybinder.org/

5.1. Overview 93

CREST

(formalism)

Abstract

Syntax

Formal

Semantics

Abstract

model

a
b
s
t
r
a
c
t
m
o
d
e
l
l
i
n
g

CREST diagrams

(language)

im
ple

men
ted

by

(co
nc
ret

e s
yn

tax
)

Graphical

model

m
o
d
e
l
l
i
n
g

crestdsl
(language)

implemented by
(concrete syntax)

crestdsl

model

m
o
d
e
l
l
i
n
g

API

s
c
r
i
p
t
e
d
m
o
d
e
l
l
i
n
g

Simulation

trace
s
im
u
la
tio
n

plotting

(transformation to graphical model)

s
y
n
ta
x
c
h
e
c
k
in
g

Figure 5.1 – Schema of CREST, CREST diagrams and crestdsl and their relations.

The individual modelling tasks (e.g. simulation, and plotting) relate the concepts.

Lines represent relations, arrows modelling activities and dashed arrows instantiation or influences.

Concepts from previous chapters are drawn in grey, modelling tasks that are discussed in this chapter

are underlined.

For more details about the implementation of crestdsl, the reader is referred to

the project’s online documentation at https://crestdsl.github.io.

Syntax Check crestdsl’s Python basis offers a lot of convenience for the creation

of system models. One caveat is, however, that Python’s flexibility and dynamic type

system open the door towrongmodel configurations that are usually only discovered

at runtime. To counteract this shortcoming, crestdsl implements a component that

allows the syntax checking of a model. The process iterates over a model’s structure

and asserts that it matches CREST’s abstract syntax. The checks test e.g. whether all

entities define a current state, whether updates are linked to an automaton state of

their own entity and whether transitions relate two states of the same entity.

Simulation Next to the modelling itself, crestdsl supports various other mod-

elling tasks. For example, it provides a simulation component, that allows users to

study the evolution of a model based on the advance of time or the modification of

input values. To assert the correct simulation, crestdsl’s simulation process is im-

plemented to closely reflect CREST’s formal semantics. To this extent, a sophisticated

algorithm was developed at the core of crestdsl’s simulator. The algorithm allows

the translation of crestdslmodels to SMT constraints. The evaluation of these con-

straints permits the calculation of the points in time, at which where the model’s

behaviour experiences discrete changes (“jumps”). Thus, an uninformed and costly

step-based simulation process can be avoided.

https://crestdsl.github.io

94 Chapter 5. CREST Implementation

Plotting Finally, crestdsl offers the possibility to transform the Python model

into a diagram. This plotting process links the advantages of both CREST languages,

by merging the development speed of crestdslmodels with the simplicity and easy

comprehension of CREST diagrams. Thus, users can develop amodel using the script-

ing API and use CREST diagrams for an overview and simplified discussion.

5.2 crestdsl – CREST’s Python Implementation
CREST’s implementation is distributed as crestdsl, a software library for the Python

programming language. crestdsl provides classes and functions for the definition

of CREST models. To use the library features and start creating CREST models, it

suffices to import the crestdsl library, using Python’s standard class-import mech-

anism, as shown in Line 2 of Listing 5.1.

crestdsl’s features (simulation, verification, drawing) are split across several

subpackages. The classes for the creation of a CREST model are located in the model

subpackage. Listing 5.1 shows how to import this dedicated subpackage and bind it

to the crest namespace (Line 7).

Listing 5.1 – Importing crestdsl� �
1 # Import of the crestdsl library
2 import crestdsl
3

4 # We can also import a specific subpackage
5 # e.g. the model package which contains functions
6 # for creating CREST’s domain objects
7 import crestdsl . model as crest� �
Following the import statement, CREST entities can be created. In crestdsl, en-

tities are instances of crestdsl’s Entity class. Users can add other CREST concepts

(such as input ports or states) to the class by setting them as object attributes, as

shown in Listing 5.2. Like in CREST, each entity Port requires the specification of its

resource type and initial value. Resource types are instances of the Resource class,

declaring a name and value domain. Similar to ports, states are defined by creating

State objects and assigning them as attributes. Note that each entity needs to define

exactly one of its states as current state using the current attribute.

Listing 5.2 – Definition of an entity� �
1 # use CREST’s domain types to specify the domain
2 watt = crest . Resource (unit="Watt" , domain=crest . REAL)
3 lumen = crest . Resource (unit="Lumen" , domain=crest . INTEGER)
4

5 my_lamp = crest . Entity ()
6 my_lamp . in_port = crest . Input (resource=watt , value =100)
7 my_lamp . out_port = crest . Output (resource=lumen , value =0)
8 my_lamp . on = crest . State ()
9 my_lamp . off = crest . State ()
10 my_lamp . current = my_lamp . off� �

5.2. crestdsl – CREST’s Python Implementation 95

Entity Types This approach to entity definition can quickly become cumbersome.

Especially whenmany entities with similar attributes have to be created, it is easier to

define an entity type and use instantiation to obtain the individual objects. crestdsl

allows the creation of entity types using Python’s class mechanism. A class must

inherit from Entity to become an Entity type. Model concepts such as ports, states

and transitions can then be specified as class attributes and methods.

Listing 5.3 shows the definition of an entity type MyLamp, which instantiates mod-

els that are equivalent to the object my_lamp above. The listing shows how the entity

type is used to create two separate instances of MyLamp in Lines 7 and 8.

Listing 5.3 – Definition of entities via an entity type� �
1 class MyLamp (crest . Entity) :
2 in_port = crest . Input (resource=watt , value =100)
3 out_port = crest . Output (lumen , 0)

4 on = crest . State ()
5 off = current = crest . State ()
6

7 my_new_lamp = MyLamp ()
8 my_other_lamp = MyLamp ()� �

Dynamic Behaviour Evidently, the lamp model shown in Listing 5.3 is not com-

plete. It lacks functionality to switch from one state to another (i.e. transitions) and

cannot modify the light output port. Listing 5.4 shows the definition of an entity

type that defines guarded transitions and update functions. In crestdsl, all model

concepts are implemented as classes, that should be instantiated and assigned as

attributes. The definition of such a guarded crest Transition can be seen in Lines

8 and 9 of Listing 5.4. Note that the guard function itself is implemented as a Python

lambda function that evaluates a condition and yields a Boolean value.

Additionally to the creation of Transition objects as attributes, crestdsl pro-

vides a convenient decorator
5
API. This means that @transition can be used to an-

notate class methods and upgrade them to transitions. The decorators also specify

the transitions’ source and target states, as shown for the on_to_off transition in

Listing 5.4 (Lines 11 – 13). The use of decorators increases the language’s usability,

it’s functionality, however, is equivalent to the use of Transition objects.

Similar to transitions, update functions can be declared both as Update objects or

using the @update decorator. The listing specifies two update functions that modify

the value of the out_port. Note how each update specifies its corresponding entity

state in which it is active and the target port that will be updated. The functions

additionally require a dt parameter to be specified, which at runtime will hold the

time that has passed since the last time the update function was executed.

5
Decorators are a well-known design pattern for aspect-oriented programming. Python’s decora-

tors are implemented as annotations (e.g. @my_decorator) that intercept a function’s or method’s

definition. For more information see https://wiki.python.org/moin/PythonDecorators.

https://wiki.python.org/moin/PythonDecorators

96 Chapter 5. CREST Implementation

Listing 5.4 – An entity type with transitions and update functions� �
1 class DynamicLamp (crest . Entity) :
2 in_port = crest . Input (resource=watt , value =100)
3 out_port = crest . Output (watt , 0)

4 on = crest . State ()
5 off = crest . State ()
6 current = off
7

8 off_to_on = crest . Transition (source=off , target=on , \

9 guard =(lambda self : self . in_port . value >= 100))

10

11 @crest . transition (source=on , target=off)
12 def on_to_off (self) :
13 return self . in_port . value < 100

14

15 # output = 90 watt output * 15 lumen per watt
16 output_when_on = crest . Update (state=on , target=out_port , \

17 function =(lambda self , dt : 90 ∗ 1 5))

18

19 @crest . update (state=off , target=out_port)
20 def output_when_off (self , dt) :
21 return 0� �
Entity Subclassing The aim of implementing a language as internal DSL is to

reuse its existing infrastructure and simplify the interfacingwith its ecosystem. There-

fore, the implementation of crestdsl pays much attention to maintain compatibility

with Python development practices and its programming paradigms. One of these

best practices is the use of class inheritance. crestdsl uses this paradigm to encour-

age the extension, specialisation, adaptation and reuse of existing entities and avoid

code repetition and low maintainability.

Listing 5.5 shows the example of a SwitchLamp. It is implemented as subclass of

DynamicLamp (Listing 5.4). This new entity type adds an additional input to the lamp

by defining a new switch_input port. The port is of type switch whose domain is

comprised of set of values "on" and "off". crestdsl defines resources with discrete

domains using lists, as shown in Line 1 of the listing. The example also extends and

modifies DynamicLamp’s functionality, with switch_off and off_to_on, respectively.

Listing 5.5 – A class that inherits functionality from another class and extends it� �
1 switch = crest . Resource (unit="lampSwitch" , domain=["on" , "off"])
2 class SwitchLamp (DynamicLamp) :
3 switch_input = crest . Input (resource=switch , value="off")
4

5 @crest . transition (source="on" , target="off")
6 def switch_off (self) : # extend DynamicLamp functionality
7 return self . switch_input . value == "off"
8

9 @crest . transition (source="off" , target="on")
10 def off_to_on (self) : # modify DynamicLamp functionality
11 return self . in_port . value >= 100 and \

12 self . switch_input . value == "on"� �

5.2. crestdsl – CREST’s Python Implementation 97

Constructors and Parameterised instantiation Another classic feature of

object-oriented languages is the parameterisation of object creation using construc-

tors. In Python, an object’s constructor method is named __init__ and is called di-

rectly after the object has been created. By implementing a constructor method for an

entity type, it is possible to dynamically adapt the entity’s functionality. Listing 5.6

shows an example of a GenericLamp type that permits the setting of the power thresh-

old, i.e. howmuch power is required for the lamp to turn on, and the efficiency factor,

i.e. what fraction of the input energy is converted to output energy. Python also al-

lows for parameters to be declared as optional. This can be seen when initialising

powerful_lamp in Line 19, which does not declare its efficiency and uses the default

value, whereas for the efficient_lamp this value is set manually.

Listing 5.6 – A parametrisable class that specifies a constructor� �
1 factor = crest . Resource (unit="efficiency" , domain=crest . REAL)
2 class GenericLamp (DynamicLamp) :
3 threshold = crest . Local (watt , value =100) # default value
4 efficiency = crest . Local (factor , 0 . 7 5)

5

6 def __init__ (self , threshold , efficiency = 0 . 7 5) :
7 self . threshold . value = threshold
8 self . efficiency . value = efficiency
9 @crest . transition (source="off" , target="on")
10 def off_to_on (self) :
11 return self . in_port . value >= self . threshold . value
12 @crest . transition (source="on" , target="off")
13 def on_to_off (self) :
14 return self . in_port . value < self . threshold . value
15 @crest . update (state="on" , target="out_port")
16 def output_when_on (self , dt) :
17 return self . in_port . value ∗ self . efficiency . value ∗ 15

18

19 powerful_lamp = GenericLamp (3 0 0) # default efficiency
20 efficient_lamp = GenericLamp (5 0 , . 9 7) # explicitly set eff.� �

The use of constructors is very powerful, since entities can be customised at run-

time. For instance, ports and states can be dynamically added or updates modified.

Entity Compositions One of CREST’s most dominant features is its hierarchical

entity structure. Obviously, this concept is also represented in the crestdsl imple-

mentation. Subentities are declared using the same class attribute definition approach

as ports, states and transitions. Listing 5.7 provides an excerpt of a type with two

subentities. The LampComposition consists of two individual lamps, that are con-

trolled by the same light switch. If the composed lamp is turned on, the entity prop-

agates the electricity to its subentities. Specifically, the “first” 100 watts are used to

power the small, efficient lamp. In case there is enough energy available, the rest of

the input power is used to drive the big_lamp, which will produce light if its thresh-

old is surpassed. This functionality is controlled using update functions, that set the

input port values of subentities. Lines 11 – 16 show an example for such a function.

98 Chapter 5. CREST Implementation

Listing 5.7 – A composed entity with two subentities (full listing in Appendix C)� �
1 class LampComposition (crest . Entity) :
2 # ... code for input and output ports
3

4 # subentities
5 big_lamp = GenericLamp (3 0 0)
6 small_lamp = GenericLamp (1 0 0 , . 9)

7

8 # ... code for states and transitions
9

10 # setting of subentity inputs
11 @crest . update (state=on , target=small_lamp . in_port)
12 def set_small_lamp_input_when_on (self , dt) :
13 if self . in_port . value > 1 0 0 :

14 return 100

15 else :
16 return 0

17

18 # ... more code for updates that set subentity inputs
19

20 @crest . influence (source=big_lamp . out_port , target=big_out)
21 def propagate_big_output (value) :
22 return value
23

24 propagate_small_output = crest . Influence (
25 source=small_lamp . out_port , target=small_out)� �

Additionally, the subentities’ light outputs have to be propagated to the outputs of

the parent entity. The example uses Influences for the implementation of this func-

tionality, since the link is static and independent of the LampComposition’s current

state. Lines 20 – 22 and Lines 24 – 25 show two different ways of defining influences

between two CREST ports. Note that the latter (propagate_small_output) does not

specify an influence function that modifies the value which is written to the target

port. By omitting this parameter, crestdsl uses the default an expression that returns

the value that is currently held by the influence’s source, without modification.

Syntax Checking As described in Section 4.1, CREST models have a thoroughly

defined structure. For example, influences have to connect two ports and transitions

need to establish relations between states of the same entity. Python on the other

hand, is a highly flexible, dynamically typed language. In order to help users create

syntactically valid models, crestdsl provides the SystemCheck class. This module

can be called with either an entity type or an instance of a type. It then performs a

series of checks that e.g. test the system’s entity hierarchy and correct setup of enti-

ties, transitions and updates. Though the system checking routine is not exhaustive

(there is no testing of dynamic runtime behaviour), the tool serves nonetheless as an

important helper for preventing common modelling errors.

Listing 5.8 shows a short usage example of the SystemCheck. After its initialisa-

tion, check_all() runs all tests and returns True when the entity is correctly setup

(Line 4). If an invalid system configuration is encountered, e.g. the erroneous set-

5.3. Simulation 99

ting of the current automaton state to None (Line 6), the checking writes an error

message to the error log and returns False (Line 9). The system checking can also

be instructed to trigger an exception that provides additional information about the

specific problem, as seen in Line 12. This can be useful for the creation of automated

unit tests.

Listing 5.8 – Example of the crestdsl SystemCheck class� �
1 from crestdsl . model import SystemCheck
2 # create instance and SystemCheck object
3 gl = GenericLamp (3 0 0 , . 8 5)

4 SystemCheck (gl) . check_all () # returns True
5

6 gl . current = None # point current state to None
7

8 # write to error log: [...] Entity has no current state
9 SystemCheck (gl) . check_all () # returns False
10

11 # write to error log: [...] Entity has no current state
12 SystemCheck (gl) . check_all (exit_on_error=True) # AssertionError� �
5.3 Simulation
crestdsl’s Simulator class implements its functionality as prescribed by the formal

semantics. Its interface exposes the following main interaction methods

• stabilise() propagates all port value changes and triggers transitions until a

fixpoint is reached;

• advance(dt) advances the time for dt time units; and

• advance_to_behaviour_change() advances time to the point where a new tran-

sition or another discrete behaviour change happens
6
.

HeatModule Example The rest of this chapter uses a heating module as run-

ning example. This module is a CREST component that can be used inside a grow-

ing lamp, such as the one introduced in the previous chapter. Compared to the

HeatElement of the growing lamp in Figure 4.1, the HeatModule is an advanced

version that features multiple states, including an error-state which is entered

when the device overheats.

Figure 5.2 shows the CREST diagram of the heat module. The full entity de-

scription and its crestdsl source code, which also specifies the behaviour of the

update functions within the system, is provided in Appendix C.2. The rest of this

section uses excerpts of this listing to explain the simulation and calculation of

the next transition time.

6
For convenience reasons, crestdsl allows behaviour changes also in the form of

if-then-else-conditions inside updates and influences.

100 Chapter 5. CREST Implementation

Listing 5.9 – Use of the Simulator for stabilisation and time advance� �
1 from crestdsl . simulation import Simulator
2

3 mod = HeatModule () # create a crest system
4 print (mod . current , mod . timer . value , mod . internal_temp . value)
5 # prints : HeatModule.off 0 0
6

7 sim = Simulator (mod) # instantiate the simulator
8 sim . stabilise () # perform the stabilisation routine
9 print (mod . current , mod . timer . value , mod . internal_temp . value)
10 # prints: HeatModule.off 0 22
11

12 mod . switch . value = "on" # modify the system’s inputs
13 mod . electricity . value = 300

14 sim . stabilise () # stabilise again
15 print (mod . current , mod . timer . value , mod . internal_temp . value)
16 # prints: HeatModule.on 0 22
17

18 sim . advance (1 0) # advance time for 10 time units
19 print (mod . current , mod . timer . value , mod . internal_temp . value)
20 # prints: HeatModule.on 10 122.0� �

Each of the three main interactionmethods has the capability to modify amodel’s

state. Listing 5.9 shows an example of the use of a simulator. After the import of the

class and instantiation with an entity object (in this case a HeatModule entity), a sim-

ulation can be run. The displayed code uses print functions to show the port’s value

changes (Lines 4, 9, 15 and 19). The according output of these statements is displayed

as Python comments (Lines 5, 10, 16 and 20, respectively). As can be clearly seen, the

HeatModule is instantiated with off as its current automaton state and both the

timer and internal_temperature ports set to zero. Using the simulator’s stabilise

method, the system is brought into a state where all updates and enabled transitions

have been executed (Line 8). Thus, the internal temperature is adjusted to the min-

imal value 22 (the assumed room temperature). Since no time has passed yet, the

timer’s value remains 0 and the system’s state is still off because the requirements

for a transition to on are not yet satisfied.

In the next step (Lines 12 and 13), the lamp is switched "on" and electricity is

applied to its input. The subsequent stabilisation discovers the newly enabled transi-

tion to state on and triggers it. The print statement proves this, but also shows that

the timer value remains at 0, since still no time has passed yet.

The advance of time (Line 18) triggers the updates with a time delta of 10 time

units. Thus, the timer value is updated and the internal temperature value reflects

the increase of heat over time.

5.3.1 Different Simulators
crestdsl provides in fact several simulator implementations for the exploration of

model behaviour. They mostly offer the same functionality and API, but differ in

5.3. Simulation 101

≪HeatModule≫

electricity:

200 (RWatt)

switch:

on ({on, off})

heating:

0 (RWatt)
On Off

Error

to_on

to_off

to_e
rror

timer:

0 (RTime)

internal_temp:

0 (RCelsius)

increase_tim
er

d
e
c
r
e
a
s
e
_
t
i
m
e
r

u
p
d
a
t
e
_
i
n
t
e
r
n
a
l
_
t
e
m
p

re
du
ce
_i
nt
er
na
l_
te
m
p

stop_heating

stop_heating

set_heating

Figure 5.2 – A heat module with an on-timer and automatic cooldown period. The be-

haviour is mainly controlled by two input ports (electricity and switch). The module

breaks when the internal temperature surpasses a threshold.

other aspects of the implementation. Below, three of them are presented, whose dif-

ference lies in the way they treat non-determinism.

As explained in the previous chapter, CREST’s evolution is non-deterministic if

two or more transitions are enabled from the same, currently active entity state. De-

spite the fact that non-determinism is a vital aspect of CREST to model the seemingly

random behaviour, it is of high interest to also support its resolution and manual

selection of the transition to follow, e.g. for the deliberate exploration of specific

system behaviour. The treatment with such non-determinism is the discriminating

difference between the individual simulators. The three simulators implement the

following behaviour:

1. The first implementation, the most basic CREST simulator (Simulator), ran-

domly chooses one enabled transition when it encounters non-determinism. It

thus strictly follows the basic CREST semantics. This module is useful for ini-

tial explorations in non-deterministic models (e.g. to get a feeling for possible

behaviour scenarios) and for general simulation of deterministic models.

2. Secondly, the InteractiveSimulator is used when it comes to manual explo-

ration of non-deterministic models. Anytime a situation with multiple enabled

transitions is encountered, the simulator stops and prompts the user to make

a choice. Evidently, this feature is meant for the exploration of smaller models,

where such situations occur infrequently. For highly non-deterministic models

this form of exploration can become tedious. An example screenshot showing

the use of the InteractiveSimulator is presented in Figure 5.3, which displays

the input prompt and asks the user to select a transition.

3. Lastly, PlanSimulator can be used for the programmatic simulation of a sys-

tem trace. The simulation is launched with a list of commands that help to

102 Chapter 5. CREST Implementation

orchestrate the execution. The command list contains information about time

advances and port setting actions. Additionally, the commands specify which

transition to take, in case non-determinism is encountered. Thus, the

PlanSimulator can be even used to precisely specify a certain system evo-

lution and chosen behaviour. This capacity is highly useful for unit testing or

the analysis of specific execution schedules. The definition of long and com-

plex execution plans can quickly become overwhelming though, especially for

large systems. Usually, execution plans are therefore machine generated, e.g.

in combination with state space exploration or formal verification (Chapter 6).

Terminal

$ > python SimulateHeater_Interactive.py

Non-Determinism detected

There are multiple enabled transitions in entity: HeatModule

(Current time: 30 -- Current automaton state: on)

Choose one of the following transitions by entering the according number:

0 ... to_error (transition to ’error’)
1 ... to_off (transition to ’off’)

Other commands:
r ... choose a transition randomly
p ... plot the system
pe ... plot the entity in which non-determinism occurs
q! ... to exit the script (not recommended in Jupyter mode)

Any other input will be interpreted.

This means you can use it to e.g. inspect ports values.
The entity HeatModule is bound to the variable entity.
Example: entity.my_port.value will print the value of port my_port.

Your choice:

Figure 5.3 – Command line prompt signalling the encounter of a non-deterministic

situation and asking the user to select an enabled transition.

5.3.2 Calculating the Next Behaviour Change Time
As briefly introduced in Chapter 4, the simulation of CREST relies on the discovery

of ntt, i.e. the time until the next discrete behaviour change will occur. crestdsl’s

approach to discovering the smallest ntt is built upon the creation of constraint sets

that express the behaviour change conditions and the use of an SMT solver to find a

minimal solution to these constraints.

The SMT approach that is used in crestdsl is only one of several ways to cal-

culate the point in time when a transition can happen. Alternative ways include

the discretisation of time and iterative search until the conditions for a transi-

tion are discovered. The problematic with this process is to find a “good” step

size. Naive techniques use static step sizes and decrease the size when they come

5.3. Simulation 103

close to a transition time. More elaborate tools employ numerical solvers based

on Euler or Runge-Kutta methods to adapt their calculations. Research effort has

also resulted in the development of so-called state event location, whose goal is

to detect discrete changes in systems such as ours. Interested readers might refer

to [PB96] or [EKP01] for descriptions of such methods.

The difficulty lies in the creation of these constraint sets, since CREST’s dataflow-

inspired semantics imply that dependencies between ports have to be considered.

crestdsl solves this problem by fully automatically analysing the source code of a

system and creating constraint sets for all updates, transitions and influences that

could cause a behaviour change (such as e.g. enable a transition).

When searching for the next behaviour change time of the HeatModule, for in-
stance, it is necessary to evaluate all potential behaviour changes, including the tran-

sition from On to Off, which is modelled using the update shown in Listing 5.10.

Listing 5.10 – The HeatModule’s to_off transition� �
1 @crest . transition (source=on , target=off)
2 def to_off (self) :
3 return self . switch . value != "on" or self . timer . value >= 30 \

4 or self . electricity . value < 200� �
The transition guard states that the heat module shuts off when either the switch

is not "on", the timer’s value reaches or exceeds 30 or the electricity drops below
200 watts. Thus, an SMT solver should check if constraint c1 can be solved with the

passing of time:

c1 := (switch , “on”) ∨ (timer >= 30) ∨ (electricity < 200)

The values 0, “on” and 200 in constraint c1 are constants defined for the re-

spective theories7. To increase the legibility, this section omits the variables’ an-

notation with theories, since they are implicit and can be looked up in the CREST

diagram in Figure 5.2. crestdsl’s implementation obviously asserts that variables

such as switch are defined using their correct data types.

Looking at the CREST diagram in Figure 5.2, we see that the three sub-expressions

are based on the values of two input ports (switch and electricity) and one local

port (timer). Since HeatModule is the system’s root entity, input port values are not

modified by any domain concept (neither by updates, nor influences, nor subentities).

timer on the other hand is continuously modified by the increase_timer update

function. It is therefore necessary to add its functionality to the constraint set. From

the update function’s source code (see Listing 5.11) we can see that when executing,

the function reads the current timer value and adds dt, i.e. the amount of time since

the update’s last execution, to it. Therefore, the next constraint is

c2 := timer = timer0 + δt
7
A theory is an axiomatisation of a data type (e.g. integer, real, string) for SMT solvers.

104 Chapter 5. CREST Implementation

where timer0 and timer are the timer’s values before and after increase_timer’s

execution, respectively.

Listing 5.11 – The HeatModule’s increase_timer update function� �
1 @crest . update (state=on , target=timer)
2 def increase_timer (self , dt) :
3 return self . timer . value + dt� �
As the system has no further dependencies, the final step is to assert that the

“source” ports of this dependency analysis are linked to their current port values.

This means that any variables that are not modified at runtime (e.g. by an update or

influence) are mapped onto their current values. The constraints c3 – c5 express these

constraints by linking switch, timer0 and electricity to the values shown in Figure 5.2.

A last constraint c6 asserts that no negative δt values are considered, since CREST

can only advance time, not step back. The resulting set of constraints contains all

equations necessary to discover when the to_off transition will become enabled:

c1 :=(switch , “on”) ∨ (timer >= 30) ∨ (electricity < 200)
c2 := timer = timer0 + δt
c3 := timer0 = 0
c4 := switch = “on”
c5 := electricity = 200
c6 := δt ⩾ 0

By explicitly setting all “leaf” values in c3 – c5 except for δt, the constraint set

asserts that δt is the only free (independent) variable that can be modified. Using

a constraint solver, such as the Z3 Theorem Prover [DB08], it is possible to find a

solution to this set of constraints. In fact, there exist infinitely many solutions to this

problem, as any δt >= 30 results in possible a solution of the equations. By using

Z3’s optimization functionality it is possible to specify that we would like to obtain

the minimum value for δt that satisfies the solution – in this example, the minimal

next transition time is at δt = 30.

Choosing an SMT Solver An evaluation of the available range of SMT solvers

resulted in the choice of the Z3 Prover. This is justified by numerous favourable

features. First and foremost, Z3 is being actively developed and improved. To this

extent, it regularly participates in competitions such as SMT-COMP 2018 [Hei+].

Z3 is also freely distributed under the MIT license and its source code is openly

available
8
. From a technical point of view, it supports many built-in solvers and

optimisers for various theories such as strings, integer, real and floating point

numbers and it supports the definition of custom data type theories. The program-

matic use is intuitive, due to its native API bindings for many modern program-

ming languages, including C++, Python, and Java. Finally, Z3 convinces through

its active community and good documentation.

8https://github.com/Z3Prover/z3

https://github.com/Z3Prover/z3

5.3. Simulation 105

mains-electricity:

300 (RWatt)

heatswitch:

on ({on, off})

On

≪HeatModule≫

electricity:

200 (RWatt)

switch:

on ({on, off})

heating:

0 (RWatt)
On Off

Error

timer:

0 (RTime)

internal_temp:

0 (RCelsius)

heatswitch_influence

update_heat_electricity

o
ff
-
g
u
a
r
d

o
n
-
g
u
a
r
d

Figure 5.4 – CREST diagram of a GrowLamp system with a HeatModule. The rest of

the GrowLamp system and some HeatModule details are not shown.

