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Peter Junglas

Mathematical models of time

Abstract. Modeling and teaching of mathematics have close connections: Modelers

pro�t from a broad mathematical background, while mathematics lecturers can use

modeling examples for didactical purposes. This is exampli�ed here with a number of

models for time from di�erent areas: Time models that are used in applications range

from simple discrete sets or the real numbers, over pairs of numbers, to the hyperreals,

which contain in�nitesimals. The complications that arise, when models include the

behaviour of the computer arithmetic, are discussed especially.

Introduction

For lecturers of mathematics, the �eld of modeling and simulation pro-
vides a plethora of examples from many mathematical areas in a huge
range of applications. A quick glance at two standard textbooks [1, 2]
shows, among many others, linear algebra in computer graphics applica-
tions, ordinary di�erential equations in vibration theory, Markov chains
in tra�c simulations or optimization methods for machine learning. Such
examples can be used to motivate basic ideas of mathematical methods,
provide interesting applications, or even can be starting points for the
introduction of new mathematical abstractions.

Many of these applications are studying dynamical processes, where
the time is an important variable. Every physicist will immediately agree
that the modeling of time is a very fascinating subject. But even if one
sticks to the classical Newtonian idea of time, without considering rela-
tivistic e�ects or a quantized space-time, one will �nd an amazing number
of very di�erent approaches to model time in a speci�c domain of applica-
tion. An immediately obvious distinction exists between continuous and
discrete time models, another important aspect is the contrast between
abstract mathematical descriptions and more concrete models, that are
concerned with the problems of computer numerics.

In the following we will present several di�erent concepts that are
used for the modeling of time in various application areas. We will always
start with a concrete example, followed by a mathematical de�nition of
the time model used, and sometimes add remarks about implementations
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inside a concrete simulation environment. Some of these models could be
useful to introduce new concepts in a mathematics lecture. But another
point is at least equally important: For a concrete application, there are
always many di�erent mathematical abstractions, and a good choice can
simplify the modeling or the simulation considerably.

Discrete time

The �rst model describes a three-year third level school, which is used as
a simple example of a discrete state-space model in [3]. The interesting
variables are the class sizes xi(k), i ∈ {1, 2, 3} at the beginning of year k,
which are non-integer values interpreted as mean values over a number of
years. The time evolution of this system is given by

x1(k + 1) = xin(k) +R1 x1(k)

x2(k + 1) = (1−R1 −D1)x1(k) +R2 x2(k)

x3(k + 1) = (1−R2 −D2)x2(k) +R3 x3(k)

with constant ratios Ri of pupils that repeat a class and Di of dropouts,
and a given number xin(k) of incoming pupils starting in class 1.
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Figure 1: Typical time behaviour of the school model.

A typical time trajectory is shown in Figure 1, where all class sizes
are de�ned only at the beginning of a year (but shown slightly displaced
for clarity). Often such variables are plotted as in Figure 2, where one
assumes that the class sizes are de�ned during the whole year by constant
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continuation. This often leads to a lack of preciseness, when the exact
meaning at the jump points is not clearly denoted.
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Figure 2: Alternative graphical representation of Fig. 1.

The time model used here is given by a �xed time interval ∆t ∈ R>0

and the de�nition

t ∈ T1 := {n∆t |n ∈ N}

Here as in the following N means the set of natural numbers including
0. The de�nition of the time model T1 thus allows the inclusion of initial
values for the state variables.

The computer simulation of the time values is not completely trivial,
since the computer arithmetic only works with a �nite subset FP of the
real numbers, and a given number x ∈ R is mapped to its �oating-point
representation fp(x) ∈ FP. This can lead to arithmetical problems such
as

fp(n∆t)⊕ fp(∆t) ̸= fp((n+ 1)∆t)

for a given natural number n and the �oating-point addition ⊕. A simple
workaround is to use only integer values for the time steps and multiply
with the time interval ∆t at the very end of a computation � if at all.

