
Data-Centric Distributed Simulation in the
Traffic Domain

—

Datenzentrische Verteilte Simulation in der
Verkehrsdomäne

Der Technischen Fakultät

der Friedrich-Alexander-Universität

Erlangen-Nürnberg

zur

Erlangung des Doktorgrades

D O K T O R - I N G E N I E U R

vorgelegt von

Moritz Gütlein

aus Hassfurt

Als Dissertation genehmigt
von der Technischen Fakultät
der Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 19. Juli 2023

Gutachter: Prof. Dr.-Ing. habil. Reinhard German

Prof. Dr. Oliver Rose

Abstract

Rapid technological progress offers opportunities that were unthinkable a few years

ago. Sophisticated solutions may utilize a variety of domain-specific characteristics

or benefit from synergy effects, when addressing cross-domain problems. As mobility

is a basic need, it is an important representative for this development. For instance,

technologies are subject to research that are aiming to strengthen road safety by ex-

changing information between traffic participants and/or the infrastructure. Hence,

traffic and communication represent one example for a beneficial combination of

domains. The Modeling and Simulation (M&S) of inventions in such fields can

be very helpful throughout the development phase, but also while operating such

systems. However, with an increasing number of involved subsystems of various

kinds, the M&S is potentially also getting more and more complex.

In this thesis, we face existing challenges regarding the capabilities of current

M&S approaches using a novel data-centric methodology. At first, current require-

ments towards simulation are identified. In that light, the potential weak spots of

current methods, standards, and frameworks unveil. Based thereon, a main part of

this thesis is to design a new coupling approach that bridges the depicted gap. This

is done by developing a layered architecture that covers all parts that are necessary

to support the heterogeneous stakeholders of modern simulation studies. In an

infrastructural layer, the communication between components and the storage of

simulation related data is devised. A second layer is covering all tasks that are

related to the coupling of various components, while aiming for reusability and

reproducibility. Finally, an application layer at the top is offering the capabilities to

use the developed concepts in form of a M&S service.

In a second part, the approach is applied to the field of traffic simulation. By

doing so, we show the practicability of our approach and demonstrate its capabilities

to enable distributed simulations, multi-level simulations, and cross-domain simu-

lations. Moreover, we present the feasible ingestion of external data into running

simulations, the simulative enrichment of data, and the reuse of existing simulation

data for new studies.

iii

Kurzfassung

Der rasante technologische Fortschritt bietet uns Möglichkeiten, die vor einigen

Jahren noch undenkbar waren. Anspruchsvolle Lösungen berücksichtigen vielfältige

Zusammenhänge innerhalb einer Domäne oder profitieren von Synergieeffekten bei

domänenübergreifenden Problemen. Da Mobilität ein Grundbedürfnis ist, stellt sie

einen wichtigen Vertreter für diese Entwicklung dar. Beispielsweise sind Technologien

Gegenstand der Forschung, die die Sicherheit im Straßenverkehr erhöhen sollen,

indem Informationen zwischen Verkehrsteilnehmern und/oder der Infrastruktur

ausgetauscht werden. Verkehr und Kommunikation stellen also ein Beispiel für eine

fruchtbare Kombination von Domänen dar. Die Modellierung und Simulation (M&S)

von Innovationen in solchen Bereichen kann sowohl während der Entwicklung als

auch des Betriebs derselben hilfreich sein. Mit einer wachsenden Zahl an involvierten

Subsystemen verschiedenster Art steigt potentiell jedoch auch die Komplexität jener

M&S.

In dieser Arbeit begegnen wir den Herausforderungen, die die bestehenden

M&S Ansätze offenbaren, indem wir eine neuartige datenzentrische Methodik ent-

wickeln. Zunächst werden aktuelle Anforderungen an Simulation identifiziert. In

diesem Kontext werden potentielle Schwachstellen von existierenden Methoden,

Standards und Frameworks sichtbar. Basierend darauf besteht der Hauptteil der

Arbeit im Design eines neuen Kopplungsansatzes, der vorhandene Lücken schließt.

Dies geschieht indem eine Schichtenarchitektur entwickelt wird, die alle nötigen

Bereiche abdeckt, um die vielfältigen Stakeholder von modernen Simulationsstudien

zu unterstützen. In einer Infrastrukturschicht wird die Kommunikation zwischen

Komponenten und die Speicherung von Simulationsdaten gelöst. Eine zweite Schicht

ist vor dem Hintergrund von Wiederverwendbarkeit und Reproduzierbarkeit für die

Kopplung verschiedenartiger Komponenten verantwortlich. Abschließend bietet eine

Anwendungsschicht die Möglichkeit, die entwickelten Konzepte in Form eines M&S

Dienstes zu nutzen.

In einem zweiten Teil wird der entwickelte Ansatz auf das Feld der Verkehrssi-

mulation angewendet. Damit zeigen wir die Praxistauglichkeit unseres Ansatzes und

demonstrieren die Fähigkeit, verteilte Simulationen, multi-level Simulationen und

v

vi

domänenübergreifende Simulationen zu realisieren. Darüber hinaus präsentieren wir

die Eignung unseres Ansatzes zur Integration von externen Daten in laufende Simu-

lationen, zur Anreicherung von Daten durch Simulation und zur Wiederverwendung

von bestehenden Simulationsdaten für neue Studien.

Contents

Abstract iii

Kurzfassung v

Contents viii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Structure . 4

2 Fundamentals and Related Work 5

2.1 Modeling and Simulation . 7

2.2 Distributed Systems . 12

2.3 Distributed Simulation . 17

2.4 Data Centrism . 33

2.5 Requirements Analysis . 34

2.6 Research Gap . 37

3 System Specification and Design 39

3.1 Requirements Specification . 41

3.2 Data-Centric Architectural Concept . 43

3.3 Communication Concept . 47

3.4 Coupling Concept . 52

3.5 MSaaS Concept . 81

3.6 Summary . 89

4 System Implementation and Evaluation 91

4.1 Apache Kafka and Avro . 93

4.2 Implementation Details . 94

4.3 Minimal Working Example . 99

vii

viii Contents

5 Application to the Traffic Domain 111

5.1 Modeling and Simulation of Traffic . 113

5.2 Using the Approach in the Traffic Domain 125

5.3 Implementing Wrappers . 137

5.4 Extension to a Further Domain . 142

6 Exemplary Case Studies in the Traffic Domain 147

6.1 Study 1: Distributed Simulation . 149

6.2 Study 2: Multi-level Simulation . 155

6.3 Study 3: Data Enrichment . 162

6.4 Study 4: Integration of External Data . 167

6.5 Study 5: Cross-Domain Simulation . 171

7 Conclusion and Future Directions 175

7.1 Summary and Conclusion . 175

7.2 Limitations and Future Directions . 178

A General Definitions 181

B Evaluation Resources 199

C Definitions in the Traffic Domain 211

D Definitions in the Communication Domain 227

E Exemplary Case Studies 233

List of Acronyms 249

List of Algorithms 251

List of Figures 253

List of Listings 257

List of Tables 259

Bibliography 261

Statement on Contribution with regard to Self-Citations 283

Chapter 1

Introduction

1.1 Motivation

Mobility is one of the core issues of our everyday lives. On average, we spend

more than one hour per day on the road [160]. Hence, a reasonable mobility

infrastructure is necessary for our lifestyle. Among education and work, this also

includes the possibilities to go shopping, access health care, or do leisure activities.

Another interesting aspect of mobility is the variety of stakeholders, apart from

the users of mobility services, which reach from automotive manufacturers, future-

mobility startups, and mobility service providers to environmentalists and municipal

or federal decision-makers. Moreover, mobility is no isolated phenomenon. It

affects (and is affected by) various other domains. Examples for these connections

are manifold, for instance ecology (environmental impact of traffic), energy (e-

mobility), or communication (autonomous driving). Especially the growing linkage

of heterogeneous systems can be a driver for tomorrows’ innovations.

In the last decades, methods from the field of Modeling and Simulation (M&S)

have proven to be well suited for answering open questions. There are clear ad-

vantages of M&S when dealing with unknown scenarios. What-if-questions can be

answered and investigated accurately in fully controllable and observable virtual

testing grounds. Further reasons for simulative experiments arise from economical,

ecological, temporal and practical motives, without having to expose someone to a

safety risk. The more elaborated and cross-domain a problem and its aspired solution

approach is, the more complicated might be the M&S of such scenarios. There are

great opportunities nowadays to solve urging problems in an intelligent manner

with new technologies. At the same time, however, these opportunities potentially

introduce additional challenges because of their complexity.

In the context of simulation, these challenges consist among others of five aspects,

which will be described shortly in the following. For one thing, simulation tools

1

2 1.1 Motivation

and proven simulation models often do have a specific focus. It is not uncommon

that this focus is narrowed down to an aspect within a single domain. Classical

examples for this are traffic simulators or communication simulators. This implies

that it may not be possible to model a cross-domain problem exclusively with a

single tool. It might be necessary to model different parts in different tools and

to connect the different models (i.e., couple the solvers) afterwards. Although the

challenge regarding the coupling of simulators has been under study for a long time

under the term co-simulation or parallel/distributed simulation, the realization of

such co-simulations typically still requires a significant additional modeling and

implementation effort.

The second aspect is about the feasibility of a simulation execution. On one hand,

there are the requirements of a simulation setup towards the execution environment

(e.g., required memory) and on the other hand, there are the requirements of a

user towards the simulation execution (e.g., performance). It is quite conceivable

that naive modeling and implementation approaches can lead to several problems.

Results may not be available in time or may not be computable at all, because

hardware limits would be exceeded (e.g., the main memory is not sufficient to store

the simulation state). Works that are trying to tackle this problem are originating

from the field of parallel/distributed simulation and as well from the field of hybrid-

/multi-level simulation [134]. Again, approaches from both fields do not provide a

generalizable and straight-forward solution for this aspect.

Besides the realization, there is a third aspect that addresses the issue of data.

Even if the amount of available data sources is continuously growing, one cannot

make the general assumption that all required data input for a certain model is

accessible. Licensing modalities, privacy policies, protection of intellectual property,

or technical reasons are exemplary causes for that lack. The more heterogeneous a co-

simulation topology is, the more possibilities there are for a gap between accessible

and required data. If one has to run a simulation model nevertheless, a method to

bridge the data gap is required. Furthermore, the question of how to integrate data

in a coupled simulation of such scenarios arises. One example use case could be the

real-time integration of traffic counts from physical induction loops into a traffic

simulation.

The fourth aspect covers the interaction of various involved stakeholders. Modern

scenarios lead to new and heterogeneous partnerships. On the one hand, it must

be noted here that the capabilities, the knowledge, and the aims of the different

parties may differ fundamentally. On the other hand, the different partners are

typically geographically dispersed, which may further complicate the collaboration.

In addition, in the context of intellectual property protection it may be desirable that

a certain access to a component or a simulation model is granted via an interface,

while the artifact itself and its execution remains with the owner.

1.2 Objectives 3

The fifth and last aspect is a logical consequence of the presented challenges.

Without a verified and validated model, the results of a simulation study tend to

be worthless. With an increasing complexity of the composed model, the required

effort for this is also growing. The same happens to the endeavors of ensuring

reproducibility and repeatability of results. Nevertheless, all of this is tremendously

important in order to create trust in achieved results and with that enable the

utilization of the generated knowledge for further decisions.

1.2 Objectives

The first two of the mentioned aspects are subject of research for decades [86].
The approach of coupling different independent models into a composed model is

therefore no unknown challenge. However, there is a lack on structured methods

that can be applied in practice on complex and unknown simulation scenarios (e.g.,

deciding which model elements can be shared between simulation instances at what

conditions). Until now, only isolated sub-problems of this challenge are covered,

although remarkable contributions have been achieved in form of international

standards (HLA [66], FMI [145]) or well-known frameworks (Veins [206], mosaik

[198]). The third and fourth aspect are less frequently subject of research. One

reason for this might be that related problems are only now emerging as a result

of recent opportunities. The fifth aspect has also been the target of heterogeneous

research for a long time [127]. Without taking the strategies inferred from the prior

aspects into account, there is no reasonable way of solving this issue. The validation

challenge needs to consider the overall coupling context. The aim of this work is

therefore to develop an approach that covers all five faces of the outlined problem

and thus bridges the identified gaps of the current state of the art. In addition,

the practicability of such an approach should be proven by implementing it in a

simulation system.

Referring to a layered software architecture, this means that on lower layers the

pure communication between various components has to be realized. Furthermore,

exchanged messages must be delivered on time, reliable, and in the correct ordering

in order to prevent causality breaks. In addition, a protocol has to be designed that

defines in a generalized manner which messages need to be exchanged between

which components on which occasions in order to realize a distributed simulation.

Also, the question of how to translate information between different composed

modeling approaches needs to be answered. On upper layers, it needs to be assured

that domain experts and stakeholders can collaboratively set up, run, and evaluate

such simulations without having a strong computer science background. In parallel,

strategies are required addressing the verification and validation of composed models

4 1.3 Structure

and the persistent storage of all data that is required for reproducing results. It

should be possible to execute single components on physically (and geographically)

distributed computing nodes, further that the developed concepts are usable and

extendable for unknown problems, and that external data sources can be integrated

into a distributed simulation run.

As a main outcome of this work, a distributed simulation framework based on

a new data-centric coupling approach is developed. Afterwards, the concept is

applied to the field of traffic simulation. An extendable, prototypical catalog with

components from the traffic domain (and one related domain) demonstrates the

concept in a case study and acts as a proof of concept.

1.3 Structure

In a first part of this work, basics and related works in the fields of parallel/distributed

simulation, hybrid simulation, and co-simulations are presented as a foundation in

Chapter 2. Of interest are approaches that address the implementation, the modeling,

and the usage of distributed systems and distributed simulations. Afterwards, the

idea behind data-centric approaches is described and recent requirements towards

simulation are collected. Based on the identified gap between current solutions and

existing requirements, a data-centric approach is then used to design a generalized

concept that bridges the gap in Chapter 3. Finally, details on the chosen technolo-

gies and implementations are given and an evaluation is done in Chapter 4. The

main contribution of the first part is the development of a distributed simulation

methodology that meets all identified requirements. In a second part, the developed

concept will be applied to the traffic domain. Chapter 5 comprises the modeling of

the data structures that are required for our developed approach for all four major

modeling paradigms in the traffic domain. For each paradigm a representative simu-

lation package is integrated into the framework using our methodology. In addition,

translation rules between their modeling paradigms are modeled and implemented,

and another domain is modeled and linked to the traffic domain. Several exemplary

case studies follow, demonstrating the capabilities of our approach and showing

potential use cases in Chapter 6. In Chapter 7, we summarize the intention and the

main outcomes of the thesis and draw an outlook on future work.

Chapter 2

Fundamentals and Related Work

This chapter addresses fundamentals regarding simulation, distributed systems,

and distributed simulation. Not only aspects of simulations but also of simulation

modeling are covered. Apart from simulation, the basics in the context of distributed

systems are presented: communication modes and architectures. Related work from

the field of distributed simulation is then given. Then, data-focused architectures

and trends are described before a requirements analysis is conducted. Finally, the

gap between existing solutions and identified requirements is drawn. Parts of this

chapter are based on previously published works in [95], [96], [97], [98], [99],
and [100].

2.1 Modeling and Simulation . 7

2.1.1 Modeling Paradigms . 8

2.1.2 Confidence and Reliability . 9

2.1.3 Input Data . 11

2.2 Distributed Systems . 12

2.3 Distributed Simulation . 17

2.3.1 Modeling of Distributed Simulation 19

2.3.2 Synchronization Mechanisms . 20

2.3.3 Distributed Simulation Standards 21

2.3.4 Implementations of Distributed Simulation 26

2.3.5 Simulation as a Service . 31

2.4 Data Centrism . 33

2.5 Requirements Analysis . 34

2.6 Research Gap . 37

5

2.1 Modeling and Simulation 7

2.1 Modeling and Simulation

First, a short overview about M&S in general and related terminology will be given.

A model represents the attempt of a simplified description or representation of

a system. The purpose of a model is to study with its help the behavior of the

represented system. Creating a model is called modeling and requires to make

reasonable assumptions about entities, properties and relations within the system

under observation. These assumptions are usually formulated with mathematical

formulas or logical expressions. [132]

The use of models is not necessarily restricted to the field of simulation. Other

applications can for example be found in the field of statistics. “All models are

wrong, but some are useful” [36], is a famous quote attributed to George Box. It

illustrates the obvious advantages and disadvantages of a model nicely. Models are

per definition no complete copies of the reality. They simplify reality, while aiming to

contain as much relevant information as needed and possible for a certain purpose.

However, it is only through the information reduction that the investigation of this

simplified reality becomes feasible by simulation.

Despite their simplified nature, models of real systems tend to be so complex

that it is not reasonable to use analytical methods in order to perform investigations.

In this case, numerical methods might be better suited and thus also the method of

simulation. Based on input data and the simulation model, data points are calculated,

which can then be used to assess a certain behavior. [132]

Therefore, simulation is a tool that uses models to help investigating and under-

standing systems. The benefits of simulation are manifold. On one hand, there are

economic advantages that allow for cost and time savings. Furthermore, ecological

reasons can be stated as well as the potential to avoid risks to the human health

when executing experiments. In addition, it might not be possible to realize physical

experiments using the currently existing state of the art. Similarly, observations and

measurements of relevant properties of real entities might be hard to impossible,

while the conditions of the experimental environment might not be as controllable

as required. It is likely that the latter circumstance prevents having the possibility

of performing reasonable repetitions with a set of fixed parameters. Besides the

economic perspective, the advantage of time savings, respectively the acceleration of

experimentation execution, can be very important in practical terms, for example be-

cause deadlines are missed or the experiment’s run time would exceed a researcher’s

lifetime. Of course, there are also disadvantages for M&S. One major drawback

is that the quality of the results depends largely on the model’s quality. Also, the

quality of the input data highly affects the outcome.

8 2.1 Modeling and Simulation

2.1.1 Modeling Paradigms

As stated before, the very nature of a model lies in the simplification of reality.

Throughout the years, various modeling paradigms have been developed. In order

to support the understanding of the following contents (e.g., multi-level simulation),

a brief overview of important paradigms is given. Various works used different

taxonomies for categorizing existing approaches. One well-known differentiation

uses Agent-Based Simulation (ABS), Discrete Event Simulation (DES) and System

Dynamics (SD) as the main modeling types [38].