Complex Constraint Sets (Modifier Propagation) When simulating larger,

composed systems, it is likely that a transition depends on a complex web of influ-

ences and update functions. In the heat module example, we see that the outcome of

the to_off transition guard depends on the switch input value and the timer’s value,

which is written by the increase_timer update. If this module is, however, part of

a larger system, the constraint set has to change too, to reflect this change in the de-

pendency structure. Figure 5.4 displays a part of a growing lamp’s CREST diagram,

focusing its connection to the HeatModule. As can be seen, in this situation it is

necessary to treat the HeatModule’s switch and electricity inputs differently, since

these ports depend on the GrowingLamp’s influences and updates.

For example, the switch port is modified by the heatswitch_influence, which

reads the heatswitch port and writes it to the switch input. Hence, to find the

next transition time, it is necessary to add the dependencies of all “active modi-

fiers”, such as updates linked to currently active automaton states and influences

from all parent and subentities into account. The electricity input is calculated by

the update_heat_electricity update function, whose source code is shown in List-

ing 5.12. Note that the GrowLamp’s electricity input has been renamed to

mains-electricity in Figure 5.4 for clarity.

Listing 5.12 – The GrowingLamp’s updatewhich sets the HeatLamp’s electricity input� �
1 @update (state=on , target=heatelement . electricity)
2 def update_heat_electricity (self , dt) :
3 # the heatelement gets the rest
4 return self . mains_electricity . value - 100� �
The new set of constraints for finding the minimum δt that will activate the

to_off transition is shown below. Note that the constraints c4 and c5 have been

replaced by the new constraints c′4 and c′′4 , and c′5 and c′′5 , respectively. When the

constraints are handed to an optimising constraint solver such as Z3, it will find that

the minimal solution is also at δt = 30.

106 Chapter 5. CREST Implementation

c1 :=(switch , “on”) ∨ (timer >= 30) ∨ (electricity < 200)
c2 := timer = timer0 + δt
c3 := timer0 = 0 c′5 := electricity = mains-electricity − 100
c′4 := switch = heatswitch c′′5 := mains-electricity = 300
c′′4 := heatswitch = “on” c6 := δt ⩾ 0

Condition Behaviour Changes Due to crestdsl’s use of standard Python syn-

tax, discrete behaviour changes can also be modelled using conditional (if-then-else)

statements. An example for this behaviour is shown in Listing 5.13. It can be seen,

that there are two possible behaviours provided by this function, depending on the

value obtained from the calculation in Line 3. The function models that the value

of timer is continuously decreased as long as the value after the update is greater

than zero (“else”-branch). When new_value reaches or drops below zero, the function

switches its output and continues executing the “then”-branch of the condition state-

ment. Thus, there are two different continuous behaviours merged in this update.

Listing 5.13 – The HeatModule’s off_update_timer update function� �
1 @crest . update (state=off , target=timer)
2 def off_update_timer (self , dt) :
3 new_value = self . timer . value - 2 ∗ dt
4 if new_value <= 0 : # don’t drop below 0
5 return 0

6 else :
7 return new_value� �
Since conditional statements are a vital aspect of Python’s syntax, it is essential to

support these discrete behaviour changes. However, it is also necessary to analyse if

an update function can experience a discrete behaviour change due to the passing of

time. Assuming for instance a current timer value of 15, the timer value of Listing 5.13

is decreased linearly for 7.5 time units until it reaches zero. Subsequently the function

switches to executing the then-branch (i.e. Line 5). Hence, the simulation should

take this effect into account to avoid calculations that use wrong port values (e.g.

negative timer values) and misleading simulation results. The calculation algorithm

for next_behaviour_change_time therefore needs to perform two steps:

1. analyse which of the branches is currently active, and

2. evaluate if a switch to the other branch can happen by any positive dt-value

To solve the first task, the update’s source code is analysed and converted, simi-

larly to the approach before. The resulting constraint set is then capable of evaluating

the result of the condition. For instance, under the assumption that the timer’s cur-

5.3. Simulation 107

rent value is 15, the constraint set for the evaluation of the if-condition is:

c1 := timer0 = 15
c2 := new_value = timer0 − 2 ∗ δt
c3 := new_value ⩽ 0
c4 := δt = 0

Note that c4 deliberately sets δt = 0, to evaluate which branch is currently active

(i.e. before time passes). In case the constraint solver finds a solution, this means that

the then-branch of the condition statement is active, otherwise the current system

state triggers the else-branch. In the example above, the constraints cannot be solved,

indicating that the else-branch is active.

Using this knowledge, it is possible to replace c4 with c′4 := δt ⩾ 0 and rerun the

evaluation to see if there exists a δt such that the other branch is chosen. Z3 finds a

solution for this new set of constraints with minimal δt = 7.5. This means that the

update function’s behaviour changes after 7.5 time units.

5.3.3 Limitations

The current implementation of crestdsl has certain limitations in terms of perfor-

mance and behaviour that cannot be expressed. Below, three of these limitations are

discussed in detail.

Infinitesimal Time Advances When looking at the condition in Line 4 of List-

ing 5.13, we see that the constraint is modelled as new_value <= 0 to return zero

whenever the value is at or below zero. From a logical point of view, the expression

of the condition might equally be implemented as new_value < 0 to “return to zero, if
the value drops below”, as shown in Listing 5.14. The problem with this kind of im-

plementation is, that in situations where timer’s value is exactly zero – and is hence

the else-branch is still active – the required time advance to modify the constraint is

infinitesimally small (i.e. ε). Thus, after an infinitely small time advance, the update

will switch to the then-branch. Both Z3 and crestdsl implement a pragmatic solu-

tion to this problem in the form of a configurable ε value, that expresses a hard-coded
value for the minimal expressible time delay

9
.

Listing 5.14 – A problematic, alternative implementation of off_update_timer� �
1 @crest . update (state=off , target=timer)
2 def off_update_timer (self , dt) :
3 new_value = self . timer . value - 2 ∗ dt
4 if new_value < 0 : # return to 0
5 return 0

6 else :
7 return new_value� �

9 crestdsl’s configurable epsilon constant is has a default value of 10−10
.

108 Chapter 5. CREST Implementation

While the assigning of a concrete value to ε provides a practical workaround to

the theoretical problem of infinitely small numbers, it does in turn create a severe

performance bottleneck. In fact, in the above example crestdsl will advance the

minimal time possible (i.e. the numeric value assigned to ε) and return to the else-

branch, since the timer’s value is not smaller than zero any longer.

In this situation CREST’s next_behaviour_change_time functionwill analyse the

system and again find that the δt required to reach the then-branch is once again ε
and advance by its concrete value. The advance within the then-branch resets the

timer value to zero, which triggers the cycle again.

As can be seen, this workaround implementation prevents the code from per-

forming impossible behaviour (i.e. advancing infinitely small time units), but leaves

the code to advance in ε-sized timesteps.

The red line in Figure 5.5 shows a visual representation of this behaviour. Note

how the ε-transition is taken five times and the value always returns to zero. How-

ever, since the value of ε in the simulator is chosen very small (10−10
, by default),

there are too many iterations necessary to advance time efficiently. One possibility

to overcome this issue would be to adjust the value of ε to a larger number. “Good”

values depend on the target system and domain, and its system state, so that it cannot

be automatically inferred.

Instead, crestdsl chooses a heuristic approach. If repeated ε-transitions are ob-
served to be caused at the same location (e.g. the same if-then-else-condition),

crestdsl’s simulator presumes to have encountered this execution pattern. Thus,

after a certain limit (e.g. five) of ε-advances for the same behaviour change, this spe-

cific source of ε-advances is ignored until a non-ε-advance is triggered in the system.

This behaviour is shown by the blue, dashed line in Figure 5.5.

(0,0)

δt

timer.value

−2 ∗ ε

ε ε ε ε ε

Figure 5.5 – Schematic representation of a heuristics to remove ε-sized step advances

Other modelling tools and platforms often offer advanced means such as so-

called zero-crossing detection functions for the implementation of the above de-

scribed behaviour. At the moment, crestdsl is implemented in plain Python.

This means that such useful functions cannot be accessed directly. The provi-

sion of zero-crossing detection and similar functions is however considered an

important future work to further increase the usability of the language.

5.4. Tool Implementation & Architecture 109

Wrongly Identified Behaviour Changes crestdsl does not perform any se-

mantic evaluation of the code and its exposed functionality. Hence, the creation of

a constraint set for the code in Listing 5.15 will cause crestdsl to believe there is a

change in behaviour when a clock port exceeds the value of 200, even though both

branches perform the same calculation. It is up to the model developer to avoid such

clumsy implementations which might hinder performance.

Listing 5.15 – Conditional code leading crestdsl to assume behaviour changes.� �
1 @crest . update (source = . . . , target = . . .)

2 def unnecessary_condition (self , dt) :
3 if self . clock . value <= 2 0 0 :

4 return self . clock . value + dt
5 else :
6 return self . clock . value + dt� �

Non-linear Optimisation The Z3 SMT Solver limits the types of its usage scenar-

ios to linear optimisation problems. Hence, the optimisation of non-linear functions

cannot be performed in crestdsl using the default setup.

An example for such a system is the well-known “Three Masses” [Car+06] case

study, which models three point masses moving across and then falling off a sur-

face, e.g. a table. The goal of this system is to model horizontal and vertical position,

velocity and acceleration of these masses as they fall and bounce repeatedly off the

ground. As an object’s velocity depends on its acceleration over time, and its position

changes according to its velocity over time, the function for determining the mass’s

position is non-linear.

Z3 is however capable of finding non-optimal solutions for such constraints. In

fact, in the presence of non-linear functions, crestdsl produces a warning and uses

Z3 to find a non-optimised solution for the constraint set. Though the produced re-

sults cannot be guaranteed to be correct, many times the crestdsl simulator man-

ages to find useful results. The crestdslmodel of the Three Masses system has been

implemented as proof-of-concept. Its source code is provided in Appendix C.3.

5.4 Tool Implementation & Architecture
Evidently, the development and simulation of crestdslmodels in standalone Python

is not ideal. As convenient as Python classes and functions are for the model creation,

CREST diagrams are naturally more comprehensible. Therefore, crestdsl provides

APIs for the visualisation of models. An initial approach led to the creation of a

plotting library based on the Graphviz10 software package for graph visualisation.

Graphviz implements the dot language for the specification of graphs using textual

syntax and several rendering engines to produce graphs according to various layout

algorithms. Figure 5.6 shows the HeatModule rendered using Graphviz’s dot-engine.
Thismodule allows for important visual representation and inspection of crestdsl

models. Evidently though, switching between a Python IDE (for model editing), a

10https://www.graphviz.org/

https://www.graphviz.org/

110 Chapter 5. CREST Implementation

Figure 5.6 – Graphviz rendering of the HeatModule’s crestdsl model.

Python runtime (for model execution and graph creation) and an image viewer (for

the graph display) leads to an inconvenient workflow.

The solution to this problem is to improve interactivity by using Project Jupyter
11
,

an interactive and browser-based Python runtime. Jupyter has recently become pop-

ular within the scientific community as a means for the exchange of data, compu-

tation and results. To this extent, Jupyter bundles code within so-called notebooks.
Each notebook is an individual file that contains software source code and documen-

tation. Inside notebooks, the code is split into individual cells, which can be executed

and produce output. Depending on the cell’s type, different execution engines are

available. For example, Python cells execute source code using an interactive Python

interpreter, while Markdown cells are transformed to HTML and displayed, e.g. for

documentation purposes.

Jupyter’s popularity also led to the creation of many extensions and plug-ins that

allow the interpretation of other programming languages, the display of different file

types, etc. Other significant development projects work towards facilitating the shar-

ing of entire Jupyter environments, so that dependencies can be directly resolved.

One of the most notable is Binder
12
, which allows for example the entire crestdsl

runtime environment to be shared online, so that users access crestdsl directly from

within their browser, without the need of installing dependencies such as required

Python libraries or the Z3 SMT solver. A demonstration of this feature is available

online at crestdsl’s webpage (https://crestdsl.github.io).

5.4.1 Interactive Visualisation

The above mentioned Graphviz visualisations offer a limited way to render crestdsl

models into CREST diagrams. The drawback of the static image output is that the

produced CREST diagrams can become very complex and confusing when drawing

11https://jupyter.org/
12https://mybinder.org/

https://crestdsl.github.io
https://jupyter.org/
https://mybinder.org/

5.4. Tool Implementation & Architecture 111

Figure 5.7 – Interactive CREST diagram within a Jupyter notebook

models with a large number of ports, states, updates and subentities. Another hand-

icap is that CREST diagrams only contain the function names of updates, influences

and transition guards. The detailed behaviour of these functions has to be looked up

in the actual crestdsl source code. This “distance” can pose certain constraints on

the exploration and debugging capabilities of crestdsl models.

To overcome these constraints, crestdsl provides another visualisation tool that

allows the creation of interactive, HTML-based CREST diagrams. The functionality is

based on the mxGraph13 and elk.js14 libraries. mxGraph is a JavaScript diagramming

library, that offers reactive graph drawing capabilities. elk.js on the other hand is a

JavaScript implementation of the Eclipse Layout Kernel
15
, which implements highly

customisable diagram and graph layout algorithms.

This plotting feature is implemented in the crestdsl.ui module. By calling the

plot function and defining an entity as parameter, a HTML-rendering of a CREST

diagram is produced, as shown in Figure 5.7. The diagram is reactive and allows sev-

eral forms of interaction, such as moving of objects on the canvas and zooming into

certain parts of the diagram. Hovering the mouse cursor above any node (e.g. states,

ports) or edge (e.g. transitions, updates) will display a tooltip, that shows the ob-

ject’s name and additional information (e.g. a transition’s source and target states,

or a port’s non-rounded value). Double clicking on any edge opens a modal pop-

up window and displays its Python code, e.g. a transition’s guard function. One of

the most important features is the collapsing and expanding of subentities. This al-

lows to focus on the essential parts and unimportant details. Figure 5.8 shows some

screenshots of these features.

13https://jgraph.github.io/mxgraph/
14https://github.com/OpenKieler/elkjs
15https://www.eclipse.org/elk/

https://jgraph.github.io/mxgraph/
https://github.com/OpenKieler/elkjs
https://www.eclipse.org/elk/

112 Chapter 5. CREST Implementation

(a) Tooltips (b) Pop-up with transition source code

(c) Collapsing of subentities: Before collapsing (left) and after (right).

Figure 5.8 – Screenshots of interactive CREST diagram functionality

5.4.2 Trace Plotting
The use of Python as host language and Jupyter as interactive development and

execution environment provides further advantages, such as the integration of vari-

ous, modern Python libraries. For example, the Python Data Analysis Library (short:

pandas)16 is an intuitive data analysis framework, whose powerful DataFrame class is

used by crestdsl for the recording of system traces. Jupyter notebooks conveniently

integrates the native display of dataframes, as shown in Figure 5.9.

Building upon pandas, several other frameworks provide convenient functional-

ity for the further analysis, exploration and integration of data. Plotly17
, for example,

16https://pandas.pydata.org/
17https://plot.ly/python/

Figure 5.9 – Native display of a crestdsl system trace as pandas dataframe

https://pandas.pydata.org/
https://plot.ly/python/

5.5. Summary 113

Figure 5.10 – Creation of an interactive plot of a crestdsl system trace

is a graph plotting library for Python that integrates its output directly into Jupyter

notebooks and produces interactive charts that can be explored by scaling and zoom-

ing, or exported to image files. Figure 5.10 shows the graphical output produced by

feeding the pandas dataframe of Figure 5.9 into the Plotly library.

5.5 Summary
This chapter presents crestdsl, an implementation of CREST as internal DSL within

the Python host language. It highlights the convenient and user-friendly approach

to defining CREST models using standard Python objects and classes, and masking

the complexity of executable model creation and validation inside a software library.

The library also provides APIs for the simulation and validation of crestdslmodels.

These features rely on crestdsl’s implementation of the next_transition_time func-
tion, as required by CREST’s formal semantics. To implement this complex analysis,

an algorithm was developed to extract a set of constraints that can be solved by an

off-the-shelf SMT solver, such as the Z3 Prover.

The use of Python as a host language provides even further advantages by

allowing the native integration of the many open source Python libraries and tools.

Most notable is crestdsl’s integration into the Project Jupyter environment, which

helps users create and intuitively interact with CREST models directly inside their

browser. Additionally, this solution creates varied and handy extension possibilities,

such as crestdsl’s use of an HTML- and JavaScript-based display to draw interac-

tive CREST diagrams, which can be easily explored and analysed, and the integration

with common Python frameworks, such as the pandas data analysis and Plotly graph

plotting libraries.

114 Chapter 5. CREST Implementation

Chapter 6

Verification

The simulation of CRESTmodels provides significant value to users by allowing them

to explore their system’s evolution and answering “What happens if . . . ”-questions.
Simulation is however not an efficient method when it comes to testing whether

a system can reach a certain system configuration at all. For this task it is more

appropriate to use formal verification methods such as model checking [CGP99].

These techniques can provide answers to questions such as “Can the heating be on,
while the system is in state off?” or “Is it possible that the temperature output exceeds 40
degrees?”. More generally, model checking evaluates whether, given an initial system

configuration, a system can evolve to reach a certain state (e.g. a deadlock) or follow

a specified sequence of states (i.e. a system trace). CREST’s formal structure and

semantics create the possibility to apply such formal verification to its models.

Formally, model checking refers to the activity of asserting that a model satisfies

certain properties. Properties are formal descriptions of a system’s states or traces and

expressed using temporal logic formulas [AH92]. Two commonly used temporal logic

representatives are the linear temporal logic (LTL) [Pnu77] and the computation tree

logic (CTL) [CE81]. These logic languages are quite similar – both express formulas

over a system’s state space (i.e. traces of its state evolution). Their difference lies in the
details of their view of system evolutions. LTL operates on linear system traces (i.e.

one particular evolution), while CTL analyses so-called branching system evolutions.

This branching logic creates graphs where each system state can be succeeded by

several others, as is commonly the case in non-deterministic systems. This means

that in CTL, formulas can be used to check if some properties hold in all possible

evolutions of the system, whether there exists at least one system trace where some

properties hold or even combinations of those (e.g. if there is one evolution that leads

to a state where all further evolutions satisfy a property). This capacity makes CTL it

a good choice for the verification of CREST systems, where the goal is to assert that

some properties are always (or never) satisfied, or whether the system can reach a

certain configuration in at least one evolution.

Germination System Example This chapter uses a seed germination system

to illustrate the formal verification of CREST models. The system contains two

germination boxes, whose purpose is to create a warm and moist environment

115

116 Chapter 6. Verification
≪
GerminationSystem

≫

s
w
i
t
c
h
:

o
n
({
o
n
,
o
ff
}
S
w
i
t
c
h
)

c
o
u
n
t
d
o
w
n
:

0
(
T
i
m
e
)

O
ff

O
n

P
a
u
s
e

B
o
x
O
n
e

B
o
x
T
w
o

s
w
i
t
c
h
=
o
n

s
w
i
t
c
h
=
o
f
f

switch
=
off

switch
=
off

switch
=
off

T
r
u
e

c
o
u
n
t
d
o
w
n
<
=
0

True

countdown <= 0

True

countdown <= 0

30

30

10

0

g
e
r
m
i
n
a
t
i
o
n
_
o
n
e
≪
GerminationBox

≫

s
w
i
t
c
h
:

o
ff
({
o
n
,
o
ff
}
S
w
i
t
c
h
)

t
e
m
p
e
r
a
t
u
r
e
:

2
2
(
C
e
l
s
i
u
s
)

s
t
a
t
e

g
e
r
m
i
n
a
t
i
o
n
_
t
w
o
≪
GerminationBox

≫

s
w
i
t
c
h
:

o
ff
({
o
n
,
o
ff
}
S
w
i
t
c
h
)

t
e
m
p
e
r
a
t
u
r
e
:

2
2
(
C
e
l
s
i
u
s
)

s
t
a
t
e

o
n

o
n

o
ff

o
ff

F
i
g
u
r
e
6
.1

–
T
h
e
t
e
m
p
e
r
a
t
u
r
e
a
s
p
e
c
t
o
f
a
p
l
a
n
t
g
r
o
w
i
n
g
s
y
s
t
e
m

w
i
t
h
t
w
o
g
e
r
m
i
n
a
t
i
o
n
b
o
x
e
s
.
F
o
r
s
i
m
p
l
i
c
i
t
y
,
t
r
a
n
s
i
t
i
o
n
s
,
a
c
t
i
o
n
s
a
n
d

u
p
d
a
t
e
s
a
r
e
a
n
n
o
t
a
t
e
d
w
i
t
h
t
h
e
f
u
n
c
t
i
o
n
a
l
i
t
y
d
i
r
e
c
t
l
y
,
r
a
t
h
e
r
t
h
a
n
t
h
e
f
u
n
c
t
i
o
n
n
a
m
e
s
.
S
o
m
e
u
p
d
a
t
e
s
a
r
e
n
o
t
d
r
a
w
n
,
t
o
i
n
c
r
e
a
s
e
l
e
g
i
b
i
l
i
t
y

a
n
d
g
i
v
e
f
o
c
u
s
o
n
m
o
r
e
i
m
p
o
r
t
a
n
t
f
u
n
c
t
i
o
n
a
l
i
t
y
.
F
o
r
e
x
a
m
p
l
e
,
t
h
e
s
t
a
t
e
s
B
o
x
O
n
e
,
B
o
x
T
w
o
,
O
n
a
n
d
P
a
u
s
e
a
l
l
h
a
v
e
a
n
u
p
d
a
t
e
f
u
n
c
t
i
o
n

t
h
a
t
p
r
o
g
r
e
s
s
i
v
e
l
y
r
e
d
u
c
e
s
t
h
e
v
a
l
u
e
o
f
t
h
e
c
o
u
n
t
d
o
w
n
t
i
m
e
r
u
n
t
i
l
i
t
r
e
a
c
h
e
s
z
e
r
o
.

117

for the germination of plant seeds. The CREST model shown in Figure 6.1 was

created to help the analysis of the system’s properties. This model focuses primar-

ily on the temperature evolution within the boxes. Hence, the electricity aspect

is ignored. Further, the temperature evolution over time is assumed to be linear.

Each germination-box is modelled as an entity having one input port (an on/off

switch), a single automaton state and a local port (temperature). The local port
is set by an update function that is continuously executed. Its functionality is de-

fined as follows: If the switch is in state on, the update increases the temperature

value by 0.5 degrees centigrade per time unit (minute). We assume that temper-

ature cannot exceed 40°C. Otherwise, i.e. if the switch is off, the update models

the gradual temperature decrease by 0.25°C per minute, until reaching the room

temperature of 22°C.

The entire system is modelled as an entity that contains two germination

boxes. It has one on/off switch input that controls the behaviour automaton. Fur-

ther, the system has a digital countdown timer that controls the evolution of the

entity’s state automaton. Once the countdown is set, its value continuously de-

creases until it reaches zero. When the switch is set to on, the system switches

immediately to state On and resets the automaton (countdown = 0). When the

switch is set to off, the system transitions to state Off, independent of the state
it currently is in. From the On state, the system can transition to three potential

states: BoxOne, where the first germination box is heated, BoxTwo, to turn on

heating in the second box, and Pause to not heat either box. When transitioning

to a Box-state, the countdown value is set to 30, when moving to Pause the value
is set to 10. In this system the choice of which state to transition to is random.

In each state, update functions are used to set the two boxes’ switch inputs.

In state BoxOne, germination_one’s switch is set to on and the other is turned

off. In state BoxTwo, germination_two is heated and the first one is off. In all

other states (Pause, On, Off) both boxes are not heating (i.e. their switch is off).

CTLModel Checking CTL formulas consist of atomic propositions (APs) and op-

erators that connect them. APs are (Boolean) predicates that express whether a given

system configuration satisfies a property. For CREST systems, we can mainly distin-

guish two types of APs that are of interest: state checks and port checks. State checks
express that a CREST entity is in a given state (e.g. “The germination system is in state
On”) and port checks compare the value of one port to either a constant or another

port’s value (e.g. “The countdown timer value is smaller than 5 minutes”, “The temper-
ature in germination_two is always lower than the temperature in germination_one”.

As known from other logic systems (e.g. propositional logic) logic operators such
as conjunction (∧), disjunction (∨) and implication (⇒) can be used to combineAPs to

more complex expressions. In addition, CTL allows the specification of system state

evolution using temporal logic operators. For instance, the operator AG expresses

that a formula is valid in all future states of all possible system evolutions. Thus,

AGϕ states that ϕwill always be valid, independent of the chosen transitions and time

advances. All CTL operators are of the form QT , where Q is a quantifier and T is a

118 Chapter 6. Verification

Table 6.1 – Common CTL operators and their meanings.

Operator Meaning

EXϕ , AXϕ ϕ will be valid in the next state

EFϕ , AFϕ ϕ will be valid in some successor state

EGϕ , AGϕ ϕ is valid in this state and all future states

ϕEUψ , ϕAUψ ϕ will be valid (at least) until ψ becomes valid

“E” operators require the condition to be valid in one evolution path,

“A” operators need to be satisfied in all possible evolutions.

temporal specification. The quantifier states whether a formula should be valid in (at

least) one evolution path (“E” operators) or in all evolution branches (“A” operators).

The temporal part specifies whether the formula should be valid in the next system

state (“next”;X), in some future state (“finally”; F), in every future state (“globally”;
G) or until another formula becomes satisfied (“until”; U). Table 6.1 shows a set of

common CTL operators alongside their meaning.

Evidently, the definition and efficient use of CTL formulas is a complicated

matter, even for CPS creators familiar with modelling and simulation techniques.

Especially newcomers to the systems engineering world might struggle under-

standing and creating valid CTL formulas for the verification of their systems.

This means, that despite the formalism’s theoretical usefulness for the verifica-

tion of CREST systems, system creators might need help during this development

phase. Thus, the implementation of crestdsl provides understandable APIs that

can be conveniently used by unfamiliar users for the quick verification of their

systems. Additionally, the help to these users can be further extended, as these

APIs can be easily customised and extended to further increase usability. Details

for this feature are described in Section 6.3.

Definition 13 (Formal CTL Syntax). Formally, CTL formulas can be constructed

inductively from the following set of operators and a set of atomic propositions AP.

ϕ = True | p | ¬ ϕ | ϕ ∧ ϕ | EXϕ | ϕEUϕ | ϕAUϕ where p ∈ AP.

A range of other CTL operators has been created over the years (e.g. EF, AG). How-

ever, they all can be expressed as combinations of the operators above (e.g. EFϕ =
True EU ϕ and AXϕ = ¬EX¬ϕ) [Bur+92].1

Commonly, CTL formulas are evaluated on so-called Kripke structures [BCG88].
A Kripke structure is a form of directed graph, consisting of system states (graph

1
In other publications the EU/AU operators are sometimes written using a different notation.

The formulas ϕEUϕ and ϕAUϕ are alternatively denoted as EϕUϕ and AϕUϕ. This chapter uses the
former notation, as the difference is only syntactic and the two notations are otherwise equivalent.

6.1. TCTL and Timed Kripke Structures 119

nodes), transitions (graph edges) and a labelling function that maps each state to

the set of APs that hold in this state. The evaluation of CTL formulas is therefore

reduced to analysing whether the Kripke structure contains states (nodes) or paths

(sequences of transitions) that satisfy a corresponding trace or pattern.