Continuous time

The next model is the well-known mathematical pendulum, described by
its angle φ(t) and the corresponding angular velocity ω(t) = φ̇(t). Its
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movement is given by

φ̈+
k

m
φ̇+

g

l
sinφ = 0

and initial conditions

φ(0) = φ0

ω(0) = ω0,

where g ist the earth acceleration, l the length of the string, m the mass
of the pendulum and k a damping constant. A typical trajectory is shown
in Figure 3.
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Figure 3: Trajectory of a mathematical pendulum.

The time model is

t ∈ T2 := R≥0,

which is the standard description of a continuous time in most applications.
From a mathematical point of view, R as a linearly ordered �eld and
complete metric space is a natural choice. Nevertheless, it is far from
trivial, as its standard construction � as equivalence classes of Cauchy
sequences of rational numbers or as Dedeking cuts � clearly shows. In
applications, this is not a problem, since the properties of R are well known
and its existence is taken for granted.
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For the simulation of this model, usually a standard ODE solver with
adaptive step size is employed. As a consequence, only a discrete subset
of R is used. The proposed QSS (�Quantized State System�) solvers [4]
use a discretization of the state variables instead of the time, a bit similar
to the di�erence between Riemann and Lebesgue integral. This leads to
trajectories that are piecewise constant, so that the times of state changes
again form a discrete set.

Taking into account the properties of computer arithmetics, the cor-
responding model is FP with its slightly di�erent addition ⊕ and multi-
plication ⊗. Trying to prove the correctness of an algorithm based on FP
is quite di�cult: Operations that lead to equal results with real arith-
metic, can give di�erent results in FP � even the order of computed values
can change in the �oating-point approximation. In order to guarantee ex-
pected results in computer computations, a di�erent time model has been
introduced in [5] that only uses integer values, basically to de�ne rational
numbers. More precisely, they use the set I ⊂ Z of numbers of type Integer
to de�ne time values as t =̂ (n, d, e) ∈ I3, where the value of such a triple
is given by

t =
n

d
× 2e

This allows to combine fast implementations with simple provable proper-
ties.

We see that in the context of computer computations, using R as
time model is neither obvious nor simple. Nevertheless, it is often used,
when no numerical problems due to the �oating-point arithmetic are ex-
pected, and will be the starting point in the following examples.

Continuous time with events

The third model is a ball falling freely under gravity, until it hits the
ground, where it is re�ected, loosing energy in the process. In addition
to the position x(t) and velocity v(t) of the ball, interesting variables are
the time ti of the i-th ground contact or the number n(t) of collisions that
have occured until time t. With the earth acceleration g and loss factor
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q < 1 per collision, the behaviour is given by

ẋ = v

v̇ = −g

x(0) = x0 > 0

v(0) = v0
x(ti) = 0 ⇒ restart with x(ti) = 0, v(ti) = −q v(t−i ).

When the ball hits the ground, the integration of the ODE is stopped and
restarted with new values for x and v. This is called an �event�. A typical
trajectory is shown in Figure 4, where the event times are marked by red
stars.
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Figure 4: Trajectory of the bouncing ball.

To combine the continuous time �ow and the times of the events,
the notion of �hybrid time� has been introduced in [6]. The corresponding
model is described by

t ∈ T3 :=
{
(s, j) | s ∈ R≥0 ∧ j ∈ N

∧ ((s′, j′) ∈ T3 ∧ j > j′ ⇒ s ≥ s′)}

Less formally, this means: Time is given by a pair (s, j), where s describes
the ordinary continuous time, while j denotes the number of the last event.
The event numbers are ordered according to their time. In principal �
though not in our concrete example � it is possible that several events
happen at the same time. Such an example of a hybrid time set is shown
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in Figure 5. Figure 6 displays a trajectory for the bouncing ball over hybrid
time.
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Figure 5: Example of a hybrid time set.

Figure 6: Bouncing ball trajectory over hybrid time.