In a DES, the system behavior is modeled by a state, which can change abruptly

while proceeding from one discrete (simulation) point of time to another [132].
Such points of time are called events. The paradigm is suitable primarily if the

system to be modeled is also characterized by discrete events. If a waiting queue

is studied for example, it could be interesting to observe when a person joins the

queue, when the person is served, and when the person has finished being served.

As a special case of DES, the step length between the single events may be fixed.

This is suitable, if the system under observation can be described with continuous

relations (for example, the movement of vehicles), but only a discretized variant

seems practicable for implementation. Accordingly, the DES is not only appropriate

for the investigation of discrete systems. Regarding the implementation, there is

typically a global event list. Each event has a (simulation) timestamp. The event list

is sorted by timestamps and is processed in sequence. The first element of the list is

processed and removed. The current simulation time is set to the event’s timestamp.

During the processing of the event, new events can be created, which are then also

sorted into the event list. Usually, the timestamp of a new event must be greater

than that of the current event, or at least equal to it. It is also possible to remove

events from the event list without processing them. The simulation is finished when

the event list is empty.

Agent-Based Modeling (ABM) is a more recent approach, which can also be

realized using DES. The idea is that the overall system behavior does not have

to be modeled explicitly. The system behavior results implicitly from interacting

autonomous actors, the agents. This might be the only way the modeling of a

complex system becomes feasible, for instance for scenarios where the mechanics

of the overall system are intangible [138]. The overall model thus emerges in a

decentralized bottom-up approach. An agent is an entity independent of other

agents, which can perceive its environment together with other agents and make

independent decisions. These decisions are based on the internal state of the agent

and (adaptable) rules. Suitable applications are for example economic models or

epidemic models.

2.1 Modeling and Simulation 9

Continuous models can be built up with the help of differential equations. While

the numerical solution of ordinary differential equations (derivative with respect

to one variable) is generally not a special challenge, it is more difficult with partial

differential equations. SD is an approach to represent continuous relationships

between stocks and flows. Internally, this is also realized with a system of ordinary

differential equations and polynomial equations [32]. Due to its intuitive modeling,

it is very popular and is used for example for behavioral models of a society. In

general, SD models represent a more aggregate view on a system than ABM models

do.

Hybrid models represent the combination of discrete and continuous models [38].
The hybrid simulation does not necessarily have to be carried out in the sense of

a co-simulation. Sequential execution of the different models is also conceivable.

Besides the fact that the combination of different paradigms already requires a

certain conceptual effort, one of the challenges of a distributed execution is the

identification of suitable communication points. A common strategy is to sample the

state of the continuous models at the discrete event times of the discrete submodels

(or a multiplicity of them). It is also conceivable to communicate every time when

state variables of the model exceed or fall below certain threshold values.

2.1.2 Confidence and Reliability

Generated results might, of course, be used to better understand the system under

study. Therefore, the results should be accurate to some degree. However, some

voices express concern that simulation is in a crisis of confidence. In this light,

simulation results can no longer be considered credible or meaningful per se [218].

Pawlikowski et al. note that many simulation studies from the field of communi-

cation networks do not establish trust [171]. The authors introduce the notion of a

credibility crisis. In general, more detailed information about an experiment would

be needed to identify errors in works. Dalle criticizes that exactly this information is

usually not provided, which in turn is at the expense of reproducibility [67]. This is

not only because information would be available but is not published by authors

by choice. Another problem is that there may be hidden parameters that even the

authors do not have access to (e.g., embedded in a commercial tool). Accordingly,

Yilmaz et al. mention that there is growing doubt about simulation results (a credi-

bility gap) and therefore the reproducibility of studies should definitely be aimed

for [230]. It is also problematic if the origin of results cannot be traced. This can

be tracked back to the problem of traceability and reproducibility of experiments.

Ruscheinski et al. deal with this problem of the origin (provenance) of simulation

results [191]. The authors believe that the type of modeling plays a major role

in this and therefore propose a provenance model. This model should allow the

10 2.1 Modeling and Simulation

traceability of all relationships and information flows leading to a study. Taylor et al.

also discuss the relevance of reproducibility and add that there are by all means also

critical research fields (e.g., military or medicine) in which it is not possible to grant

access to all data and techniques [212]. The same can be applied to many industrial

research fields, where the protection of intellectual property is a high priority.

Closely related to reproducibility is the repeatability or replicability of simulation

studies. The big difference is that repeatability is given if a repeated simulation

run leads to identical results. There is some room for interpretation regarding

the meaning of the result. Replicability, on the other hand, also requires that all

internal states correspond to the original at all times [154]. For this, it is inevitable

to guarantee deterministic co-simulations even for stochastic subparts. While for

standalone simulations the use of pseudo-random number generators with known

seeds contributes to this, in the coupled case the correct delivery of messages is

additionally relevant.

Credibility can be strengthened with solid verification and validation. Verification

can show whether and to what extent a concrete implementation correctly represents

a conceptual model. It thus describes the quality of the implementation. Validation,

on the other hand, makes a statement about how well the implementation and the

model represent a section of reality. For this purpose, it is common to compare

simulation results with real data and to determine the deviation [154].

In addition to potential benefits in terms of credibility, component reusability can

save money and time. This is well known in classical software development as well

as in other engineering disciplines. For example, the ideas of the object-oriented

programming can be used, in particular the encapsulation of related functionality

into enclosed blocks [144]. Balci et al. generally see model reusability as a difficult

task, since a model is typically developed for a specific purpose [19]. Nevertheless,

they see some scientific communities (e.g., electrical engineers) successfully pursuing

model reuse. Accordingly, even though there is research in the field of model and

simulation component reusability (e.g., [176, 194, 236]), the topic of reusability

of translation logic between submodels has been unnoticed so far. This would be

especially relevant for the case of hybrid or multi-level simulation.

Trust could be regained if publicly available simulation tools were used and at

the same time comprehensible models were built and published together with all

the parameters used. This would allow the external reproduction of the simulation

results. For many works this is currently not the case. One reason for this might

be the additional effort for the researcher. However, this does not necessarily need

to be done manually. If using a simulation service, the platform could support the

researcher by providing an automated description of an experiment.

If we assume that we would have established a good level of trust regarding

traditional simulations, the question arises whether the efforts are also sufficient

2.1 Modeling and Simulation 11

for the credibility of distributed simulation. Even if there are reusable submodels

and simulators, a critical aspect remains still unnoticed: the information transition

between coupled submodels. Logic that translates incoming data streams into

pieces of information understandable by the submodel may be scattered all over

the codebase of the subcomponent and, possibly, the emitting component. The

transformation(s) of a piece of information may be difficult or even impossible to

trace and reproduce.

2.1.3 Input Data

A major problem arises, if necessary data is either not available or can only be

acquired with considerable effort or with cutbacks [50]. Data is used for various

purposes in the M&S life-cycle, for instance to build the model, for subsequent

validation, or as input data for a simulation of the model. Potential data sources can

be, for example, historical data collections, surveys, results of other (simulation)

studies, or live data streams. Aggregated statistics can be as helpful as the recording

of individual behavior. If the required data can be obtained, it may be necessary to

filter it due to a poor data quality. In the worst case, this can lead to the insight that

an entire data set is unusable as the quality of the whole simulation study depends

on it [204].

Collected data can be used to calibrate a simulation model in order to reflect a

certain situation (e.g., creating a digital twin). In this process, model parameters

or inputs are adjusted with the aim of generating a congruent image of reality. A

purpose for an accurate live representation of a real system could for example be

the evaluation of time-critical what-if decisions (e.g., road traffic management).

Calibration can be done in two ways. There is an offline approach, where the

simulation is iteratively repeated with varied parameters until an acceptance level is

reached. This is not always suitable, for example for synchronizing a digital twin of

a live system. In that case, an online approach is necessary that adaptively adjusts

the state of a running simulation to observed reference values.

An example to illustrate this is a digital twin of a road network. The simulation

should run synchronized to the wall-clock time and represent the real traffic situation

as accurate as possible at any time. Aggregated count data from induction loops are

available as reference values of the real system. By means of a microscopic traffic

simulation, it should be assessed what adjustments of the traffic light switching times

would increase the traffic flow. An online calibration for such a setup would aim to

schedule the creation of new simulated vehicles in a way that the error between

real measured count data and corresponding simulated count data is as small as

possible.

12 2.2 Distributed Systems

The example represents another typical data issue. It is possible that data is

available in acceptable quantity and quality. At the same time, the data might be at a

wrong level of detail or in a wrong format. For example, if the positions, speeds, and

planned routes of all vehicles in the real system were available, the calibration of the

digital twin could be simpler. Fortunately, one of the strengths of simulation is the

enrichment of existing data sets. For instance, it is possible to enrich the aggregated

input data with detailed simulation information and thus create added value. In the

given example, the trajectories of the simulated vehicles of the digital twin could be

exported for further processing, whereas previously only the aggregated count data

was available.

2.2 Distributed Systems

A Distributed Simulation (DS) is implemented by a distributed system. This section

will therefore provide some basic information about distributed systems in general.

Steen and Tanenbaum [219] define them as collections of independently functioning

programs that appear to the user as a single coherent system. Typically, the individual

components are physically or even geographically distributed. By the distribution the

usual challenges regarding concurrency arise, which are also playing an important

role when designing programs for multi-processor architectures in general. Contrarily,

in a distributed system, the interconnection of the individual components cannot

be considered robust to the same extent. In addition, each involved device can fail

separately and potentially cause a system failure, if there are no countermeasures.

Also, a common global clock is no longer existing in the comparison to a multi-core

system. The overall complexity is therefore increased compared to classical systems.

However, these limitations come also with a number of advantages. Existing

computing resources can be utilized more efficiently and also the performance of

the overall system might be improved. Hardware limits such as the maximum main

memory available in a device can be overcome. With an appropriate system design,

scaling strategies can allow almost limitless growth of the system. The robustness and

fault tolerance of the overall system can be increased, for example, by the redundant

design of components or dynamic strategies for intercepting faulty components.

Architectures

If different system architectures of distributed systems are considered, centralized

architecture approaches are to be distinguished from decentralized approaches.

In addition, there are hybrid forms of the two architecture principles. The client-

server paradigm represents the most common centralized variant. Due to the two

components involved, it is also called a 2-tier model. Of course, this communication

2.2 Distributed Systems 13

pattern can be extended by additional layers (see Figure 2.1). Typically, each

layer represents thereby a set of logical tasks that are belonging together. A major

advantage of a layered architecture is the possibility to develop, maintain and execute

the layers independently of each other. This type of distribution of the overall system

is described as vertical distribution. [219]

In contrast, the core idea of decentralized systems is horizontal distribution. In

this case, there are several classic client or server components. Each component

might only solve a subproblem and thus the total load is distributed. Peer-to-peer

systems represent a possible implementation, in which the individual components

are coupled via direct connections. A component usually acts as a client and a server

at the same time. It is generally not possible for each component to have a direct

connection to every other component. Instead, it may be necessary to communicate

via other nodes in the existing network. Network topologies can be divided into

structured and unstructured variants. Trees, rings, and cubes represent examples

of structured topologies. Techniques such as Distributed Hash Tables provide an

efficient organization method for data in such a network. On the contrary, in an

unstructured network it is common that each node maintains a list with current

neighbors. As a result, there might be no deterministic routes for exchanging data

between two components. [219]

Microservices represent a special case of a distributed system. The core idea is

to divide a complex system into small independently functioning programs. Ideally,

each of these programs is responsible for only a single task. Typically, different

microservices are only loosely coupled and connected via a network using REST,

for example. The advantage of such an architecture is a fast development in small

teams. Developers can create independent microservices and already roll them out

without having to wait for the overall product. With regard to scalability, similar

advantages are offered. If the interest in a certain service would grow, this specific

Client App Server DB ServerServerClient

Request operation

Request data

Return data

Return reply

Request

Reply

Figure 2.1 – Different layer architectures. Based on [219].

14 2.2 Distributed Systems

service could be scaled [105]. In addition, the development of each microservice

can take place in the technology stack that is best suited to fulfill the intended task.

The overall system plays only a subordinate role here. For example, it is therefore

not uncommon for different interacting services to be implemented in different

programming languages. As for distributed systems, the disadvantages include an

increased complexity of the overall product, additional pitfalls for smooth operation,

and security risks [227,228]. The network communication in particular can have a

massive impact (delay, jitter, throughput) on the successful operation of the product.

Unfortunately, as simple as the “one service per task” rule may seem at first, it is

generally not so easy to define what exactly a single task comprises. The more

finely granular the partitioning, the more independent services are required and

accordingly, it can be expected that the communication effort will increase. The

more subtasks a service is allowed to cover, the more likely it is to move back towards

a monolithic architecture.

Isolated services also offer the advantage that the product can be seamlessly

extended by further services/functionalities. Individual services can be tested, reused

and replaced in isolation. The authors in [105] provide an insight into the microser-

vice architecture of one of Europe’s largest online trading platforms. In addition to

the advantages already mentioned, they mention agility: 500 new components are

rolled out per week during live operation of the system. The architecture has become

indispensable for many typical online offerings. But the approach is also used, for

example, in analytic pipelines [124], smart cities [130,137], smart buildings [125],
or digital factories [57]. Boucher et al. [35] think that the architecture concept of

microservices is often misinterpreted in practice. There is only a very coarse-grained

partitioning of tasks and many services are therefore generally too large and thus not

microservices in the original sense. Regarding the field of simulation and/or model-

ing, there is also research ongoing. Alpers et al. [6] propose a toolkit in the context

of Business Process Management (BPM). Here, individual tasks are encapsulated in

microservices (e.g., the user interface or the simulation core).

Communication

The fundamental difference of non-distributed and distributed systems is that a

functioning communication between sub-processes, such as via shared memory

or local inter-process communication, can no longer be assumed without further

ado. Additional efforts must be taken to ensure this. In general, communication

in distributed systems is often based on Remote Prodecure Calls (RPCs) or the

exchange of messages via Message-oriented Middlewares (MoMs) that are using a

publish/subscribe paradigm.

2.2 Distributed Systems 15

For pure client-server models, RPCs are well suited to realize the communication.

However, if the components of a system do not take clearly and exclusively the role

of either the client or the server, then a message-based realization of communication

might be more appropriate. Depending on whether the exchanged messages are

stored by the communication middleware or not, a distinction between transient and

persistent communication can be made. The storing can take place until the recipient

has successfully processed the message or arbitrarily longer. In addition, communica-

tion can be implemented synchronously or asynchronously. In the asynchronous case,

the sender can continue with its program logic directly after the transmission process.

In the synchronous case, the sender blocks until a successful delivery. A success

can be defined in different ways, for example until the middleware confirms the

reception of the message. RPCs represent a more direct approach to communication

(at least from an application point of view), since received messages need not to be

interpreted by the application layer. The sender directly calls an executable program

part at the receiver and receives the return value after some time. Thus, it might

seem like a local function call. [219]

Accordingly, the characteristics of the communication channel can significantly

influence the performance of the overall system. If there is a high delay, for example,

the performance of the overall system might appear noticeably slow.

Cloud-based Services

While cloud computing gained momentum in the public perception just in the last

decade, according to Weinhardt et al. it goes back to a much older concept: grid

computing. The motivation for grid computing clearly grew out of a scientific context.

The challenge was to solve the problem of limited computing and storage resources

by connecting infrastructures across institutes. In contrast to cluster computing,

the connections and their organization are decentralized. In comparison to grid

computing, virtualization is a crucial component of cloud computing in order to be

able to react dynamically to the current resource requirements of a system. This

is accompanied by the need for elaborate capabilities to monitor system health

and the availability of a central control plane. This also allows assuring Service

Level Agreements (SLAs) and thus including them in business models. Due to their

dynamic character, cloud systems are also suitable for interactive applications, which

should be usable as easily as possible (e.g., via web interfaces). [225]

Cloud-based services are commonly divided into three categories depending

on the degree of abstraction: Infrastructure-as-a-Service, Platform-as-a-Service,

and Software-as-a-Service. Infrastructure services can be further divided into the

provision of storage space and the provision of computing power. An example of this

would be virtual machine access. While platform services include a more specialized

16 2.2 Distributed Systems

offering, such as pre-installed and configured frameworks and libraries, software

services provide direct access to the desired software product. [115]
For the user, an interesting point about cloud services is that a single access

device might be sufficient to use a variety of services. Possibly, it is not necessary to

install any additional software locally, which offers various advantages. For example,

there is no need for time-consuming configuration and maintenance. A shared cloud

system has better possibilities for increasing resource utilization. The user might

be only charged for resources that are actually used. As a result, everyday life can

be made easier for experienced users. Also new user groups, which might have

been unable to overcome the existing hurdles, can be attracted. However, there are

also disadvantages. These include a certain loss of control and skill of the user, the

dangers of service provider monopolies being formed, and can extend to ethical and

legal issues concerning data storage, data protection, and confidentiality.

2.3 Distributed Simulation 17

2.3 Distributed Simulation

The DS represents a special case of simulation. In this section, an overview of the

motivation for DS, the resulting variants due to different motivations, and possible

implementations will be provided. In addition to theoretical work, application-

specific implementations will also be presented.

There are a few basic terms in the context of DS that are explained briefly. A

Logical Process (LP) describes a self-contained unit that can be processed by a

processor. Load balancing means the allocation of resources taking into account

current and future/historical workload. Examples consist in the allocation of tasks

to processors. A logical time describes a discrete counter which runs monotonously

increasing completely detached from the real time. (Time) synchronization considers

the coupling of logical clocks in order to prevent causality violations. Causality

violations may occur, for example, when messages are delivered too late and/or in

the wrong order.

Fujimoto [85] mainly distinguishes between two different aspects of DS. Putting

the parallel aspect of DS in focus, he sees its advantages in the increased execution

speed. As usual for parallelized processes, a speed-up by a factor corresponding to

the number of used compute nodes can be achieved in the ideal case. However, the

real speed-up factor is usually lower. The way the overall problem is partitioned into

isolated subprocesses and their communication behavior among each other plays a

crucial role here. The increase in performance can be of particular importance if

complex simulations are carried out. Simulating typical real-world experiments can

easily take several days, weeks, or even months. In such cases, boosting performance

via parallelization can be an enormous help.