Usually, duringmodel checking, a provided formula is evaluated for a certain (ini-

tial) state of a Kripke structure. There generally exist two methods for the state space

exploration: local and global model checking. The former starts the evaluation at the

initial state and explores the graph in a “forward” manner until it encounters an ex-

ample (i.e. a node that satisfies the formula) for E-formulas, or counter-example (for

A-formulas). An algorithm implementation that follows this approach is described

in [VL93]. Global model checking, on the other hand, first labels all nodes of the en-

tire state space with the information which CTL subformula holds or does not hold.

In a second step, a general graph search finds all nodes that satisfy the complete CTL

formula. Finally, the algorithm checks whether the given initial state is among those

states that were found to satisfy the formula in the second step. There have been

many publications, discussions and comparisons of the two approaches. The inter-

ested reader is referred to [Mer01] and [MSS99]. The rest of this chapter describes a

global model checking approach for CREST systems.

6.1 TCTL and Timed Kripke Structures

Given CREST’s hybrid nature, where discrete transitions and continuous time be-

haviour can be observed, the verification of a CREST system requires the considera-

tion of its time aspect. To that extent, it is often required to express the occurrence

(or the lack of it) of certain events before or after some point in time. A possible ver-

ification scenario might for instance test whether “The system never heats the same
germination box for more than 30 minutes continuously”. Several temporal logic sys-

tems, including CTL, have been extended to include timing information [Bou09]. The

timed extension of CTL resulted in the creation of the TCTL formalism [Hen+94],

which can be used to express formulas for the verification of timed automata and

hybrid systems [BL08; Alu+95]. TCTL’s timed operators are annotated with a time

interval I ∈ Interval(T)2 that provides a minimum and maximum point in time, be-

tween which the respective formula has to be satisfied.
3
TCTL formulas can hence

express whether certain properties hold within a given time interval.

Definition 14 (Formal TCTL Syntax). The formal syntax of a TCTL formula is

provided inductively as follows:

ϕ = True | p | ¬ ϕ | ϕ ∧ ϕ | ϕEUI ϕ | ϕAUI ϕ

2
See Appendix B for a formal definition of time intervals in the time base.

3
In fact, several different TCTL definitions have been provided in the literature. For example,

[Hen+94] specifies temporal constraints using explicit (external) clock variables and operators for

these clocks instead of time intervals. In [BCM05] it is shown that this TCTL variant is more expressive

than its interval-based alternative. For this thesis we chose the latter, as it is more intuitive and closer

to CREST’s semantics.

120 Chapter 6. Verification

where p ∈ AP is an atomic proposition, and I ∈ Intervals(T) an interval in the time

base T that defines the time aspect of the EUI and AUI operators.

Notation (Interval notation). This thesis reuses the conventions established by

former publications. Thus, we follow our predecessors’ practices and use the

more easily legible operator notations ⩽ b, < b, ⩾ a and > a instead of the in-

tervals [0, b], [0, b), [a,∞) and (a,∞), respectively. Further, instead of defining

the interval [0,∞), we simply omit the definition of the interval entirely. Hence,

ϕEU⩽aψ is equivalent to ϕEU[0,a]ψ for instance, and ϕAUψ is interchangeable

with ϕAU[0,∞)ψ.

Based on the definitions above, further TCTL operators can be defined to improve

TCTL’s usability and legibility of the formulas. Common TCTL includes the timed

versions of well-known CTL operators such as EFI and AFI , EGI and AGI . Note

that it is not possible to define a TCTL equivalent of CTL’s next (X) operator, as the
continuous time nature of TCTL makes it generally impossible to define which point

in time is “the next one”.

Timed Kripke Structures Similar to the annotation of operators with temporal

validity ranges, it is also necessary to add timing information to the Kripke structures

on which the formulas are evaluated. The extension to timed Kripke structures is
intuitive and performed by annotating each transition edge with a duration t ∈ T.
This duration expresses the amount of time that it takes to transition from one state

to another.

Definition 15 (Timed Kripke Structure). Formally, a timed Kripke structureTK

is a quadruple TK = (S ,T ,→, L), where S is a set of system states and T is a time

base. −→⊆ S ×T × S is a left-total, timed transition relation. This means that for each

state s there exists a transition (s, t, s′) ∈→ that starts in s4. L : S → P(AP) is a
labelling function that maps each state to the set of valid APs in that state. As an

example, we might look at the timed Kripke structure in Figure 6.2.

s0

s1

p

s2

s3

q

s4

p, q

2

0

46

0

2

Figure 6.2 – A timed Kripke structure with five system states S = {s0, . . . , s5}. Nodes

are annotated with the APs p and q.

4
If→ is not left-total, it can be made so by e.g. adding a transition (s, 0, s) to→ for each state s

that does not have another transition

6.1. TCTL and Timed Kripke Structures 121

Pointwise vs. Continuous Interpretations The evaluation of TCTL formulas on

timed Kripke structures permits two interpretation methods. The first one, pointwise
interpretation, requires that a formula is valid for all states s ∈ S of the structure. The

alternative continuous interpretation considers additionally all implicit system states

that are traversed when transitioning from a state s to another state s′ (s, s′ ∈ S), but
are not explicit system states.

These are referred to as configurations and identified by their “distance” (i.e. the

time interval) δt ∈ T from their predecessor state s of a transition. Thus, a configu-
ration is denoted as ⟨s, δt⟩ ∈ S × T . Note that each configuration is only identified

by its direct predecessor. Hence the δt of any configuration ⟨s, δt⟩ has to be smaller

than the transition time t of any ⟨s, t, s′⟩ ∈→, i.e. 0 ⩽ δt < t. Depending on the time

base, there exist infinitely many reachable configurations along any transition whose

length is not zero.

The new configuration concept further extends the need for definition of AP la-

bels to configurations. Thus, we define that if an AP holds (resp. does not hold) in a

state s, it also holds (resp. does not hold) in all of its configurations ⟨s, δt⟩. Figure 6.3
depicts three configurations of the continuous interpretation visually.

s0 s1 . . .

⟨s0, δt1⟩ ⟨s0, δt2⟩ ⟨s0, δt3⟩

δt3
δt2

δt1

Figure 6.3 – Examples of configurations (i.e. implicit states) that are reachable

through time advances.

The pointwise interpretation also permits the definition of configurations, al-

though only configurations of the form ⟨s, 0⟩ are considered.

Difference between Pointwise and Continuous Pointwise interpretation can

be seen as a discrete form of model checking, where formulas are only evaluated for

specific system states. Continuous interpretation, on the other hand, takes all system

states into account, including the ones that are not explicitly represented. Evidently,

this creates a semantic difference between these interpretation forms.

The following example highlights this divergence. The formula ϕ = AG<2EF=2 p
states that for all configurations in the interval [0, 2) another configuration is reached
after exactly two time units where the property p holds. When evaluating ϕ on state

s0 of the Kripke structure shown in Figure 6.4, the difference between the two in-

terpretations becomes evident. In the pointwise view ϕ is satisfied, as in the interval

[0, 2) that follows s0 only one configuration, namely ⟨s0, 0⟩, is considered. The for-
mula EF=2 p holds for this configuration, since its distance to s1 is two time units.

When considering the continuous interpretation on the other hand, there exist

infinitely many configurations ⟨s0, δt⟩ between s0 and s1. The evaluation of EF=2 p
on any configuration ⟨s0, δt⟩ after s0 (i.e. δt > 0) “reaches into” the transition from s2

to s3, where p does not hold any longer. For example, evaluating EF=2 p on ⟨s0, 1⟩
requires that p holds in a configuration that is 2 time units after this configuration,

122 Chapter 6. Verification

i.e. in ⟨s2, 1⟩, which is clearly not satisfied. Thus, the formula does not hold in the

continuous interpretation. It is easily visible, how a wrongly chosen viewpoint can

lead to false verification results. If undiscovered, such behaviour can result in misled

confidence in the best case and damage to the system and its operators in the worst.

Generally, the choice between these two interpretation forms is based on the spe-

cific a system and property to verify, since the more precise evaluation of formulas in

the continuous interpretation requires significantly more computational resources.

Thus, in practical applications pointwise interpretation is chosen, if the use case per-

mits it. Continuous interpretation is used if the risk of system failure is high.

Lepri et al. have shown in [LÁÖ15] that the continuous model checking can be

reduced to pointwise model checking through creation of a semantically equiva-

lent Kripke structure with an extended state set and altered transitions. The article

presents an approach that is based on the splitting of transitions into smaller ones

of length γ =
gcd
2 , where gcd is the greatest common denominator of the evaluated

formula’s interval boundaries and all timed Kripke structure transition durations.

Through this transformation, the resulting Kripke structure’s transition lengths and

the formula’s boundaries are all multiples of γ, so that all configurations that are

reachable by the formula have the form ⟨s, 0⟩. The method further requires some mi-

nor alterations of the TCTL formula and its intervals, to ensure that the model check-

ing semantics are preserved. The reader is referred to the original publication for a

detailed explanation of the approach, the exact reasoning and the proof of soundness.

6.1.1 Model Checking

The verification of CREST systems is based on the concepts of TCTL model

checking defined by other authors. Specifically, this thesis follows the approach

of evaluating TCTL formulas on timed Kripke structures, as presented and for-

malised by Lepri et al. in [LÁÖ15]. This section briefly revisits some essential

definitions. Section 6.2 establishes the relation to the verification of CREST sys-

tems. Interested and unfamiliar readers are encouraged to review the work of

Lepri et al. for a complete explanation.

The pointwise TCTLmodel checking of timedKripke structures is based on check-

ing whether properties, specified as operator-combined atomic propositions, hold in

a given configuration or sequence of configurations. The satisfaction relation |= is

introduced to express that a TCTL formula holds in a given state or configuration.

s0 s1

p

s2

¬p

s3
2 0 4

. . .

⟨s0 , δt⟩

2

Figure 6.4 – One of the infinitely many configurations ⟨s0, δt⟩ in the continuous in-

terpretation, for which EF=2 p does not hold.

6.1. TCTL and Timed Kripke Structures 123

Definition 16 (Satisfaction relation). The satisfaction relation |= associates a

timed Kripke structure TK and configuration ⟨s, δt⟩ ∈ S × T to a TCTL formula

ϕ so that TK , ⟨s, δt⟩ |= ϕ expresses that ϕ is satisfied in configuration ⟨s, δt⟩.

Iff the formula ϕ is satisfied for the state s0 of the TK , the statement

TK , ⟨s0, 0⟩ |= ϕ is valid. ̸|=, the negated form of this relation, implies that a for-

mula does not hold in a given state. The rest of the thesis uses the short notation

TK , s |= ϕ for TK , ⟨s, 0⟩ |= ϕ. Thus, TK , ⟨s, 0⟩ |= ϕ ⇐⇒ TK , s |= ϕ.
The satisfaction of TCTL formulas depends on the subformulas they are com-

posed of. A formula ϕ that consists only of an AP p ∈ AP, for example, holds in every

state s ∈ S iff the state is labelled with p. Thus:

TK , s |= p ⇐⇒ p ∈ L(s)

The formula ϕ = p is satisfied for the state s1 of the TK shown in Figure 6.2, since s1

is annotatedwith p. Logic operators within formulas are evaluated in a compositional

manner, such that e.g. TK , ⟨s, δt⟩ |= ϕ ∧ ψ ⇐⇒ TK , ⟨s, δt⟩ |= ϕ ∧ CK , ⟨s, δt⟩ |= ψ.
Next to the verification of these so-called state formulas (i.e. formulas that can

be verified by only looking at one state alone), TCTL also features path operators,

potentially annotated with time intervals, such as EUI , AFI and EGI . When model

checking a formula ϕ that contains such operators, the satisfaction has to be verified

on a sequence of states.

For example, to test the satisfaction relation TK , s0 |= ψ1EU[5,10]ψ2, we need to

assert that in at least one system evolution, ψ2 becomes valid at c time units, where

c ∈ [5, 10]. Additionally, ψ1 must hold in all states before reaching the time c. Such
formulas have to be evaluated on paths, rather than individual states.

Definition 17 (Paths and Ticks). Formally, paths are infinite sequences of config-

urations, linked by ticks which are denoted

τ
↪−→, where τ ∈ T is a tick’s duration. For

example, a path π ∈ Π can be represented as π = ⟨s, δt⟩
τ
↪−→ ⟨s′, δt′⟩

τ′

↪−→ ⟨s′′, δt′′⟩
τ′′

↪−→ . . .

Since, the pointwise interpretation only considers configurations of the form

⟨s, 0⟩, we can use the abbreviated notation s
τ
↪−→ s′

τ′

↪−→ s′′
τ′′

↪−→ . . .
Further, this means that all ticks are aligned with the respective transitions

5
.

A path for the TK in Figure 6.2 could for example be the following

π = s0
2
↪−→ s1

0
↪−→ s2

4
↪−→ s3

6
↪−→ s2

4
↪−→ s3

0
↪−→ s4

2
↪−→ s4

2
↪−→ . . .

It is easy to observe that some configurations appear repeatedly along the path

(s2, s3 and s4). This behaviour is natural for timed Kripke structures that contain

loops. It is however disadvantageous for timed model checking. In fact, the model

checking approach is based on the discovery of how much time has passed between

two configurations of a path. Thus, it is necessary that any configuration can be

5
In the continuous interpretation, ticks can connect any two configurations. Thus, each transition

can be split into infinitely many different ticks and produce different paths.

124 Chapter 6. Verification

uniquely identified and that it is possible to calculate how much time has passed

since the path started. In the above example, we can distinguish the first occurrence

of s2 from the second one, since the former appears exactly two time units after s0

and the next one twelve time units after s0.

Definition 18 (Timed Paths and Positions). To uniquely identify a specific oc-

currence of a configuration alongside a path, it must be annotated with a form of

“timestamp”. This timestamp captures the path’s total duration until the configura-

tion. Thus, each configuration within the path is extended to include a value c ∈
T , such that c is the sum of all preceding tick durations. This means for the path

π = ⟨s, δt⟩
τ
↪−→ ⟨s′, δt′⟩

τ′

↪−→ ⟨s′′, δt′′⟩
τ′′

↪−→ ⟨s′′′, δt′′′⟩
τ′′′

↪−→ . . . the timestamp value of

⟨s′′, δt′′⟩ is c′′ = τ + τ′. The timed path is the annotated version of the path and

written as

⟨s, δt⟩@c
τ
↪−→ ⟨s′, δt′⟩@c′

τ′

↪−→ ⟨s′′, δt′′⟩@c′′
τ′′

↪−→ ⟨s′′′, δt′′′⟩@c′′′
τ′′′

↪−→ . . .

where c = 0, c′ = τ, c′′ = τ + τ′, c′′′ = τ + τ′ + τ′′, etc.
Formally, a timed configuration is a triple of the form

〈
⟨s, δt⟩, c

〉
∈ S × T × T .

A path’s timed configurations are commonly referred to as positions and denoted in

the form ⟨s, δt⟩@c, e.g. ⟨s2, δt2⟩@c for the example above. Accordingly, a timed path

is a path, where each position was extended to include a respective timestamp c.

Since all positions are of the form ⟨s, 0⟩@c, the abbreviated notation for path posi-

tions s@c is used. Further, sometimes the subscript π is added to a position s@cπ to
clarify that the timed position belongs to a specific path π.

Definition 19 (Paths). The function PathsTK : S × T → P(Π) is used to return all

timed paths π ∈ Π of the TK that start in a given configuration.

Zeno Paths Note that using the definitions above, it is possible that two con-

figurations still appear at the same time stamp. For example, the TK shown

in Figure 6.5 below has a loop that only consists of “instant” transitions, i.e.

transitions of length zero. This means that for the following path is possi-

ble: s0@0
2
↪−→ s1@2

0
↪−→ s2@2

0
↪−→ s1@2

0
↪−→ s2@2

0
↪−→ s3@4

2
↪−→ . . .

Evidently, this causes problems for the requirement of identifying all path po-

sitions by their distance from the path’s beginning. Such behaviour is usually

referred to as Zeno and is problematic for simulation and verification of any kind

of model. Zeno behaviour is not only present when there are cycles of instant

transitions. Generally, any path is called Zeno (or “time-convergent”), if it con-

tains an infinite number of ticks whose sum of durations is finite, i.e. if there are

infinitely many nodes that can be visited in finite time.

This thesis assumes that all timed Kripke structures are free from Zeno be-

haviour. Note that if the timed Kripke structure is created according to CREST’s

next_transition_time function, theTK will automatically not contain Zeno loops,

since any valid CREST model already forbids the existence of Zeno paths. The de-

6.1. TCTL and Timed Kripke Structures 125

tails for this approach are described in the next section.

s0 s1 s2 s3
2

0

0

2

2

Figure 6.5 – A timed Kripke structure with Zeno behaviour.

Full TCTL Satisfaction relation Using the notions of timed paths and positions,

it is possible to formally define the complete satisfaction relation TK , ⟨s, 0⟩ |= ϕ for

the timed interpretation of all TCTL operators.

This full satisfaction relation treats six different semantic cases. They are induc-

tively defined and evaluated depending on the specific TCTL formula. These six cases

can be split into three groups: two state formulas, two logic formulas, and the remain-

ing two path formulas. Table 6.2 lists the individual cases.

State formulas operate on individual configurations. They include the case where

ϕ = True, which holds in any configuration, and the previously described case where
the formula ϕ = p, p ∈ AP is an atomic proposition, which holds iff the configura-

tion’s state is labelled with the respective AP. Logic formulas include the negation

(e.g. ϕ = ¬ψ), which is satisfied if the subformula ψ does not hold, and the conjunc-

tion ϕ ∧ ψ, which holds if the respective subformulas hold on the configuration.

Table 6.2 – Formal TCTL satisfaction relation. (Adapted version from [LÁÖ15].)

TK , s |= True always holds

TK , s |= p iff p ∈ L(s)

TK , s |= ¬ϕ iff TK , s ̸|= ϕ

TK , s |= ϕ ∧ ψ iff TK , s |= ϕ and TK , s |= ψ

TK , s |= ϕEUIψ iff ∃π ∈ PathsTK (s) there exists a s′′@c′′π s.t. TK , s′′ |= ψ, c′′ ∈ I and TK , s′ |= ϕ,
∀s′@c′ ∈ preπ(s′′@c′′)

TK , s |= ϕAUIψ iff ∀π ∈ PathsTK (s) there exists a s′′@c′′π s.t. TK , s′′ |= ψ, c′′ ∈ I and TK , s′ |= ϕ,
∀s′@c′π ∈ preπ(s′′@c′′)

where ϕ and ψ are TCTL formulas and p ∈ AP is an atomic proposition (AP).

Finally, path formulas are slightly more complex to verify, as they require the

analysis of timed paths. For example, the satisfaction of a formula ϕEUIψ (resp.

ϕAUIψ) requires that one path (resp. all paths) from the initial configuration has

(have) a position s′′@c′′ where ψ holds – i.e. TK , s′′ |= ψ ∧ c′′ ∈ I. Further, ϕ has

to hold in all configurations s′@c′ that are attainable along the path before s′′@c′′.
To get this set of timed configurations that are traversed before reaching a given

position, we define the function preπ.

126 Chapter 6. Verification

Definition 20 (preπ). The definition of the satisfaction relation |= uses a function

preπ that returns all positions of π that appear “before” a given position. For exam-

ple, for a timed path π = ⟨s0, δt0⟩@c0
τ0
↪−→ ⟨s1, δt1⟩@c1

τ1
↪−→ ⟨s2, δt2⟩@c2

τ2
↪−→ . . . , the

set returned by the function preπ(⟨s2, δt2⟩@c2) contains the positions ⟨s0, δt0⟩@c0

and ⟨s1, δt1⟩@c1. More formally, given a position, the function preπ : ⟨S ,T⟩@T →
P(⟨S ,T⟩@T) is defined as follows:

preπ(⟨si, δti⟩@ci) =
{
⟨s j, δt j⟩@c j

∣∣∣∣ 0 ⩽ j < i
}

where π ∈ PathsTK is a TK-path and i, j ∈ N are indices of the path positions of π.

6.1.2 Applied Model Checking
The actual model checking is based on the evaluation of TCTL formulas on timed

Kripke structures using a graph algorithm-based approach. To avoid specifying ded-

icated procedures for all TCTL operators, Lepri et al. [LÁÖ15] make use of normal
form for TCTL formulas, where each formula only contains the following operators:

ϕ ::= True | p | ¬ϕ | ϕ ∧ ϕ | EGϕ | ϕ EUI ϕ | ϕ AUI>0 ϕ

where p ∈ AP, I and I>0 are intervals and inf(I>0) = 0 < I>0.

All other TCTL operators and formulas can be translated into normal form using

equivalence rules. Subsequently, the authors provide algorithms and procedures for

the evaluation of these operators on timed Kripke structures. The interested reader is

referred to the original publication for details about the algorithm’s implementation.

Despite the work of Lepri et al., their approach to model checking cannot be

directly applied to CREST systems, since their algorithms do not consider some par-

ticularities of CREST, such as transitions of length ε, for instance.

6.2 CREST Model Checking
For the verification of CREST systems, it is necessary to create a timed Kripke struc-

ture that faithfully represents the propositions of CREST system states and transi-

tions between these states. Hence, the timed Kripke structure for CREST systems is

based on the time advances of a CRESTmodel. Its states S , thus, correspond to CREST
system states (which are referred to as W in CREST’s semantics in Chapter 4). Kripke

transitions represent CREST’s time advances, such that each transition (s, t, s′) ∈→

relates to CREST’s ⟨s, t⟩
advance

−−−−−→ s′. Finally, the labelling function L maps states to a

set of state and port value check propositions.

Definition 21 (CREST Kripke Structure). Through consideration of these

requirements, a CREST Kripke structure CK for the verification of CREST systems

is defined as a quadruple CK = (S CK ,T,→CK , LCK), such that S CK ⊆ W is a set

of CREST system states, T is the system’s time base, →CK ⊆ S CK × T × S CK is

a timed transition relation between these system states such that ∀(s, t, s′) ∈→CK :

6.2. CREST Model Checking 127

⟨s, t⟩
advance

−−−−−→ s′ (according to CREST’s semantics), and LCK : S → P(APCK) is a
function that assigns atomic propositions APCK to all states. Each p ∈ APCK is re-

lated to either a state check or a port check, so that p ∈ LCK (s) expresses that the
corresponding check evaluates to True in state s ∈ S CK .

Notation. To increase legibility, the subscript CK is omitted in the rest of this chap-

ter, unless required to avoid ambiguity. Thus, for example, S , → and L refer to

S CK ,→CK and LCK , respectively.

The choice of timed Kripke structures for the representation of the evolution of

CREST system states is very intuitive. Systems can advance according to the transi-

tion relation, which maps naturally to CREST’s time advances. If a system spends δt
time in a state s, it can trigger a transition (s, t, s′) ∈→, if the transition time matches

the amount of time spent in a state (i.e. δt = t).
Obviously, CREST’s continuous semantics allow the system to advance in arbi-

trarily small timesteps. Thismeans that for any transition (s, t, s′) ∈→, t > 0, there are
infinitely many system states w ∈ W \ S , that are reachable by advancing δt < t time

units
6
. Figure 6.6 shows a schematic representation of a timed transition (s, t, s′) ∈→

with three example system states w1, w2 and w3 that are “between” s and s′, i.e. reach-
able by advancing time in state s. Note the similarity to the concept of continuous

configurations, that we introduced in the previous section (see Figure 6.3). According

to CREST’s semantics, w1, w2 and w3 are reachable by spending time δt1, δt2 and δt3

time units, respectively, in state s.

s0 s1 . . .

w1 w2 w3

δt3
δt2

δt1

Figure 6.6 – Schematic representation of “intermediate” system states in CREST

Kripke structures. The example shows three example system states w1, w2 and w3

that are reachable from s by advancing δt1, δt2 and δt3 time units, respectively.

Evidently, the purpose of a CK is to represent a CREST system’s state space (i.e.

all reachable system states). Therefore, each CREST system state w ∈ W should be

either directly represented as a CK-state s ∈ S or indirectly through the advance of

time from some s. The problematic lies in choosing a (finite) subset of system states

S ⊆ W so that the entire (infinite) state space of a CREST system can be represented

and also enable efficient satisfiability testing of TCTL formulas. All CREST system

states w < S have to be reachable by advancing some time δt ∈ T from some state

s ∈ S , so that δt is smaller than the duration time (δt < t) for some CK-transition

(s, t, s′) ∈→. Formally, this is expressed as

∀w ∈ W \ S , ∃s ∈ S ,∃(s, t, s′) ∈→,∃δt ∈ T such that ⟨s, δt⟩
advance

−−−−−→ w ∧ δt < t
6
Assuming that there is at least one variable whose value is modified by a CREST update, changes

over time.

128 Chapter 6. Verification

6.2.1 CREST Kripke Construction
CREST’s semantics provide by default all mechanisms that are required for the cre-

ation of a CREST Kripke structure that represents a system’s state space. The proce-

dure is based on the usual (classic) state space exploration algorithm. Starting from

an initial state, the creation of a state space proceeds iteratively. Assuming an unsta-

ble system state s7, the routine triggers the stabilisation routine to reach a stabilised

successor state s′, and adds the state to S and transition s, 0, s′ to→. Subsequently,

the system calculates the next transition time ntt for s′, advances ntt and adds the

transition (s′, ntt, s′′), where s′′ is the state reached by ⟨s′, ntt⟩
advance
−−−−−→ s′′.

One issue is that CREST systems expose non-determinism. This means that the

stabilisation and advance procedures can have several successor states, that all

have to be added. Procedure 1 describes the semi-algorithm for the CREST system’s

state space creation. Note, that it does not terminate on infinite state spaces.

Procedure 1: CREST state space exploration

Input : CK = (S ,T,→, L)
with S = {s0} and s0 is a state of a CREST system

Output: CK , the explored CREST Kripke structure

Qu := S // The unexplored nodes
while Qu , ∅ do

let s ∈ Qu // Select and remove one node
Qu = Qu \ s
ntt := next_transition_time(s) // Calculate next transition time
Qs := successors(s, ntt) // Calculate stable successors
S := S ∪ Qs // Add the successors to the CK
→ :=→ ∪ {(s, ntt, s′) | s′ ∈ Qs} // Add transitions to successor states
Qnew := Qs \ S // Select the unseen states
Qu := Qu ∪ Qnew // Add them to the unexplored nodes

end
return (S ,T,→, L) // Return the filled Kripke structure

AP Labelling Note that the algorithm does not modify the labelling L of the CK .

It is therefore necessary to iterate over all nodes s ∈ S and modify L, such that L(s)
returns the set of APs that hold in s. Practically, since the APs are state or port checks,
this means evaluating whether the system is in a given state, or whether the specified

port’s value matches the check’s constraint.

For example, Figure 6.7 shows the initial part of a CREST Kripke structure that

has been created for the Germination box example. Additionally, the states are la-

belled with the AP tvl (for “timer very low”), which identifies system configura-

tions where the countdown timer’s value is equal to or below three – formally,

tvl =⇒ countdown ⩽ 3. The table in Figure 6.7 shows that tvl holds in all states

si, i ∈ N except s0. Formally: tvl ∈ L(s0) ∧ tvl < L(si), i , 0.
7
Remember that a state is unstable if it has enabled transitions or port values that have not been

propagated yet. Such a state can be made stable through stabilisation. See Section 4.2 for details.

6.2. CREST Model Checking 129

s0

tvl

s1

¬tvl

s4¬tvl s5¬tvl
s6 ¬tvl

s2

¬tvl

s3

¬tvl

s7¬tvl s8¬tvl
s9 ¬tvl

0
0

0

30

30

30

10

10 10

30

30

30

. . .

. . .

.

. . .

. . .