This model shows a very strange behaviour, the so-called �Zenon
e�ect�: Since the length of the time intervals between events decreases
geometrically, the model has an in�nite number of events in a �nite time.
After the limit point t∗ of these events, its behaviour is not de�ned by the
equations above, but of course is set to x(t) = 0 for t > t∗. Figure 7 shows
the Zenon e�ect over the usual time coordinate, while Figure 8 displays x
over the hybrid time plane.
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Figure 7: Zenon e�ect shown with usual time coordinate.

Figure 8: Zenon e�ect shown over hybrid time.

Discrete events I

A fundamental example for discrete event modeling is the simple queueing
system. It consists of a generator G that creates entities in �xed time
intervals tG and sends them to a queue Q, which is connected to a server
S with �xed service time tS. Entities leaving the server are terminated at
T (cf. Figure 9). At their creation the entities are provided with internal
consecutive numbers (�ids�) starting with 1. A mathematical description
of the behaviour of the components and the complete system can be done
using the PDEVS formalism [7].
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Figure 9: Simple queueing system.

The description of the system behaviour is given by the list of all
events, such as arrivals or departures of an entity at a component, together
with their time, often in a tabular form. A simple example using the values
tG = 1 and tS = 1.5 is shown in the following table that displays the arrival
of entities given by their id at the components:

t G Q S T
1.0 1
1.0 1
1.0 1
2.0 2
2.0 2
2.5 1
2.5 2
3.0 3
3.0 3
4.0 4 2
4.0 3
4.0 4

Often, several events happen at the same time. In some cases the or-
der of such events may be �xed, as for the �rst three events, where entity 1
moves from G to Q to S. Such events are called �causally connected�. In
other cases the order is arbitrary, e. g. when at t = 4 entity 2 leaves S
and entity 4 is generated in G. In such cases a concrete model can either
de�ne a �xed order, an arbitrary order (given randomly) or a real parallel
occurence.

Generally, one is interested in component-related data such as the
number of entities in the queue (�queue length�) q(t) over time. Figure
10 shows the corresponding graph, together with the ids of the departing
entities at the time of their departure.

The time model used here is basically R≥0, but in a concrete model
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Figure 10: Queue length and departure times in the queue-server model.

only a discrete set of time values are possible:

t ∈ T4 := {t0, t1, ..., tN} ⊂ R≥0 with i > j ⇒ ti ≥ tj

The possible values ti result from the dynamic behaviour of the
model, strictly speaking they are functions of the model. In the PDEVS
formalism times are given explicitely by a �time advance function� ta and
implicitely by the connection of the components. The interesting functions
are only de�ned for t ∈ T4, but are often (e. g. for q(t)) constantly ex-
tended in between. In many applications the constant values for tG and
tS are replaced by random values according to given probability distribu-
tions. In these cases all ti are random variables, which makes the formal
de�nition of the time model much more involved.

Discrete events II

We will still study the queue-server model, but add an implementation
detail: When the server is busy, the queue must not send entities. There-
fore the server sends a blocking signal to the queue to inform it about its
state (cf. Figure 11). The queue sets its own state to �Free� or �Blocked�
accordingly.
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Figure 11: Queueing system with blocking signal.

The more explixit system behaviour is now given by the following
table, which is extended by a column QS for the queue state (�F� or �B�)
and a corresponding value (�f� or �b�) for the signal from the server:

t G Q QS S T
1.0 1 F
1.0 1 F
1.0 F 1
1.0 b F
1.0 B
2.0 2 B
2.0 2 B
2.5 B 1
2.5 f B
2.5 F
2.5 F 2
2.5 b F
2.5 B
3.0 3 B

The behaviour has become much more complicated: More events oc-
cur at the same time, but the order of events is very important. Especially
the incoming blocking signal from the server has to have precedence over
other events to prevent the queue from sending entities to a busy server.