At the other end of the time horizon (e.g., considering seconds or milliseconds)

a timely calculation of (intermediate) results can also be a valid motivation for

increasing the speed. If a simulation interacts with real components, the simulation

usually has to run synchronously to real time. This is because the execution speed of

an electronic control unit, for example, typically cannot be modified and input values

are expected at fixed points in time. In order to make that happen, the simulation of

a certain time step is often desired to run significantly faster than the corresponding

time span in real time so there is enough backup in case a calculation takes longer than

expected. Before calculating the next simulation step, the simulation is paused for

the rest of the backup time. Consequently, the simulation appears to run synchronous

to the real-world component.

As a second aspect of the parallel nature, Fujimoto points to the ability to run

larger simulations than it would be possible on a single compute node. Leaving

the execution speed aside, the limiting factor for this is memory. A problem could

be that there is no free space on the disk (e.g., storing resources or swapping)

18 2.3 Distributed Simulation

or that the main memory reaches its limits and is not able to hold the necessary

program state. In addition to the reasons arising from parallelizability, Fujimoto

mentions the possibility of integrating several heterogeneous simulators into a

composite simulation. This allows reusing existing tools and combining them with

other tools to generate additional value. Furthermore, such combinations free from

the limitation of having to model a system exclusively with one tool or with one

paradigm and enable to individually model subsystems in the most appropriate way.

The resulting possibility to connect geographically distributed components provides

further benefits. Collaborating workgroups, departments, companies or institutions

do not have to come together physically in order to run a joint simulation.

Number of Integrators

N
um

be
r

of
 M

od
el

in
g

To
ol

s

1

1

>1

>1

Closed
Simulation

Closed
Modeling

Distributed
Simulation

Distributed
ModelingCo-Simulation

Model Separation
 during Simulation

/
Parallel Simulation

Classical
Simulation

Compose
Submodels

during Simulation

Figure 2.2 – Simulation type
taxonomy. Based on [87].

N
um

be
r

of
 M

od
el

in
g

To
ol

s

1

>1

Closed
Modeling

Distributed
ModelingCo-SimulationMulti-Level

Simulation

Number of Domains

1 >1

Distributed
Simulation

Distributed
Simulation

Model Separation
during Simulation

/
Parallel Simulation

Figure 2.3 – Extended simu-
lation type taxonomy for dis-
tributed simulations.

According to Fujimoto, the term DS was previously used primarily to describe

geographically distributed simulations. In contrast, the term parallel simulation was

used when a DS was executed on a multi-core system. However, since this distinction

between the different computer architectures is becoming increasingly blurred in the

context of clouds, grids, and clusters, he no longer sees this definition as useful and

refers to all coupled simulation variants as DS [85]. Geimer et al. [87] follow this

definition and present a taxonomy of different types of simulations as illustrated in

Figure 2.2. Accordingly, we propose an extension of the taxonomy by the dimension

of the number of modeled domains for the case of DS (i.e., number of integrators

greater than one, see Figure 2.3). We will refer to this extension in the following.

We also distinguish between Closed Modeling and Distributed Modeling, and further

divide DS into co-simulation, multi-level simulation and parallel simulation. Relevant

for the classification as a multi-level simulation is the number of domains modeled.

This distinction in our terminology is worthwhile in order to be able to accurately

describe and solve the challenges of the specific types.

2.3 Distributed Simulation 19

2.3.1 Modeling of Distributed Simulation

The modeling of coupled simulations mainly considers the question on which tools

or models to couple and how to partition LPs for them. Different perspectives may

impact these strategic decisions. The decisions may be purely based on domain ex-

pert knowledge, utilize ontological approaches in a structured way, or simply follow

practical reasons. The latter may include the protection of intellectual property by

executing a certain component in a secured environment or meeting performance

requirements regarding the simulation execution. There are also standardized pro-

cesses for designing, executing, and analyzing distributed simulations, for instance,

the Federation Development and Execution Process (FEDEP) or the more general Dis-

tributed Simulation Engineering and Execution Process (DSEEP) [215]. The standard-

ized steps include the definition of overall environment objectives, a requirements

analysis and system implementation, and the evaluation of results.

Ontological approaches allow describing the properties and relationships of

entities within a domain. Accordingly, to establish an ontology means to investigate

and represent the internal relationships of a concept. Benjamin et al. note that one

major problem when designing an ontology is to find the right level of detail [23].
There is a danger of getting lost in the details or overlooking relevant points, as it

is for the modeling of simulation models. Yilmaz [229] proposes to evaluate the

conceptual congruence of simulation models by comparing a common metamodel

with an associated ontology. Ontologies are also used in practice. For instance, Sarli

et al. use an ontology in the supply chain research field to semi-automatically derive

High Level Architecture (HLA) data models [193].

Once the question regarding which components are to be coupled is clarified,

there may be another challenge. If the DS is a parallelized simulation by coupling

several instances of the same tool, there is little room for interpretation regarding

the required information exchange. However, if different submodels are coupled,

the information exchange between the models might not be straight-forward but

requires modeling decisions itself. Gomez et al. [78] pick up the previously published

idea [110] of dividing that problem in a syntactic challenge and semantic challenge.

The former covers the technical aspects of enabling the communication between

different components. Solving this challenge can be supported by relying on existing

standards, such as Functional Mock-up Interface (FMI). The latter considers the

process of finding a common meaning for exchanged information. For tackling this

challenge, the authors require an explicit semantic modeling, for instance, based on

expert knowledge.

When considering component reuse or collaboration, the splitting of models into

several submodels and the design of related interfaces is a relevant aspect in the

field of M&S. Earlier works on this topic go back to the 1980s [157], but research is

20 2.3 Distributed Simulation

still ongoing, for example, in the field of model building. Moradi et al. address the

problem of an increasing complexity of simulation models [152]. As a solution, they

propose to use small submodels that can then be composed again. In this context, a

Base Object Model (BOM) encapsulates the data models of the HLA standard and

includes other meta-information such as a conceptual description of the model. With

the help of the metadata, the composability of overall models should be simplified.

In addition to works that focus on the HLA standard [53,183,232], there are other

more generalized approaches. The extensive ideas of object-orientation also have

an impact on simulation (object-oriented simulation) and also on modeling (object-

oriented modeling). By encapsulation, individual behavior is modeled, while the

interaction of individual instances creates a global system behavior, which can then

be analyzed [121,156]. This is closely related to agent-based modeling. Component-

based simulation differs from object-oriented simulation mainly by the absence of the

concept of inheritance. An extended functionality is obtained therefore preferably by

the coupling of different components [43]. Boer and Verbraeck note that it is generally

impossible to combine arbitrary commercial simulation models if no adjustments can

be made in the models [28]. Moreover, Verbraeck distinguishes between software

components and simulation building blocks [221]. He describes building blocks as:

self-contained, interoperable, reusable, replaceable, encapsulating their internals,

providing useful services through precisely defined interfaces, and customizable to

match requirements arising from their environment. In the next chapter we will

adapt this concept.

Diallo et al. consider the validity of composed models. They introduce a M&S

formalism based on model theory and interoperability [71]. A model is said to be

interoperable with a reference model if it is a valid model for that reference model. A

reference model represents the world view of the modeler. Tolk et al. [214] thereby

caution that hiding parts of a model can lead to a conceptual mismatch, a lack of

consistency, and different truths within connected models whose models overlap.

On the contrary, we frequently notice the hiding of components in practice, either

by choice or due to practical reasons. For example, physical devices that are used in

a Hardware-in-the-Loop (HiL) simulation [18] are typically black boxes. In any case,

we consider the issue of validity of composed models as a challenge that has to be

addressed. Therefore, we will pick up on this in the next chapter.

2.3.2 Synchronization Mechanisms

One of the main challenges of a DS is avoiding causality violations. Basically, the

purpose of synchronization algorithms is being able to obtain the same results

from a DS as from the sequential execution of the same simulation on only one

computational node. To achieve this, it is necessary to ensure the correct and

2.3 Distributed Simulation 21

deterministic execution of a DS. This translates mainly in having the possibility of

communicating in a way, where messages arrive on time and in a deterministic order.

Bononi et al. [30] proclaim the necessity of a synchronization mechanism in DS with

the following statement:

A simulation process is a process that incarnates the ordered events’ exe-

cution, and the behaviors of at least one model entity. A synchronization

mechanism is needed to order the events’ executions, by following their

causal order. The causal order can be informally defined as the notion

of ‘happens before’ ordering of events. The real system evolution and

the interactions between system‘ entities is represented by the model

state variables’ updates. The causal order of events can be obtained

through i) a totally ordered event list in monolithic simulators, and ii) a

distributed synchronization mechanism implemented through message

passing communication of event notifications, in parallel and distributed

simulators. It results a great importance of the communication efficiency

in distributed simulation scenarios.

In practice, an error classically originates from a message that was received too

late, either because the network latency was too high or the sending component was

updating its simulation state slower than the receiving component. For instance,

if we have DES, the result of such a situation would be that the event list is not

complete or that its order is not correct. We distinguish between conservative

and optimistic synchronization approaches. Conservative approaches permit the

subcomponents to continue only when it is guaranteed that no errors can occur. Until

then, the simulation execution of subcomponents that want to proceed is blocked.

Chandy, Misra, and Bryant worked out the first and best-known solution for such a

conservative approach [40,54].

An optimistic alternative was later presented by Jefferson et al. [120] in the

form of the Time Warp algorithm. As optimistic suggests, components are allowed

to proceed before the proceeding is guaranteed to be error-free. However, in the

event of an error, they must be able to detect it and return to an earlier, error-free

simulation state [85].

2.3.3 Distributed Simulation Standards

Regarding the implementation of a DS, the question of generally accepted standards

arises. In fact, in recent years, two international standards have been developed

that cover parts of the DS: High Level Architecture (HLA) and Functional Mock-up

Interface (FMI). Both will be presented in more detail in the following.

22 2.3 Distributed Simulation

High Level Architecture

The HLA can be ascribed to the middleware-based approaches of the DS. The US

Department of Defense initiated the development of HLA in the early 1990s. As

a result, HLA was released in version 1.3 in 1998. By the end of the century, the

project was handed over to the IEEE, which then resulted in the first international

standard of the HLA rulebook (IEEE 1516-2000) in 2000. Ten years later, HLA

Evolved (IEEE 1516-2010) was published and is still the current version. However,

a successor is being worked on. An important aspect of HLA is that the standard

solely defines a set of services that must be provided to realize DS. The underlying

communication protocol is left to the implementation. This is a crucial point with

respect to interoperability. As an advantage of this design decision, one can argue

that this freedom leaves room for drastic performance optimizations - at least in

theory and if certain framework conditions for a defined target application are known

in advance. Not only the specification for the lower layers is missing. In addition,

there is no complete reference implementation. Therefore, there is not the HLA

software. Fortunately, there are several projects that implement core functionalities

in what is called Runtime Infrastructure (RTI) software. They provide stubs that can

be integrated and adapted into the existing simulation submodels. Obviously, the

performance of the middleware implementation is crucial for the performance of the

entire distributed simulation setup. The HLA standard also grants implementation

freedom in the question of what information is exchanged between which com-

ponents and when. These decisions are left to the Data Distribution Management

(DDM). As a result, the performance of different implementing RTIs can vary widely.

While one implementation may perform well in a simple use case because of its DDM

approach, another implementation may perform better in terms of scalability if the

scenario involves more components [93]. Actual working interoperability between

different RTI implementations is highly questionable for similar reasons.

There are two important terms in the standard: federate and federation. A single

component participating in a DS is called a federate. The federate’s interface to

the RTI is implemented via what is known as the federate ambassador. A federate

does not necessarily have to be a simulator. The set of all federates that form the DS

is called a federation. A federation exists for a specific purpose. All federates of a

federation refer to the same Federation Object Model (FOM), which represents a

common data model. The running federation with federates connected by an RTI is

called a federation execution.

HLA is known for interoperability, model reuse, and composability of submodels

[237]. Therefore, it represents a framework that can be used by developers to

organize and define simulation applications. The standard identifies two main

goals that lead to flexibility. The first is to create interoperability between different

2.3 Distributed Simulation 23

Federate A Federate B Federate C

Runtime Infrastructure (RTI)

Figure 2.4 – HLA architecture.

simulations and the second is to support the reuse of models in different domains.

There are ten rules that define responsibilities for federations and federates. This is

to ensure the correct interaction of the different participants. There is also the Object

Model Template (OMT), which defines the structure of data models used to specify

a simulation. Finally, there is the federate interface specification: a set of rules for

federate interfaces that ensures that submodels can exchange information. [118]

Three specific models are based on the OMT: the Simulation Object Model

(SOM), the FOM, and Management Object Model (MOM). The SOM refers to a

single federate and provides information about the federate’s interfaces, i.e., the

possible data structures that a federate can publish or consume. The FOM defines

all information types that can be exchanged during the execution of a federation

(e.g., objects and interactions with their parameters). Of course, it is not essential to

use all the capabilities provided by different SOMs in a FOM. The MOM is used for

information outside the simulation-related payload (e.g., for control and monitoring

tasks).

The federates may participate in the time synchronization process, but are not

forced to do so. The participation is divided into two different types. A federate can

be time regulating (i.e., the federate has influence over time progress and can send

Timestamp Order (TSO) messages) and/or be time restricted (i.e., the federate can

proceed only when permission is granted and it can receive TSO messages). The

mode is not static, but can be changed during an execution run. When a federate

becomes time-regulating, a lookahead value must be defined. TSO messages are

processed in a TSO buffer, otherwise there is a Receive Order (RO) buffer for RO

messages. The lookahead value describes a lower bound for sent TSO messages. This

means that a time-regulating federate that has a lookahead of LA and is currently at

time T cannot send TSO messages with a timestamp less than T + LA.

A time advance can be requested using four different request types: Time Advance

Request (TAR), Time Advance Request Available (TARA), Next Message Request

(NMR), Next Message Request Available (NMRA), Flush Queue Request (FQR).

When a Time Advance Grant (TAG) is received, a federation can continue until the

requested simulation time. During the period between a logical time advance request

and the corresponding grant, the connected federate is in the time advance state. In

24 2.3 Distributed Simulation

addition to message ordering modes, there are two different transport modes: best

effort and reliable transport.

Regarding interoperability between HLA 1.3 and HLA 1516-2000, some differ-

ences are mentioned in [150]. With respect to the FOM, standard data types have

been introduced, and the object model is in XML format and has been Unicode en-

coded since HLA 1516-2000. The FOM file is used directly by the RTI, no additional

FED file is needed anymore. In contrast to these cosmetic changes, there are actual

changes in the behavior of some functions. For example, the authors mention that

in the 1.3 standard, existing subscriptions to attributes of an object are lost when a

federate subscribes to an additional attribute. In 1516-2000, there is no automatic

replacement, but an appending of subscriptions. The ten golden rules that define

responsibilities for federations and federates have not been changed.

Accordingly, the HLA standard provides a framework that allows arbitrary (simu-

lation) components to be coupled together. This includes above all the transmission

of messages from a predefined catalog, which is derived from the FOM, and the

possibility for logical synchronization of the components involved. Critical voices

mainly refer to the missing wire protocol. For a standard whose primary goal is

interoperability, its absence is a massive limitation. On the other hand, the standard

is very comprehensive and covers many aspects that might not even be necessary in

many civil society applications. For one actual purpose of the HLA, to make it possible

to implement huge military simulations, the complexity is of course understandable.

However, the complexity can lead to serious performance degradation [30] and could

be one reason why there are no mature and complete open source implementations

of the standard.

Furthermore, there is no standardized way to control which federates are allowed

to join which federation. While this was understandable in a local deployment in

the past, nowadays the common setups have changed and communication over

WAN and between different stakeholders has to be considered. Currently, a new

version of the standard is being developed. Among other things, this should solve

the problem of missing authentication and authorization. It is also conceivable in a

new version that federates can prove via certificates that they are compliant with

certain agreements before they can connect to the RTI or join a federation [149].
Other ongoing work considers the strong bond between the RTI and the simulator.

The simulator connects to the RTI using the (arbitrarily complex) client libraries of

the respective RTI implementation. Changing the RTI means changing the client

library and adapting the simulator wrapper. Therefore, there are efforts to develop a

non-blocking federate protocol to be able to reuse client implementations detached

from the RTI [147]. In addition, the modular nature of FOM modeling should be

further strengthened. While it is currently possible for an FOM to consist of several

2.3 Distributed Simulation 25

parts that can also be used independently, it is still not possible to extend used FOMs

in the classic sense (e.g., add an attribute) [148].

Functional Mock-up Interface

In contrast to HLA, the work on FMI was not initiated by an authority but by Daimler

AG as part of the MODELISAR project. FMI is a considerably more recent standard

as well. Version 1.0 of the specification was published in 2010. Since the end of the

project, FMI has been further developed as one of the Modelica Association Projects

with the help of a broad-based consortium.

The specification consists of two parts, whose goals are to support model ex-

change (FMI for Model Exchange) between tools and to enable co-simulation (FMI

for Co-Simulation). The basic approach behind the first goal is that modeling tools

generate executable C code from the model. The code can then be reused in other en-

vironments either directly or in binary form. Models are described by equations and

can be executed on heterogeneous systems without further external dependencies,

since any referenced code is distributed together with the model core as a Functional

Mock-up Unit (FMU).

For the goal of co-simulation, the focus is on the interface. Data exchange

between coupled subsystems is limited to discrete communication points. Between

two communication points, the subsystems independently compute their next state.

A so-called master algorithm controls the data exchange between the subsystems

and thus simultaneously ensures synchronization of all FMUs involved. Information

about supported functionalities is provided by each FMU via its own XML file [161].
In general, FMI’s focus is on continuous simulation models, but discrete models are

also supported [145].

In the current version FMI 2.0 from 2014, the two previously separate standards

were merged (FMI for Model Exchange and Co-Simulation). The two variants are

shown in Figure 2.5. The difference between a global solver and isolated solvers

of the respective submodels is relevant. By retaining the ability to maintain its

own solver, FMUs can continue to present themselves completely as a black box,

which allows a supplier, for example, to protect its intellectual property. The master

algorithm that triggers the solver of each FMU in the co-simulation mode is explicitly

not defined in the standard, nor is the wire protocol. This means, as for HLA, that

the FMI standard does not provide a final solution to the problem of DS. Currently,

there is ongoing work on FMI 3.0 tackling some of the disadvantages from FMI 2.0.