GerminationSystem germination_one germination_two

curr. state countdown switch temp. switch temp.

s0 Off 0 off 22 off 22

s1 BoxOne 30 on 22 off 22

s2 Pause 10 off 22 off 22

s3 BoxTwo 30 off 22 on 22

s4 BoxOne 30 on 37 off 22

s5 Pause 10 off 37 off 22

s6 BoxTwo 30 off 37 on 22

s7 BoxOne 30 on 22 off 37

s8 Pause 10 off 22 off 37

s9 BoxTwo 30 off 22 on 37

Figure 6.7 – A part of the CREST Kripke structure for the system in Figure 6.1. The

table below provides details of the current state and several ports’ values of the CK ’s

configurations.

130 Chapter 6. Verification

CREST’s semantics, however, allow the continuous, time-dependent evolution of

variables – such as the countdown – using updates. Thus, due to the evolution a

CREST system and its variables, it is possible that some of a state’s configurations do

not match the state’s labels.

In the germination system for example, the countdown is continuously decreased

as time passes. Therefore, for each state – except the initial state s0 – there exists a

point after which the countdown’s value drops below three and tvl becomes valid.

In the CK shown in Figure 6.7, countdown ⩽ 3 holds 27 time units after entering

states s1 and s3 and 7 time units after s2. Therefore, these parts of the graph should

be annotated with tvl and it is necessary to adapt the CREST Kripke structures.

In general, it is beneficial that any AP that is valid in a state is also valid in all

its configurations. We refer to a state s of a CREST Kripke structure as representative
for a set of APs if it fulfils that requirement. Formally, s is repesentative, iff every

AP that holds in s (i.e. if p ∈ L(s)) holds in every configuration ⟨s, δt⟩, and all APs

that don’t hold in s don’t become valid in any configuration of s. The concept of rep-
resentative states is required to assert the validity of the model checking approach,

since implementation of the satisfaction relation |= does not consider individual con-

figurations, but only states. Thus, without representative states, a model checking

algorithm could assume wrong labels and produce false results.

Representative State Formalisation Formally, representative states can be

expressed using the Kripke configurations in a continuous interpretation:

∀s, s′ ∈ S ,∀(s, t, s′) ∈→: p ∈ L(s) =⇒ ∄δt, δt < t s.t. ⟨s, δt⟩ ̸|=c p

and ∀s, s′ ∈ S ,∀(s, t, s′) ∈→: p < L(s) =⇒ ∄δt, δt < t s.t. ⟨s, δt⟩ |=c p.
Note that these definitions make use of the satisfaction relation in the con-

tinuous semantics |=c. The specification of this relation exceeds the scope of this

chapter. The reader is referred to Lepri et al. [LÁÖ15] for details of this formali-

sation.

The transformation from a CK with non-representative states to a CK with

representative states relies on the repeated splitting of transitions and introduc-

tion of new states, until each state is representative. For example, for the transition

(s1, 30, s4) ∈→ where tvl becomes valid after 27 time units, a new state stvl is cre-
ated such that stvl is the “earliest” state where tvl is satisfied. The transition is re-

placed with two new transitions of duration 27 and 3 respectively: (s1, 27, stvl) and
(stvl, 3, s4). Hence, the total duration remains at 30. Obviously, L has to be adapted

such that L(stvl) = {tvl}.

If necessary, i.e. if therewere a configuration alongside the transition (stvl, 3, s4) ∈→
where tvl is not satisfied anymore, the process is recursively repeated on the newly

created transitions. This splitting process is visually depicted in Figure 6.8.

6.2. CREST Model Checking 131

s1

¬tvl

s4

¬tvl
30

. . .

(a) Before splitting

s1

¬tvl

stvl

tvl

s4

¬tvl
27 3

. . .

(b) After splitting

Figure 6.8 – Splitting of a transition to create representative states

The discovery of the points in time at which an AP stops (resp. starts) to hold

is very similar to the discovery of the next transition time. In fact, for state checks

(AP that verify automata states), the transitions are already split accordingly, since

the next_transition_time method is used for the CREST Kripke structure’s creation.

For port checks, a slightly adapted approach is used. In fact, first the check’s value is

evaluated on a state s and creates two scenarios:

1. If the check does not hold, a new transition is temporarily added to the CREST

system. This transition’s guard returns True if the check holds. Executing the

next_transition_time routine on this modified CREST system returns the point

in time when the guard (and thus the check) holds. If the value is ∞ or larger

than the transition’s length we can disregard the result. If the returned value is

before a transition to a successor state, this value is used to split the transition.

2. The check holds in s. In this situation the check is inverted (negated), so that

the first scenario is executed.

The attentive reader will notice the similarities to crestdsl’s handling of discrete

behaviour changes defined in if-then-else conditional statements.

ε-Transitions Certain APs express that that a continuously decreasing (respec-

tively growing) port’s value is strictly smaller (resp. bigger) than some constant. For

example, the AP tl is used to express that the countdown’s value is low, i.e. below five

in a certain state (tl =⇒ countdown < 5).
The naive approach would be to perform the splitting of the transitions as defined

above and create a s, with tl ∈ L(s). This results in a wrong state space though, as the
check countdown < 5 does not hold for this state, since the timer value after 25 time

units is 5, which is not considered low (i.e. L(s) , tl). However, all configurations
after this point are considered low. Hence, all configurations ⟨s, δt⟩, δt > 0 should be

annotated with tl, except ⟨s, 0⟩. The solution is to split the second transition (s, 5, s4)
again and thereby create another state stl. The transitions from and to that state are

(s, ε, stl) and (stl, 5− ε, s4)8, as shown in Figure 6.9. The thereby created state stl with
tl ∈ L(stl) is representative of all configurations of that state.

Note that instead of introducing two new states s and stl connected by edges

with weights 25, ε and 5 − ε, a practical implementation would rather choose to

only introduce one new node and split the transition into 25 + ε and 5 − ε, to avoid

“unnecessary” nodes and to speed up the analysis algorithms.

8 ε ∈ T is an infinitely small value such that there does not exist any value that is smaller (except

zero). Formally, this constraint is expressed as ε > 0 ∧ ∄τ ∈ T, τ < ε.

132 Chapter 6. Verification

s1

¬tl

s4

¬tl
30

. . .

(a) Before ε-splitting

s1

¬tl

s

¬tl

stl
tl

s4

¬tl
25 ε 5 − ε

. . .

(b) After ε-splitting

Figure 6.9 – Splitting a transition to create representative states using ε-transitions

6.2.2 Ensuring Left-Total Transitions

The CREST Kripke creation procedure iteratively visits unexplored states and adds

transitions to successors to the structure. However, some CREST Kripke states do not

have any successor states. Remember the HeatModule example described in Chap-

ter 5. If the lamp becomes too hot, the system transitions to an error state that it
cannot leave. Procedure 1 would therefore create a new node for this system config-

uration, but no outgoing transitions, since the state cannot be left anymore.

This creates a problematic situation, as both the formal definitions of timedKripke

structures in the previous section, and the algorithms described by Lepri et al. for the

model checking rely on the fact that the transition relation is left-total, i.e. that there

is an outgoing situation for every s ∈ S .
Therefore, to guarantee the soundness of the model checking approach, it is nec-

essary to add new transitions (s, t, s) to →. The length of this transition should be

a non-infinitesimal value greater than zero, to avoid the introduction of Zeno be-

haviour.

From a practical point of view t should be chosen so that it facilitates the model

checking process. Since the model checking of CREST Kripke structures relies on the

reduction of continuous model checking to pointwise model checking by splitting

transitions using the value gcd, t should be chosen as gcd or a small multiple of it, so

that the size of S does not grow more than necessary during the transformation.

6.2.3 Replacing ε-values

One caveat of the approach of Lepri et al. is that it does not support the use of ε values
in transition lengths. Indeed, they choose to abstract over ε-transitions in their time

base. In the following, we review the application of this continuous model checking

approach on CREST Kripke structures. To satisfy the requirements of their method, it

is necessary to abstract over ε-transitions and replace εwith the value zero. Thereby,
all ε-values are entirely removed.

This abstraction is a choice that is common in the domain of real-time systems,

where state changes are assumed to be instantaneous. While it is a minor detail in

most situations, in some corner-cases this approach may lead to false results. For

example, when considering an excerpt of a CREST Kripke structure as shown in

Figure 6.10 and a TCTL formula ϕ = ¬p AU>3 p, we see that in the original CREST

Kripke, p becomes valid after ε, which satisfies the interval. When setting the value

of ε to zero, as shown in the adapted CREST Kripke (Figure 6.10, lower part), ϕ is not
satisfiable, as ¬p stops being valid after three time units already.

6.3. crestdsl Verification 133

s0

¬p

s1

p

s2

¬p

3 + ε 2

. . .

s0

¬p

s1

p

s2

¬p

. . .

3 2

Figure 6.10 – Problematic removal of ε in CREST Kripke structures: The formula

ϕ = ¬p AU>3 p holds for the original CREST Kripke structure (above), but not its

seemingly equivalent, adapted version where the value of ε is set to 0.

It is possible to discover the error in this altered evaluation by searching for a path

between s0 and s2 and calculating its total length based on the transition lengths in

the original CREST Kripke structure. This possibility, however is not always pro-

vided. The situation becomes significantly more difficult to verify if there are transi-

tion loops along the path or complex subformulas. An automation of this approach

would be theoretically feasible, but require the testing of all possible paths that sat-

isfy the formulas. Depending on the underlying system – and thus CREST Kripke

structure – the number of such paths might be too large to be computationally eval-

uated.

6.3 crestdsl Verification
The assertions that unwanted behaviour cannot occur or that a system trace to a

beneficial system configuration exists are essential for effective CPS design. The

crestdsl implementation provides the verification package, which exposes sev-

eral APIs that provide these capabilities to the user. In fact, crestdsl implements

two different interfaces: First, various convenience methods can be used to trigger

simple reachability analyses and verifications. Second, for more elaborate queries,

the library features a TCTL implementation that can be used for the analysis of

CREST system state spaces. The user has the possibility to manually instruct the

ModelChecker which implements the theory described in the previous sections.

6.3.1 Checks
Both of these approaches require the configuration of checks. Checks are tests for

system properties that either assert or disprove a system’s configuration, similar to

the atomic propositions introduced above. The two types of basic checks are state

checks, which test whether an entity’s automaton is currently in a certain state, and

port checks, which compare the values of entity ports. Checks are initialised using

the check function, which takes either an Entity or a Port object as argument and re-

turns a StateCheck or PortCheck object, respectively. Note that check automatically

provides the correct object, based on the specified parameter.

To complete the check configuration, an operator and comparator value have to

be set. State checks use equality operators (==, !=) and entity states as comparator,

134 Chapter 6. Verification

Listing 6.1 – Examples of crestdsl checks.� �
1 from crestdsl . verification import check
2 sys = GerminationSystem () # initialise system
3

4 statecheck = check (sys) == sys . off # create a state check
5 print (statecheck . check()) # trigger the check (returns True)
6

7 portcheck = check (sys . countdown) >= 0 # two port checks
8 another = check (sys . germinationbox_one . temperature) == 33

9

10 # use of operators to alter / combine checks
11 negate = – another # negation using minus
12 orcheck = another | negate # disjunction using |
13 andcheck = another & negate # conjunction using &
14

15 # compare two ports’ values
16 port_compare = check (sys . germinationbox_one . temperature) > sys .

germinationbox_two . temperature)� �
port checks require the definition of operators that are suitable for the port’s resource

(e.g. comparison operators for numeric values, equality for enumeration types). Ports

can be compared to either constant values or other ports.

The specification of checks is conveniently handled by an operator-based API,

as shown in Listing 6.1. Operators can also be used for the definition of conjunctive,

disjunctive and negated checks as shown in Lines 11 – 13. Every check provides a

check() method that evaluates if it holds on the system in its current state. The

method returns a Boolean value, indicating whether the check holds (see Line 5).

6.3.2 Simple API

Usually, the modeller is interested in whether the check is satisfiable at some point

in the future, rather the mere analysis of a current system configuration. crestdsl’s

verification package also provides functionality to quickly evaluate such scenarios.

For example, is_possible(my_check) will create an instance of the Verifier class,

which can be used to test whether there is a possibility to reach a system state in

which my_check is satisfied. Alternatively, the functions always, always_reachable,

never and forever provide convenient implementations for other common verifica-

tion scenarios. In the background, these functions create TCTL formulas that express

the intended properties. Table 6.3 shows a mapping of the functions to the TCTL for-

mulas they implement.

The verification functions serve as the façade of a more complex Verifier class,

which implements the actual model checking interface. Each of the above functions

returns a Verifier object, that can be further customised by “chaining” additional

specifications. For example, the methods after (resp. before) can be used to adjust

the interval of the timed TCTL operators, as shown in Listing 6.2. Finally, the veri-

fier’s check() method triggers the model checking routine.

6.3. crestdsl Verification 135

Table 6.3 – Verification API and the corresponding TCTL formulas

crestdsl Function TCTL Formula

is_possible(chk) EF chk

always(chk) AG chk

always_possible(chk) AG AF chk

always_possible(chk, within=time) AG AF[0,time] chk

never(chk) AG ¬chk

forever(chk) EG chk

where chk is any basic or composed check, as introduced above.

This convenient interface, can be easily extended to include further functions, to

adjust the verification API to the target domain and expertise of the users.

Behind the scene, the Verifier is responsible for creating a state space for the

model checking algorithms. By default, the state space is automatically managed by

the tool and grown large enough so that the formulas can be verified. However, in

case of formulas that are not time constrained, i.e. whose interval is of the form

[a,∞), crestdsl has to create the complete state space of the provided system. Note

that this will produce a warning which informs the user that the procedure can eas-

ily lead to problems in systems with extremely large or unbounded state spaces, as

the underlying loop structure only stops when no new nodes are encountered. This

means, that the exploration will not terminate for infinite state spaces.

Listing 6.2 – Reachability evaluation of a crestdsl check.� �
1 from crestdsl . verification import check , is_possible , before
2

3 system = GerminationSystem ()
4 chk = check (system . countdown) == 0

5

6 # chaining formula specification , after and before
7 is_possible (chk) . after (2 0) . check()
8 before (1 5) . always (chk) . check()� �
The model checking itself is executed in the background using crestdsl’s

ModelChecker class, which implements the algorithms provided by Lepri et al. in

[LÁÖ15] and the CREST adaptations described in the previous section. The algo-

rithms and procedures were slightly adapted to make use of Python’s convenient

graph exploration libraries. Further, themodified algorithms automatically remove ε-
transitions and also provide correct results in the presence of incomplete state spaces,

i.e. when the state space exploration has been manually bounded.

136 Chapter 6. Verification

6.3.3 TCTL Model Checking
Evidently, the formulas and checks that are automatically verified by the introduced

functions provide essential analysis capabilities, but do not cover the wide range

of functionality analyses required by experienced users. To support advanced model

checking concepts, the verification package provides classes that allow themanual

creation and exploration of state spaces, precise definition of formulas using TCTL

operators and choice of model checker implementations.

To this extent, crestdsl implements a range of TCTL operators, including the

standard logic operators (e.g. Not, And, Or, Implies) and timed operators (e.g.

EU/AU, EF/AF, EG/AG). Intervals can be defined using the Interval class, which exposes

a similar operator interface to checks. Users who need additional operators can ob-

viously use standard Python mechanisms to implement them based on the provided

templates. Listing 6.3 shows an example for the definition of complex TCTL formulas.

Listing 6.3 – Examples of tctl formula definitions.� �
1 from crestdsl . verification import tctl , check
2

3 # define a system and checks
4 sys = GerminationSystem ()
5 tl = check (sys . countdown) < 5

6 tvl = check (sys . countdown) <= 3

7 is_pause = check (sys) == sys . pause
8

9 tl_until_tvl = tctl . AU (tl , tvl) # default interval = [0, inf)
10

11 # reachability formula
12 tvl_reachable_before_30 = tctl . EF (tvl , tctl . Interval (end =30))
13

14 # use of operators for interval specifications
15 after_10 = tctl . Interval () >= 10

16 within_30 = tctl . Interval () <= 30

17 always_pause_within_30 = tctl . AG (tctl . EF (is_pause , within_30) ,
after_10)� �

The evaluation of these formulas has to be performed on a state space. In gen-

eral, a state space is a graph structure whose nodes capture different states of a sys-

tem and whose transitions are annotated with the duration. crestdsl’s StateSpace

reuses the popular networkx9 Python library, which provides excellent graph and

network analysis algorithms. The use of this library facilitates the implementation

of model checking, as many graph algorithms (e.g. search for successor/descendent,

shortest paths, and strongly connected components) can be used right away, without

the need to reimplement this functionality. StateSpace objects are initialised with

the system whose states should be explored, its global state being used as the initial

state from which exploration starts. The class provides two methods of expansion:

explore and explore_until_time. The former searches for unexplored nodes within

the system and tries to find successor nodes, which modify the system’s behaviour
10

9https://networkx.github.io/
10
This functionality relies on next_behaviour_change_time, as introduced in Chapter 5.

https://networkx.github.io/

6.3. crestdsl Verification 137

and adds them to the state space. This way, the state space iteratively grows every

time explore is called. For convenience, a parameter can be passed that states how

many iterations should be performed, or None to iterate until no new unexplored

nodes can be added to the graph.

Alternatively, explore_until_time(time) can be used to grow the state space

until all unexplored nodes have a shortest path distance that is greater than time.

This exploration can be useful when only a subset of the state space is of interest

and avoids the unnecessary creation of not needed nodes.

Note that despite the benefits of this approach in terms of performance, there

is the possibility that the model checking algorithms will report wrong results for

“edge cases”. An example is the evaluation of the formula ϕ = AG⩽20 EF p on the

(partially explored) state space shown in Figure 6.11. The formula states that for each

node in the state space, there exists a path to a state where p holds. The state space

has been grown to include all states that are reachable within 20 time units from s0.

When considering the evaluation ϕ on state s0 the result will be wrongly identified

as unsatisfiable. It is easy to see, that there exists a path from state s1 to s3, where p
would hold. However, as the path length from s0 to s2 amounts to 22 time units, the

explore_until_time procedure will cease exploration at s2, i.e. before s3 is explored.

s0

¬p

s1

¬p

s2

¬p

s3

p

10 12 4

. . .

Figure 6.11 – Problematic TCTL evaluation on partial state spaces. Assuming s3 has

not been explored and is thus not part of the state space, the evaluation of AG⩽20 EF p
on state s0 will report a wrong result.

The actual model checking logic is implemented in the ModelChecker class. After

initialisation of the model checker using the state space as parameter, the user merely

has to call the check method, providing a TCTL formula as parameter. The unwrap-

ping of the formula and the transformation of the state space to a CREST Kripke

structure are performed automatically. Listing 6.4 shows an example that evaluates

the formula that was defined in Listing 6.3.

Listing 6.4 – Running the crestdsl model checker.� �
1 from crestdsl . verification import StateSpace , ModelChecker
2 sys = GerminationSystem ()
3 formula = tctl . AG (tctl . EF (is_pause , tctl . Interval () > 1 0) ,

4 tctl . Interval () <= 3 0)

5 statespace = StateSpace (sys)
6 statespace . explore (None) # explore entire state space
7 mc = ModelChecker (statespace)
8 mc . check (always_pause_within_30) # trigger model checking� �

138 Chapter 6. Verification

6.3.4 Limitations
crestdsl’s model checking APIs provide a convenient means to verify certain prop-

erties, but also an extended TCTL interface for the definition of complex scenarios.

Python’s Performance Despite these user-friendly interaction capabilities, the

model checker is not intended for the verification of highly complex systems. Its im-

plementation is based on interpreted Python code and thus has a lower performance

than other model checkers which operate closer to the hardware. Some issues might

also arise in terms of memory, since a publicly available, non-optimised graphing li-

brary is used for the representation of the CREST Kripke structure. The system also

does not use any other optimisations that are known from existing model checkers

to avoid state space explosion (e.g. partial order reduction, symbolic states, etc.)

As a result, the model checker performs well on models with moderately sized

state spaces. When it comes to large and complex state spaces, however, crestdsl’s

model checker reaches CPU and memory limitations. In such situations dedicated

high-performance model checkers (such as e.g. [Bér+01]) should be used, which

implement optimization strategies and avoid these limitations.

Global Model Checking Another performance loss can arise from the imple-

mented algorithm itself. This algorithmperforms globalmodel checking, whichmeans

that it always traverses the entire state space for evaluation. This can lead to poor ef-

ficiency when the formula’s answering only requires testing parts of the state space.

Dedicated local algorithms may be better in such situations, although their per-

formance heavily depends on the particular state space and the precise formula that

should be evaluated. crestdsl provides a solution to this problem by allowing the

parametrised exploration of the state space, that guarantees a minimum path length

for all leaf nodes but does not explore further than that. Thus, by limiting the state

space size, it is also possible to limit the number of “unnecessarily explored nodes”.

6.4 Summary
This chapter describes the formal verification of CREST systems using amodel check-

ing approach. The concept is based on existing research results that use TCTL and

timed Kripke structures for the exploration of state spaces. CREST proposes a global

model checking method that reuses the algorithms defined by Lepri et al. [LÁÖ15]

and adapts them to the CREST domain. The chapter highlights the theoretical aspect

of verification and elaborates on the creation of timed Kripke structures that rep-

resent the state space of a CREST system. Furthermore, particularities such as the

removal of infinitesimal values in transition durations are addressed.

Next to theoretical considerations, the crestdsl implementation of this approach

is presented using code examples. crestdsl features two different APIs. Convenience

methods offer a simple means to model checking to unfamiliar users. On the other

hand, a powerful TCTL API can be used by experienced modellers. Both APIs evalu-

ate formulas using an implementation of the global model checking algorithm.

Chapter 7

Conclusion

This final chapter reviews the work described in the thesis and summarises its re-

sults. Section 7.1 revisits the research questions that were introduced in Section 1.1

and places them alongside the developed solutions. Based on this work, Section 7.2

then outlines additional research areas of the Continuous REactive SysTems language

(CREST) and introduces new challenges that build on it.

7.1 Summary
Based on the continued growth of modern cyber-physical systems (CPSs) in size,

complexity and connectivity, system engineers created powerfulmodelling languages

and intricate design software to support their development efforts. These modelling

platforms allow the analysis, simulation and verification of systems already during

their design phase, thereby avoiding the costly discovery of flaws at construction

time. Nowadays, the use of these tools is indispensable in many domains, and often

mandatory, e.g. for safety-critical systems, so that tool vendors strive to make their

software universally applicable.

The problem of this versatility is, however, that the produced models are generic

as well and do not match the underlying system or target domain closely. This se-

mantic gap slows down model development time, causes misunderstanding and, if

faults remain undiscovered, modelling errors that lead to false confidence in the sys-

tem’s design. Furthermore, the use of non-specialised modelling platforms requires

users to spend time and effort on acquiring tool-specific knowledge and skills, which

often involves steep learning curves and many months of training.

This research project explores the use of domain-specific languages (DSLs) to al-

leviate these issues. Specifically, this work investigates the creation of a language for

the modelling of CPSs that are driven by the production, consumption and trans-

fer of physical resources such as light, electricity and temperature. These resource
flow CPS tend to be systems such as smart homes and office automation applications

that consist of off-the-shelf components such as lamps, electrical heaters, and similar.

The project aims to develop a flexible modelling language that is dedicated to these

systems and offers a low entry barrier for novice users, but is powerful enough to

be used efficiently by expert modellers. The research resulted in the development of

139

140 Chapter 7. Conclusion

CREST, a DSL that reuses concepts from several well-established formalisms such

as architecture description languages, hybrid automata and data flow languages, and

merges them into a coherent language. CREST’s formal syntax and semantics unify

important modelling concerns such as a hierarchical system composition, discrete

behaviour and continuous time into a formalism that can be used to model, simulate

and verify the systems under study.

The methodology leading to these results was guided by five research questions

that are progressively answered throughout this thesis. The rest of this section re-

views these questions and summarises their respective findings.

Research Question 1. What are the properties required from a language or
tool to model the resource flows and behaviour of custom assembly CPSs?

The first research question investigates which properties a modelling language or

tool has to support, so it can be used for the representation of resource flows between

the components of CPSs. To this extent, three case study systems were designed and

analysed, as described in Chapter 3. The case studies include a smart home, an of-

fice automation system and an automatic gardening application. Despite the different

domains, all three systems share in common that their functionality is based on the

flow of resources within the system, and that they tend to be compositions of stan-

dard, off-the-shelf components. The examination resulted in the discovery of six key

aspects which should be supported by a CPS language:

1. Reactivity; for components to observe and react to their environment.

2. Synchronism; to model instantaneous, discrete CPS behaviour changes.

3. Parallelism; to represent concurrent physical phenomena.

4. Locality; for coherent component separation and simple system composition.

5. Continuous Time; to express the continuity of resource flows.

6. Non-determinism; as it is inherent to many physical systems.

Research Question 2. Are existing CPS languages suitable for the creation of
useful models that remain close to their application? Do they constrain the ex-
pression of domain-specific features and thereby increase the entry barriers for
novice users?

The second research question examines whether existing modelling languages

and tools support these requirements. Chapter 3 therefore evaluates twelve state-

of-the-art languages that are used for CPS modelling and analyses their properties

in respect to the aspects. Additionally, four other properties – usability, expressivity,
suitability and the availability of a formal basis – are used to find good candidates for

the modelling of our case study systems. The latter four aspects evaluate whether the

7.1. Summary 141

languages are good matches for CREST’s specific target domain and user audience

and can thus be seen as orthogonal to the former key aspects, which evaluate the

languages on a general level.

The results of this evaluation show that only few languages meet all require-

ments. Furthermore, the candidates that support all of them are difficult to learn and

do not provide the necessary domain-concepts. Thus, they induce a semantic gap

between model and system or require significant customisation effort.

Research Question 3. How can we create or adapt a language to fill the need
of modelling domain-specific aspects such as resource flows in CPSs? How can
existing language features and implementations be reused to lower development
and maintenance efforts?

The third research question examines the creation of a DSL for the modelling

of the case study systems. Based on the evaluation results of the previous research

question, the decision was made to create a dedicated language for the modelling of

resource flows within CPSs.

The resulting CREST DSL meets all six language requirements, as described in

Chapter 4. CREST aims for a low entry barrier to support modelling novices, and

also to provide powerful modelling mechanisms that can be used by experts for in-

tricate systemsmodelling. The DSL is inspired by existing languages and reuses well-

established concepts. For instance, it borrows the hierarchical component structure

view from architecture description languages, dataflow concepts from synchronous

languages and the combination of continuous and discrete behaviour that is known

from hybrid automata theory. CREST is implemented in the graphical CREST dia-

gram language and follows the Physics of Notationmethodology to increase usability.

CREST also serves as the basis for crestdsl, an internal DSL implementation in

the Python programming language. crestdsl allows the modelling of hybrid sys-

tems using the syntax and execution environment of a widely popular programming

language. It integrates seamlessly into the existing Python ecosystem and allows the

reuse of integrated development environments, testing frameworks and continuous

integration. Chapter 5 introduces to the modelling workflow with crestdsl.

Research Question 4. How should the formal syntax and semantics of the DSL
be characterised, so that the created CPS models are well-defined and can be sim-
ulated and analysed?

The merging of aspects from several languages into a coherent DSL can easily

lead to inconsistencies, resulting in unclear system designs and language semantics.

The fourth research challenge therefore examines the possibility to formalise the

language, so that CREST models are well-defined and an unambiguous simulation

of its system models is possible. Chapter 4 presents the results of this formalisation:

A mathematically defined system structure and formal semantics based on struc-

tured operational semantics rules . This formalisation allows the well-defined system

142 Chapter 7. Conclusion

creation and continuous time simulation. It further provides a clear specification of

CREST’s expressiveness and makes it comparable to other formalisms.