In order to be able to easily sort concurrent events, the notion of
�superdense time� has been introduced in [8]:

t ∈ T5 := {(s, j) | s ∈ T4 ∧ j ∈ N}

Time values are again given by pairs. The additional number j de�nes
the order of concurrent events during one time instant, it starts with 0 for
each discrete time value s.
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Discrete events III

For the �nal time model we will again use the queue-server system with
blocking signal and try to solve a basic problem with superdense time:
Who orders the concurrent events? In a PDEVS environment this has
to be de�ned in the so called �con�uent function�, which sometimes is a
di�cult and error-prone endeavour.

A solution that is based on yet another time model is proposed in
[9]. It starts from the observation that concurrent events are actually due
to an oversimpli�cation: Every signal transport and every state change is
always connected with a small time delay. But to include these delays in
a model would introduce a plethora of small parameters, which are not
known and whose values are not really needed � as long as they are small
and larger than zero. An obvious solution (at least for a physicist) is the
introduction of an in�nitesimal time delay ε for all transports and formerly
immediate state changes. The corresponding behaviour of such a model is
given by the following table:

t G Q QS S T
1.0 1 F
1.0 + ε 1 F
1.0 + 2ε F 1
1.0 + 3ε b F
1.0 + 4ε B
2.0 2 B
2.0 + ε 2 B
2.5 B 1
2.5 + ε f B
2.5 + 2ε F
2.5 + 3ε F 2
2.5 + 4ε b F
2.5 + 5ε B
3.0 3 B

For a physicist, this approach might seem reasonable, but many
mathematicians are sure that the use of �in�nitesimals� is impossible in a
mathematically precise way. And yet, in�nitesimals can be introduced in a
sound way, as has been proven by the explicit construction of the hyperreal
numbers ∗R and the introduction of non-standard analysis [10].
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For conveniance, the most important properties of ∗R will be reca-
pitulated here: ∗R is a linearly ordered �eld, which is not order complete.
It contains R as a subset, as well as an in�nitesimal number ε > 0, which
is smaller than any positive real number. Being a �eld, it then contains
numbers such as 2ε, −ε2 and non-�nite values ω := 1/ε and ω2. A useful
theorem states that every �nite element h ∈ ∗R can be written uniquely
as

h = r + δ

with real r and in�nitesimal δ. In this case, r is called the �standard part�
st(h) of h. The construction of ∗R is very sophisticated, it uses ultra�lters
and Zorn's Lemma. Its elements are equivalence classes of sequences of
real numbers, but as with the construction of R, the basic properties are
all one needs, once the existence is established.

Using the hyperreals, the time model is a simple extension of T4:

t ∈ T6 := {t0, t1, ..., tN} ⊂ ∗R with i > j ⇒ ti ≥ tj

For a concrete implementation in a simulation program, numbers of
the form t = a+b ε with a, b ∈ FP are su�cient. The in�nitesimal parts are
used internally in the simulator to dynamically order formerly concurrent
events. For user outputs all time values are reduced to their standard parts,
a typical output graph is identical to Figure 10. For debugging purposes
one can replace ε with a small real time interval to make the internal order
of events visible. The corresponding graph is shown in Figure 12.

Conclusions

The examples have shown that the choice of a time model is non-trivial
and depends on the requirements of the system under study. A broad
variety of models can be used, ranging from very simple ones (T1, T2,
T4) or unexpected ones (T3, T5) to quite heavyweight ones (T6). If one
introduces random numbers, the models get more complex, and even more
so, if one includes models of the computer arithmetic.

For teachers or users of mathematics, there are a few insights fol-
lowing from these examples:
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Figure 12: Queue length and departure times in debugging mode.

� R is not the only model of time, not even the simplest or best one
in many applications.

� Many mathematical models of time have very di�erent properties
than their real-life computer implementations.

� Hyperreal numbers are useful. Though their construction is di�cult,
their use is not, and their properties are easy to understand. The
question, whether introductory analysis courses should be based on
∗R, is still open.
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