As a consequence of the current capabilities and limitations, work has emerged that

addresses the combination of HLA and FMI [15,16,34,203], or that explores the

combination of FMI with other technologies such as RPCs [106]. Moreover, there is

26 2.3 Distributed Simulation

an effort by Modelica to develop a communication protocol for FMI, the so-called

Distributed Co-Simulation Protocol [128].

2.3.4 Implementations of Distributed Simulation

With HLA and FMI, there are two mature standards that deal with the topic of DS.

Both are rather theoretical in their nature and provide no (complete) reference

implementations to DS. Therefore, this section will present projects that are toolkits,

implementations of generalized frameworks, or middlewares for DS, either based

on the two standards or using other technologies. Of course, the collection is not an

exhaustive list of all existing DS projects. It rather serves to give an impression of

relevant works and their mode of operation.

Generalized Frameworks and Middlewares

The first group of projects is based on the FMI standard. Cosimate [153] addresses

the increasing complexity of systems. Whether in the automotive domain, or in other

disciplines, the development of new systems requires the collaboration of heteroge-

neous teams with different domain knowledge. In order to test the interaction of

the emerging subsystems at the earliest possible stage of development, they propose

an open, bus-based system for co-simulation. As an advantage of their approach,

they emphasize the open architecture, which should allow to connect an unlimited

number of simulation environments. Furthermore, it should be possible to combine

models of different abstraction levels. However, additional technical details are not

disclosed, since the project pursues a commercial approach. DaccoSim NG [78] is

based on JavaFMI and provides an FMI master algorithm. In addition, a graphical

user interface allows a user to drag-and-drop existing FMUs together and graphically

define information flows between the FMUs. In this way, the user is assisted in

counteracting the problem of semantic interoperability. FIDE [63] represents an IDE

for FMI based scenarios. It is based on the Ptolemy II framework and accordingly

offers Ptolemy’s functionalities, such as the graphical interface and the simulation

engine. The goal is to enable the user to set up a co-simulation by connecting

multiple FMUs. Accordingly, FIDE provides the implementation of an FMI master

FMU A

FMU B
Model

Model Tool
Solver

FMU A

FMU B
Model

Model
 Tool

Solver

Solver

 FMI for Model Exchange FMI for Co-Simulation

Figure 2.5 – FMI modes. Based on [146].

2.3 Distributed Simulation 27

algorithm that deterministically couples both discrete-time and continuous-time

models. The maestro framework [213] was created as part of the INTO-CPS project.

In general, the INTO-CPS project sees itself as a toolchain for the model-based design

of cyber-physical systems. INTO-CPS supports the multidisciplinary character of

such systems from modeling to implementation. The co-simulation of such systems

is again based on the FMI standard. Other artifacts from INTO-CPS support the

modeling of FMUs, the evaluation of experiments, and also the validation of FMUs.

MECSYCO [46] is also based on the FMI standard. It considers the simulation of

complex systems and provides a master algorithm for this purpose. The approach is

not limited to FMUs and integrates further components. The problem of integrating

new subsystems is addressed with the help of metamodeling.

There are several implementations of the HLA standard, but many of them are

rather academic and incomplete. In [95], the four most relevant implementations

were identified and are briefly presented below. The French Aerospace Laboratory

began developing CERTI [163] in 1996. Since 2002, CERTI is an open source project

and comes with a C++ binding. From an architectural point of view, CERTI RTI is

divided into two parts: the ambassador RTI (RTIA) and the global RTI (RTIG). Each

federate has a local RTIA that enables communication between federate and RTIA

via Inter-Process Communication (IPC). In addition, there is a global RTIG process

that communicates with the RTIA processes via TCP and UDP sockets. Similar to

CERTI, MAK [139] consists of a local RTI component (LRC) in each federate and

a global RTI component. The LRC includes more functionality than a pure RTI

ambassador implementation, which enables decentralized operation for some use

cases. The connections are primarily implemented using TCP sockets. While the

lightweight mode is decentralized, it is promoted to be “well suited for many real-

time federations that do not use time management, DDM, MOM, reliable transport

(TCP), or synchronization points”. Similar terminology is used for Pitch [174].
While a central RTI component (CRC) may be hosted on a separate node or next

to a federate, each federate has its own local RTI component (LRC). The CRC

manages the federation and delegates work between the LRCs. There are bindings

for C++ and Java. Pitch uses TCP sockets for reliable and UDP sockets for best-effort

communication. When the federates are running in the same process, communication

is done via shared memory. In addition, multicast communication can be used for

the best-effort transport mode. Portico [175] was started in 2005 as jaRTI and is

currently available in a stable version 2.1.0, released in 2016. The Portico project

was started with funding from the Australian Defense Simulation Office and as

a response to the lack of open source RTI implementations. Therefore, the goal

was to create an open source RTI alternative to commercial RTIs. Currently, major

changes have been announced to transition from a fully decentralized approach

in version 2.1.0 to a more centralized paradigm [190]. This transition could have

28 2.3 Distributed Simulation

serious implications for Portico’s performance in future releases. Because of their

architecture, the developers state that it is very easy to change communication

protocols, unlike in other RTI projects. In the current version, there is an option to

communicate via jgroups or shared memory (if federates are running in the same

process).

Besides the pure RTI implementations, there is another project which is strongly

oriented towards HLA, but aims for more than just implementing the standard.

In general, the goal of the Advanced RTI System (ARTIS) [31] is to support par-

allel and distributed simulation of complex systems consisting of heterogeneous

and distributed submodels. The HLA standard has been extended with additional

functionalities to improve scalability and execution speed. The communication is

realized by shared memory, if possible, otherwise R-UDP, TCP, multicast, or Message

Passing Interface is used [167]. ARTIS focuses on the message exchange between

the LPs. This has a significant influence on the performance of the overall system.

Therefore, ARTIS tries to optimize in an adaptive way the mapping between the

LPs and their physical execution location in order to minimize the communication

overhead. In addition to dynamic load balancing, the authors also refer to dynamic

communication balancing. Both common types of synchronization, optimistic and

conservative, are supported by implementations of the well-known Chandy-Misra-

Bryant and Time Warp algorithms [30]. The lower layer of the overall architecture

is IEEE 1516 compliant (e.g., Time Management). In parallel, however, additional

interfaces are provided to make access easier. The Generic Adaptive Interaction

Architecture (GAIA), by the same research group, interacts with ARTIS and enables

for example the migration of entities between LPs.

There are also additional approaches that do not build on FMI or HLA. The REST-

ful Interoperability Simulation Environment (RISE) [4] takes a different approach,

as the name suggests. Components communicate via XML structures over REST. A

main motivation for the architecture is to enable the integration of web services in

coupled simulations. The University of Toronto’s UT-Sim framework [116] uses the

University of Toronto Networking Protocol (UTNP) for communication which in turn

can be used on top of TCP and UDP.

Specific Frameworks

There are other projects in the field of DS that focus on specific domains. The

energy sector, for instance, is considered by a great variety of frameworks. Especially

the smart grid context is of interest, because it spans across the energy and the

communication domain. Mosaik [198] is a framework for simulating smart grid

scenarios that follows a centralized architecture. It is written in Python and utilizes

the SimPy library. However, there are also bindings for Java, MATLAB, and C#.

2.3 Distributed Simulation 29

The communication is realized via JSON messages over TCP sockets. Similarly,

there is INSPIRE [88] and FCNS [58]. Inspire also puts the communication of

control systems in focus and presents an HLA-based framework for investigating

both power systems and related intelligent control systems. Pitch pRTI is used as

RTI implementation. FCNS is based on the publish/subscribe principles of HLA,

but implements the message exchange between simulators via ZeroMQ. The main

objective of HELICS [169] is to support large-scale simulations in the energy domain.

This is possible by parallelizing and using models at different levels of detail. GridLAB-

D, GridDyn, MATPOWER, OpenDSS, PSLF, InterPSS, and FESTIV are integrated

among others using ZeroMQ. Simulating a great number of distributed energy

resources is the motivation of CyDER [162]. Therefore, CyDER integrates several

established tools based on the FMI standard. It uses PyFMI as the master algorithm.

Also, other domains are covered. MOSAIC [82] represents a framework for

simulating connected and autonomous driving use cases. It is a further development

of the VSimRTI project [197] and is based on HLA. For this purpose, well-known

simulation tools from the field of mobility and communication are coupled with each

other: SUMO, ns-3, and OMNeT++. Even if the name of the Open Simulation Plat-

form [172] seems generic, the goal of the project is the realization of co-simulations

in the maritime environment. It is based on FMI and provides an own FMI master

algorithm.

Specific Toolkits

In addition to the previous section, we lastly present work whose purpose is the

concrete coupling of usually two different tools. These projects are most likely to

work out of the box. Global Event-Driven Co-Simulation (Geco) [136] also has a

more specific purpose than its name would first suggest. It couples two simulators:

the Positive Sequence Load Flow Simulator (PSLF) and ns-2. The synchronization

is done via a global event list and the communication is implemented via IPC. The

authors mention the theoretical possibility of extending the toolkit with further

simulators, but point out that effort might be huge. SGSim [14] combines two

well-known stand-alone tools, OMNeT++ and OpenDSS, using a COM-Interface.

Based on HLA, the authors in [33] present a toolkit for coupled consideration of

power and communication systems. For this purpose, OPNET is coupled with EMTP

using HLA. The Transactive Energy Simulation Platform (TESP) [114] uses the

mentioned FCNS and HELICS framework to combine GridLAB-D, TSO, OpenDSS,

EnergyPlus, and ns-3.

RoboNetSim [131] combines ARGoS and ns-2 or ns-3. The robot simulator uses

a DES with fixed step length, while the network simulator uses DES without time

constraints. After each step of the robot simulator, the updated positions of the robots

30 2.3 Distributed Simulation

are sent to the network simulator via TCP or UDP sockets. In addition, other more

general information can be exchanged so that the robot simulator can, for example,

incorporate the network load into its positioning strategy. Veins [205] combines

SUMO and OMNeT++ via TCP enabling Vehicle-to-Everything (V2X) simulations.

Analogous to RoboNetSim, the primary purpose of the information exchange is to

transfer the positions of the vehicles simulated by SUMO to OMNeT++ in order to

update the positions of the network nodes. This perspective might not be hardware-

aware enough to validate electrical/electronic architectures. Therefore, the authors

in [189] extend Veins using Ptolemy II to include the ability to model electronic

control units. The overall model is thus extended at the hardware level to include

aspects of sensors and actuators. iTETRIS [188] considers a possible problem of

Veins. Both the V2X application to be evaluated and the management of the co-

simulation are implemented within OMNeT++. Accordingly, it may be necessary to

react to changes in the architecture of OMNeT++. Above all, however, users have to

familiarize themselves with OMNeT++ before modeling the algorithms to be tested.

They propose a different architecture for the iTETRIS framework. Here, a central

management and control instance has IP socket connections to the traffic simulator

(SUMO), the network simulator (ns-3), and possibly others. There is also an interface

to the applications under test. Artery [185] extends the 802.11p WAVE protocol

implemented in Veins to the European ETSI ITS-G5 protocol. MOBATSim [192]
provides a toolkit for MATLAB Simulink. Scenarios from the field of autonomous

driving can be modeled and be simulated with a focus on the investigation of error

causes. The framework is not tool-independent, but within MATLAB Simulink it

provides the possibility to integrate different isolated models and to investigate their

interaction on the different levels of the component. There are also approaches that

couple tools via shared files. The Aerial VEhicle Network Simulator (AVENS) [141]
represents a coupling between OMNeT++ and the XPlane simulator. The goal is to

provide an environment to study mobile ad hoc networks spanned by unmanned

drones for communication. OMNeT++ is used for the communication layer, while

XPlane models the movement of the flying objects. Information exchange between

the two simulators is provided via shared access to a local file system. Specifically,

after each simulation step XPlane writes the current positions of the previously

defined flying objects into an XML file, which is continuously read by OMNeT++.

The coupling of Gazebo and ns-3 is called Cornet [2] and is aiming for a similar use

case. The movement of the objects is handled by a continuous model of Gazebo, the

communication part is modeled by ns-3. The data exchange between the two tools

is done via ZeroMQ.

2.3 Distributed Simulation 31

2.3.5 Simulation as a Service

Simulation-as-a-Service (SaaS) seems almost as a logical consequence of distributed

systems, distributed simulation, and the trend towards cloudization of entire do-

mains. The concept of Modeling-and-Simulation-as-a-Service (MSaaS) is either used

synonymously or in order to explicitly emphasize the modeling capabilities of a

service. An early definition of MSaaS comes from a survey paper published in 2013,

which also discusses possible architectures and risks:

“MSaaS is a model for provisioning modelling and simulation (M&S)

services on demand from a cloud service provider (CSP), which keeps the

underlying infrastructure, platform and software requirements/details

hidden from the users. CSP is responsible for licenses, software upgrades,

scaling the infrastructure according to evolving requirements, and ac-

countable to the users for providing grade of service (GoS) and quality

of service (QoS) specified in the service level agreements (SLA).” [52]

The Modeling and Simulation Group MSG-131 (“Modeling and Simulation as a

Service: New concepts and Service Oriented Architectures”) of the NATO also seems

committed to put resources into the development of MSaaS concepts and implemen-

tations. Within a twelve-year plan, defined use cases are to be realized [202]. Here,

the ITIL definition for services will be used to define MSaaS:

“M&S as a Service (MSaaS) is a means of delivering value to customers

to enable or support modelling and simulation (M&S) user applications

and capabilities as well as to provide associated data on demand without

the ownership of specific costs and risks.”

This definition is expanded in a more recent publication of the Modeling & Simulation

Group MSG-136 (“Modeling and Simulation as a Service - Rapid deployment of

interoperable and credible simulation environments”) by shifting the focus to MSaaS:

“MSaaS is a new concept that combines service orientation and the

provision of M&S applications via the as-a-service model of cloud com-

puting to enable more composable simulation environments that can

be deployed and executed on-demand. The MSaaS paradigm supports

stand-alone use as well as integration of multiple simulated and real

systems into a unified cloud-based simulation environment whenever

the need arises.” [201]

All of the above definitions use the concept of on-demand as their common theme.

Furthermore, the first two explicitly place the responsibility for errors with the service

operator. The third definition adds that the integration of different virtual and real

systems should be possible.

32 2.3 Distributed Simulation

From a more application-centric perspective, there is also research on MSaaS. The

authors in [200] see the main challenge of modern simulation in the potentially huge

demand for computing power. They recognize opportunities in computing on clusters

and present a simulation service. This enables the user to adjust certain parameters

of a simulation via an interface before it is run. In general, modifiable parameters

include the name of the model, the number of repetitions, or the command to

run the simulation. For illustration purposes, a traffic simulation is performed

as a use case. It is also possible to adjust model-specific parameters, such as the

traffic volume. This then makes it possible to perform a parameter variation study.

Regarding the simulation execution, the authors note that they see an advantage in

a container-based solution (such as Docker) compared to heavyweight hypervisor-

based approaches. Docker also forms the technical basis for simulators of the work

in [27]. A DES is implemented based on an existing middleware called SOASim [68]
with a microservice architecture. The communication is done via REST.

Further work addresses the use of MSaaS in concrete application areas such

as the energy domain [178], weather models [151], crowd modeling [224], or

the education sector. For the latter, criticism of current STEM schooling forms the

motivation for the work of Caglar et al. [44]. The authors would like to enable

the analysis of real systems in high school by working with simulations of such

systems in a playful way. One condition for this is undoubtedly the availability of the

simulators in the classroom. Therefore, the use of a cloud-based simulation platform

is proposed to ensure direct usability. As a use case, the concept is implemented

for a traffic simulation. Bitterman et al. [25] address the education sector as well.

They extend the requirement for availability of simulation even further to include

availability of data and see the potential of MSaaS primarily in providing this with

low barriers to entry. Krumnow expresses similar ideas and proposes a web interface

through which a simulator can be used [129]. There is a lot of research in this area

that involves the simulation of mobility. This ranges from ITS applications [104],
over networked mobility [126], to very large-scale traffic simulations [103,233].

In conclusion, there is already a variety of work investigating, developing, and

applying MSaaS concepts in general and also related to specific application purposes.

However, the implementation details of the proposed platforms, their interface

definitions, detailed descriptions of the internal processes, or even access to them, is

mostly not available.

2.4 Data Centrism 33

2.4 Data Centrism

In today’s world, data is available in unprecedented quantity and variety. As a

result, under the umbrella of Big Data, procedures for storage and evaluation have

developed, whose purpose lies primarily in controlling the floods of data. At the

same time, data science has established itself as a separate profession in this field

with the goal of gaining knowledge on the basis of (automated) analyses of existing

data streams [180].

Data-Driven Approaches

Data-drivenness has slightly different definitions depending on the field of application.

As simple as the concept of data-driven approaches may seem on an abstract level,

there is no generally accepted definition beyond the meaning of the word. However,

methods described with the term can often be reduced to the ideas of Data-Driven

Decision Making. In this context, data-drivenness describes deriving decisions based

on data analysis rather than pure intuition or experience [180]. This corresponds

to the core of the data-driven idea regardless of the target domain. Data is used

to derive actions or strategies. Among others, such strategies can be reflected in

business models, design decisions, or goal formations. The authors in [211], for

example, examine the advantages and a possible implementation of data-driven

strategies in an intelligent manufacturing plant for wafers.

Data-Centric Approaches

In contrast, data-centric approaches also take the system architecture into account.

Accordingly, data-driven and data-centric approaches do not oppose each other, but

are suitable for complementing each other. The core of the data-centric idea is

to break down isolated data silos within an organization. In a historically grown

corporation, there are typically several applications that may be interconnected to a

certain degree. Nevertheless, it is conceivable that each application is responsible

for its own data management with its own data models and databases.

Mainly two problems can arise from this. One challenge is keeping redundant

data sets consistent across databases. Furthermore, innovation may be lost as

separate data management may prevent opportunities from being identified. By

that, the full exploitation of existing potential is limited. With increasing digitization

and new data sources and applications, this problem is becoming more apparent.