Research Question 5. How can we use formal verification approaches to verify
system behaviour and which techniques can be used for verification of our DSL’s
CPS models?

The last research question investigates how CREST can be formally verified. As

the verification of CPS correctness is one of the main driving forces behind this re-

search project, it is of high importance that the language offers this capability. This

thesis provides the details of a formal verification approach for CREST systems and

gives insight into some of its problematic areas. Based on these considerations, Chap-

ter 6 describes the effort towards answering this final research question. The solution

is based on the use of timed computation tree logic (TCTL) formulas for the descrip-

tion of system properties and their evaluation on CREST Kripke structures, an adap-

tation of timed Kripke structures that model the state space of a CREST system.

The creation of such CREST Kripke structures and the definition of TCTL for-

mulas are described from a theoretical point of view, alongside the description of

an evaluation algorithm. Finally, the chapter outlines use of crestdsl’s verification

APIs, which implement the described approach and prove its viability.

7.2 Perspectives

As with most research projects, CREST too lacks significant application reports and

requires a more extensive use in real-world scenarios. Even though this research was

driven by actual case studies, it is essential that both CREST and crestdsl are applied

to more and diverse modelling problems to prove their viability. These reports will

also provide invaluable feedback of the usability of crestdsl, so that the language’s

application programming interfaces (APIs) can be adapted to the users’ needs. Next to

the improvement of the existing formalism and implementation, however, the work

on CREST and crestdsl also opened the door for other intriguing research topics.

Adding NewModelling Concepts The CREST DSL was created to reduce the se-

mantic gap between system and modelling language, and increase the application of

formal methods for CPS modelling. The language’s main goal is to provide a simple,

clear means to expression of resource flows within CPSs and use these models for

simulation and verification.

While CREST already reuses ideas from other modelling languages (e.g. entity

composition, dataflow-based value propagation and hybrid system behaviour), it is

of interest to analyse whether other language’s features can be reused. For instance,

as explained in Section 4.4, Petri nets (PNs) provide intuitive modelling of concur-

rency and resource movements within a system, but expose problems when creating

hierarchical systems, and require language extensions for the modelling of complex

data types. It would be of interest to evaluate the use of (Higher-order) PNs to model

7.2. Perspectives 143

the behaviour of CREST entities, such that the benefits of CREST (e.g. hierarchical

composition, formally-defined resource types) can be combined with the strengths

of PNs, while still providing a simple, dedicated formalism and language.

Verification Heuristics The applicability of modelling DSLs strongly relies on

their verification capabilities. Chapter 6 of this thesis introduces a TCTL-based ap-

proach for the verification of CREST systems. Despite the use of a formally proven

algorithm, the actual implementation of this approach can result in the need of sig-

nificant amounts of computation power, due to CREST’s continuous nature. Several

heuristics have been developed to counteract this problematic in other formalisms.

These techniques should be evaluated for their viability in CREST. Further, an analy-

sis of new ones dedicated to the improvement of CREST’s verificationwould certainly

increase the applicability of the language.

Behaviour Approximation Oftentimes, CPSs builders not only need simple and

affordable modelling tools, but also require help during the creation of the models

themselves. The conceptualisation of physical influences between system compo-

nents is non-trivial. In recent years, machine learning evolved into a well-established

technique for approximation of such as functions (e.g. using regression and classi-

fication mechanisms). Initial results for CREST systems have been promising and

were published at dedicated workshops [KCB18]. Further research is needed though

to adapt the approach for general use.

Automated Controller Generation Another opportunity is the automated cre-

ation of system controllers. These components observe a system and modify its in-

puts to assert beneficial and avoid unfavourable behaviour. The creation of such con-

trollers is a time-intensive process in general and highly complex in the domain of

hybrid systems such as CREST. Recently, reinforcement learning (RL) techniques

have shown promising results in diverse application areas, including systems con-

trols. Usually, RL treats the system under study as black boxes and require large

computational infrastructures to implicitly create a model of the system behaviour.

It is certainly of interest to combine the automated learning techniques with the

advantages of formal modelling languages, such as the availability of well-defined

system semantics and simulation. This connection can potentially harness the strengths

of both domains by allowing automated planner and controller generation using

model-based reinforcement learning.

144 Chapter 7. Conclusion

Appendix A

GrowLamp Model – Function
Implementations

This chapter presents the implementations for the transition guards, as well as up-

date, action and influence functions in Figure 4.1. The functions are grouped by the

entity in which they are defined.

GrowLamp The on-guard disables the transition to On as long as less than 100

watts electricity are available or when the switch is off. As soon as enough electricity

is provided (⩾ 100) and the switch is on, the transition is enabled.

on-guard(bind, pre) =

False if bind(electricity) < 100Watt ∨ bind(switch) = off

True if bind(electricity) ⩾ 100Watt ∧ bind(switch) = on

The off-guard exposes the inverse behaviour.

off-guard(bind, pre) =

False if bind(electricity) ⩾ 100Watt ∧ bind(switch) = on

True if bind(electricity) < 100Watt ∨ bind(switch) = off

When transitioning to On, the transition action increment_count is executed,
which takes on-count’s previous value and adds one.

increment_count(bind, pre, δt) = pre(on-count) + 1

There are several updates linked to the On state as well. update_on_time mea-

sures the total amount of time that the automaton spent in state On. Its value contin-
uously increases as time passes.

update_on_time(bind, pre, δt) = pre(on-time) + δt

When the system is in state On, the light module receives 100 watts of electricity.

update_light_electricity(bind, pre, δt) = 100Watt

145

146 Appendix A. GrowLamp Model – Function Implementations

If there is more electricity available when the growing lamp is on, then the addi-

tional electricity is made available to the heating module:

update_heat_electricity(bind, pre, δt) = bind(electricity) − 100Watt

When the GrowLamp is Off, neither the lighting nor the heating module receive

any electricity.

light_electricity_zero(bind, pre, δt) = 0Watt

heat_electricity_zero(bind, pre, δt) = 0Watt

The influence fahrenheit_to_celsius reads the room-temperature input,

converts it to Celsius and writes it to the adder’s temp-in input.

fahrenheit_to_celsius(bind, pre, δt) = (bind(room-temperature) − 32) · 5/9

The following four influences simply read the source port’s value and return it.

Usually the definition of such influence functions are omitted entirely. They are pro-

vided for completeness.

heatswitch_influence(bind, pre, δt) = bind(heatswitch)
forw_heat(bind, pre, δt) = bind(heatH)
forw_temp(bind, pre, δt) = bind(temperatureA)

forward_light(bind, pre, δt) = bind(lightL)

LightElement The on-guardL is responsible for deciding when the automaton

switches to state OnL. That is when there is more than 100 watts available at the

electricityL input.

on-guardL(bind, pre) =

False if bind(electricityL) < 100Watt

True if bind(electricityL) ⩾ 100Watt

When the LightElement is on, the on_update writes the output of 800Lumen to

the output.

on_update(bind, pre, δt) = 800Lumen

The off-guardL enables the transition to OffL if less than 100 watts electricity are

available.

off-guardL(bind, pre) =

False if bind(electricityL) ⩾ 100Watt

True if bind(electricityL) < 100Watt

When the LightElement is off, no light is produced (off_update returns 0Lu-
men).

off_update(bind, pre, δt) = 0Lumen

147

HeatElement The heating module’s behaviour is very simple. It converts all elec-

tricity to heat energy. This heat creates a temperature increase directly under the

lampwhich is measured in degrees Celsius. For example 100 watts electricity provide

a temperature increase of 1 degree under the lamp. The HeatElement’s behaviour is

assumed to be linear.

heat_output(bind, pre, δt) =

bind(electricity)/100 if bind(switch) = on

0Celsius if bind(switch) = off

Adder The Adder entity calculates the sum of all input ports and writes the result

to its output port. In this case, it sums the values of the heat-in and the temp-in ports.

add(bind, pre, δt) = bind(temp-in) + bind(temp-in)

148 Appendix A. GrowLamp Model – Function Implementations

Appendix B

CREST Time Base

CREST’s semantic requirements towards a time base for continuous time sys-

tem definitions and verification are close to the properties of time domains

that are described in other publications. In order to increase compatibility and

coherence, CREST reuses the time domain defined by Lepri et al. in [LÁÖ15]

and extends it. This section briefly recaptures those definitions which are used

by CREST.

The time base T of a CREST system is defined according to the theory TIME
∞
ε .

TIME
∞
ε is an extension of TIME and includes the infinitesimal and infinity elements

ε and ∞. TIME is defined as a linearly ordered commutative monoid (Time,+, 0, <)
with monus operator (−̇ : Time × Time→ Time) and min and max operators:

min : Time × Time→ Time max : Time × Time→ Time

These operators adhere to the axioms in Table B.1.

Table B.1 – Axioms in the theory TIME, for t1, t2, t3 ∈ Time. (Reprint from [LÁÖ15])

A1. (t1 + t2) + t3 = t1 + (t2 + t3) A9. 0 ⩽ t1
A2. t1 + 0 = t1 A10. t1 ⩽ t2 ⇐⇒ ∃t3 : t1 + t3 = t2 ∧ t3 = t2̇ − t1
A3. t1 + t2 = t2 + t1 A11. max(t1, t2) = max(t2, t1)

A4. t1 < t2 ∨ t1 = t2 ∨ t2 < t1 A12. max(max(t1, t2), t3) = max(t1,max(t2, t3))

A5. ¬(t1 < t1) A13. t1 ⩽ t2 =⇒ max(t1, t2) = t2
A6. t1 < t2 =⇒ t1 + t3 < t2 + t3 A14. min(t1, t2) = min(t2, t1)

A7. t1 + t2 = t1 + t3 =⇒ t2 = t3 A15. min(min(t1, t2), t3) = min(t1,min(t2, t3))

A8. t1 ⩽ t2 ⇐⇒ t1 < t2 ∨ t1 = t2

149

150 Appendix B. CREST Time Base

ε and ∞ TIME
∞
ε extends TIME by adding the infinitesimal element ε and infinity

element ∞, s.t. Time∞ε = Time ∪ {ε,∞} and ε,∞ < TIME. TIME’s operators <, +, −̇,
max and min are adapted, to include operations involving ε and∞, as shown by the

axioms in Table B.2 and Table B.3 definitions for TIME
∞
ε .

< : Time∞ε × Time∞ε → B + : Time∞ε × Time∞ε → B
−̇ : Time∞ε × Time∞ε → Time∞ε min : Time∞ε × Time∞ε → Time∞ε

max : Time∞ε × Time∞ε → Time∞ε

Table B.2 –∞-axioms in the theory TIME
∞
ε , for t1 ∈ Time and t2, t3 ∈ Time∞.

(Reprint from [LÁÖ15])

A16. t1 < ∞ A20. ∞ + t2 = ∞

A17. ¬(∞ ⩽ t1) A21. ∞−̇t1 = ∞

A18. t2 ⩽ ∞ A22. max(t2,∞) = ∞

A19. ¬(∞ < t2) A23. max(t2, t3) = t2 =⇒ min(t2, t3) = t3

Table B.3 – ε-axioms in the theory TIME
∞
ε , for t1 ∈ Time and t2 ∈ Time∞ε , 0 < t1, t2.

(Extension of [LÁÖ15])

A24. 0 < ε A27. ε ⩽ t2
A25. ε < t1 A28. ¬(ε < t2)

A26. ¬(t1 ⩽ ε) A29. min(t2, ε) = ε

Based on this theory, it is possible to define time variables as t, t′, t1, · · · ∈ T to

denote time values. It is further possible to define other operations such as multipli-

cation (k ∗ t = t1 + t2 + . . . + tk, where t1 = t2 = . . . = tk), etc.

gcd Further, the gcd operation has been axiomatised to allow the calculation of

the greatest common divisor of two numbers. It is based on the following operators,

where Time>ε = Time \ {0, ε} (adaptation of [LÁÖ15]):

| : Time>ε × Time>ε → B
gcd : Time>ε × Time>ε → Time>ε
half : Time>ε → Time>ε

Note that contrary to Lepri et al. gcd is not defined in its own theory (e.g. TIME
gcd
),

but is already part of TIME
∞
ε . Its axioms are defined in Table B.4.

151

Table B.4 – gcd-axioms in the theory TIME
∞
ε . t1, t2, t3 ∈ Time>ε. (Adapted from

[LÁÖ15])

A30. t1 | t2 ∧ t2 | t3 =⇒ t1 | t3 A30. gcd(t1, t2) = gcd(t2, t1)

A31. t1 | t2 ∧ t2 | t1 =⇒ t1 = t2 A31. gcd(gcd(t1, t2), t3) = gcd(t1, gcd(t2, t3))

A32. t1 | t1 A32. gcd(t1, t2) | t1
A33. t1 | t2 ∧ t1 | t3 =⇒ t1 | (t2 + t3) A33. (t3|t1 ∧ t3|t2) =⇒ t3 | gcd(t1, t2)

A34. t2 < t1 =⇒ ¬(t1 | t2) A34. half(t1) + half(t1) = t1
A35. t1 | (t1 + t2) =⇒ t1 | t2

Time Intervals
Finally, we define the notion of time intervals on the time base T. Time intervals

are denoted as [a, b], (a, b], [a, b∞) or (a,∞) where a, b ∈ Time and b∞ ∈ Time∞ε .
Intervals follow the usual notation, where [and (are the inclusive and exclusive

lower bounds of the interval, and] and) define the inclusive and exclusive upper

bounds, respectively. The set of all intervals of T is written as Intervals(T). We further

call the smallest (resp. largest) member of the interval infimum (resp. supremum).

Their definition is:

inf(I) = max{t ∈ T | ∀t′ ∈ I : t ⩽ t′} to be the infimum of I

sup(I) = min{t ∈ T | ∀t′ ∈ I : t′ ⩽ t} to be the supremum of I

Accordingly, the values of an interval I ∈ Intervals(T) are all values that lie be-
tween the infimum and supremum:

(∀t ∈ T : inf(I) < t < sup(I) =⇒ t ∈ I)

152 Appendix B. CREST Time Base

Appendix C

Code listings

This chapter provides source code listings that could not fit into the main document,

due to spatial reasons. These code listings are also available online at crestdsl’s

online repository https://github.com/crestdsl/thesis-code. The repository
further links to a live demo that can be executed straight from the browser.

C.1 crestdsl – Listings
Listing C.1 provides a listing of an entity with subentities. Notably, the two

GenericLamp subentities are initialised instances assigned to class attributes (Line 11

– 12), similar to ports, states and other CREST concepts. The listing also shows that

CREST updates can be used to set the subentity input ports. The subentity outputs

are propagated to the LampComposition’s outputs using influences. These influences

can be defined in two ways:

1. Using the decorator @crest.influence to annotate the influece function’s def-

inition (Lines 53 – 55)

2. by creating an crest.Influence object and optionally passing a function or

lambda expression as function parameter. Omitting this parameter results in

the use of the default function, which returns the source port’s value.

153

https://github.com/crestdsl/thesis-code

154 Appendix C. Code listings

Listing C.1 –A composed entity, with two subentities. Full source code of the example

provided in Listing 5.7.� �
1 class LampComposition (crest . Entity) :
2 # inputs
3 switch_input = crest . Input (resource=switch , value="off")
4 in_port = crest . Input (resource=watt , value =100)
5

6 # subentities
7 big_lamp = GenericLamp (3 0 0)
8 small_lamp = GenericLamp (1 0 0 , . 9)

9

10 # outputs
11 big_out = crest . Output (watt , 0)

12 small_out = crest . Output (watt , 0)

13

14 # states
15 on = crest . State ()
16 off = crest . State ()
17 current = off
18

19 # transitions
20 @crest . transition (source=off , target=on)
21 def off_to_on (self) :
22 return self . switch_input . value == "on"
23

24 @crest . transition (source=on , target=off)
25 def on_to_off (self) :
26 return self . switch_input . value != "on"
27

28 # setting of subentity inputs
29 @crest . update (state=on , target=small_lamp . in_port)
30 def set_small_lamp_input_when_on (self , dt) :
31 if self . in_port . value > 1 0 0 :

32 return 100

33 else :
34 return 0

35

36 @crest . update (state=off , target=small_lamp . in_port)
37 def set_small_lamp_input_when_off (self , dt) :
38 return 0

39

40 @crest . update (state=on , target=big_lamp . in_port)
41 def set_big_lamp_input_when_on (self , dt) :
42 if self . in_port . value < 1 0 0 :

43 return 0

44 else :
45 return self . in_port . value - 100

46

47 @crest . update (state=off , target=big_lamp . in_port)
48 def set_big_lamp_input_when_off (self , dt) :
49 return 0

50

51

52 # connect subentity output to entity output
53 @crest . influence (source=big_lamp . out_port , target=big_out)
54 def forward_big_output (value) :
55 # influences only take one parameter: value
56 return value
57

58 forward_small_output = crest . Influence (
59 source=small_lamp . out_port , target=small_out)� �

C.2. Simulation – Listings 155

C.2 Simulation – Listings
The heating module described in Section 5.3 – Simulation is a component that is

usually built into a growing lamp, such as the one introduced in Chapter 4 – The

CREST Language. Compared to the HeatElement of Figure 4.1, this HeatModule is

an advanced version that features multiple states, including an error-state which is

entered when the device overheats. From a technical point of view, it is an electrical

heater with an efficiency factor of 0.1. This means, it converts one tenth of the energy

provided to its electricity input into heating energy output, when the system

is in state On and at least 200 watts electricity are applied. If the system is in state

Off, the output is 0 watts. The transitions between on and off are controlled by the

switch input. Additionally, the transition to Off is also automatically triggered after

the module spent 30 minutes in state On, or when the electricity input value drops

below 200 watts. The timing behaviour is implemented using a timer port. In the

on-state, an update continuously grows the timer’s value. When the system is turned

off, the timer’s value is reduced by double the rate. The system can only switch to On
again, if the timer value reaches 0.

Unfortunately, this heat module is fragile and breaks if the internal temperature

exceeds a threshold of 400 degrees Celsius. This behaviour is modelled by a transition

to an Error state. Once the system reaches Error, it cannot leave this state anymore

and produces an output of 0 watts.

The internal_temperature value is determined according to the amount of elec-

tricity fed into the system. The system is well-equipped to deal with electrical power

up to 200 watts. If the electricity input exceeds this value, the heating’s internal tem-

perature will grow by one tenth of a degree per excess watt per time unit. If the power

input drops below 200 watts or the heat module is turned off, the temperature will

sink by the same rate (20°C per minute, if the system is Off or the electricity is
0 watts).

The CREST diagram of the heat module is shown in Figure 5.2. The full crestdsl

source code, which also specifies the behaviour of the various update functions

within the system is provided in Listing C.2.

156 Appendix C. Code listings

Listing C.2 – Source code of the heat module example� �
1 # required resources
2 onOff = crest . Resource (unit="onOff" , domain=["on" , "off"])
3 watt = crest . Resource (unit="Watt" , domain=crest . REAL)
4 celsius = crest . Resource (unit="Celsius" , domain=crest . REAL)
5 time = crest . Resource (unit="Time" , domain=crest . REAL)
6

7 class HeatModule (crest . Entity) :
8 switch = crest . Input (resource=onOff , value="on")
9 electricity = crest . Input (resource=watt , value =0)
10 internal_temp = crest . Local (resource=celsius , value =0)
11 timer = crest . Local (resource=time , value =0)
12 heating = crest . Output (resource=watt , value =0)
13 # states
14 off = current = crest . State ()
15 on = crest . State ()
16 error = crest . State ()
17 # transitions
18 @crest . transition (source=off , target=on)
19 def to_on (self) :
20 return self . switch . value == "on" and self . timer . value <= 0 \

21 and self . electricity . value >= 200

22 @crest . transition (source=on , target=off)
23 def to_off (self) :
24 return self . switch . value != "on" or self . timer . value >= 30 \

25 or self . electricity . value < 200

26 @crest . transition (source=on , target=error)
27 def to_error (self) :
28 return self . internal_temp . value >= 400

29 # updates for heat energy output
30 @crest . update (state=on , target=heating)
31 def on_update_output (self , dt) :
32 # 50 per cent efficiency
33 return self . electricity . value ∗ 0 . 5

34 @crest . update (state=off , target=heating)
35 def off_update_output (self , dt) :
36 return 0

37 @crest . update (state=error , target=heating)
38 def error_update_output (self , dt) :
39 return 0

40 # update timer:
41 @crest . update (state=on , target=timer)
42 def on_update_timer (self , dt) :
43 return self . timer . value + dt
44 @crest . update (state=off , target=timer)
45 def off_update_timer (self , dt) :
46 new_value = self . timer . value - 2 ∗ dt
47 if new_value <= 0 : # don’t go below 0
48 return 0

49 else :
50 return new_value
51 # updates for internal_temp
52 @crest . update (state=on , target=internal_temp)
53 def on_update_internal_temp (self , dt) :
54 # if more than 200 watt, we grow
55 # one tenth degree per extra watt per time unit
56 # if lower, we sink at the same rate
57 factor = (self . electricity . value - 2 0 0) / 10

58

59 if self . electricity . value >= 2 0 0 :

60 return self . internal_temp . value + factor ∗ dt
61 else :
62 new_value = self . internal_temp . value + factor ∗ dt
63 return max (new_value , 2 2) # don’t go below 22
64 @crest . update (state=[off , error] , target=internal_temp)
65 def off_error_update_internal_temp (self , dt) :
66 # see formula above
67 new_value = self . internal_temp . value - 20 ∗ dt
68 return max (new_value , 2 2) # don’t go below 22� �

C.3. ThreeMasses – A Non-linear System 157

C.3 ThreeMasses – A Non-linear System
The following listings show the source code of the ThreeMasses system. It models

three masses that are placed on a surface (e.g. a table). Initially one of them has

initial horizontal velocity (i.e. it is rolling on the surface) until it collides with the

second and transfers its momentum. The second one then collides with the third

mass and pushes it off the table. The third mass then falls off the table at which point

it repeatedly bounces off the floor, iteratively reducing its energy (and thus bouncing

height). The system models the horizontal and vertical positions of each mass.

Resources (Physical Units) First we require the definition of resources such as

position (inmetres), velocity (metres per second) and acceleration (metres per second

per second), the mass (in kilograms) and the restitution factor.

Listing C.3 – Resource definitions of the ThreeMasses system� �
1 m = crest . Resource ("m" , crest . REAL) # meters (position)
2 mps = crest . Resource ("m/s" , crest . REAL) # meters per second (velocity)
3 mps2 = crest . Resource ("m/s/s" , crest . REAL) # meters per second per second

(acceleration)
4 kg = crest . Resource ("kg" , crest . REAL) # kilograms
5 restitution = crest . Resource ("factor" , crest . REAL) # the restitution factor� �
Model Parameters These are model parameters. They can be used to set initial

conditions and similar, such as table height or table length. Note that these variables

can only be used as initial values for ports or e.g. in __init__ functions. They can-

not be used in transition guards, updates, actions or influences, since the simulator

cannot access their value and cannot calculate the correct next transition time.

Listing C.4 – Parameter definitions ThreeMasses system� �
1 # These variables are used as default values for ports
2 global e
3 e = 0 . 9 # restitution factor
4 L = 7 # table length
5 H = 3 # table height� �
Model of Individual Masses A simple mass entity. It is placed at a certain (x,y)

position with a specific velocity (vx, vy) and acceleration (ax, ay). The x-velocity can

be set using an input vx_in. If vx_in != 0 it will override the value currently held by

the entity. It offers its x and vx values in the ports x_out and vx_out.

If the mass reaches the end of the table (x == L) the entity switches to the falling
state, modifies its y-acceleration and hence also its y-position. From that moment it

becomes similar to a bouncing-ball experiment, except that its x-value also changes.

On every bounce, the restitution factor slows the velocity of both x and y by the

restitution factor.

158 Appendix C. Code listings

Listing C.5 – Source code of one Mass entity� �
1 class Mass (crest . Entity) :
2 """- - - - - - - - - Constructor - - - - - - - - -"""
3 def __init__ (self , x0 , vx0 =0) :
4 """We have to provide an initial x-position on the table and an initial x-

velocity"""
5 self . x . value = x0
6 self . vx . value = vx0
7

8 """- - - - - - - - - PORTS - - - - - - - - -"""
9

10 e = crest . Local (restitution , e) # restitution factor
11 L = crest . Local (m , L) # table length
12 H = crest . Local (m , H) # table height
13

14 x = crest . Local (m , 0) # the position (init should be an input param)
15 y = crest . Local (m , 3) # the height of the table (should be an input param)
16

17 x_out = crest . Output (m , 0) # propagate output
18 vx_out = crest . Output (mps , 0) # propagate output
19 vx_in = crest . Input (mps , 0) # to set the speed from the outside
20

21 vx = crest . Local (mps , 3) # this should be an input param
22 vy = crest . Local (mps , 0) # this should be an input param
23

24 ay = crest . Local (mps2 , 0) # acceleration
25

26 """- - - - - - - - - INFLUENCES - - - - - - - - -"""
27

28 propagate_x_out = crest . Influence (source=x , target=x_out)
29 propagate_vx_out = crest . Influence (source=vx , target=vx_out)
30

31 """- - - - - - - - - STATES - - - - - - - - -"""
32

33 on_table = current = crest . State ()
34 falling = crest . State () # downward movement
35 bouncing = crest . State () # upward movement
36

37 """- - - - - - - - - TRANSITIONS - - - - - - - - -"""
38

39 fall_off_table = crest . Transition (source=on_table , target=falling , guard =(
lambda self : self . x . value == self . L . value and self . vx . value > 0))

40

41 # actually we should find when the vy == 0 for the guard.
42 # However, Python’s floats aren’t as precise as Z3’s Real datatype, so a == 0

can provide wrong results.
43 # it is safer to use inequalities when comparing floats (duh...)
44 fall = crest . Transition (source=bouncing , target=falling , guard =(lambda self :

self . vy . value <= 0))

45

46 # We should use an inequality here as well (y <= 0)
47 # However, since our system is non-linear (the y position changes with dt^2),

this means that the optimization is non-linear. And Z3 is just not good at
that!

48 # We therefore use the following trick: We try to find the place where the
absolute value is very close to 0

49 # Why don’t you try setting it to 10 ** -10, and executing the simulation
again?

50 bounce = crest . Transition (source=falling , target=bouncing , guard =(lambda self :
abs (self . y . value) < 1 0 ∗ ∗ - 3))

51

52 """- - - - - - - - - Actions & Updates - - - - - - - - -"""
53

54 # bounce actions
55 @crest . action (transition=bounce , target=vx)
56 def action_apply_vx_restitution (self) :
57 """on bounce we apply restitution to vx"""
58 return self . vx . pre ∗ self . e . value # apply restitution factor

C.3. ThreeMasses – A Non-linear System 159

59

60 @crest . action (transition=bounce , target=vy)
61 def action_vy_bouncing (self) :
62 """on bounce we apply restitution to vy and also inverse the force to

change the direction """
63 return self . vy . pre ∗ self . e . value ∗ - 1 # use restitution and inverse

force
64

65 # X value updates
66

67 @crest . update (state=[on_table , falling , bouncing] , target=x)
68 def update_x (self , dt) :
69 """ The X value is the previous x value + average velocity * dt"""
70 return self . x . pre + (self . vx . value + self . vx . pre) / 2 ∗ dt
71

72 @crest . update (state=[on_table , falling , bouncing] , target=vx)
73 def update_vx (self , dt) :
74 """ If we have an external value set to vx_in, then we use that one. If

the external value is 0, then we continue using the internal value."""
75 if self . vx_in . value != 0 : # external setting of speed
76 return self . vx_in . value
77 else :
78 return self . vx . pre
79

80 # Y value updates
81

82 @crest . update (state=[falling , bouncing] , target=ay)
83 def update_ay_falling (self , dt) :
84 """change the acceleration to the value of gravity (rounded)"""
85 return - 9 . 8 1

86

87 @crest . update (state=[falling , bouncing] , target=y)
88 def update_y (self , dt) :
89 """The new position is the old position plus average velocity times passed

time"""
90 average_velocity = (self . vy . value + self . vy . pre) / 2 . 0

91 return self . y . pre + average_velocity ∗ dt # traversed distance = (v0+
v_end)/2*t

92

93 @crest . update (state=[falling , bouncing] , target=vy)
94 def update_vy (self , dt) :
95 """The average velocity is the previous velocity plus acceleration times

time.
96 Note that velocity here can be positive and negative , depending on whether

we’re falling or bouncing up again"""
97 return self . vy . pre + self . ay . value ∗ dt� �

160 Appendix C. Code listings

The Three Masses System This system initialises three equal masses (their mea-

sured mass is defined in port m). There are three individual states: the masses do not

touch, mass1 touches mass2 and mass2 touches mass3 (In this model it is not possible

for all masses to touch at the same time!)