The data-centric approach attempts to integrate (mostly) all existing data in a

common data model on which all applications then work together (see Figure 2.6).

While the architectural concept may appear simple, the possibilities that become

34 2.5 Requirements Analysis

feasible as a result are extensive. In the corporate environment, there are efforts

to make a paradigm shift from an application-centric approach to a data-centric

approach [7].

Data Pool

 Application-Centric Data-Centric

Data
Data

Data

Data

DataData

App App

App App
App

App

App

App
App

Export

Figure 2.6 – Application-centric and data-centric architectures. Based on [79].

Data Reuse

In the context of M&S, the term reuse is mostly used with regard to the reuse of

components. However, there are also works that are considering the reuse of data.

Blondet et al. [26] see the main advantage of simulation data reuse in shorter

simulation processes. The authors distinguish two kinds of data: long-term data and

short-term data. Long-term data includes the simulation results, but also further

analyses and interpretations of the results. In addition, long-term data covers the

initial modeling choices and parameters. Data that is required for computing the

next simulation steps (e.g., intermediate results) is called short-term data and is

typically not available anymore when a simulation study is finished. In the field of

product engineering, product life cycle management sometimes offers Simulation

Data Management (SDM). Such tools cover the provision of historic simulation data

on various levels, reaching from a local database to a collaborative cloud storage.

The latter may in particular require to use structured data models to be able to benefit

from a large amount of heterogeneous data sets. Also, the use of ontologies can help

in this context. For some fields, ontologies already have been designed therefore,

for instance, for physics simulation [56] or building energy simulation [164].

2.5 Requirements Analysis

Based on the overview on the historical foundation and the current state of research,

the question arises which requirements exist towards distributed simulation (and

frameworks for its realization).

The authors in [91] answer this from their point of view with a detailed collection.

They distinguish between three types of requirements: non-functional requirements,

2.5 Requirements Analysis 35

simulator-related requirements and framework-related requirements. As a non-

functional requirement fault tolerance is mentioned, which can be ensured, for

example, if components are designed redundantly and can be replaced dynamically

in case of a fault. By configuration reusability they mean the ability of a framework

to have a scenario configuration file that is abstracted from the used tools. Creating a

new scenario by adapting such a file and without having to make changes to the tools

should be possible. Other issues represent performance, scalability, and the ability

to parallelize and distribute. Potentially, protection of intellectual property can

be supported, for example, in the form of black box component integration. Combin-

ing coupled subsystems into individual (black box) elements of a larger hierarchy

can simplify the modeling of complex systems. If extensibility is given, a framework

can be extended with additional functionality by new simulators with relatively little

effort. Furthermore, they also list the requirement of accuracy. The last points

mentioned are open source licensing models and platform independence of the

framework.

With respect to simulators, five additional requirements are named. A simulator

might provide insight into its internal state at a wide variety of levels. Examples

include intermediate results, formal model equations, or gradients for extrapolating

intermediate results. Simulators should emphasize causal correctness and avail-

ability. In addition, it may be necessary to adhere to certain time constraints

and have the ability to perform a rollback. In that case, a previous state is re-

stored, for example, because a causality violation has occurred due to an optimistic

synchronization procedure. The addressed third group of framework-related require-

ments presents itself rather as listing of possible characteristics (e.g., communication

paradigm), which serves for the classification in a taxonomy. We will therefore skip

these points.

In general, a composed model is expected to satisfy the classical requirements

towards a simulation model: validity, credibility, usefulness, and feasibility [187].
Apart from the presented compilation, additional (and also already mentioned)

requirements can be found in other literature sources. In many cases, an easy

usability is mentioned as a requirement for a simulation framework [80,143,173,

208, 210]. This includes tool integration, scenario design, as well as simulation

execution. Intuitive usability may be particularly relevant if the framework should

contribute to decision making in critical situations such as environmental disasters. A

graphical user interface plays a crucial role in this regard [173,195] and can usually

help to keep the effort of the user for configuration and execution of a coupled

simulation low [109]. The possibility of a centralized orchestration capability is

also mentioned [166].

Although they generally appear to be desirable, the importance for stability [109,

173], error tolerance [109, 173], reliability, and availability [140] is weighted

36 2.5 Requirements Analysis

differently depending on the application area. If the infrastructure for running

distributed simulations is not under the user’s own control or publicly accessible,

security, trustworthiness, and encryption play a major role [140]. More specific,

there are requirements of access control [173] or secure communication [80].
Other non-functional requirements include performance [208], a resource-saving

framework core [80], mechanisms of load balancing [69], and scalability [173,

187].

To ensure correctness, it is necessary to enable synchronization of the subcompo-

nents [209], potentially also with methods that support variable step lengths [213].
Apart from that, it might be necessary to integrate components that are time in-

dependent [3]. Further work presents communication under real-time guaran-

tees [143,210] as a possible requirement. Soft real-time guarantees may also be

necessary to ensure interactivity [140]. A special case of real-time capability is the

ability to run synchronous to wall-clock time, which may especially be required if

real-world components are integrated into the scenario (HiL) [3,209]. Aside from

physical devices, there might be other external components, for instance, external

control or evaluation scripts. Accordingly, the requirement for external interfaces

is expressed [168].

The framework implementation should be based on open standards [80,109],
be platform and architecture independent [213], and ensure a homogeneous

and programming language independent interface [213]. Potential advantages

of a general framework are extensibility [80, 213], flexibility [143], backward

compatibility [109, 173], and the possibility of reuse of individual components

[3,173]. For a variety of applications, the possibility of a framework for logging [168]
is desirable. Another requirement is to support black box-based coupling approaches

to protect intellectual property [3]. However, so-called information hiding can

also address the hiding of sensitive data that is integrated into a model. Such

requirements might apply, for example, in the context of medicine, military, or

mobility [96]. As a contrary position, though, there is also a requirement for the

possibility of the disclosure of all data and internal states of the subcomponents

[168]. It should not only be possible to locally connect similar components. This

should also be possible if they implement different paradigms (DES, CT) [195], if

they are geographically distributed [3], or represent pure (external) data source

[173] providers. In general, it is desirable to have functionalities that facilitate

collaboration [187] of users. Low cost or free licenses [143] naturally play an

equally important role in acceptance.

2.6 Research Gap 37

2.6 Research Gap

In summary, distributed simulation is a mature concept that builds among others on

preliminary works from the fields of M&S and distributed systems. At the same time,

it still holds open challenges. In particular, the fairly recent trend towards simulation

services offers further potential. There are rather theoretical works that address

information transfer of submodels in general and aim for the reuse of simulation

models. The information exchange between submodels usually provides room for

interpretation, because the conceptual connection of heterogeneous submodels could

be anything but unambiguous. As the conceptual connection is often the result of a

modeling process itself, we consider the model connections of coupled models as

the critical point for reusing, reproducing, and finally adapting coupled simulation

models. To the best of our knowledge, there are no comparable works that explicitly

consider these challenges of model translations. Thus, the conceptual coupling

model or the implementation of the coupling model (e.g., a translation between

different levels of detail) should be disclosed, be provided, and be reusable like a

regular simulator component.

There are also more practical works, often with a particular target domain or a

certain application-focus. Some of them are very tool-specific connections of two

or more software artifacts. Regarding published results, one may search in vain

for relevant information (e.g., used parameters, version numbers, or compile flags)

or fail to obtain the used software artifacts. That can result in problems regarding

the reusability of single parts and the reproducibility of findings of the composed

simulation study - even if the involved tools themselves might offer all features

needed. As for the first point, this has the potential to damage the credibility of

simulation. Consequently, a composed simulation scenario should be described in a

comprehensive and structured manner.

A seamless extendability to support other topologies by incorporating arbitrary

simulators and models is in most cases not possible with the existing toolkits, es-

pecially not in a plug-and-play manner. Proposed couplings are often static and

designed around the inner logic of certain tools. More general approaches, incorpo-

rating HLA or FMI, cannot fully compensate the drawbacks of their middlewares.

Beside the mentioned problems, potential users might fail at the high entry barrier,

even if they might just want to access some data points. Thus, our system should be

built on top of a general-purpose big data messaging platform that is well-known,

has an active user community, and provides simple data access methods. Accordingly,

the couplings should be realized in a loose and extendable way.

Apart from the functional aspects, non-functional requirements such as licensing

modes are a problem, when addressing accessibility. Accordingly, a simulation system

should be available under open source terms.

38 2.6 Research Gap

Considering data-reuse, the reuse of long-term data seems useful without any

doubt, for instance for static input resources. In addition, we especially see potential

in storing and reusing short-term data (i.e., intermediate results). This once again

strengthens the aspect of reproducibility, but also enables adaptions of historic simu-

lation runs (e.g., reusing simulated vehicle positions for a new V2X communication

simulation). Therefore, it should be possible to store simulation data in a structured

way and ingest existing data into new simulation runs.

To conclude, there is a gap between the collected requirements and the func-

tionality that is currently provided by existing distributed/co-simulation projects.

Different projects address various problem areas, but no single approach is covering

all identified problem fields. At this point, the present thesis assumes relevance. The

main objective is to identify and solve related issues to the presented problems and

requirements. The developed solutions for all sub-problems will be put together un-

der the hood of a self-contained data-centric distributed simulation system. Involved

layers cover the technical communication, the coupling methodologies, and a high

level M&S service that provides applications for designing, running, and evaluating

simulation scenarios via a graphical interface. Such a system will enable the user to

focus on the real tasks and not having to bother with technical details or the modeling

of problems that has already been done once for previous scenarios. Prepared tools

and models will be plugged together like building blocks. If an elaborate conversion

of data flows between coupled models is required, existing connector components

will be (re-)used. Aside from that, a secondary objective will be an exemplary case

study in which the developed concept is applied to the traffic domain and potential

use cases are demonstrated.

Chapter 3

System Specification and Design

The previous chapter led to the conclusion that there is no existing solution that

covers all presented requirements nor the objectives stated in Section 1.2. A new

methodology that fills the current gap will be developed conceptually in this chapter.

Consequently, the designed concepts will be combined into a service-based simulation

system.

The specific requirements that can be derived from the objectives are identified

and formulated as a first step. Subsequently, the core idea of a data-centric approach

is described, which will provide the architectural foundation for all further steps.

After that, information on the realization of communication on a lower layer will

be given. Then, the coupling concept, which operates on top of that is developed.

Finally, an MSaaS application layer for the proposed methodology is designed and

a summary is given. Large parts of this chapter are based on previously published

works in [96], [97], [98], [99], and [100].

3.1 Requirements Specification . 41

3.2 Data-Centric Architectural Concept . 43

3.3 Communication Concept . 47

3.3.1 Middleware-based Approach . 47

3.3.2 Publish/Subscribe Messaging Systems 48

3.3.3 Apache Kafka . 50

3.3.4 Data Serialization . 51

3.4 Coupling Concept . 52

3.4.1 Core Idea . 53

3.4.2 Domain & Layer Taxonomy . 56

3.4.3 Deterministic Information Exchange 61

3.4.4 Coupling Protocol . 72

39

40 3 System Specification and Design

3.4.5 Composing Building Blocks . 74

3.5 MSaaS Concept . 81

3.5.1 Definition and Design of Scenarios 81

3.5.2 Execution of Scenarios . 85

3.5.3 Evaluation of Scenarios . 86

3.5.4 Management . 87

3.5.5 Graphical User Interface . 88

3.5.6 Service Architecture . 88

3.6 Summary . 89

3.1 Requirements Specification 41

3.1 Requirements Specification

Some of the general DS requirements that were collected in Section 2.5 may be

redundant, address similar points under different terms, contradict each other, or are

not applicable under the given motivation of this thesis. In the following, a subset

of relevant requirements is therefore filtered out of the total set of requirements. In

case of conflicts, the requirement that appears to be more useful is chosen. The given

motivation for the desired simulation system builds the groundwork for all filtering

decisions and also for organizing the different remaining requirements within five

categories. These categories are coupling, correctness, resources, data, and usability.

If a requirement fits into multiple categories, it is just given once. Consequently, the

resulting set of requirements is a consistent collection that allows the design of the

desired system.

In the course of the following sections, a methodology, respectively a system, is

developed which satisfies these requirements. Since many of the upcoming design

decisions are based on more than just one requirement, there will be no reference

to the related requirements for each and every single design choice. Instead, the

summarizing Section 3.6 depicts the links between requirements and considerations.

Furthermore, it is shown that all identified requirements are met.

Coupling

Within this category, all requirements that are directly addressing the coupling are

collected.

REQ 1.1 The main requirement is to be able to combine different tools. This

should involve simulators and other components in general.

REQ 1.2 It should be possible that the different components are executed on differ-

ent computing nodes and may also be run on different operating systems

and hardware architectures. Implementations in different programming

languages should be no problem.

REQ 1.3 The combination of different modeling paradigms should work as well.

REQ 1.4 Every component should be able to run on its own and a failure in one

component should not lead to the failure of a connected one. Therefore,

the coupling should be loose.

REQ 1.5 Existing couplings should be easily extendable with new components.

REQ 1.6 An external interface should be provided to enable the interaction with

a running DS in order to support a wide variety of use cases.

42 3.1 Requirements Specification

REQ 1.7 Encrypted communication should be supported to protect data.

Correctness

This category covers requirements related to the efforts of achieving correct results.

Correctness is the prerequisite for repeatable and reproducible simulations that lead

to credibility.

REQ 2.1 There is the possibility to synchronize logical clocks of coupled compo-

nents.

REQ 2.2 Based on that, it must be possible to exchange messages between com-

ponents in a deterministic order and on time.

REQ 2.3 A DS should be repeatable. The same input should always lead to the

exact same outcome.

REQ 2.4 (Intermediate) results during a simulation should be stored and be trace-

able.

Resources

This category deals with topics related to resources, which includes hardware re-

sources and software artifacts.

REQ 3.1 A DS should provide the potential for an increased performance compared

to the sequential alternative.

REQ 3.2 Large-scale simulation scenarios should be feasible by a scalable archi-

tectural concept.

REQ 3.3 Components should be reusable.

REQ 3.4 The system should be open source.

Data

The gathering, integration, storage, and access of data is covered in the following.

REQ 4.1 It should be possible to bridge the gap between accessible and required

data.

REQ 4.2 Information should be represented in a structured way.

REQ 4.3 Exchanged messages should be stored persistently.

3.2 Data-Centric Architectural Concept 43

REQ 4.4 A common data pool should support the integration of heterogeneous

components and data sources.

REQ 4.5 An external interface should be provided to enable access to the state of

a running DS.

REQ 4.6 It should be possible to realize access management strategies if required.

Usability

The usability is in the focus of the following requirements.

REQ 5.1 A MSaaS functionality should be provided. The user should not have to

provide any specific tool on his local machine.

REQ 5.2 A structured format for describing simulation scenarios is required.

REQ 5.3 The design, the execution, and the evaluation of scenarios should be

possible via a graphical user interface.

REQ 5.4 There should be a low entry barrier.

3.2 Data-Centric Architectural Concept

In order to meet the previously specified requirements, a data-centric architectural

concept is designed. The core contribution of this work is the development of a

coupling methodology for DS on the basis of a data-centric paradigm. Fundamental

information about the data-centric approach was presented in Section 2.4. The

data-centric idea will be adapted to the use case of DS in the following.

 T
oo

l 1

To
ol

 2

 Tool 3 Tool 4 Tool 5 Tool 6

Data
Pool

 Layer 1

La
ye

r 2
 Layer 3

Figure 3.1 – Data-centric architecture.

44 3.2 Data-Centric Architectural Concept

According to the data-centric thought, relevant (simulation) data will not only

remain inside subcomponents of a composed simulation, but is integrated in a shared

data pool (see Figure 3.1). Consequently, there will be no isolated data silo per

component, but rather one common storage that builds the heart of the overall

system. By reading and writing information from and to this data pool various kinds

of DS are to be realized, ranging from simple parallel simulations to complex co-

simulations. In the same way, external data sources can be integrated into composed

simulations and analysis/control scripts can run in parallel.

In addition, this means that information does not need to be exchanged via

transient messages, which disappear after delivery, but can rather be stored persis-

tently by suitable technologies. As a consequence, it is possible to repeat (parts of)

a simulation and compare or reproduce results once a simulation run is finished.

A post-processing or visualization of interesting events is possible in the same way.

Information flows can be traced across components. By keeping the data available,

additional questions can be answered at a later stage that may not have been known

before when designing or running the simulation. This retrospective analysis is

not restricted to a certain simulation run. For instance, the impact of a parameter

variation can be investigated across several simulation runs. Another use case might

be to use a subset of the generated messages as an input for a new simulation study.

Regarding the coupling approach, this implies that the traditional perspective

is changed. The question is no longer how to couple specific models or tools (e.g.,

does it offer an API, what is the programming language, which software version is

used). It is rather about how to couple different data models in a more abstracted

way. Consequently, the focus is shifted from the tool implementations to their data.

This lays the foundation for a very loose coupling and, potentially, a great level of

reusability and extendability.

Based on the question of what data tuples are produced and consumed by a

certain component, stereotypical domain-specific data models need to be designed.

When using an appropriate degree of abstraction, these data models are reusable

and cover a whole group of homogeneous models and components. Such a group of

Green DomainBlue Domain

Component B

Component D

Component F

Component H

Green_C Layer

Blue_B Layer

Green_B Layer

Green_A Layer

Component A

Component CBlue_A Layer

Component E

Component G

Figure 3.2 – Similar components can be hidden behind the same layer.

3.2 Data-Centric Architectural Concept 45

similar components can then be integrated in the identical manner (see Figure 3.2).

In order to have stereotypical models that are able to represent a whole class of

different components, it might be necessary to ignore individual tool- or model-

details. Assessing the trade-off between specific functionality and generalizability

is thereby a crucial step. The resulting data model will be referred to as layer in

the following. Eventually, the layer is representing the abstraction level at which

information is exchanged in order to realize a coupling between components. Apart

from the interfaces that can be inferred from the layer, a single component is seen as

a black box in the simulation system. Therefore, the predefined data models of the

layers are essential for the data-centric approach. Without the data models, stored

messages would lack their syntactic and semantic meaning and could not be used

without room for interpretation.

Another aspect that should be covered by the coupling approach is the problem

of verification and validation of coupled models. One might argue that it is not

feasible to have a global insight into every detail of a large-scale model. This might

especially be the case for HiL simulations, but also due to the protection of intellectual

property, proprietary components, or other technical reasons. In our approach, the

integrated black boxes are assumed to be verified and valid for their specific purpose.

The potential weak spot of the validity of the composed model thus remains in the

translation of information flows between the different black boxes. Therefore, we

suggested to detach this translation process to dedicated components (see Figure 3.3).

By doing so, we avoid to spread converter logic across the internals of the black boxes

themselves or across the wrappers around them. Regarding other requirements such

as reusability and scalability, this seems reasonable as well, because the translations

are exclusively converting information between predefined layer data models. The

Translator

Figure 3.3 – The translation of information flows between submodels is de-
tached into separate reusable components.

46 3.2 Data-Centric Architectural Concept

descriptions of the translation models can be organized in a central place, where

also the layer definitions and data models are provided. With that, the process

of translation is fully disclosed and reproducible. As all exchanged messages are

stored, the input and the output of translations also remain in the persistent data

pool. Eventually, the verification and validity of complex composed models can be

assessed under the given assumptions.

Regarding the construction of a composed model, this implies that there is nothing

wrong with composing building blocks in a bottom-up plug-and-play manner when

modeling a certain scenario. No global knowledge of all involved components or

even about their internals is required. As for the way companies apply the data-

centric approach, each component can in theory access every piece of exchanged

information - given that there are no access restrictions. In this manner, it is feasible

to realize a loosely coupled, large-scale distributed simulation with heterogeneous

components, while providing extendability.

The data-centric approach does solve another problem: the integration of historic

and live data sources and other real-world components (see Figure 3.4). By using

the black box approach and the loosely coupling of components, the connection

between different components is limited to the exchange of information pieces that

comply to the layer definitions. Because of this, it does not matter anymore if a

simulator is interacting with another simulator, with a data source, or with a physical

component. In each case, information is produced to and consumed from the shared

data pool. Of course, the exchange is not restricted to a 1 : 1 pattern, but can also

happen in an m : n pattern.

Based on this concept, the overall objective is achieved by distributing the open

challenges across a three tier architecture. Starting from the bottom, the following

sections cover the infrastructural tier, the coupling tier, and finally the application

tier.

 T
oo

l 1

To
ol

 2

 Tool 3 Tool 4 Tool 5 Tool 6

Data
Pool

Layer 1

La

ye
r 2

 Layer 3

Figure 3.4 – Integration of external components.

3.3 Communication Concept 47

3.3 Communication Concept

In this section, the lower layer of the system will be designed. Its main purpose is

the realization of data exchange between multiple components and the storage of

data.

 Service /
Application

Coupling

Infrastructure /
 Core

Design Execution Evaluation

Management VisualizationS
ce

na
rio

Resources & Definition Management

Monitoring

Execution

Orchestration

Building Blocks Connectors

Serialization

Simulation
Controller

Frontend

Scenario Definition

Distributed Simulation

Topic Mapping Distributed Simulation Protocol

Domain & Layer Taxonomy Time Sync

Communication Data Storage

Middleware

Figure 3.5 – The lower layer of the system’s architecture is developed.

3.3.1 Middleware-based Approach

As for distributed systems in general, the main architectural question is if the commu-

nication between components should be realized via direct point-to-point connections

or in a middleware-based fashion (see Section 2.2). In this work, communication is

primarily required to couple different components such as simulators. A middleware-

based approach, more precisely using a publish/subscribe MoM, seems to be suitable

for our use case. One of the most important reasons for that decision is to meet the

requirement of extendability. In general, a point-to-point approach would require

n− 1 new connections (one between each of the existing components and the new

component), when adding an n-th component to a setup. That leads in total to
n∗(n−1)

2 bidirectional connections if a fully meshed topology between n components

is required. In contrast, the middleware-based approach works similar as a commu-

nication bus. For n components there are n bidirectional links. Figure 3.6 depicts

exemplary topologies for both approaches when connecting up to five nodes. The

middleware-based approach would require two links for connecting two compo-

nents, while the direct approach requires only one. For the case of three nodes, there

are three links necessary for both approaches. It can be seen that with increasing

numbers, the number of required links for the direct approach grows rapidly. The

number of connections alone is not the only problem of a direct approach. If there is

no common interface, each existing component might need to be adapted in order

48 3.3 Communication Concept

to be able to interact with the interface of a new component. This is not feasible if

the collection of composable components reaches a certain size.

From a performance perspective it is likely that the direct approach performs

better for obvious reasons. If only two or three components are connected, there

is a clear overhead introduced by the middleware. However, if there are many

components involved, a scalable message broker could add certain features leading

to a more performant message distribution. In addition, for this work the focus on

extendability and usability outweighs potential performance impairments. Another

advantage of the middleware-based approach is that with typical publish/subscribe

mechanisms it is possible to implement a message-based communication protocol

instead of an address-based protocol. That brings the benefit that a sender does not

need to know its recipients (and where and how to reach them). This feature will

become important when designing the coupling concept in the following. Producing

information to multiple receivers at the same time is supported by many publish/sub-

scribe concepts. Furthermore, based on the requirements, every exchanged message

should be stored. In case of direct point-to-point connections that would require an

additional connection per component for forwarding duplicates of each message to a

storage component. Aside from the general advantage of easing the extendability, the

middleware-based approach implicitly allows for dynamic changes in the topology

of communication partners. This can be helpful if additional instances are joining a

distributed simulation during the simulation execution, for instance, triggered by a

load balancing mechanism.

3.3.2 Publish/Subscribe Messaging Systems

There are multiple well-known publish/subscribe MoMs in the field, which are

widely used both in academics and as well in industry. Therefore, it is assumed that

#Nodes = 2
#Links = 2

#Nodes = 3
#Links = 3

#Nodes = 4
#Links = 4

#Nodes = 5
#Links = 5

#Nodes = 2
#Links = 1

#Nodes = 3
#Links = 3

#Nodes = 4
#Links = 6

#Nodes = 5
#Links = 10

Direct
Connections

Middleware-
based
Connections

Figure 3.6 – Different link topologies.

3.3 Communication Concept 49

there is at least one that is suitable for our approach and that there is no need for

developing a proper MoM from scratch. A brief comparison of some of the most

popular ones will provide more insights in the following. Based on the collected

information, a reasonable decision on the most suitable MoM is made.

A literature review was conducted in order to get an impression on relevant

projects/protocols. For this purpose, only recent survey papers were taken into

account. Some works did also include non-MoM technologies (e.g., gRPC) because of

varying intentions or use cases. Such projects will be ignored. Collected technologies

are presented in Table 3.1 along with their count of appearance. The identified set

of relevant technologies matches with our personal experience. Based on that, we

will have a look on AMQP, DDS, Kafka, MQTT and ZeroMQ in the following.

One well known AMQP implementation is RabbitMQ [222]. A broker consists

of exchanges that redirect messages to queues where consumers can pick them

up. This is not only done with topics, but, for instance, also in terms of broadcast

exchanges. DDS [170] follows a decentralized approach without data brokers. Per

default data is held in memory, but could also be stored in a database. Apache

Kafka was invented at LinkedIn before it was handed over to the Apache foundation.

It is an open source messaging system that allows persistent storage of messages.

The implementation uses an own protocol that is operating on TCP/IP connections.

Messages are published to and consumed from a broker that can be replicated.

Topics are used to organize messages. They are split into partitions in order to speed

up read and write events. There is a guaranteed ordering within partitions and

there are options for the common delivery semantics [9]. The focus of MQTT is

providing a lightweight publish/subscribe communication protocol that works on

TCP/IP. It is widely used for IoT communication especially when low-power devices

are involved. There are different delivery semantics. Some implementations such

as HiveMQ also support clustering [112]. Persistent data storage is not envisioned

for MQTT broker implementations. ZeroMQ [234] is primarily a library, which is

[5] [231] [207] [29] [179] [216,217] [107] [84] Count
AMQP • • • • • • • 7

ActiveMQ • • 2
DDS • • • 3

Kafka • • • • • • 6
MQTT • • • • 4

OPC UA • • 2
Redis • 1

RocketMQ • • 2
ROS • 1

Pulsar • 1
XMPP • 1

ZeroMQ • • • 3

Table 3.1 – Recent considerations of MoMs in the literature.

50 3.3 Communication Concept

available in many programming languages. As a consequence, there is a need for

custom implementations. There is no intermediate broker, hence communication

partners are in direct exchange. At the same time, this makes it a good choice when

performance is top priority.

From our selection, only Kafka and RabbitMQ come with the desired message

storage capabilities. RabbitMQ does not write the messages to disk by default.

According to Dobbelaere et al. [73] both perform comparably regarding latency

and throughput, although Kafka’s latency may double when using an at-least-once

semantic. Contrarily, Kafka shows better scaling abilities. Nannoni [158] notes

that Kafka performs better than RabbitMQ when configuring RabbitMQ to store

messages on disk. As Kafka satisfies all requirements regarding popularity, security,

performance, scalability, and persistence it will build the foundation of our system.

At the same time, the following design decisions for upper layers will be made

MoM-agnostic if reasonable, so that the underlying MoM can be exchanged if the

priorities or requirements change in the future.

3.3.3 Apache Kafka

Nevertheless, it cannot be avoided that some higher-level aspects are influenced by

the capabilities of the underlying MoM. The former presentation of different MoMs

was rather briefly in order to get an overview of the different systems. As a reference

for the upper layers, we will describe relevant characteristics of Kafka in more depth

in the following based on the official documentation [9].

Kafka is a topic-based publish/subscribe message streaming system that is using

brokers as mediators. One or more brokers are placed in a cluster along with

additional components such as data integrators (i.e., Kafka Connect). A cluster can

be spread over different locations, which enables scalability and fault-tolerance. That

means multiple brokers can be replications and/or split their work.

A message is called event in the Kafka terminology. An event contains a timestamp,

a key, and a value. Publishers of events are called producers and subscribers are

called consumers. An event is published to a specific topic. Topics are not exclusively

assigned to one or more producers or consumers. An important feature is the event

persistence. An event is not removed after its consumption but can be re-consumed.

Size- or time-policies allow configuring when events are not needed anymore and

can eventually be deleted from disk.

A topic can consist of multiple partitions that can exist on different brokers.

Different partitions of a topic are a core element for the scalability and are therefore

no plain copies of each other but hold different events of the topic. There is a

guarantee that within a partition consumers will see events in exactly the order they

were published, but this applies not topic wide. For fault-tolerance, the number

3.3 Communication Concept 51

of replicated topics/partitions can be configured by a replication factor. Message

persistence is achieved by storing messages directly to the file system. However, there

are not always flush operations so the data might still remain in the OS page cache.

The producer can not only specify the topic where an event should be published to

but also the partition. In addition, it is possible to specify parameters regarding the

trade-off of throughput and latency (e.g., batching).

The consumer keeps track of its current offset on a topic (the consumer position).

With each request, the current offset is sent to the broker, which than delivers data

from that position. In this way, a re-consumption of old events is no problem. At the

same time, each consumer is assigned to a consumer group and there will only be

one consumer per partition per consumer group. Kafka follows a push-pull strategy,

meaning that publishers push their message to the broker, while consumers pull

for new messages. A reason for this decision is that a push-mechanism towards the

consumer could easily lead to an overload. In contrast, using the pull-mechanism

the client has full control of the pull frequency and the consumption rate can be

adapted easily.

Messages can contain several records that are embedded in a record batch.

Kafka is operating a binary protocol on TCP. Hence, a reliable communication can be

assumed on lower layers. Starting from Kafka 0.11, there is an idempotence flag, that

lets the broker identify and eliminate duplicates by tracking the producer identifier

and a sequence number that is sent along with each message. Transactions are

supported and useful, for instance, when sending related data to multiple partitions.

Based on that, all three common delivery semantics can be implemented.

It is possible to enable the auto-creation of topics in case a publisher is sending a

message to a non-existing topic. A topic name may consist of alphanumeric characters

and “.”,“-”, and “_”. It is suggested not to mix “.” and “_”, because they could interfere

due to internal mechanisms. As a consequence, the upper layer is required to escape

other special chars within topic names. In addition, there is no predefined hierarchy

(delimiter) for topic names.

Various SASL authentication mechanisms are supported and as well authentica-

tion via TLS/SSL. Similarly, TLS encryption of communication between publishers/-
subscribers and brokers can be enabled. Authorization of read and write operations

by publishers/subscribers can be realized with Access Control Lists (ACLs) (e.g.,

“userA has access to all topics that start with simulation.scenario-userA-*”).

3.3.4 Data Serialization

As a communication technology choice is made, the question of how to serialize

data arises. The purpose of this is mainly to have a common exchange format

that is understood by all communication partners. The most common formats are

52 3.4 Coupling Concept

either text-based and human-readable such as JSON [39] and XML [223] or binary

formats such as Avro [12] and ProtoBuf [92]. While XML is user-friendly, it leads

to a huge overhead due to verbose and redundant structure-related elements (e.g.,

start- and end-tags). JSON is more lightweight and supports basic data typing,

whereas in XML typeless data strings need to be parsed. In contrast, the binary

formats are more efficient. This does not only concern the size of encoded data

but usually also the effort for (de)serialization. Avro and ProtoBuf achieve this

efficiency by having schema definitions that describe all types and lengths of fields

in byte arrays [220]. What makes Avro and ProtoBuf particularly interesting is a

project called Schema Registry that provides a management solution for the schema

definitions [62]. Typically, an Avro container consists of a header and (multiple)

data blocks. The header holds aside from other metadata (e.g., compression codec)

the schema definition for the data blocks. If using a schema registry, it is possible to

replace the former header by a simple schema identifier, which further reduces the

message size. With the identifier reference, all schema related information can be

looked up in the registry. In addition, the registry component allows for a central

storage of all data structure definitions. This helps to avoid schema mismatches

between different components. There are no reasons apparent that would justify a

custom tailored serialization protocol over the existing ones. Furthermore, there is

good Avro support by Kafka. That is why we will use Avro for (de)serializing data

and the schema registry to manage schema definitions.

3.4 Coupling Concept

Having a sound concept for the communication plane, our loose coupling mechanism

can be developed on top. Obviously, this mainly addresses the requirements related

to the category of coupling, but also of correctness (see Section 3.1).

 Service /
Application

Coupling

Infrastructure /
 Core

Design Execution Evaluation

Management VisualizationS
ce

na
rio

Resources & Definition Management

Monitoring

Execution

Orchestration

Building Blocks Connectors

Serialization

Simulation
Controller

Frontend

Scenario Definition

Distributed Simulation

Topic Mapping Distributed Simulation Protocol

Domain & Layer Taxonomy Time Sync

Communication Data Storage

Middleware

Figure 3.7 – The second layer of the system’s architecture is developed.

3.4 Coupling Concept 53

3.4.1 Core Idea

Aiming for an approach that works not only for predefined use cases but also for

unknown topologies and unknown components represents a real challenge. Solutions

that aim for the coupling of a small and static set of known simulators can be realized

in a much simpler way. However, that would result in a close coupling. When looking

for example at Veins (see Section 2.3.4), the coupling is realized by assigning a

master role to one component (OMNeT++). The master calls the API of the second

component (SUMO) when necessary (e.g., to proceed to the next time step or to

gather information). Such an approach works efficiently for their specific use case

of vehicular communication. However, if there is a need for an adjustment of the

topology (e.g., splitting the work of the traffic simulation to two SUMO instances)

the codebase needs to be modified significantly. Obviously, when aiming not only

for distribution features but also for the possibility to extend a setup with additional

tools, such an approach clearly reaches its limits.

A more flexible and extendable coupling attempt is therefore necessary. Involved

components (i.e., primarily simulators, but also physical devices, general software

packages, or data sources/sinks) of a composed simulation scenario should be capable

of operating on their own and not be depending on external control or orchestration

commands to operate. Moreover, it is assumed that a component is a self-contained

and executable artifact. A component’s instance will be called Building Block (BB) in

the following.

In addition, a BB should not need to know how many and what other BBs are

also involved in a composed simulation run. Given that, it is no longer feasible to

have a master component that is orchestrating everything by calling the custom

APIs of involved BBs. Instead, the coupling will be solely realized by exchanging

predefined data tuples in accordance to a structured rule-based process. Such a

decentralized coupling approach does neither require for a global knowledge of all

involved data flows nor a central orchestration component.

If the problems of numerous links between the involved BBs of a simulation run

is solved by using a middleware-based messaging paradigm, there remains the issue

of interfacing between them. There are two basic approaches when interfacing more

than two components.

Approach A: It is in the responsibility of the receiver to understand the incoming

data. Figure 3.8 depicts that approach. Each component has a module

that is capable of receiving and understanding received messages

from other languages. The advantage of this approach is that the

sender does not need detailed information about receivers.

54 3.4 Coupling Concept

Approach B: The sender is responsible for using interfaces that are supported by

its receivers (see Figure 3.9). In reality, also a mixture might be a

suitable solution. This might especially be required if components

are involved that cannot be modified (e.g., software that is not under

own control, existing data feeds, or hardware components).

English Italian Spanish

Figure 3.8 – The receiver is re-
sponsible for decoding.

English Italian Spanish

Figure 3.9 – The sender is re-
sponsible for encoding.

For well-known use-cases, creating another common interface (i.e., applied to the

example: a common language) that is provided by every component might be a good

solution. Since unknown use-cases and extendability with unknown components

should explicitly be supported, the latter is no option. As a consequence, when intro-

ducing a new component, one has to modify all other components (see Figure 3.10).

For the first approach, where the receiver is responsible, all existing components

need a new module that is capable of understanding the new component (dotted

lines). In addition, the new component needs modules for understanding all other

existing components. For the second approach, where the sender is responsible, all

existing components need a new module that is capable of using the new component

interface (solid lines). In addition, the new component needs modules for using the

interfaces of all existing components when sending something.

English Italian Spanish German

Figure 3.10 – An additional component is causing modifications.