The transitions are based on the x-positions. If their distance is lower than a

certain threshold and the first one is faster than the second one, we call it a collision.

Then some actions will kick in and change the involved masses’ velocities. (i.e. set

them externally). If they don’t touch, we use updates to continuously set their vx_in

to zero, so that the masses calculate vx themselves.

Listing C.6 – Source code of the non-linear ThreeMasses system� �
1

2 class ThreeMasses (crest . Entity) :
3 """- - - - - - - - - PORTS - - - - - - - - -"""
4

5 e = crest . Local (restitution , e) # restitution factor
6 m = crest . Local (kg , 1) # the actual mass of each object is 1 kg, we assume

all masses are equal. Otherwise we need to adapt our system
7

8 """- - - - - - - - - SUBENTITIES - - - - - - - - -"""
9

10 mass1 = Mass (x0=0 , vx0 =3) # mass1 is placed at 0 but has a velocity
11 mass2 = Mass (x0 = 6 . 5) # mass2 is placed at 6.5 (close to the end) but

does not move
12 mass3 = Mass (x0 =7) # mass3 is placed right at the edge (7), but

does not fall because its velocity is 0
13

14 """- - - - - - - - - STATES - - - - - - - - -"""
15

16 no_touch = current = crest . State () # no collisions
17 m1_touch_m2 = crest . State () # when mass1 hits mass2
18 m2_touch_m3 = crest . State () # when mass2 hits mass3
19

20 """- - - - - - - - - TRANSITIONS - - - - - - - - -"""
21

22 # same as above. the x_out values are based on non-linear constraints
23 collide_m1_m2 = crest . Transition (source=no_touch , target=m1_touch_m2 ,

guard =(lambda self : abs (self . mass1 . x_out . value - self . mass2 . x_out . value) <

0 . 1 ∗ 1 0 ∗ ∗ - 3 and self . mass1 . vx_out . value > self . mass2 . vx_out . value))

24 m1_m2_collision_to_no_touch = crest . Transition (source=m1_touch_m2 , target=
no_touch , guard =(lambda self : abs (self . mass1 . x_out . value - self . mass2 . x_out .
value) > 0 . 1 ∗ 1 0 ∗ ∗ - 3 and self . mass1 . vx_out . value <= self . mass2 . vx_out . value
))

25 collide_m2_m3 = crest . Transition (source=no_touch , target=m2_touch_m3 ,
guard =(lambda self : abs (self . mass2 . x_out . value - self . mass3 . x_out . value) <

0 . 1 ∗ 1 0 ∗ ∗ - 5 and self . mass2 . vx_out . value > self . mass3 . vx_out . value))

26 m2_m3_collision_to_no_touch = crest . Transition (source=m2_touch_m3 , target=
no_touch , guard =(lambda self : abs (self . mass2 . x_out . value - self . mass3 . x_out .
value) > 0 . 1 ∗ 1 0 ∗ ∗ - 3 and self . mass2 . vx_out . value <= self . mass3 . vx_out . value
))

27

28 """- - - - - - - - - UPDATES & ACTIONS - - - - - - - - -"""
29

30 @crest . update (state=no_touch , target=mass1 . vx_in)
31 def no_touch_mass1vx_in (self , dt) :
32 # if the masses don’t touch, then don’t change their velocity
33 return 0

34

35 @crest . update (state=no_touch , target=mass2 . vx_in)
36 def no_touch_mass2vx_in (self , dt) :
37 # if the masses don’t touch, then don’t change their velocity
38 return 0

39

C.3. ThreeMasses – A Non-linear System 161

40 @crest . update (state=no_touch , target=mass3 . vx_in)
41 def no_touch_mass3vx_in (self , dt) :
42 # if the masses don’t touch, then don’t change their velocity
43 return 0

44

45 @crest . action (transition=collide_m1_m2 , target=mass1 . vx_in)
46 def m1_collide_m2_action_m1_vx (self) :
47 # on collision with mass2 change mass1’s velocity
48 m = self . m . value # read the current port values into local variables
49 e = self . e . value # this makes the formula below easier to read
50 return self . mass1 . vx_out . value ∗ (m - e ∗ m) / (2 ∗ m) + self . mass2 . vx_out

. value ∗ m ∗ (1 + e) / (2 ∗ m)
51

52 @crest . action (transition=collide_m1_m2 , target=mass2 . vx_in)
53 def m1_collide_m2_action_m2_vx (self) :
54 # on collision with mass1 change mass2’s velocity
55 m = self . m . value
56 e = self . e . value
57 return self . mass1 . vx_out . value ∗ (1 + e) ∗ m / (2 ∗ m) + self . mass2 . vx_out .

value ∗ (m - e ∗ m) / (2 ∗ m)
58

59 @crest . action (transition=collide_m2_m3 , target=mass2 . vx_in)
60 def m2_collide_m3_action_m1_vx (self) :
61 # on collision with mass3 change mass2’s velocity
62 m = self . m . value
63 e = self . e . value
64 return self . mass2 . vx_out . value ∗ (m - e ∗ m) / (2 ∗ m) + self . mass3 . vx_out .

value ∗ m ∗ (1 + e) / (2 ∗ m)
65

66 @crest . action (transition=collide_m2_m3 , target=mass3 . vx_in)
67 def m2_collide_m3_action_m2_vx (self) :
68 # on collision with mass2 change mass3’s velocity
69 m = self . m . value
70 e = self . e . value
71 return self . mass2 . vx_out . value ∗ (1 + e) ∗ m / (2 ∗ m) + self . mass3 . vx_out .

value ∗ (m - e ∗ m) / (2 ∗ m)� �

162 Appendix C. Code listings

Appendix D

Acronyms and Symbols

Acronyms

AADL Architecture Analysis & Design Language

ADL architecture description language

AP atomic proposition

API application programming interface

CPN coloured Petri net

CPS cyber-physical system

CREST Continuous REactive SysTems language

CTL computation tree logic

DD decision diagram

DEVS Discrete Event System Specification

DSL domain-specific language

DSML domain-specific modelling language

EADL Embedded Architecture Description Language

ER diagram entity-relationship diagram

FSA finite state automaton

FSM finite state machine

GPPL general-purpose programming language

GUI graphical user interface

HA hybrid automaton

HDL hardware description language

163

164 Symbols

HLPN high-level Petri net

HS hybrid system

IDE integrated development environment

IoT Internet of Things

LTL linear temporal logic

MARTE UML Profile for Modeling and Analysis of Real

Time and Embedded systems

MBE model-based engineering

MDA model-driven architecture

MDD model-driven development

MDE model-driven engineering

ODE ordinary differential equation

OMG Object Management Group

PN Petri net

QSS quantized state system

RTE real-time and embedded

RTL register-transfer level

SDL Specification and Description Language

SMT satisfiability modulo theories

SOS structured operational semantics

SPT UML Profile for Schedulability, Performance,

and Time Specification

SysML Systems Modeling Language

TA timed automaton

TCTL timed computation tree logic

TLM transaction-level modeling

UML Unified Modeling Language

List of Symbols

This thesis uses various symbols and icons. This is a summary of the most important

ones. For some chapters it might be interesting to keep it close at hand.

Symbols used in CREST Diagrams

A CREST entity is visualised by its boundaries. Usually, its name/type

is provided as a title inside a coloured bar.

An input port of a CREST entity.

An output port of a CREST entity.

A local port of a CREST entity.

On A state of a CREST entity’s behaviour automaton.

Off The current or initial state of a CREST entity’s behaviour automaton.

A behaviour automaton transition connecting a state to a state. Transi-

tionsmodel state changes and are annotatedwith guard function names.

A (continuous) update relation connecting a state to a port. It modi-

fies the target port’s value when the automaton is in the corresponding

state.

An influence function connecting a port to another port. Influences prop-

agate a port’s value to the target port independent from the state that

the automaton is in.

An action connecting a transition and a port. An action changes its tar-

get port’s value when the transition is triggered.

Symbols used for CREST’s Formalisation
The list is sorted to match the order of definition in Chapter 4. Note that

only recurring definitions are provided here.

⊔ Set partition operator; S =
⊔

i S i or S = S 1 ⊔ . . . ⊔ S n iff

∀i, j, i , j =⇒ S i ∩ S j = ∅ and S =
⋃

1⩽i⩽n
S i.

165

166 Symbols

T A time base, e.g. R⩾0 or Q⩾0, extended by the infinitesimal value ε and
infinity∞.

Units A set of resource units; e.g. Watt, Switch, Celsius.

Domains A set of value domains; e.g. R,N, {on, off}.

Types A set of resource types used in a CREST system;

Types ⊆ Domains × Units; e.g. RWatt, {on, off}Switch.

Resources The set of resource (values), e.g. 0Watt, onSwitch.

Entities The set of entities that makes up a CREST system.

root Returns the root of a CREST system’s entity hierarchy.

children(e) Returns the direct subentities of a CREST entity.

Portse The set of ports of a single CREST entity e.

PortsI
e An entity e’s set of input ports.

PortsO
e An entity e’s set of output ports.

PortsL
e An entity e’s set of local ports.

sources(e) Returns the ports that can be read by e’s updates and guards, i.e. e’s
inputs, locals and e’s subentities’ outputs.

targets(e) Returns the ports that can be written by e’s updates, i.e. e’s outputs,
locals and e’s subentities’ inputs.

binding(p) Maps ports onto their current values; e.g. binding(electricity) = 0Watt.

pre A binding that stores the ports’ previous values (e.g. before an update

execution).

Statese An entity e’s set of automaton states.

Transitions The set of all transitions of the form Statee × Statee × T defined for a

CREST system.

T The set of transition guard names (i.e. not their implementations).

τ A function that maps transition guard names to guard implementations.

Updates The set of all updates of the from Statee×Porte×U defined for a CREST

system.

U The set of update function names (i.e. not their implementations).

υ A function that maps update function names to their implementations.

Symbols 167

dependencies Maps update function names to the sources-ports they depend on.

io-dependencies Defines dependencies between an entity’s output and input ports.

This is required for the resolution of cyclic dependencies that might be

occurring due to CREST’s black box view of subentities.

current(e) Returns the current automaton state of an entity e.

W The set of all states a CREST system can be in.

W = Currents × Bindings × Bindings × T

w w usually refers to a CREST system’s state. w = ⟨current, bind, pre, t⟩

w[e 7→ s] Change the current state of entity e to s (s ∈ Statese).

w[p 7→ r] Change the port value binding of port p to resource value r.

w[vs] Change of several port value bindings, where vs = { f : Ports→ Resources}.

δt A variable used to refer to a time interval δt ∈ T e.g. the time to advance

during simulation.

ε ε ∈ T represents the infinitesimal value, i.e. the smallest possible value

that is larger than zero. Formally: ε > 0 ∧ ∄τ ∈ T, τ < ε

Symbols used in the Verification chapter

¬,∧,∨ Logical operators used in computation tree logic (CTL) and timed com-

putation tree logic (TCTL) formulas.

AP, p ∈ AP The set of atomic propositions, i.e. the predicates of a system state.

EX, EU, AU Basic CTL operators. Other operators can be defined as based of these

ones.

ϕ, ψ, ϕ1, ϕ2 Variables that represent computation tree logic (CTL) or TCTL formulas.

EUI , AUI Timed versions of CTL operators that are used in TCTL formulas, an-

notated with an interval I.

TK The symbol used for a timed Kripke structure.

CK The symbol used for a CREST Kripke structure (an adapted TK).

|= Operator that represents the satisfaction relation between a TCTL for-

mula and a CK state.

168 Symbols

Scientific Work and Publications

This section lists a summary of the publications for CREST. Next to the research on

CREST and development of crestdsl, I was involved in several other projects and

collaborations that fruited in scientific papers and the creation of hands-on artefacts.

The work on these topics will also be outlined below.

CREST

Before composing this thesis, CREST and crestdsl have been the subject of several

publications presented at international conferences and workshops. Here is a list of

my publications that are relevant towards this topic:

[KLB17] Stefan Klikovits, Alban Linard, and Didier Buchs. CREST - A Con-

tinuous, REactive SysTems DSL. In: 5th International Workshop on the
Globalization of Modeling Languages (GEMOC 2017), CEUR Workshop

Proceedings, vol. 2019, pp. 286–291. 2017. url: http://ceur-ws.
org/Vol-2019/gemoc_2.pdf.

[KLB18a] StefanKlikovits, Alban Linard, and Didier Buchs. CREST - ADSL for

Reactive Cyber-Physical Systems. In: 10th System Analysis and Model-
ing Conference (SAM2018), LectureNotes in Computer Science, vol. 11150,

pp. 29–45. Springer, 2018. doi: 10.1007/978-3-030-01042-3_
3.

[KLB18b] Stefan Klikovits, Alban Linard, and Didier Buchs. CREST Formaliza-
tion. Tech. rep. Software Modeling and Verification Group, University

of Geneva, 2018.doi: 10.5281/zenodo.1284561.

[KCB18] Stefan Klikovits, Aurélien Coet, and Didier Buchs. ML4CREST: ma-

chine learning for CPSmodels. In: 2nd InternationalWorkshop onModel-
Driven Engineering for the Internet-of-Things (MDE4IoT) atMODELS’18,
CEURWorkshop Proceedings, vol. 2245, pp. 515–520. 2018. url: http:
//ceur-ws.org/Vol-2245/mde4iot_paper_4.pdf.

169

http://ceur-ws.org/Vol-2019/gemoc_2.pdf
http://ceur-ws.org/Vol-2019/gemoc_2.pdf
https://doi.org/10.1007/978-3-030-01042-3_3
https://doi.org/10.1007/978-3-030-01042-3_3
https://doi.org/10.5281/zenodo.1284561
http://ceur-ws.org/Vol-2245/mde4iot_paper_4.pdf
http://ceur-ws.org/Vol-2245/mde4iot_paper_4.pdf

170 Scientific Work and Publications

CERN

In the first phase of my PhD, I was placed at CERN, the European Organization for

Nuclear Research
1
, where I performed research on static code analysis and auto-

mated generation of unit tests. The project domain was a large code base (roughly 1

million lines of code) written in a proprietary, ANSI-C-like language, and for which

no automated unit testing framework existed yet. The software under test is used

to control various applications at CERN, such as parts of the Large Hadron Collider

and CERN’s electrical power grid. The project resulted in the creation of a prototype

application, that is capable of creating unit test input for individual code functions

and small code units. This is achieved by separating a routine from its dependencies

(e.g. global variables, subroutines). The resulting code was translated to C# for ex-

ecution using Microsoft Research’ Pex code exploration tool to provide test inputs

and expected outputs. The theoretical aspects of this work were presented in three

scientific papers.

[Kli+15] Stefan Klikovits, David P. Y. Lawrence, Manuel Gonzalez-Berges,

and Didier Buchs. Considering Execution Environment Resilience: A

White-Box Approach. In: Software Engineering for Resilient Systems -
7th International Workshop, SERENE 2015, Lecture Notes in Computer

Science, vol. 9274, pp. 46–61. Springer, 2015. doi: 10.1007/978-3-
319-23129-7_4.

[Kli+16] Stefan Klikovits, David P. Y. Lawrence, Manuel Gonzalez-Berges,

and Didier Buchs. Automated Test Case Generation for the CTRL Pro-

gramming Language Using Pex: Lessons Learned. In: Software Engi-
neering for Resilient Systems - 8th InternationalWorkshop, SERENE 2016,
Lecture Notes in Computer Science, vol. 9823, pp. 117–132. Springer,

2016.doi: 10.1007/978-3-319-45892-2_9.

[KGB17] Stefan Klikovits, Manuel Gonzalez-Berges, and Didier Buchs. To-

wards Lanuguage Independent (Dynamic) Symbolic Execution. In: Pro-
ceedings of the 24th PhD Mini-Symposium, pp. 50–53. Budapest Uni-

versity of Technology and Economics, Department of Measurement

and Information Systems, 2017. doi: 10 . 5281 / zenodo . 291899.

1https://home.cern

https://doi.org/10.1007/978-3-319-23129-7_4
https://doi.org/10.1007/978-3-319-23129-7_4
https://doi.org/10.1007/978-3-319-45892-2_9
https://doi.org/10.5281/zenodo.291899
https://home.cern

Scientific Work and Publications 171

Other Work
Next to the work on my PhD projects, I contributed to other subjects that did not

directly influence the findings of this thesis but allowed me to create a network of

international research collaborations, exchange with experts in other domains and

extend my knowledge. This section lists publications that resulted from my efforts.

MPM4CPS As a member of the European COST Action IC1404’s “Multiparadigm

Modelling of Cyber-Physical Systems” (MPM4CPS)
2
, I joined the Working Group 1

on "Foundations". I was actively involved in the creation and documentation of two

reports that were submitted as final deliverables. The first one is a catalogue of the

state-of-the-art of formalisms, languages and tools used in the modelling and simu-

lation domain. I wrote and reviewed over two-thirds of the definitions that ended up

in the final report.

[Kli+19] Stefan Klikovits, Rima Al-Ali, Moussa Amrani, Ankica Barisic, Fer-

nando Barros, Dominique Blouin, Etienne Borde, Didier Buchs, Hol-

ger Giese, Miguel Goulao, Mauro Iacono, Florin Leon, Eva Navarro,

Patrizio Pelliccione, and Ken Vanherpen. COST IC1404 WG1 Deliver-

able WG1.1: State-of-the- art on Current Formalisms used in Cyber-

Physical SystemsDevelopment. 2019.doi: 10.5281/zenodo.2533455.

I further contributed actively to the conceptualisation and creation of a frame-

work that establishes relations between modelling languages and techniques. I am a

co-author of the resulting report.

[AlA+19] RimaAl-Ali,MoussaAmrani, Soumyadip Bandyopadhyay, Ankica Barisic,

Fernando Barros, Dominique Blouin, Ferhat Erata, Holger Giese,Mauro

Iacono, Stefan Klikovits, Eva Navarro, Patrizio Pelliccione, Kuldar

Taveter, Bedir Tekinerdogan, and Ken Vanherpen. COST IC1404 WG1

Deliverable WG1.2: Framework to Relate / Combine Modeling Lan-

guages and Techniques. 2019.doi: 10.5281/zenodo.2527576.

Additionally, theMPM4CPSAction pushed towards the publication of a text book

related to its core topic, which is currently in the process of publication. The book

targets the “Foundations of Multiparadigm Modelling for Cyber-Physical Systems”.

I co-authored a chapter that focuses on the use of Petri nets for the concurrent, non-

deterministic systems.

[BKL19] Didier Buchs, Stefan Klikovits, and Alban Linard. Petri Nets: A For-

mal Language to Specify and Verify Concurrent Non-Deterministic

Event Systems. In: Foundations of Multi-ParadigmModelling for Cyber-
Physical Systems. Ed. by P. Carreira, V. Amaral, and H. Vangheluwe. (in

press). Springer, 2019.

2http://mpm4cps.eu

https://doi.org/10.5281/zenodo.2533455
https://doi.org/10.5281/zenodo.2527576
http://mpm4cps.eu

172 Scientific Work and Publications

Modeling Frames I was invited to participate in the Computer Automated Multi-

Paradigm Modeling (CAMPaM) workshops in 2016 and 2017. In both years, I joined

groups that were researching the practical applicability of Modeling Frames [Zei84].

The work resulted in two publications.

[Den+17] Joachim Denil, Stefan Klikovits, Pieter J. Mosterman, Antonio Val-

lecillo, and Hans Vangheluwe. The Experiment Model and Validity

Frame in M&S. In: Proceedings of the Symposium on Theory of Mod-
eling & Simulation, TMS/DEVS ’17, pp. 109–120. Society for Computer

Simulation International, 2017. url: http://scs.org/wp-content/
uploads/2017/06/27_Final_Manuscript.pdf.

[Kli+17] Stefan Klikovits, Joachim Denil, Alexandre Muzy, and Rick Salay.

Modeling frames. In: 14thWorkshop onModel-Driven Engineering, Veri-
fication and Validation (MoDeVVa 2017), 19 September 2017, CEURWork-

shop Proceedings, vol. 2019, pp. 315–320. 2017. url: http://ceur-
ws.org/Vol-2019/modevva_3.pdf.

Petri Nets I also collaborated with my colleagues of the Software Modeling and

Verification (SMV) group. We published a paper on the use of machine learning to

guide the choice of model checking tools based on model properties.

[Buc+18] Didier Buchs, Stefan Klikovits, Alban Linard, Romain Mencattini,

andDimitri Racordon. AModel Checker Collection for theModel Check-

ing Contest Using Docker and Machine Learning. In: Application and
Theory of Petri Nets and Concurrency - 39th International Conference,
PETRI NETS 2018, LectureNotes in Computer Science, vol. 10877, pp. 385–

395. Springer, 2018. doi: 10 . 1007 / 978 - 3 - 319 - 91268 - 4 _ 21.

We also presented our approach to teaching Petri nets to novices (e.g. undergrad-

uate students) using a game called Petri sport.

[Kli+18] Stefan Klikovits, Alban Linard, Dimitri Racordon, and Didier Buchs.

Petri Sport: A Sport for Petri Netters. In: Petri Nets and Software En-
gineering. International Workshop, PNSE’18, CEURWorkshop Proceed-

ings, vol. 2138, pp. 35–56. 2018. url: http://ceur-ws.org/Vol-
2138/paper2.pdf.

http://scs.org/wp-content/uploads/2017/06/27_Final_Manuscript.pdf
http://scs.org/wp-content/uploads/2017/06/27_Final_Manuscript.pdf
http://ceur-ws.org/Vol-2019/modevva_3.pdf
http://ceur-ws.org/Vol-2019/modevva_3.pdf
https://doi.org/10.1007/978-3-319-91268-4_21
http://ceur-ws.org/Vol-2138/paper2.pdf
http://ceur-ws.org/Vol-2138/paper2.pdf

Bibliography

[AADL17] Society of Automotive Engineers: Architecture Analysis and Design Lan-
guage (SAE AADL) Version 2.2. SAE Standard: AS5506C. Society of Au-

tomotive Engineers. 2017. doi: 10.4271/AS5506C.

[ABB97] Jean-Michel Autebert, Jean Berstel, and Luc Boasson. Context-free lan-

guages and pushdown automata. In: Handbook of formal languages,
pp. 111–174. Springer, 1997.

[AD94] Rajeev Alur and David L. Dill. A Theory of Timed Automata. Theoret-
ical Computer Science 126, 1994, pp. 183–235.

[AD98] Hassane Alla and René David. Continuous and hybrid Petri nets. Jour-
nal of Circuits, Systems, and Computers 8(01), 1998, pp. 159–188.

[AH92] Rajeev Alur and Thomas A. Henzinger. Logics andmodels of real time:

A survey. In: Real-Time: Theory in Practice, Lecture Notes in Computer

Science, vol. 600, pp. 74–106. Springer, 1992.

[AHH96] R. Alur, T. A. Henzinger, and Pei-Hsin Ho. Automatic symbolic verifi-

cation of embedded systems. IEEE Transactions on Software Engineer-
ing 22(3), 1996, pp. 181–201. doi: 10/ds232r.

[Aks+08] S. Akshay, Benedikt Bollig, Paul Gastin,MadhavanMukund, andK. Narayan

Kumar. Distributed timed automatawith independently evolving clocks.

In: Proceedings of the International Conference on Concurrency Theory
(CONCUR 2008), Lecture Notes in Computer Science, vol. 5201, pp. 82–

97. Springer, 2008.

[Alu+95] RajeevAlur, Costas Courcoubetis, NicolasHalbwachs, ThomasAHen-

zinger, P-H Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and

Sergio Yovine. The algorithmic analysis of hybrid systems. Theoretical
computer science 138(1), 1995, pp. 3–34.

[Alu11] Rajeev Alur. Formal Verification of Hybrid Systems. In: 2011 Proceed-
ings of the Ninth ACM International Conference on Embedded Software
(EMSOFT), ACM, 2011. doi: 10.1145/2038642.2038685.

[And+06] Bente Anda, Kai Hansen, Ingolf Gullesen, and Hanne Kristin Thorsen.

Experiences from introducingUML-based development in a large safety-

critical project. Empirical Software Engineering 11(4), 2006, pp. 555–

581. doi: 10/dkf4vp.

173

https://doi.org/10.4271/AS5506C
https://doi.org/10/ds232r
https://doi.org/10.1145/2038642.2038685
https://doi.org/10/dkf4vp

174 Bibliography

[Ash08] Peter J. Ashenden. The Designer’s Guide to VHDL. 3rd ed. Morgan Kauf-

mann Publishers Inc., 2008.

[Aul+13] Denis Aulagnier, Ali Koudri, Stéphane Lecomte, Philippe Soulard, Joël

Champeau, Jorgiano Vidal, Gilles Perrouin, and Pierre Leray. SoC/-

SoPC Development using MDD and MARTE Profile. In: Model-Driven
Engineering for Distributed Real-Time Systems, pp. 201–232.Wiley, 2013.

doi: 10.1002/9781118558096.ch8.

[BA07] Louis G. Birta and Gilbert Arbez. Modelling and Simulation: Exploring
Dynamic System Behaviour. Springer, 2007.

[BAG18] Ankica Barisic, Vasco Amaral, and Miguel Goulão. Usability driven

DSL developmentwithUSE-ME.Computer Languages, Systems& Struc-
tures 51, 2018, pp. 118–157. doi: 10.1016/j.cl.2017.06.005.

[Bar+05a] J. Barnat, L. Brim, I. Černá, and P. Šimeček. DiVinE – The Distributed

Verification Environment. In: Proceedings of 4th International Work-
shop on Parallel andDistributedMethods in verifiCation (PDMC), pp. 89–
94. 2005. url: http://anna.fi.muni.cz/PDMC/PDMC05/PDMC05_
prelim.pdf.

[Bar+05b] J. Barnat, V. Forejt, M. Leucker, and M.Weber. DivSPIN – A SPIN com-

patible distributed model checker. In: Proceedings of 4th International
Workshop on Parallel and Distributed Methods in verifiCation (PDMC),
pp. 95–100. 2005. url: http://anna.fi.muni.cz/PDMC/PDMC05/
PDMC05_prelim.pdf.

[BBR07] J. Barnat, L. Brim, and P. Ročkai. ScalableMulti-core LTLModel-Checking.

In:Model Checking Software, LectureNotes in Computer Science, vol. 4595,

pp. 187–203. Springer, 2007. doi: 10.1007/978-3-540-73370-6_13.

[BC06] Tamara Beltrame and François E Cellier. Quantised state system simu-

lation in Dymola/Modelica using the DEVS formalism. In: Proceedings
5th International Modelica Conference, pp. 73–82. Modelica, 2006.

[BCG88] M. C. Browne, E. M. Clarke, and O. Grümberg. Characterizing finite

Kripke structures in propositional temporal logic. Theoretical Com-
puter Science 59(1), 1988, pp. 115–131. doi: 10/br8284.

[BCM05] Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. On the Ex-

pressiveness of TPTL and MTL. In: International Conference on Foun-
dations of Software Technology and Theoretical Computer Science, Lec-
ture Notes in Computer Science, vol. 3821, Springer, 2005. doi: 10.
1007/11590156_35.

[BCW12] Marco Brambilla, Jordi Cabot, andManuelWimmer.Model-Driven Soft-
ware Engineering in Practice. Morgan & Claypool Publishers, 2012.

[Bel04] Alex E. Bell. Death by UML Fever. Queue 2(1), 2004, pp. 72–80. doi:

10/bn8hs5.

https://doi.org/10.1002/9781118558096.ch8
https://doi.org/10.1016/j.cl.2017.06.005
http://anna.fi.muni.cz/PDMC/PDMC05/PDMC05_prelim.pdf
http://anna.fi.muni.cz/PDMC/PDMC05/PDMC05_prelim.pdf
http://anna.fi.muni.cz/PDMC/PDMC05/PDMC05_prelim.pdf
http://anna.fi.muni.cz/PDMC/PDMC05/PDMC05_prelim.pdf
https://doi.org/10.1007/978-3-540-73370-6_13
https://doi.org/10/br8284
https://doi.org/10.1007/11590156_35
https://doi.org/10.1007/11590156_35
https://doi.org/10/bn8hs5

Bibliography 175

[Ben+11] Albert Benveniste, Timothy Bourke, Benoît Caillaud, andMarc Pouzet.

A hybrid synchronous languagewith hierarchical automata: static typ-

ing and translation to synchronous code. In: 2011 Proceedings of the
Ninth ACM International Conference on Embedded Software (EMSOFT),
p. 137. ACM, 2011. doi: 10.1145/2038642.2038664.

[Bér+01] Béatrice Bérard, Michel Bidoit, Alain Finkel, François Laroussinie, An-

toine Petit, Laure Petrucci, Philippe Schnoebelen, and Pierre Mcken-

zie. KRONOS –Model Checking of Real-time Systems. In: Systems and
Software Verification: Model-Checking Techniques and Tools. Springer,
2001, pp. 161–168. doi: 10.1007/978-3-662-04558-9_16.

[BF08] David Broman and Peter Fritzson. Higher-order acausal models. In:

EOOLT, 2008.

[BG00] Didier Buchs and Nicolas Guelfi. A formal specification framework

for object-oriented distributed systems. Transactions on Software En-
gineering 26(7), 2000, pp. 635–652. doi: 10.1109/32.859532.

[BG92] Gérard Berry and Georges Gonthier. The Esterel synchronous pro-

gramming language: design, semantics, implementation. Science of Com-
puter Programming 19(2), 1992, pp. 87–152. doi: 10 . 1016 / 0167 -
6423(92)90005-V.

[BGJ91] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Syn-

chronous programming with events and relations: the SIGNAL lan-

guage and its semantics. Science of Computer Programming 16(2), 1991,
pp. 103–149. doi: 10/d5gqwb.

[BH09] Beatrice Bérard and Serge Haddad. Interrupt timed automata. In: In-
ternational Conference on Foundations of Software Science and Com-
putational Structures, Lecture Notes in Computer Science, vol. 5504,

pp. 197–211. Springer, 2009.

[Bie+99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan

Zhu. Symbolic Model Checking without BDDs. In: TACAS ’99: Pro-
ceedings of the 5th International Conference on Tools and Algorithms
for Construction and Analysis of Systems, Lecture Notes in Computer

Science, vol. 1579, pp. 193–207. Springer, 1999.

[BK11] Federico Bergero and Ernesto Kofman. PowerDEVS: a tool for hy-

brid system modeling and real-time simulation. SIMULATION 87(1-2),

2011, pp. 113–132. doi: 10/bwzxtb.

[BKS03] G. Berry, M. Kishinevsky, and S. Singh. System level design and veri-

fication using a synchronous language. In: ICCAD-2003. International
Conference on Computer Aided Design, pp. 433–439. 2003. doi: 10 .
1109/ICCAD.2003.159720.

[BL08] Patricia Bouyer and François Laroussinie. Model Checking Timed Au-

tomata. In: Modeling and Verification of Real-Time Systems, pp. 111–
140. Wiley, 2008.

https://doi.org/10.1145/2038642.2038664
https://doi.org/10.1007/978-3-662-04558-9_16
https://doi.org/10.1109/32.859532
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10/d5gqwb
https://doi.org/10/bwzxtb
https://doi.org/10.1109/ICCAD.2003.159720
https://doi.org/10.1109/ICCAD.2003.159720

176 Bibliography

[Bla+10] David C. Black, Jack Donovan, Bill Bunton, and Anna Keist. SystemC:
From the Ground Up. Springer, 2010.

[Blo+12] Torsten Blochwitz,MartinOtter, JohanAkesson,MartinArnold, Christoph

Clauss, Hilding Elmqvist,Markus Friedrich, Andreas Junghanns, Jakob

Mauss, Dietmar Neumerkel, et al. Functional mockup interface 2.0: the

standard for tool independent exchange of simulation models. In: Pro-
ceedings of the 9th International MODELICA Conference, pp. 173–184.
2012.

[Bou09] Patricia Bouyer. Model-checking Timed Temporal Logics. Electronic
Notes in Theoretical Computer Science 231, 2009, pp. 323–341. doi: 10/
cz4brn.

[Boz+00] Marius Bozga, Susanne Graf, Laurent Mounier, Alain Kerbrat, Iulian

Ober, and Daniel Vincent. SDL for Real-Time: What Is Missing? In:

2nd Workshop of the SDL Forum Society on SDL and MSC SAM2000,
pp. 108–122. IMAG, 2000. url: https://hal.archives-ouvertes.
fr/hal-00374117.

[BP13] Timothy Bourke and Marc Pouzet. Zélus: A Synchronous Language

with ODEs. In: 16th International Conference on Hybrid Systems: Com-
putation and Control, pp. 113–118. 2013.

[Bro+05] Christopher Brooks, Adam Cataldo, Edward A Lee, Jie Liu, Xiaojun

Liu, Steve Neuendorffer, and Haiyang Zheng. HyVisual: A hybrid sys-

tem visual modeler. University of California, Berkeley, Technical Mem-
orandum UCB/ERL M 5, 2005.

[Bro+12] David Broman, Edward A. Lee, Stavros Tripakis, and Martin Törn-

gren. Viewpoints, formalisms, languages, and tools for cyber-physical

systems. In: Proceedings of the 6th International Workshop on Multi-
Paradigm Modeling, MPM ’12, pp. 49–54. ACM, 2012. doi: 10.1145/
2508443.2508452.

[Bro+92] Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Thomas

F. Gritzner, and Rainer Weber. The design of distributed systems: an in-
troduction to focus. Tech. rep. Technical University of Munich, Munich,

Germany, 1992. url: http://www4.in.tum.de/publ/papers/
TUM-I9202.pdf.

[Bro99] Jan F. Broenink. Introduction to Physical SystemsModellingwith Bond

Graphs. In: SiE Whitebook on Simulation Methodologies, 1999.

[Brü+02] Dag Brück, Hilding Elmqvist, Sven Erik Mattsson, and Hans Olsson.

Dymola for multi-engineering modeling and simulation. In: Proceed-
ings of Modelica, 2002.

https://doi.org/10/cz4brn
https://doi.org/10/cz4brn
https://hal.archives-ouvertes.fr/hal-00374117
https://hal.archives-ouvertes.fr/hal-00374117
https://doi.org/10.1145/2508443.2508452
https://doi.org/10.1145/2508443.2508452
http://www4.in.tum.de/publ/papers/TUM-I9202.pdf
http://www4.in.tum.de/publ/papers/TUM-I9202.pdf

Bibliography 177

[Bru+11] A. J. Bernheim Brush, Bongshin Lee, Ratul Mahajan, Sharad Agarwal,

Stefan Saroiu, and Colin Dixon. Home Automation in the Wild: Chal-

lenges and Opportunities. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 2115–2124. ACM, 2011. doi:

10.1145/1978942.1979249.

[Bry86] Randal E. Bryant. Graph-based algorithms for Boolean function ma-

nipulation. In: vol. C-35, pp. 677–691. IEEE, 1986. doi: 10.1109/TC.
1986.1676819.

[Bur+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.

Dill, and Lucius J. Hwang. Symbolic model checking: 1020
states and

beyond. Information and Computation 98(2), 1992, pp. 142–170. doi:

10.1016/0890-5401(92)90017-A.

[Bur+94] Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. McMil-

lan, and David L. Dill. Symbolic model checking for sequential circuit

verification. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 13, 1994, pp. 401–424.

[But08] J. C. Butcher. Numerical Methods for Ordinary Differential Equations.
2nd ed. Wiley, 2008.

[BV01] Jean-Sebastien Bolduc and Hans Vangheluwe. The modelling and sim-
ulation package PythonDEVS for Classical hierarchical DEVS. Tech. rep.
McGill University, 2001. url: https://repository.uantwerpen.
be/link/irua/108622.

[BY03] Johan Bengtsson andWang Yi. Timed automata: Semantics, algorithms

and tools. In: Advanced Course on Petri Nets, Lecture Notes in Com-

puter Science, vol. 3098, pp. 87–124. Springer, 2003.

[Car+06] Luca P. Carloni, Roberto Passerone, Alessandro Pinto, and Alberto L.

Sangiovanni-Vincentelli. Languages and Tools for Hybrid Systems De-

sign. Foundations and Trends in Electronic Design Automation 1(1/2),

2006, pp. 1–193. doi: 10/cxjxnq.

[CBM90] Olivier Coudert, Christian Berthet, and Jean Christophe Madre. For-

mal BooleanManipulations for the Verification of SequentialMachines.

In: EURO-DAC ’90: Proceedings of the conference on European design au-
tomation, pp. 57–61. IEEE Computer Society Press, 1990.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of

synchronization skeletons using branching time temporal logic. In:

Workshop on Logic of Programs, Lecture Notes in Computer Science,

vol. 5000, pp. 52–71. 1981.

[CGP99] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model
checking. MIT Press, 1999.

[Che76] Peter Pin-Shan Chen. The Entity-Relationship Model: Toward a Uni-

fied View of Data. ACM Transactions on Database Systems 1, 1976,

pp. 9–36.

https://doi.org/10.1145/1978942.1979249
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1016/0890-5401(92)90017-A
https://repository.uantwerpen.be/link/irua/108622
https://repository.uantwerpen.be/link/irua/108622
https://doi.org/10/cxjxnq

178 Bibliography

[CKW10] Rodrigo Castro, Ernesto Kofman, andGabrielWainer. A Formal Frame-

work for Stochastic Discrete Event System SpecificationModeling and

Simulation. SIMULATION 86(10), 2010, pp. 587–611. doi: 10/c6b3zc.

[CL00] Franck Cassez and Kim Larsen. The impressive power of stopwatches.

In: International Conference on Concurrency Theory, Lecture Notes in
Computer Science, vol. 1877, pp. 138–152. Springer, 2000.

[Cle96] P. C. Clements. A survey of architecture description languages. In: Pro-
ceedings of the 8th InternationalWorkshop on Software Specification and
Design, pp. 16–25. 1996. doi: 10.1109/IWSSD.1996.501143.

[CMT96] Bernadette Charron-Bost, Friedemann Mattern, and Gerard Tel. Syn-

chronous, asynchronous, and causally ordered communication. Dis-
tributed Computing 9(4), 1996. doi: 10.1007/s004460050018.

[Cri96] Flaviu Cristian. Synchronous and asynchronous. Communications of
the ACM 39(4), 1996, pp. 88–97. doi: 10.1145/227210.227231.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal methods: state

of the art and future directions. ACM Computing Surveys 28(4), 1996,
pp. 626–643. doi: 10.1145/242223.242257.

[CZ94] Alex Chung Hen Chow and Bernard P. Zeigler. Parallel DEVS: A par-

allel, hierarchical, modular modeling formalism. In: Simulation Con-
ference Proceedings, 1994. Winter, pp. 716–722. IEEE, 1994.

[DA01] René David and Hassane Alla. On hybrid Petri nets. Discrete Event Dy-
namic Systems 11(1-2), 2001, pp. 9–40. doi: 10/dp9ks6.

[DA10] René David and Hassane Alla. Discrete, Continuous, and Hybrid Petri
Nets. 2nd. Springer, 2010.

[DB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver.

In: 14th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, Lecture Notes in Computer Science,

vol. 4963, pp. 337–340. Springer, 2008. url: http://dl.acm.org/
citation.cfm?id=1792734.1792766.

[Dem+08] S. Demathieu, F. Thomas, C. André, S. Gérard, and F. Terrier. First Ex-

periments Using the UML Profile for MARTE. In: 2008 11th IEEE In-
ternational Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), 2008. doi: 10.1109/ISORC.2008.36.

[DG05] Hernán P. Dacharry and Norbert Giambiasi. Formal verification with

timed automata and devs models: a case study. In: Argentine Sympo-
sium on Software Engineering, pp. 251–265. 2005.

[Did+07] DelaNoteDidier, StefanVanBaelen,Wouter Joosen, and Yolande Berbers.

Using AADL in model driven development. In: IEEE-SEE international
workshop on UML and AADL 2007, pp. 1–10. 2007.

https://doi.org/10/c6b3zc
https://doi.org/10.1109/IWSSD.1996.501143
https://doi.org/10.1007/s004460050018
https://doi.org/10.1145/227210.227231
https://doi.org/10.1145/242223.242257
https://doi.org/10/dp9ks6
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://doi.org/10.1109/ISORC.2008.36

Bibliography 179

[DK08] Arie VanDeursen and Paul Klint. Little Languages: LittleMaintenance?

Journal of SoftwareMaintenance: Research and Practice 10(2), 2008, pp. 75–
92.

[DKW08] V. D’Silva, D. Kroening, and G. Weissenbacher. A survey of automated

techniques for formal software verification. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 27(7), 2008, pp. 1165–
1178. doi: 10.1109/TCAD.2008.923410.

[DLS12] P. Derler, E. A. Lee, andA. L. Sangiovanni-Vincentelli. Modeling Cyber-

Physical Systems. Proceedings of the IEEE 100(1), 2012, pp. 13–28. doi:

10.1109/JPROC.2011.2160929.

[Dol03] Laurent Doldi. Validation of Communications Systems with SDL: The
Art of SDL Simulation and Reachability Analysis. Wiley, 2003.

[DP12] Christina Deatcu and Thorsten Pawletta. A Qualitative Comparison

of Two Hybrid DEVS Approaches. SNE Simulation Notes Europe 22(1),
2012, pp. 15–24. doi: 10/gdm6rm.

[EAST13] EAST-ADL: Domain Model Specification Version 2.1.12. EAST-ADL As-

sociation. 2013.url: http://www.east-adl.info/Specification/
V2.1.12/EAST-ADL-Specification_V2.1.12.pdf.

[ECT03] Jad El-khoury, De-Jiu Chen, and Martin Törngren. A Survey of Mod-
eling Approaches for Embedded Computer Control Systems. Tech. rep.
KTH Royal Institute of Technology, Stockholm, Sweden, 2003. url:

http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-
13042.

[EKP01] Joel M. Esposito, Vijay Kumar, and George J. Pappas. Accurate Event

Detection for Simulating Hybrid Systems. In: Hybrid Systems: Com-
putation and Control, Lecture Notes in Computer Science, vol. 2034,

pp. 204–217. Springer, 2001.

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specifica-
tion 1: Equations und Initial Semantics. Vol. 6. EATCS Monographs on

Theoretical Computer Science. Springer, 1985. doi: 10.1007/978-3-
642-69962-7.

[ERG08] Huascar Espinoza, Kai Richter, and SébastienGérard. EvaluatingMARTE

in an Industry-Driven Environment: TIMMO’s Challenges for AUTOSAR

Timing Modeling. In: Proceedings of Design Automation and Test in Eu-
rope (DATE), p. 6. 2008.

[Esc+01] Robert Eschbach, Uwe Glässer, Reinhard Gotzhein, Martin Löwis, and

Andreas Prinz. Formal definition of SDL-2000 - Compiling and run-

ning SDL specifications as ASMmodels. Journal of Universal Computer
Science 7(11), 2001, pp. 1024–1049.

[Est08] Jeff A. Estefan. Survey of Model-Based Systems Engineering (MBSE)

Methodologies. International Council on Systems Engineering (INCOSE)
MBSE Initiative, 2008.

https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1109/JPROC.2011.2160929
https://doi.org/10/gdm6rm
http://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
http://www.east-adl.info/Specification/V2.1.12/EAST-ADL-Specification_V2.1.12.pdf
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-13042
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-13042
https://doi.org/10.1007/978-3-642-69962-7
https://doi.org/10.1007/978-3-642-69962-7

180 Bibliography

[Fau+07] Madeleine Faugere, Thimothee Bourbeau, Robert de Simone, and Se-

bastien Gerard. MARTE: Also an UML Profile for Modeling AADL Ap-

plications. In: 12th IEEE International Conference on Engineering Com-
plex Computer Systems (ICECCS 2007), pp. 359–364. IEEE, 2007. doi:
10.1109/ICECCS.2007.29.

[FE98] Peter Fritzson andVadimEngelson.Modelica -— a unified object-oriented

language for systemmodeling and simulation. In: European Conference
on Object-Oriented Programming, Lecture Notes in Computer Science,

vol. 1445, pp. 67–90. Springer, 1998.

[FGH06] Peter H. Feiler, David P. Gluch, and John J. Hudak. The Architecture
Analysis & Design Language (AADL): An Introduction. Tech. rep. De-
fense Technical InformationCenter, 2006.doi: 10.21236/ADA455842.

[Fis+00] Joachim Fischer, EckhardtHolz,Martin Löwis, andAndreas Prinz. SDL-

2000: A Language with a Formal Semantics. Rigorous Object-Oriented
Methods 2000, 2000, p. 15.

[Fra+07a] R. B. Franca, J. P. Bodeveix, M. Filali, J. F. Rolland, D. Chemouil, and D.

Thomas. The AADL behaviour annex – experiments and roadmap. In:

12th IEEE International Conference on Engineering Complex Computer
Systems, pp. 377–382. 2007. doi: 10.1109/ICECCS.2007.41.

[Fra+07b] Ricardo Bedin França, Jean-François Rolland, Mamoun Filali Amine,

Jean-Paul Bodeveix, and David Chemouil. Assessment of the AADL

Behavioral Annex. Journées FAC, 2007, p. 13.

[Fri+06] Peter Fritzson, Peter Aronsson, Adrian Pop, Hakan Lundvall, Kaj Nys-

trom, Levon Saldamli, David Broman, and Anders Sandholm. Open-

Modelica –A free open-source environment for systemmodeling, sim-

ulation, and teaching. In: Computer Aided Control System Design, 2006
IEEE International Conference on Control Applications, 2006 IEEE Inter-
national Symposium on Intelligent Control, 2006 IEEE, pp. 1588–1595.
2006.

[Fri09] Sanford Friedenthal. SysML: Lessons from Early Applications and Fu-

ture Directions. INSIGHT 12(4), 2009, pp. 10–12. doi: 10/gdwpmm.

[GAS05] Latefa Ghomri, Hassane Alla, and Zaki Sari. Structural and Hierarchi-

cal Translation of Hybrid Petri Nets in Hybrid Automata. Proceedings
of IMACS’05, 2005.

[GG15] David Goldsman and Paul Goldsman. Discrete-Event Simulation. In:

Modeling and Simulation in the Systems Engineering Life Cycle, Simu-

lation Foundations, Methods and Applications, pp. 103–109. Springer,

2015. doi: 10.1007/978-1-4471-5634-5_10.

[Gil62] A. Gill. Introduction to the Theory of Finite-State Machines. McGraw-

Hill, 1962.

https://doi.org/10.1109/ICECCS.2007.29
https://doi.org/10.21236/ADA455842
https://doi.org/10.1109/ICECCS.2007.41
https://doi.org/10/gdwpmm
https://doi.org/10.1007/978-1-4471-5634-5_10

Bibliography 181

[GMS01] Hubert Garavel, RaduMateescu, and Irina Smarandache. Parallel State

Space Construction forModel-checking. In: 8th International SPINWork-
shop on Model Checking of Software, Lecture Notes in Computer Sci-

ence, pp. 217–234. Springer, 2001.

[God91] Patrice Godefroid. Using partial orders to improve automatic verifica-

tion methods. In: Computer-Aided Verification, Lecture Notes in Com-

puter Science, vol. 531, pp. 176–185. Springer, 1991.

[Gom+17] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and

HansVangheluwe. Co-simulation: state of the art.CoRR abs/1702.00686,
2017.

[GU96] A. Giua and E. Usai. High-level hybrid Petri nets: a definition. In: Pro-
ceedings of 35th IEEE Conference on Decision and Control, vol. 1, 148–
150 vol.1. IEEE, 1996. doi: 10.1109/CDC.1996.574277.

[Hal+91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous

dataflow programming language LUSTRE. In: Proceedings of the IEEE,
pp. 1305–1320. 1991.

[Hal93] NicolasHalbwachs. Synchronous Programming of Reactive Systems. The
Springer International Series in Engineering and Computer Science.

Springer, 1993.

[Hal98] Nicolas Halbwachs. Synchronous Programming of Reactive Systems

- A Tutorial and Commented Bibliography. In: In Tenth International
Conference on Computer-Aided Verification, Lecture Notes in Computer

Science, vol. 1427, pp. 1–16. Springer, 1998.

[Har87] David Harel. Statecharts: a visual formalism for complex systems. Sci-
ence of Computer Programming 8(3), 1987, pp. 231–274.doi: 10/b97n8k.

[Hei+] MatthiasHeizmann, AinaNiemetz, Giles Reger, and TjarkWeber. SMT-

COMP 2019. http://www.smtcomp.org/. Accessed: 2019-03-02.

[Hei98] Constance L. Heitmeyer. On the need for practical formal methods. In:

Proceedings of the 5th International Symposium on Formal Techniques
in Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer

Science, vol. 1486, pp. 18–26. Springer, 1998. url: http://dl.acm.
org/citation.cfm?id=646845.706947.

[Hen+94] ThomasAHenzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine.

Symbolic model checking for real-time systems. Information and com-
putation 111(2), 1994, pp. 193–244.

[Hen+98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.

What’s decidable about hybrid automata? Journal of Computer and
System Sciences 57(1), 1998, pp. 94–124.

[Her+17] MostafaHerajy, Fei Liu, Christian Rohr, andMonikaHeiner. (Coloured)
Hybrid Petri nets in Snoopy - user manual. Tech. rep. 2017,01. Insti-
tut für Informatik, 2017. url: https://opus4.kobv.de/opus4-
btu/frontdoor/index/index/docId/4157.

https://doi.org/10.1109/CDC.1996.574277
https://doi.org/10/b97n8k
http://dl.acm.org/citation.cfm?id=646845.706947
http://dl.acm.org/citation.cfm?id=646845.706947
https://opus4.kobv.de/opus4-btu/frontdoor/index/index/docId/4157
https://opus4.kobv.de/opus4-btu/frontdoor/index/index/docId/4157

182 Bibliography

[HG05] Alejandro Hernandez and Norbert Giambiasi. State Reachability for

DEVSModels. In: Argentine Symposium on Software Engineering, 2005.

[HG15] Paula Herber and Sabine Glesner. Verification of embedded real-time

systems. In: Formal Modeling and Verification of Cyber-Physical Sys-
tems, 1st International Summer School on Methods and Tools for the De-
sign of Digital Systems, pp. 1–25. 2015. doi: 10.1007/978-3-658-
09994-7_1.

[Hil99] Rich Hilliard. Aspects, Concerns, Subjects, Views, ... In: OOPSLA’99
Workshop onMultiDimensional Separation of Concerns in Object-Oriented
Systems, 1999.

[Hon+97] Joon Sung Hong, Hae-Sang Song, Tag Gon Kim, and Kyu Ho Park. A

Real-Time Discrete Event System Specification Formalism for Seam-

less Real-Time Software Development. Discrete Event Dynamic Sys-
tems 7(4), 1997, pp. 355–375. doi: 10/dtwr66.

[HP85] D. Harel and A. Pnueli. On the Development of Reactive Systems. In:

Logics and Models of Concurrent Systems, NATO ASI Series, vol. 13,

pp. 477–498. Springer, 1985.

[HR04] GregoireHamon and John Rushby. AnOperational Semantics for State-

flow. Fundamental Approaches to Software Engineering, 2004.

[HRR14] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc -

Architectural Modeling of Interactive Distributed and Cyber-Physical

Systems. CoRR abs/1409.6578, 2014.

[HW15] Amy E. Henninger and Elizabeth T. Whitaker. Modeling Behavior. In:

Modeling and Simulation in the Systems Engineering Life Cycle, Sim-

ulation Foundations, Methods and Applications, pp. 75–87. Springer,

2015. doi: 10.1007/978-1-4471-5634-5_8.

[Hwa11] Moon Ho Hwang. Taxonomy of devs subclasses for standardization.

In: Proceedings of the 2011 Symposium on Theory of Modeling & Simu-
lation: DEVS Integrative M&S Symposium, pp. 152–159. 2011.

[HWR14] John Hutchinson, Jon Whittle, and Mark Rouncefield. Model-driven

engineering practices in industry: Social, organizational and manage-

rial factors that lead to success or failure. Science of Computer Program-
ming 89, 2014, pp. 144–161. doi: 10/f57vwn.

[HZ09] M. H. Hwang and B. P. Zeigler. Reachability Graph of Finite and De-

terministic DEVS Networks. IEEE Transactions on Automation Science
and Engineering 6(3), 2009, pp. 468–478. doi: 10/bgfrvk.

[IDEF18] Integrated DEFinition Methods (IDEF). Accessed: 2018-07-29. Knowl-
edge Based Systems, Inc. (KBSI). 2018.

[IEEE99] IEEE Standard VHDL Analog and Mixed-Signal Extensions. IEEE Std

1076.1-1999. IEEE, 1999.

https://doi.org/10.1007/978-3-658-09994-7_1
https://doi.org/10.1007/978-3-658-09994-7_1
https://doi.org/10/dtwr66
https://doi.org/10.1007/978-1-4471-5634-5_8
https://doi.org/10/f57vwn
https://doi.org/10/bgfrvk

Bibliography 183

[Inf06] InfoQ. Ivar Jacobson on UML, MDA, and the future of methodologies.

https://www.infoq.com/interviews/Ivar_Jacobson. Accessed: 2018-09-

28. 2006.

[Iqb+12] Muhammad Zohaib Iqbal, Shaukat Ali, Tao Yue, and Lionel Briand.

Experiences of Applying UML/MARTE on Three Industrial Projects.

In: Model Driven Engineering Languages and Systems, Lecture Notes

in Computer Science, vol. 7590, pp. 642–658. Springer, 2012. doi: 10.
1007/978-3-642-33666-9_41.

[Jen96] Kurt Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use - Volume 1, Second Edition. Monographs in Theoretical

Computer Science. An EATCS Series. Springer, 1996. doi: 10.1007/
978-3-662-03241-1.

[Jie+99] Jie Liu, Xiaojun Liu, Tak-Kuen J. Koo, B. Sinopoli, S. Sastry, and E.A.

Lee. A hierarchical hybrid system model and its simulation. In: Pro-
ceedings of the 38th IEEE Conference on Decision and Control, vol. 4,
pp. 3508–3513. IEEE, 1999. doi: 10/cpnz7f.

[JLL77] Neil D. Jones, Lawrence H. Landweber, and Y. Edmund Lien. Complex-

ity of some problems in Petri nets. Theoretical Computer Science 4(3),
1977, pp. 277–299. doi: 10/d7nhrf.