Furthermore, it would be desirable to have an extensive catalog of integrated

simulators that allow to cover a vast variety of simulation scenarios. However, this

ambition is contradicted if such tremendous integration efforts are required at the

same time. Another issue arises from the context of correctness and credibility. As

already pointed out in Section 3.2, the connection between submodels is a crucial

part of the composed model, especially if information has to be translated for exam-

ple in terms of filtering or aggregation. If this logic is spread across the code of all

components, reproducibility and traceability might get very hard. Therefore, we pro-

pose a different design idea: each component can only send and receive information

that corresponds to its native data model. Referring to the language example, this

3.4 Coupling Concept 55

idea can be denoted as monolinguism. Consequently, such an architecture requires

some additional mechanism for converting information between heterogeneous

components (see Figure 3.11). Modules that provide such a mechanism will be

called connectors. Connectors are detached modules with no other purpose than

transferring data between two different components. Additionally, this eases the

reproducibility and traceability of information flows. Following that concept, it is

no longer necessary to modify existing components, once a previously unknown

component is integrated. Instead, it might be necessary to add new connectors that

are capable of mapping the data model of the new component with the existing

ones.

English Italian Spanish German

Figure 3.11 – The translation is detached.

In order to further simplify this, a certain degree of abstraction is introduced.

Groups of similar components are using a common data model that works stereotyp-

ical for the whole group. Such a data model will be called layer in the following. As

a consequence, there is no need for translating information between such similar

components. At the same time, connectors between heterogeneous components are

designed at the group-level. This abstraction allows a reasonable trade-off between

the total number of different data models (and required connectors) and preserving

the main functionalities of individual components.

The decision of having self-centered components does not only affect their com-

munication language. Likewise, the addressing of recipients is also simplified. There

is neither a need for managing a knowledge base of interdependencies globally nor

a need for local neighbor-discovery-protocols within the components. Exploiting

the spatial decoupling that is provided by the topic-based MoM, a BB is producing

messages to the data pool and consuming messages from the data pool by following

a structured procedure that is described in the following sections. From a BB’s

perspective, the publishing of messages is not affected by the question if and how

many other BBs are consuming its messages. Similarly, a BB does not care about

the source of messages that are consumed, which greatly simplifies the ingestion of

non-simulation data (such as real-world live data) in a scenario run.

Besides the information flows themselves, another challenge is the partitioning

of the scenario, respectively the design of the BB topology. In order to have a

common term, we will use the word entity to describe elements that are represented

by BBs. However, we have to clarify that the concept is by no means limited to

56 3.4 Coupling Concept

entity-based modeling paradigms, as “entity” is already linked to a certain meaning

in the simulation vocabulary. The concept is, for example, also applicable on flow-

based models. Our understanding of a component is similar to Verbraeck’s module

definition [221] (see Section 2.3.1), with the important difference that in our concept

an existing component is not modifiable. While a component can be created by any

stakeholder, the internal details do not have to be published. Regarding credibility,

we accept the black-box nature of components. If we assume that components are

valid models of reference models, we presume that their composition is also valid, if

only one instance is responsible for a certain region within a single domain. A region

does not necessarily need to be a spatial area, but is rather a set of intra-domain

elements that are understood by all components of the domain. Thus, the sets of

responsibilities of BBs within a domain are disjoint and therefore it is accepted that

neighboring models/components may have a different underlying view of reality.

BBs are understood as individual microservices with defined inputs and outputs.

Consequently, a single instance of an entity within a scenario will only be simulated

by one BB at a time in order to ensure the consistency of the overall model.

The introduced layer is not only a plain data model. The elements of the data

model are tagged with certain keywords that allow for instance to infer which mutator

methods need to be provided by the layer interface. Moreover, the simulation

distribution logic (i.e., when to publish what information, what information to

consume) is also included. As a result, the coupling mechanisms are defined on a

data level and per layer.

3.4.2 Domain & Layer Taxonomy

The following ideas aim to allow for such a coupling by giving the tool for finding

abstraction categories. Therefore, we will distinguish components by two levels,

their domain and their layer. Based on that it is possible to provide a well-defined and

structured description for each component that is used for the coupling. The purpose

of the domain-layer taxonomy is to achieve a trade-off between addressing individual

(heterogeneous) components within a domain on one side and being able to couple

them in a structured way on the other side. In addition, it solves the problem of

finding data structures for storing messages in the data pool. While the domain

defines the context, the layer is supposed to provide a data model that allows the

representation of its stereotypical perception of its domain. If multiple components

are assigned to the same layer, the layer data model is typically an intersection of

their natural data models that would perfectly represent the perceptions of these

components.

3.4 Coupling Concept 57

Domain

When using the term domain in this work, it is not about the mathematical or

technical meaning. It is about what the Cambridge Dictionary describes with “an

area of interest” [45]. While this still leaves plenty of room for interpretation, some

domain examples will do the trick: communication, economy, energy, healthcare,

traffic, society, warfare. Each domain addresses a typical group of certain aspects of

our lives. A domain is a logical group of related entities and systems that are typically

investigated and modeled using domain-specific knowledge. A person that has deep

knowledge of entities and their relations within a domain is called a domain expert.

That could be a traffic engineer in the traffic domain or a doctor in the healthcare

domain. In general, different domains deal with a different set of entities, properties,

and relations. In other words, the chances of having similar ontologies for two

diverse domains is not very high.

Horizontal Inter-Domain Coupling

Green DomainBlue Domain

Component B

Component D

Component F

Component H

Green_C Layer

Blue_B Layer

Green_B Layer

Green_A Layer

Component A

Component CBlue_A Layer

Component E

Component G

Simple Coupling V
e
rt

ic
a
l
In

tr
a
-D

o
m

a
in

C
o
u
p

lin
g

Figure 3.12 – There are different types of couplings.

On the contrary, within a domain there might be a variety of different approaches

for describing, investigating, and representing the same phenomena. These ap-

proaches might differ in their understanding of the domain, their level of detail,

their way of modeling the assumed structures, the coverage, or the desired outcome.

If the underlying world-view of each approach would be described by a separate

ontology, there is a high probability of having common elements within a single

domain. Due to the aim of this work, such a describing approach will mainly be a

simulation model but could also be a piece of software, a data source, a data sink, a

hardware component, or another composed system.

This aspect has a major impact on the design of the coupling concept. It justifies

the assumption that it is reasonable to differentiate between inter-domain and

intra-domain couplings. Possible compositions are depicted in Figure 3.12. When

exchanging data between different modeling approaches within a domain it makes

sense to intend preserving as much information as possible (vertical intra-domain

coupling). It is conceivable to transfer data information between models without any

information loss. This is in particular the case in a special variant of the intra-domain

58 3.4 Coupling Concept

coupling, where two BBs with identical layers are coupled (simple coupling), for

example, in order to realize a parallel simulation. In practice, vertically connected

models might address different levels of detail and an aggregation or a disaggregation

of information is required. But in every case the underlying domain is the same

and acts as a common reference. When exchanging data between different models

across domains this shared reference is missing. In general, there is no point in

trying to comprehensively preserve received information in a cross-domain coupling

(horizontal inter-domain coupling). In most cases it will simply not be possible. In

our system, a domain is defined by a name, a version, and said reference element

(see Figure 3.13 and A.1 in the appendix). There are optional fields for a description

and further arbitrary elements.

Domain Definition

name version reference

name key additional

description

Figure 3.13 – Definition of the domain structure.

Layer

A layer belongs exclusively to a single domain. Within that domain, it describes

a certain perception of the system in focus. This perception is reflected in a data

model that allows representing the specific world-view. As already proclaimed for

the relation between layer and domain, each component that is integrated in our

simulation system (e.g., a simulator) has to be exclusively assigned to one single

layer. Because it is possible that several components have a very similar purpose and

perception, multiple different components can be assigned to the same layer.

The stereotypical data model of a layer contains different kinds of information.

Typically, there will be rather passive elements that form the system’s environment

and rather active entities that are the subject of the domain. The subset of data

elements that are holding the representations of the active entities will be called

Native Data Model (NDM). Therefore, it represents the heart of each layer. Exclusively

these NDM-tuples will be exchanged between BBs to realize simple and vertical

couplings (i.e., intra-domain couplings). For the inter-domain couplings, the options

are more manifold and allow also connecting other parts of the data models. This is

possible as we don’t aspire for inner-domain consistency in that case.

As each domain has its own particularities, it is not possible to apply a simple

rule in order to infer a layer’s data model. Even the purpose and the modeling

paradigm might influence this design process. Therefore, each new layer needs

to be modeled by domain knowledge. The structure of the layer data model, on

3.4 Coupling Concept 59

the other hand, is defined generally and given below. Typically, a new layer is not

designed on a hypothetical level. It is more likely that a new component is going

to be integrated in the toolbox and no existing layer is a suitable abstraction. It

might be helpful to take a high-level perspective and ask what the model is all about

from a more methodological, engineering, or philosophical perspective. Techniques

used in the areas of semantics and ontology can be useful here. Questions of the

following kind can support the user in this modeling process (see also [100]): what

is this layer about, what is the intended purpose, what is the main element type of a

typical model. If there are no answers to such questions, the component might cover

too much aspects of a system (for complying with the proposed approach). If the

component is a simulation model, splitting the model into several submodels might

help to get rid of this problem. In contrast, if there is a clear idea of the purpose and

the main entity type, an NDM can be created that represents the main entities.

A layer definition that was purely based on the NDM would be very coherent

to the underlying idea. However, our layer description is not inevitably restricted

to the NDM because that would limit applications. In a second step, the layer data

model can therefore be extended by adding data structures for additional relevant

entities next to the NDM. Information that is hold by these secondary fields will not

be used for the intra-domain coupling, but can be used for inter-domain couplings

and further tasks (e.g., interactions or analytics).

If there are multiple new similar components that should be covered, the model-

ing can be easier. Related components will have a common subset of classes, agents,

objects, attributes, or methods. In a bottom-up manner, the components’ common

subset can serve well in order to establish a baseline for the layer definition. How-

ever, developing a layer definition is always a trade-off between generalization and

specialization. This applies to the NDM, as well as to the additional fields. Obviously,

the absence of an element in a single component cannot be a compelling reason for

the exclusion from the layer definition if it clearly fits the layer’s stereotypical idea.

Layer Definition

name domain version NDM compounds

name key compounds methodsprimitives isGettable
�

isSettable

isObservable
0

isPersistent
�

::::::::
isDistributor

'

.primitives

name type isGettable
�

isSettable

isObservable
0

::::::::
isDistributor

'

unit description

methods

name input output

Figure 3.14 – Definition of the layer structure. Gray fields are mandatory.

Figure 3.14 depicts the recursive structure that is used to define layers (see also

Appendix A.2). The fields with a gray background are mandatory. Most importantly,

60 3.4 Coupling Concept

there needs to be a domain, a domain-wide unique name as an identifier, a ver-

sion number, and finally the NDM. There are three base structures that allow the

construction of arbitrarily complex composed structures. It can be seen that the

layer is no plain data model, but does also provide information about mutators (i.e.,

isGettable, isSettable). The isPersistent property specifies if the represented entity

is existing during the whole duration of a scenario run or if it can be dynamically

created and removed during a run. The isObservable property indicates that the

element is a candidate for providing status updates during the scenario run, which

can for instance be used for analytic tasks. Fundamental for the coupling concept

is the
::::::::::
isDistributor tag, which has to be assigned to exactly one element of a layer

definition. Based on the element that is tagged as distributor, a BB can detect if

an NDM-tuple has to be published (i.e., information is leaving the responsibility

region of the BB) and can consume NDM-tuples (i.e., information is entering the BB’s

responsibility region). Such a distributor element could either directly represent the

responsibility set or have a rather implicit link to the responsibility set. In addition,

the layer structure allows the declaration of methods that are more elaborate than

simple setter and getter methods.

•Primitive attributes consist of a name, of a data type, the isGettable property,

the isSettable property, the isObservable property, and the isDistributor property.

Optionally, there might be information about the unit and a detailed description

of the attribute.

• Methods are defined by a name and a set of input and output parameters.

• Compounds hold a key, potentially primitives, methods, and other compounds,

the isGettable property, the isSettable property, the isObservable property, the

isPersistent property, and the isDistributor property. To provide a key is manda-

tory.

Components and Building Blocks

A component is assigned to a single layer and therefore also to a single domain.

Instances of a component can participate in a distributed simulation as Building

Blocks (BBs). Each component definition consists of a list of mandatory or optional

attributes that are used by the instantiating BBs (see Figure 3.15 and A.3 in the

appendix). In addition, the definition provides information about required and

optional resource types. There is also a set of results, which can be requested to be

returned after the scenario run is finished. The BB definition is embedded in the

scenario definition (see Section 3.5.1). As it is an instance of a component, it is

using the possibilities that are provided by its component definition.

3.4 Coupling Concept 61

Component Definition

name domain layer version parameters

name isMandatory validValues

resources results

name parameters

Figure 3.15 – Definition of the component structure.

3.4.3 Deterministic Information Exchange

The workload of the overall simulation scenario is split into several LPs for various

reasons (e.g., parallelization or model combination). It might also be possible that

an external component is involved. As for most distributed applications, there are

certain events that require a communication between the different LPs. The domain-

layer taxonomy provides syntactic and semantic definitions for data tuples that can

be exchanged. We will now further explain how data is exchanged by using the

presented communication concept (see Section 3.3). The exchange of information

is exclusively based on the elements of the layer definition and interfaces that are

derived from that. At the current point, it is clear how communication works on a

technical level and what to communicate. However, in the context of DS, there is not

just the requirement that communication between different BBs is possible at all. The

communication is required to be reliable and deterministic. In particular, it has to be

guaranteed that messages arrive at their consumers at all, that messages arrive on

time, and that messages arrive in the correct order. Otherwise, the communication

could cause causality violations and with that affect the correctness of the DS. The

combination of the underlying TCP protocol and the Kafka acknowledge mechanism

will take care of the first problem. This subsection will cover the message ordering

and afterwards the issue of timeliness. Finally, the format of messages and the

mapping of messages to topics will be clarified. We will follow the common MoM

terminology and generously use the term message. Such a message is representing

an exchanged data tuple, a simulation event, or an API-call between components.

Message Ordering

Regarding the ordering of exchanged messages, one has to take the messaging

system into account. In the case of Kafka, there is a global ordering guarantee across

brokers and replications, but only within topic partitions. As a consequence, it is not

guaranteed that a consumer receives messages in the same order they were published

as soon as we are using multiple topics or more than one partition. Moreover, in

these cases we can also not guarantee a deterministic consumption order (i.e., that

all consumers receive the messages in an identical order - even if this order would not

be the same as the publishing order). Obviously, the resulting communication is not

deterministic. The following consideration addresses in particular the ordering of

62 3.4 Coupling Concept

messages that are created simultaneously (in logical time). The problem is illustrated

in Figure 3.16. A red message and a black message are published concurrently to

two different topics. Consumers can either receive the black message and then the

red message or the other way around.

Partition 0

Topic0 Partition 0

Topic1

Figure 3.16 – No global ordering across multiple topics. There are two possible
receive orders.

Another example is depicted in Figure 3.17. A red message and then a black

message is published to a topic that is consisting of two partitions. The sequence

of publishing is dismissed at the time the messages are stored in the partitions.

Consumers may now first consume the black and then the red message or the other

way around.

Partition 1
Topic

Partition 0

Figure 3.17 – No global ordering across multiple partitions. There are two
possible receive orders.

Having only one topic and only one partition as in Figure 3.18, the consumption

order would match the publishing order if there is only one publisher.

Partition 0Topic

Figure 3.18 – Global ordering within a topic partition.

However, being limited to single topic would contradict the whole idea of the

topic-based MoM. Moreover, introducing another concurrent publisher could again

bring ambiguity (Figure 3.19). This approach allows at least that all consumers

would consume the messages in the same order. Such a behavior would be sufficient

in order to reproduce results. Repeatability, on the other hand, is not realizable

because the partition-order might differ due to the concurrent publishing.

Consequently, we must add additional logic in order to introduce determinis-

tic behavior. Following the data-centric approach, we want to not only to store

information in a central data pool. Furthermore, we want to directly organize data

within a hierarchical topic structure that matches the domain-layer taxonomy and

3.4 Coupling Concept 63

Partition 0'

Partition 0

Figure 3.19 – No deterministic appending order. After the messages are
appended to the partition, there is a deterministic consumption order for all
consumers.

therefore there will be multiple topics. In order to guarantee a deterministic order

of processing, a consumer needs to pre-process incoming messages in a buffer (Fig-

ure 3.20). As soon as a certain barrier is reached, all received messages are ordered

in an identical way across all consumers and are finally ready to be processed in

that order. More details on these barriers will be given in the next section. This

solves primarily the problem of deterministic consumption. We can guarantee that

all consumers have the same view on the ordering of data. When replaying the data

from the existing topics, the messages will be again processed in the exact same

order.

Partition 1
Topic 1

Partition 0

Wait until
Sync;

Sort By:
 Time,
 Epoch,
 Topic,
 Key,
 Sender

Partition 0'

Partition 0

Partition 1
Topic 3

Partition 0

Topic 2

Consumer
Buffer

Figure 3.20 – Pre-processing in a buffer.

Additionally, this mechanism does also allow for a deterministic repetition (i.e.,

re-simulation) of a scenario. In case of concurrent publishing tasks, it does not

matter which message is appended first. For illustration, see Partition 0 and its

variant Partition 0’ of Topic 2 in Figure 3.20. Both possible outcomes of the partition

will lead to the same final processing order on the client side. The drawback of this

approach is that a producer has no control of the ordering of instantaneous events.

Methodological, this is not seen as a problem, because if two producers are creating

a concurrent message there is no correct order per se. In addition to the timestamp,

an epoch is also considered. Let us assume, that one producer creates a sequence of

messages that are bound to the same timestamp but are nevertheless expected to

be in order. If they are published to the same partition they would remain in order,

but it is also thinkable that such a message sequence will cover multiple partitions

or topics. Therefore, epochs are introduced in the next section, which address the

64 3.4 Coupling Concept

problem with sub-timestamps. In conclusion, the sorting mechanism has to meet

the following conditions to solve the described problems:

• Wait until it is guaranteed that no new messages will arrive for the current

logical time (i.e., a synchronization barrier is reached) before releasing the

corresponding sorted message list.

• The already existing partition-wide message ordering for individual publishers

has to be contained during further sorting.