[JR12] Kurt Jensen and Grzegorz Rozenberg. High-level Petri nets: theory and
application. Springer, 2012.

[Kah74] Gilles Kahn. The semantics of simple language for parallel program-

ming. In: IFIP Congress, pp. 471–475. 1974.

[Ken12] Ken Hanly. In 1936 Soviet scientist Lukyanov built an analog water

computer. http://www.digitaljournal.com/article/338106. Accessed: 2018-

09-09. 2012.

[KJ01] Ernesto Kofman and Sergio Junco. Quantized-state Systems: A DEVS

Approach for Continuous System Simulation. Transactions of the Soci-
ety for Computer Simulation International 18(3), 2001, pp. 123–132.

[KP89] Shmuel Katz and Doron Peled. An efficient verification method for

parallel and distributed programs. In: Linear Time, Branching Time and
Partial Order in Logics and Models for Concurrency, School/Workshop,
Lecture Notes in Computer Science, vol. 354, pp. 489–507. Springer,

1989.

[LÁÖ15] Daniela Lepri, Erika Ábrahám, and Peter Csaba Ölveczky. Sound and

complete timed CTL model checking of timed Kripke structures and

real-time rewrite theories. Science of Computer Programming, 2015,
pp. 128–192. doi: 10/f6zwpd.

[Lee08] Edward A. Lee. Cyber physical systems: Design challenges. In: 2008
11th IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC), pp. 363–369. IEEE, 2008.

https://doi.org/10.1007/978-3-642-33666-9_41
https://doi.org/10.1007/978-3-642-33666-9_41
https://doi.org/10.1007/978-3-662-03241-1
https://doi.org/10.1007/978-3-662-03241-1
https://doi.org/10/cpnz7f
https://doi.org/10/d7nhrf
https://doi.org/10/f6zwpd

184 Bibliography

[Li+10] Juncao Li, Nicholas T. Pilkington, Fei Xie, andQiang Liu. Embedded ar-

chitecture description language. Journal of Systems and Software 83(2),
2010, pp. 235–252. doi: 10/ds7fsc.

[Lop15] Margaret L. Loper. Modeling Time. In:Modeling and Simulation in the
Systems Engineering Life Cycle, Simulation Foundations, Methods and

Applications, pp. 89–101. Springer, 2015. doi: 10 . 1007 / 978 - 1 -
4471-5634-5_9.

[LPY97] Kim G Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell.

International Journal on Software Tools for Technology Transfer 1(1-2),
1997, pp. 134–152.

[LZ07] Edward A. Lee andHaiyang Zheng. Leveraging synchronous language

principles for heterogeneous modeling and design of embedded sys-

tems. In: Proceedings of the 7th ACM & IEEE International Conference
on Embedded Software, EMSOFT ’07, pp. 114–123. ACM, 2007. doi: 10.
1145/1289927.1289949.

[MARTE11] UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded
Systems (OMGMARTE) Version 1.1. OMGDocumentNumber: formal/11-

06-02. Object Management Group. 2011. url: https://www.omg.
org/spec/MARTE/1.1/PDF.

[Mat08] NormanMatloff. Introduction to Discrete-Event Simulation and the Simpy
Language. Tech. rep. University of California, Davis, Department of

Computer Science, 2008. url: http://heather.cs.ucdavis.edu/
~matloff/156/PLN/DESimIntro.pdf.

[MDA14] ObjectManagement Group:Model DrivenArchitecture Guide (MDAGuide)
Version 2.0. OMG Document Number: formal/2014-06-01. Object Man-

agement Group. 2014. url: http://www.omg.org/cgi-bin/doc?
ormsc/14-06-01.

[Mer01] Stephan Merz. Model checking: a tutorial overview. In: 4th Summer
School on Modeling and Verification of Parallel Processes. Ed. by Franck

Cassez, Claude Jard, Brigitte Rozoy, andMark Dermot Ryan. Vol. 2067.

Lecture Notes in Computer Science. Springer, 2001, pp. 3–38. doi: 10.
1007/3-540-45510-8_1.

[MIJ14] MariusMinea, Cornel Izbasa, and Calin Jebelean. Experience with For-

mal Verification of SDL Protocols. International Journal of Computing
2(3), 2014, pp. 63–68.

[Moo09] Daniel Moody. The “physics” of notations: toward a scientific basis for

constructing visual notations in software engineering. IEEE Transac-
tions on Software Engineering 35(6), 2009, pp. 756–779. doi: 10.1109/
TSE.2009.67.

[Mos07] Pieter Mosterman. Hybrid Dynamic Systems: Modeling and Execu-

tion. In: Handbook of Dynamic System Modeling, vol. 20073719, Chap-
man and Hall/CRC, 2007.

https://doi.org/10/ds7fsc
https://doi.org/10.1007/978-1-4471-5634-5_9
https://doi.org/10.1007/978-1-4471-5634-5_9
https://doi.org/10.1145/1289927.1289949
https://doi.org/10.1145/1289927.1289949
https://www.omg.org/spec/MARTE/1.1/PDF
https://www.omg.org/spec/MARTE/1.1/PDF
http://heather.cs.ucdavis.edu/~matloff/156/PLN/DESimIntro.pdf
http://heather.cs.ucdavis.edu/~matloff/156/PLN/DESimIntro.pdf
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://doi.org/10.1007/3-540-45510-8_1
https://doi.org/10.1007/3-540-45510-8_1
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1109/TSE.2009.67

Bibliography 185

[MSS99] Markus Müller-Olm, David Schmidt, and Bernhard Steffen. Model-

Checking. In: Static Analysis, pp. 330–354. Springer, 1999.

[Mue+01] W. Mueller, J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, and W. Rosen-

stiehl. The simulation semantics of SystemC. In: Design, Automation
and Test in Europe. Conference and Exhibition 2001, pp. 64–70. 2001.
doi: 10.1109/DATE.2001.915002.

[Nan94] Richard E. Nance. The conical methodology and the evolution of sim-

ulation model development. Annals of Operations Research 53(1), 1994,
pp. 1–45. doi: 10.1007/BF02136825.

[Obj18] Object Management Group. The Official OMG MARTE Web Site. Ac-

cessed: 2018-07-29. 2018. url: https://www.omg.org/omgmarte/.

[Oqu04] Flavio Oquendo. π-ADL: an Architecture Description Language based

on the higher-order typed π-calculus for specifying dynamic and mo-

bile software architectures. ACM SIGSOFT Software Engineering Notes
29(3), 2004. doi: 10/fb99bd.

[Osa+14] Yuki Osada, Tim French, Mark Reynolds, and Harry Smallbone. Hour-

glass Automata. Electronic Proceedings in Theoretical Computer Science
161, 2014, pp. 175–188. doi: 10.4204/EPTCS.161.16.

[Pag95] Ernest H. Page Jr. Simulation Modeling Methodology: Principles and

Etiology of Decision Support. AAI9638633. PhD thesis. Virginia Poly-

technic Institute and State University, 1995.

[Pan10] R. K. Pandey. Architectural description languages (ADLs) vs UML: a

review.ACM SIGSOFT Software Engineering Notes 35(3), 2010. doi: 10/
ccr867.

[Pay61] Henry Martyn Paynter. Analysis and Design of Engineering Systems.
MIT Press, Cambridge, MA, 1961, p. 347.

[PB96] Taeshin Park and Paul I Barton. State event location in differential-

algebraic models. ACM Transactions on Modeling and Computer Simu-
lation (TOMACS) 6(2), 1996, pp. 137–165.

[Pel09] Radek Pelánek. Fighting State Space Explosion: Review and Evalua-

tion. In: Formal Methods for Industrial Critical Systems, Lecture Notes
in Computer Science, vol. 5596, pp. 37–52. Springer, 2009.

[Per+12] Maxime Perrotin, Eric Conquet, Julien Delange, André Schiele, and

Thanassis Tsiodras. TASTE: A Real-Time Software Engineering Tool-

Chain Overview, Status, and Future. In: SDL 2011: Integrating System
and Software Modeling, Lecture Notes in Computer Science, vol. 7083,

pp. 26–37. Springer, 2012.

[Pet62] C. A. Petri. Kommunikationmit Automaten. German. PhD thesis. Rhei-

nisch-Westfälisches Institut für InstrumentelleMathematik an der Uni-

versität Bonn, 1962.

https://doi.org/10.1109/DATE.2001.915002
https://doi.org/10.1007/BF02136825
https://www.omg.org/omgmarte/
https://doi.org/10/fb99bd
https://doi.org/10.4204/EPTCS.161.16
https://doi.org/10/ccr867
https://doi.org/10/ccr867

186 Bibliography

[Pnu77] A. Pnueli. The temporal logic of programs. In: 18th Annual Symposium
on Foundations of Computer Science, pp. 46–57. 1977. doi: 10.1109/
SFCS.1977.32.

[Pop13] Louchka Popova-Zeugmann. Time and Petri Nets. Springer, 2013.

[PV94] Anuj Puri and Pravin Varaiya. Decidability of hybrid systems with

rectangular differential inclusions. In:Computer Aided Verification, Lec-
ture Notes in Computer Science, vol. 818, pp. 95–104. Springer, 1994.

doi: 10.1007/3-540-58179-0_46.

[Raj+18] Akshay Rajhans, Srinath Avadhanula, Alongkrit Chutinan, Pieter J.

Mosterman, and Fu Zhang. Graphical modeling of hybrid dynamics

with simulink and stateflow. In: Proceedings of the 21st International
Conference on Hybrid Systems: Computation and Control (Part of CPS
Week), HSCC ’18, pp. 247–252. ACM, 2018. doi: 10.1145/3178126.
3178152.

[Ras05] Jean-François Raskin. An introduction to hybrid automata. In: Hand-
book of Networked and Embedded Control Systems, Control Engineer-
ing, pp. 491–517. Springer, 2005.

[Ray10] Pascal Raymond. Synchronous Program Verification with Lustre/Le-

sar. In: Modeling and Verification of Real-Time Systems, pp. 171–206.
Wiley, 2010. doi: 10.1002/9780470611012.ch6.

[Reg15] Andy Register. Continuous Time Simulation. In: Modeling and Simu-
lation in the Systems Engineering Life Cycle, Simulation Foundations,

Methods andApplications, pp. 111–137. Springer, 2015.doi: 10.1007/
978-1-4471-5634-5_11.

[Rev+00] L. Reveillere, F. Merillon, C. Consel, R. Marlet, and G. Muller. A DSL

approach to improve productivity and safety in device drivers devel-

opment. In: Proceedings ASE 2000. Fifteenth IEEE International Confer-
ence on Automated Software Engineering, pp. 101–109. IEEE, 2000. doi:
10.1109/ASE.2000.873655.

[RHS07] Laura Recalde, SergeHaddad, andManuel Silva. Continuous Petri Nets:

Expressive Power and Decidability Issues. In: Automated Technology
for Verification andAnalysis, LectureNotes in Computer Science, vol. 4762,

pp. 362–377. Springer, 2007.

[Rod15] Alberto Rodrigues da Silva. Model-driven engineering: A survey sup-

ported by the unified conceptual model. Computer Languages, Systems
& Structures 43, 2015, pp. 139–155. doi: 10/gdtg4p.

[RRW13] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. From

Software Architecture Structure and Behavior Modeling to Implemen-

tations of Cyber-Physical Systems. In: Software Engineering, 2013.

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/3-540-58179-0_46
https://doi.org/10.1145/3178126.3178152
https://doi.org/10.1145/3178126.3178152
https://doi.org/10.1002/9780470611012.ch6
https://doi.org/10.1007/978-1-4471-5634-5_11
https://doi.org/10.1007/978-1-4471-5634-5_11
https://doi.org/10.1109/ASE.2000.873655
https://doi.org/10/gdtg4p

Bibliography 187

[RRW14] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. A Case

Study on Model-Based Development of Robotic Systems using Mon-

tiArcwith EmbeddedAutomata.CoRR abs/1408.5692, 2014. arXiv: 1408.
5692.

[RRW15] Jan Oliver Ringert, Bernhard Rumpe, and Andreas Wortmann. Archi-

tecture and Behavior Modeling of Cyber-Physical Systems with Mon-

tiArcAutomaton. CoRR abs/1509.04505, 2015. arXiv: 1509.04505.

[Sal03] A. Salem. Formal Semantics of Synchronous SystemC. In: Design, Au-
tomation and Test in Europe. Conference and Exhibition 2003, pp. 376–
381. 2003. doi: 10.1109/DATE.2003.1253637.

[Sar15] Robert G. Sargent. Types of Models. In:Modeling and Simulation in the
Systems Engineering Life Cycle, Simulation Foundations, Methods and

Applications, pp. 51–55. Springer, 2015. doi: 10.1007/978-1-4471-
5634-5_5.

[SB10] John A Sokolowski and Catherine M Banks. Modeling and Simulation
Fundamentals: Theoretical Underpinnings and Practical Domains. Wi-

ley, 2010.

[Sch06] Douglas C. Schmidt. Model-driven engineering. IEEE Computer 39(2),
2006. doi: 10.1109/MC.2006.58.

[SD97] Ulrich Stern and David L. Dill. Parallelizing theMurϕ verifier. In: Com-
puter Aided Verification. 9th International Conference, Lecture Notes in
Computer Science, vol. 1254, pp. 256–267. Springer, 1997.

[SDL16] Z.100: Specification and Description Language - Overview of SDL-2010.
ITU Recommendation Z.100 (04/16); Article Number: E 40655. Interna-

tional Telecommunication Union. 2016. url: http://handle.itu.
int/11.1002/1000/12846.

[Sel03] B. Selic. The pragmatics of model-driven development. IEEE Software
20(5), 2003, pp. 19–25. doi: 10/dvzhdq.

[SPTP05] UMLProfile for Schedulability, Performance, and Time Specification (OMG
SPTP) Version 1.1. OMG Document Number: formal/05-01-02. Object

Management Group. 2005. url: https://www.omg.org/spec/
SPTP/1.1/PDF.

[SS01] Natalia Sidorova andMartin Steffen. Verifying Large SDL-Specifications

Using Model Checking. In: SDL 2001: Meeting UML, Lecture Notes in
Computer Science, vol. 2078, pp. 403–420. Springer, 2001.

[SSB14] M. R. Sena Marques, E. Siegert, and L. Brisolara. Integrating UML,

MARTE and SysML to improve requirements specification and trace-

ability in the embedded domain. In: 2014 12th IEEE International Con-
ference on Industrial Informatics (INDIN), pp. 176–181. IEEE, 2014. doi:
10.1109/INDIN.2014.6945504.

https://arxiv.org/abs/1408.5692
https://arxiv.org/abs/1408.5692
https://arxiv.org/abs/1509.04505
https://doi.org/10.1109/DATE.2003.1253637
https://doi.org/10.1007/978-1-4471-5634-5_5
https://doi.org/10.1007/978-1-4471-5634-5_5
https://doi.org/10.1109/MC.2006.58
http://handle.itu.int/11.1002/1000/12846
http://handle.itu.int/11.1002/1000/12846
https://doi.org/10/dvzhdq
https://www.omg.org/spec/SPTP/1.1/PDF
https://www.omg.org/spec/SPTP/1.1/PDF
https://doi.org/10.1109/INDIN.2014.6945504

188 Bibliography

[Sta06] Miroslaw Staron. Adopting Model Driven Software Development in

Industry – A Case Study at Two Companies. In: Model Driven Engi-
neering Languages and Systems, Lecture Notes in Computer Science,

vol. 4199, pp. 57–72. Springer, 2006. doi: 10.1007/11880240_5.

[SW09] Hesham Saadawi and Gabriel Wainer. Verification of real-time DEVS

models. In: Proceedings of the 2009 Spring Simulation Multiconference,
p. 8. 2009.

[SW12] Hesham Saadawi and Gabriel Wainer. On the Verification of Hybrid

DEVSModels. In: Proceedings of the 2012 Symposium on Theory of Mod-
eling and Simulation - DEVS Integrative M&S Symposium, 26:1–26:8.

2012.

[SysC12] IEEE Standard for Standard SystemC Language Reference Manual (IEEE
Std 1666-2011). IEEE Computer Society. 2012. doi: 10/fxxf5p.

[SysC16] IEEE Standard for Standard SystemC Analog/Mixed-Signal Extensions
Language (SytemCAMS) Reference Manual (IEEE Std 1666.1-2016). IEEE
Computer Society. 2016.

[SysML17] OMG SystemsModeling Language (OMG SysML) Version 1.5. OMGDoc-

ument Number: formal-2017-05-01. Object Management Group. 2017.

url: https://www.omg.org/spec/SysML/1.5/PDF.

[Tea18] Team SimPy. SimPy – Discrete event simulation for Python. Accessed:

2018-09-09. 2018. url: https://simpy.readthedocs.io.

[TM96] D. E. Thomas and P. R. Moorby. The Verilog Hardware Description Lan-
guage. Kluwer Academic Publishers, 1996.

[UML17] Object Management Group: Unified Modeling Language (UML) Version
2.5.1. OMG Document Number: formal/17-12-05. Object Management

Group. 2017. url: https://www.omg.org/spec/UML/2.5.1/PDF.

[Val15] Antonio Vallecillo. On the Industrial Adoption of Model Driven Engi-

neering. Is your company ready for MDE? International Journal of In-
formation Systems and Software Engineering for Big Companies (IJISEBC)
1(1), 2015, pp. 52–68.

[Val92] Antti Valmari. A stubborn attack on state explosion. Formal Methods
in System Design 1(4), 1992, pp. 297–322. doi: http://dx.doi.org/
10.1007/BF00709154.

[Van00] H. Vangheluwe. DEVS as a CommonDenominator forMulti-Formalism

Hybrid SystemsModelling. In: IEEE International Symposium onComputer-
Aided Control SystemDesign, pp. 129–134. 2000. doi: 10.1109/CACSD.
2000.900199.

[Vau86] Jacques Vautherin. Parallel systems specifications with coloured Petri

nets and algebraic specifications. In: Advances in Petri Nets 1987, Lec-
ture Notes in Computer Science, vol. 266, pp. 293–308. Springer, 1986.

doi: 10.1007/3-540-18086-9_31.

https://doi.org/10.1007/11880240_5
https://doi.org/10/fxxf5p
https://www.omg.org/spec/SysML/1.5/PDF
https://simpy.readthedocs.io
https://www.omg.org/spec/UML/2.5.1/PDF
https://doi.org/http://dx.doi.org/10.1007/BF00709154
https://doi.org/http://dx.doi.org/10.1007/BF00709154
https://doi.org/10.1109/CACSD.2000.900199
https://doi.org/10.1109/CACSD.2000.900199
https://doi.org/10.1007/3-540-18086-9_31

Bibliography 189

[VB04] Markus Völter and Jorn Bettin. Patterns for model-driven software-

development. In: Proceedings of the 9th European Conference on Pat-
tern Languages of Programms (EuroPLoP ’2004), Irsee, Germany, July 7-
11, 2004. Pp. 525–560. 2004. url: http://hillside.net/europlop/
HillsideEurope/Papers/EuroPLoP2004/2004%5C_VoelterEtAl%
5C_PatternsForModel-Driven.pdf.

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific lan-

guages: an annotated bibliography. ACM SIGPLAN Notices 35(6), 2000,
pp. 26–36. doi: 10/d724t3.

[Ver06] Verilog-AMS Working Group. IEEE Standard for Verilog Hardware De-
scription Language (IEEE Std 1364-2005). IEEE Computer Society. 2006.

doi: 10.1109/IEEESTD.2006.99495.

[Ver14] Verilog-AMS Working Group. Verilog-AMS Language Reference Man-
ual Version 2.4. IEEE Computer Society. 2014. url: http : / / www .
accellera.org/images/downloads/standards/v-ams/VAMS-
LRM-2-4.pdf.

[VFA15] Le Hung Vu, Damien Foures, and Vincent Albert. ProDEVS: An Event-

driven Modeling and Simulation Tool for Hybrid Systems Using State

Diagrams. In: Proceedings of the 8th International Conference on Simula-
tion Tools and Techniques, pp. 29–37. ICST (Institute for Computer Sci-

ences, Social-Informatics and Telecommunications Engineering), 2015.

doi: 10.4108/eai.24-8-2015.2261136.

[VHDL11] IEC/IEEE International Standard - Behavioural languages - Part 1-1: VHDL
Language Reference Manual. IEEE Computer Society. 2011. doi: 10.
1109/IEEESTD.2011.5967868.

[Vid+09] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J. P. Diguet. A co-

design approach for embedded system modeling and code generation

with UML and MARTE. In: Automation Test in Europe Conference Ex-
hibition 2009 Design, pp. 226–231. 2009. doi: 10.1109/DATE.2009.
5090662.

[VL93] Bart Vergauwen and Johan Lewi. A linear local model checking al-

gorithm for CTL. In: International Conference on Concurrency Theory,
Lecture Notes in Computer Science, vol. 715, pp. 447–461. 1993.

[Vla+05] Boštjan Vlaovič, Aleksander Vreže, Zmago Brezočnik, and Tatjana Ka-

pus. Verification of an SDL Specification— aCase Study. Elektrotehniški
vestnik (Electrotechnical Review) 72(1), 2005, pp. 14–21.

[Völ+13] Markus Völter, Sebastian Benz, Christian Dietrich, Birgit Engelmann,

MatsHelander, Lennart C. L. Kats, Eelco Visser, andGuidoWachsmuth.

DSL Engineering - Designing, Implementing and Using Domain-Specific
Languages. dslbook.org, 2013. url: http://www.dslbook.org.

[Völ09] Markus Völter. MD* Best Practices. Journal of Object Technology 8(6),

2009, pp. 79–102. doi: 10.5381/jot.2009.8.6.c6.

http://hillside.net/europlop/HillsideEurope/Papers/EuroPLoP2004/2004%5C_VoelterEtAl%5C_PatternsForModel-Driven.pdf
http://hillside.net/europlop/HillsideEurope/Papers/EuroPLoP2004/2004%5C_VoelterEtAl%5C_PatternsForModel-Driven.pdf
http://hillside.net/europlop/HillsideEurope/Papers/EuroPLoP2004/2004%5C_VoelterEtAl%5C_PatternsForModel-Driven.pdf
https://doi.org/10/d724t3
https://doi.org/10.1109/IEEESTD.2006.99495
http://www.accellera.org/images/downloads/standards/v-ams/VAMS-LRM-2-4.pdf
http://www.accellera.org/images/downloads/standards/v-ams/VAMS-LRM-2-4.pdf
http://www.accellera.org/images/downloads/standards/v-ams/VAMS-LRM-2-4.pdf
https://doi.org/10.4108/eai.24-8-2015.2261136
https://doi.org/10.1109/IEEESTD.2011.5967868
https://doi.org/10.1109/IEEESTD.2011.5967868
https://doi.org/10.1109/DATE.2009.5090662
https://doi.org/10.1109/DATE.2009.5090662
http://www.dslbook.org
https://doi.org/10.5381/jot.2009.8.6.c6

190 Bibliography

[VW86] Moshe Y. Vardi and PierreWolper. An automata-theoretic approach to

automatic program verification. In: Proceedings 1st Annual IEEE Symp.
on Logic in Computer Science, LICS’86, Cambridge, MA, USA, 16–18 June
1986, pp. 332–344. IEEE, 1986.

[WH05] E. Woods and R. Hilliard. Architecture Description Languages in Prac-

tice Session Report. In: 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA’05), pp. 243–246. 2005. doi: 10.1109/WICSA.
2005.15.

[Whi+13] Jon Whittle, John Hutchinson, Mark Rouncefield, Håkan Burden, and

RogardtHeldal. Industrial Adoption ofModel-Driven Engineering: Are

the Tools Really the Problem? In:Model-Driven Engineering Languages
and Systems, Lecture Notes in Computer Science, vol. 8107, Springer,

2013. doi: 10.1007/978-3-642-41533-3_1.

[WK98] Jos B. Warmer and Anneke G. Kleppe. The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley Longman Publishing Co.,

Inc., 1998.

[YHF16] Aznam Yacoub, Maâmar El-Amine Hamri, and Claudia S. Frydman.

Using dev-promela for modelling and verification of software. In: Proc.
ACM Conference on SIGSIM Principles of Advanced Discrete Simulation,
SIGSIM-PADS, pp. 245–253. 2016. doi: 10.1145/2901378.2901388.

[Yov97] Sergio Yovine. Kronos: a verification tool for real-time systems. Inter-
national Journal on Software Tools for Technology Transfer 1(1-2), 1997,
pp. 123–133.

[Zei76] Bernard P. Zeigler. Theory of Modelling and Simulation. Wiley, 1976.

[Zei84] Bernard P. Zeigler. Multifacetted Modelling and Discrete Event Simula-
tion. Academic Press Professional, Inc., 1984.

[ZKP00] Bernard P. Zeigler, Tag Gon Kim, and Herbert Praehofer. Theory of
Modeling and Simulation. 2nd. Academic Press, Inc., 2000.

[ZS98] Bernard P. Zeigler and J S. Lee. Theory of quantized systems: Formal

basis for DEVS/HLA distributed simulation environment. In: Proceed-
ings of SPIE - The International Society for Optical Engineering, 1998.

https://doi.org/10.1109/WICSA.2005.15
https://doi.org/10.1109/WICSA.2005.15
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1145/2901378.2901388

	Abstract
	Résumé
	Introduction
	Motivation
	Approach and Contributions
	Properties of a Resource Flow Model
	Evaluation of Existing Languages
	Creation of a Modelling DSL
	Simulation
	Verification

	Organisation of the Dissertation

	State of the Art: Systems Modelling
	Preliminaries: The Systems Modelling World
	Viewpoints, Formalisms and Languages
	The Modelling Universe

	Overview of Systems Modelling Concerns
	Existing Languages and Formalisms
	General Purpose and Software Modelling Languages
	Architecture Description Languages
	Hardware Description Languages
	Synchronous Languages
	Automata
	Discrete Event System Specification
	Petri Nets
	Bond Graphs

	Summary

	Resource Flow Modelling – Analysis
	Case Study Systems
	Smart Home
	Office Automation
	Automated Gardening

	Modelling Criteria
	Evaluation of Languages and Formalisms
	Additional Selection Criteria
	Language Evaluations
	Discussion

	Summary

	The CREST Language
	Syntax
	Formal Language Structure
	Global State of a CREST System
	CREST Syntactic Structure
	Changes to the System State
	Semantic Constraints

	CREST Semantics
	Modifiers and Precedence – Formalisation
	Formal Operational Semantics

	Language Extensions
	Influences
	Transition Actions

	Language Analysis
	Language Design and Modelling Considerations
	Zeno Behaviour
	Modifier Execution Order and Parallel Computation
	Structural vs. Temporal Non-Determinism
	Composition Aspects
	Commonalities with Hybrid Petri Nets
	Relationship to DEVS

	Summary

	CREST Implementation
	Overview
	crestdsl – CREST's Python Implementation
	Simulation
	Different Simulators
	Calculating the Next Behaviour Change Time
	Limitations

	Tool Implementation & Architecture
	Interactive Visualisation
	Trace Plotting

	Summary

	Verification
	TCTL and Timed Kripke Structures
	Model Checking
	Applied Model Checking

	CREST Model Checking
	CREST Kripke Construction
	Ensuring Left-Total Transitions
	Replacing epsilon-values

	crestdsl Verification
	Checks
	Simple API
	TCTL Model Checking
	Limitations

	Summary

	Conclusion
	Summary
	Perspectives

	GrowLamp Model – Function Implementations
	CREST Time Base
	Code listings
	crestdsl – Listings
	Simulation – Listings
	ThreeMasses – A Non-linear System

	Acronyms and Symbols
	Scientific Work and Publications
	Bibliography