• With descending importance, messages are sorted by:

1. Logical timestamp1

2. Epoch

3. Topic

4. Key2

5. Sender 3

Synchronization

What remains as an open issue is the late receiving of messages, which can cause

causality breaks in the overall simulation. Further details on the necessity of a

synchronization mechanism in a DS system were given in Section 2.3.2. In this

section, we will therefore develop a synchronization mechanism that is suitable for a

topic-based coupling based on Apache Kafka. As the overall coupling concept does not

rely on any central orchestration component, the synchronization mechanism should

also work in a decentralized way and without a dedicated time master. Admittedly,

one could argue that the Kafka brokers are a central element per se, but as the

brokers are just storing and delivering messages and not actively participating, the

term decentralized describes the synchronization mechanism properly.

Although optimistic approaches offer opportunities for great performance gains,

an optimistic concept requires a lot of fine tuning and suitable topologies and

scenarios for practical benefits. A generalizable conservative mechanism seems

therefore more feasible for our flexible and extensible coupling approach. That

means that we will divide our coupled simulation run into several episodes4. After

each episode, we will wait until every BB has received all messages of interest and is

ready to proceed with the next simulation step.

Having a message broker with a persistent storage of messages and their order-

ing makes a significant difference to direct and transient communication between

1In particular, when BBs with different step lengths are coupled.
2Sorting by keys is more powerful than just sorting by partition ids. However, this requires that

partition ids are not set manually, but derived by hashes of the keys as intended by Kafka.
3Required, if there are multiple publishers that use the same message keys on a single topic.
4In case of a DES with fixed step lengths, an episode is typically corresponding to a simulation step.

3.4 Coupling Concept 65

components. Using the aforementioned ordering approach, we can already assure

that all components have received all messages of an episode in the same order.

However, we want to guarantee this repeatedly during the whole simulation run

and not only for one episode. Therefore, we need to provide a mechanism that helps

to synchronize all involved BBs after each simulation step. Unless they are in sync,

the BBs are not allowed to proceed to a later point in (simulation) time in order

to avoid a causality violation. Each synchronization episode acts as a barrier that

blocks until all relevant messages of the last step are received and ready to be sorted

and processed.

The designed algorithm will be illustrated by an example in the following. As a

first step, a BB announces its wish to proceed to a certain time T by publishing to

a specific synchronization topic. As soon as all involved BBs have also announced

that they want at least proceed to T , the so-called Lower Bound Time Stamp (LBTS)

of the composed simulation is T . With that it is possible for the BB to proceed its

simulation to T . This straight-forward procedure is depicted for two BBs A and B

with different time steps in Figure 3.21. Both start at time t. A announces the wish

to proceed to t + 1 and afterwards B makes the request to proceed to t + 2. This

means that all involved BBs want at least to proceed to t + 1, which allows A to

proceed to that point in time. As a next step, A wants to proceed further and now

the LBTS is t + 2, which enables both A and B to proceed to t + 2.

Synchronizing a virtual clock between multiple BBs without any other information

exchange is highly unlikely as we do not synchronize for the sake of synchronization.

We need the synchronization to assure that simulation related messages are processed

on time. The described behavior would be sufficient for this purpose if the sending

BA

BA

+1

BA

+1 +2 +1

B A

+1 +2 +1

+2

BA

+1

t t+1

P
ro

gr
es

s

Sync Topic

Sync Topic

Sync Topic

Sync Topic

Sync Topic

Figure 3.21 – Basic synchro-
nization using a dedicated syn-
chronization topic.

+(1,1)
01010

+(1,0)

BA

BA

01010

BA

BA

B A

+(1,1)
01010

+(1,1)
01010

+(1,0)

+(1,1)
01010

+(1,0)

t t+2

P
ro

gr
es

s

Sync Topic

Data Topic

Sync Topic

Data Topic

Sync Topic

Data Topic

Sync Topic

Data Topic

Sync Topic

Data Topic

Figure 3.22 – Synchronization
with the consideration of mes-
sage delivery.

66 3.4 Coupling Concept

components would know if and when sent messages are received by all involved

recipients. However, such a design would put additional logic into the components

and would require additional communication. Besides, it would contradict the

different types of decoupling of MoMs and simply would be impossible with our

current design, where the BBs do not even know their recipients.

A solution that matches our chosen design extends the synchronization message.

A BB will not only announce its desired future point in simulation time, but also

how many messages the BB published to which topics. Following the decentralized

idea, a BB makes a request to time T and has to wait for two conditions before

being able to process received messages in a sorted way and advance its local clock.

First, the LBTS has to become ≥ T . Second, all announced relevant messages with a

timestamp < T have to be consumed. The second condition is crucial because of the

lack of a global message ordering across all topics. In addition, another constraint

is introduced. By announcing an advance request to time T , no further messages

are allowed to be published until the BB has proceeded to T . In other words, it

is not possible to publish messages with a simulation timestamp lower than the

most recently announced own advance request. This is illustrated in Figure 3.22.

The notation is (x , y), where x symbolizes the time and y the sent messages. Both

components A and B start at time t. A publishes a simulation related message on

an arbitrary topic with the timestamp of t. Afterwards, A is ready to proceed and

announces the newly published message with the wish to advance to t + 1. B has

no data to publish and wants also to proceed to t + 1. Now, A can already proceed

because the LBTS condition is met and there are no other announced messages.

Because of A’s announcement of one new message, B is aware that it has to wait

until receiving and processing A’s messages before being able to proceed to t + 1.

BA

110011

BA

110011
+(0'1,0) +(1,1)

BA

110011
+(0'1,0) +(1,1)

BA

110011
+(0'1,0) +(1,1)

110011
+(0'1,0) +(1,1)

BA

101101

110011
+(0'1,0) +(1,1)

BA

101101
+(1,1)

110011
+(0'1,0) +(1,1)

BA

101101
+(1,1)

110011
+(0'1,0) +(1,1)

B A

101101
+(1,1)

P
ro

gr
es

s

P
ro

gr
es

s

Sync Topic

Data Topic

Sync Topic

Data Topic

Sync Topic

Data Topic

Sync Topic

Data Topic

Sync Topic

Data Topic

Sync

Data Topic

Sync

Data Topic

Sync

Data Topic

t+1 t

Figure 3.23 – Epochs allow for quasi-simultaneous events.

3.4 Coupling Concept 67

The mechanism assures that messages are received on time and in a deterministic

order by incorporating the previous sorting mechanism. However, in the current

state a BB can only respond (i.e., publish another message) to a received message in

the next time step. This might be sufficient for many use cases, but there are also

cases where an instantaneous reaction is necessary. An example is the transformation

of a message by a dedicated translation component. Therefore, we will divide a

time step into further sub-units, which we call epochs. Using epochs, it is possible to

create deterministic sequences of messages that are quasi-simultaneous. Regarding

the process of time advances, this implies that it is not only possible to announce

the wish to proceed to a certain point in logical time, but optionally also to a certain

epoch within a point in time. Figure 3.23 is illustrating this extension. The notation

is (x ′ y), where x symbolizes the time and y the epoch. A and B start at time t. B

sends a message to a data topic and announces the wish to proceed to +(1′0, 1). A

requests to proceed to +(0′1, 0). After processing B’s message, both conditions are

met for A and it is possible to proceed. A publishes a response and then announces

the sent message within the request to advance to +(1′0,1). With that, the LBTS

is t + 1 and A can proceed (B’s message is received and B is not allowed to create

new messages before reaching t + 1). B has to wait for processing A’s message and

is then finally also able to proceed to t + 1.

In conclusion, each BB is responsible for consuming a timing topic, announcing

the desire to proceed and the publication of messages. Before proceeding, it has to

wait for the LBTS and the consumption of all announced relevant messages. The

pseudo code for this procedure is given in Algorithm 3.1. The example considered

two BBs for simplicity, but the approach works for an arbitrary number of BBs.

1: procedure SIMULATIONLOOP

2: while T 6= EN D do
3: Simulate Step T
4: Publish Simulation Data
5: T ← T + 1
6: Request Time Advance to T and Announce Published Messages
7: while (T 6= LBTS) & (receivedMsgs 6= announcedMsgs) do
8: Consume Messages and Store in Buffer
9: end while

10: Msgs← receivedMsgs with Timestamp < LBTS
11: Sort Msgs
12: Process Msgs
13: end while
14: end procedure

Algorithm 3.1 – Synchronization algorithm.

68 3.4 Coupling Concept

Message Structure

A message consists of the predefined Kafka message header, a custom header, and

the payload (see Figure 3.24). The most relevant element in the Kafka header is

the key, which is describing the payload and is relevant for assigning a partition.

Depending on the Kafka configuration, the wall-clock timestamp is either the Create

Time or the Log Append Time. The custom header provides the logical timestamp, the

epoch of the message, and the sender identifier. The payload will be serialized via

Avro and is therefore preceded by an Avro magic byte and the schema identifier of

the used Avro schema. The schema is registered under that identifier in the schema

registry. For debugging, the serialization of the payload as a plain JSON UTF-8 string

will also be supported by our system for most message types.

Length Attributes Timestamp Offset

Key Length Key Value Length

«

Kafka
Header

Avro Magic Byte &Schema ID

Avro Serialized Payload











Message
Value

Logical Timestamp Epoch

Sender

«

Custom
Header

Figure 3.24 – The structure of messages.

Communication Channels and Data Mapping

A topic usually represents a group of coherent data, which suits message-based

communication protocols. Likewise, there is typically no address-based commu-

nication protocol when using a topic-based publish/subscribe system. The topic

can be for example a description of the information itself, the location where the

information was gathered, or the purpose that the information is used for. In this

manner, multiple consumers can consume information from a single topic after

announcing their interest by subscribing to it. Similarly, multiple producers can

usually produce information on a single topic and a single consumer can subscribe

to multiple topics. In our distributed simulation system, there will be three different

kinds of information flows. They will be referred to as channels.

1. Orchestration data:

Exchanged information is used to manage the execution of a simulation sce-

nario. That involves the initial simulation request by the user, which contains

3.4 Coupling Concept 69

all data that define the scenario, control commands, but also the previously

designed synchronization messages by the BBs.

2. Provision of the data model:

The composition of all layer definitions of involved components represents

the data model of the overall scenario. According to the properties, data

from this model is provided in a rule-based way (cyclic or event-triggered).

While event-triggered publications of NDMs build the main mechanism for

intra-domain couplings, it is possible to define additional scenario rules. An

example is the cyclic publication of a certain attribute for an analytic task. In

addition, this channel covers also the exchange of resources and final results.

3. Interaction data:

Interactions are used to realize more sophisticated scenarios by enabling mod-

ifications to a running base scenario such as creating, modifying, or removing

entities. The set of available interaction methods are again exclusively based

on the mutators and methods that are provided by the layer definitions.

Every kind of information flow has its individual purpose, characteristics, and

requirements. There will be several topics related to each kind. Therefore, the three

logical groups represent three different channels, which will form the first hierarchy

level for topic names (Topic 3.1). The dot character will serve as a level separator.

The logical distinction on the channel level allows the use of separate consumers

and producers for different kinds of problems. In addition, the channels are not only

used internally, but also provide the interface for connecting external components

(see Figure 3.25).

In the orchestration channel, there will be a main topic that is used to trigger

new scenario runs (Topic 3.2). More information on the initiation of scenarios will

follow in Section 3.5. For each scenario, there will be a topic to transfer control

commands (e.g., “pause”, “terminate”), to provide status updates (e.g., “waiting for

resources”), and to exchange synchronization messages.

Scenario
SimulationOrchestration Channel

Interaction Channel

Provision Channel

Figure 3.25 – There are three different logical channels that are also accessible
for external stakeholders.

70 3.4 Coupling Concept

[orchestration|provision|interaction].[...] (3.1)

orchestration (3.2)

orchestration.[sceID].ctrl (3.3)

orchestration.[sceID].status (3.4)

orchestration.[sceID].sync (3.5)

The purpose of the provision channel is to reflect the data model of a distributed

simulation scenario. Besides, there are several scenario-related topics that are

always available. They are used to provide initial resources (Topic 3.6), final results

(Topic 3.7), and the definition of the scenario (Topic 3.8). During the scenario

execution, the provision channel is populated with simulation data that complies to

the composed scenario data model. As already mentioned, this involves messages

of the distribution logic and optionally also additional messages that are created

based on the scenario configuration. Such additional messages will be produced at

fixed cycles (e.g., “publish the speeds of all vehicles every 1000 ms”) or on events

(e.g., “publish the vehicle id if its speed exceeds 50 km/h”). These rules will be

implemented by so called observers within the components. The hierarchical scenario

data model is a combination of all involved layer definitions. Its contents are directly

mapped to topic names by appending the element names to the channel name and a

scenario id (Topic 3.9). The third level describes the domain and the fourth level

represents the layer. Starting from the fifth level, the heterogeneous structures of the

different layers begin (Topic 3.10). If an entity is tagged as persistent, the entity’s key

will also be included in the topic (e.g., Topic 3.11). From a performance perspective,

only topics for elements that will be published during the scenario execution will be

created (e.g., Topic 3.12). Access to data on the provision channel is read-only and

limited to the pre-defined element properties. With that, there is little overhead for

the producing components and it is in line with the decoupled design. However, as a

drawback, there is no possibility of spontaneously exchanging data at unpredictable

events in a request-reply pattern.

provision.[sceID].resource (3.6)

provision.[sceID].result (3.7)

provision.[sceID].scenario (3.8)

provision.[sceID].[domain].[layer].[layer data model] (3.9)

provision.[sceID].[domain].[layer].[compound.[...]|primitive] (3.10)

provision.sce1.traffic.micro.edge.edge1.speed (3.11)

provision.sce1.traffic.micro.vehicle.speed (3.12)

3.4 Coupling Concept 71

That issue is covered by the interaction channel. It allows for modifications of

the simulation state by triggering API calls within BBs on received messages. Not

all communication in the interaction channel will match the request-reply pattern.

It is also possible to invoke methods without any return message (e.g., “turn off

the traffic light”). Because it is possible to declare custom methods within the layer

definition, the availability of methods is depending on the layers that are involved in

a scenario run. Apart from the custom methods, there are also four kinds of methods

that are automatically inferred from the compound and primitive elements of the

layer definitions. The first two are representing setter and getter methods, while

the other two are related to the isPersistent flag. If an entity class is not marked as

persistent, there are methods to add or remove instances of said kind (e.g., “add a

new vehicle”).

interaction.[sceID].[domain].[layer].[BB].[compound.[...]|method] (3.13)

interaction.[sceID].[domain].[layer].[compound.[...]|method] (3.14)

interaction (3.15)

interaction.[sceID].[domain].[layer] (3.16)

interaction.[sceID].[domain].[layer].request (3.17)

interaction.[sceID].[domain].[layer].response (3.18)

In contrast to the provision channel, the scopes that embrace a method will not be

completely mapped to the topic name. Incorporating the full path and the instance

identifier in the topic (Topic 3.13) would be efficient for consumers. However, a

caller would need to know the instance that is responsible for invoking a certain

method, which contradicts our main idea. Topic 3.14 solves the aforementioned

problem of resolving responsibilities. The downside is that a caller would need to

synchronize after each call to different topics, if the ordering of its actions matters

(e.g., “add entity x and then modify entity x” vs. “modify entity and then add entity

x”). This is caused by the ordering guarantees that are restricted to topic partitions.

A single topic for all interactions on the other hand would help regarding the overall

ordering (Topic 3.15), but would increase the effort for all consumers tremendously.

A lot of consumed messages would be filtered out and dropped on consumer-side. As

the ratio of relevant messages would drop, so would the communication efficiency.

Therefore, we chose the trade-off between a single (ordered) interaction topic and

more specific topics and use the schema of Topic 3.16. Consequently, this is realized

with Topic 3.17 and Topic 3.18 in order to further increase efficiency. As a result,

the messages in the interaction channel will also contain a specific method identifier

and a call id, besides parameters or return values.

72 3.4 Coupling Concept

3.4.4 Coupling Protocol

Based on the previous sections, we develop the coupling protocol itself. First, the

Building Block is characterized and afterwards, the logic of a coupled simulation is

described.

Properties of Building Blocks

A BB is an instance of a component that can be flexibly coupled with other BBs.

In order to make this work, there are a couple of properties that each BB has to

satisfy. A BB is the instance of one single component and is therefore assigned to

a single layer. The provided interface of the BB will exclusively reflect its layer.

Components need to support the mechanism for providing data on the provision

channel and filter and delegate incoming interaction messages to native methods

that are implementing the corresponding functionality (e.g., returning a certain

value). The major impact of the domain-layer abstraction is that it is very likely

that there are certain elements (e.g., entities, attributes, functionalities) within the

embraced model of a specific component that are not covered by the layer definition.

These uncovered elements will be completely hidden and are not accessible via the

abstracted interfaces anymore. BBs comply to the following three conditions in order

to realize an extendable coupled simulation.

1. Each BB is assigned a set of responsibilities. The responsibility assignments

of a scenario are disjoint within a domain. Each domain has a predefined

reference element class that is used for the responsibility sets. These classes

will typically be of a general spatial nature (e.g., coordinates), domain specific

elements (e.g., ids), or a mixture.

2. Each BB acts neighborhood agnostic. As there is no known recipient of out-

going information flows, a direct connection between sending and receiving

instance is not possible. Based on the responsibility set and the layer defini-

tion (mainly the NDM and the distributor element), the corresponding topics

and rules are inferred for exchanging simulation data. According to custom

scenario-wide defined observers, additional information might be published.

3. Each BB is monolinguistic, meaning only able to understand and speak its

own native language. This mother tongue will correspond to the elements of

the own layer definition.

A user can add an arbitrary number of observers to a scenario definition. An

observer is characterized by several parameters.

• Element: The element to be observed by its absolute path in the layer defini-

tion. This is only applicable on elements that are tagged as isObservable.

3.4 Coupling Concept 73

• Filter: An optional filter that is applied on the elements’ keys.

• Period: The cycle duration after which the observation is repeated. This will

be typically the simulation step size or a multiple of that.

• Task: An action that is performed on the element when it is time to act

(typically “publish”).

• Trigger: A condition that is evaluated and decisive for taking action.

• Type: The serialization mode that should be used.

Simulation Loop

In addition to all structural definitions, it is necessary to define the behavior of

components. By that, the behavior of the wrapper that forms a building block by

embracing a model (or similar) is meant and not the behavior of the model itself.

While the simulation scenario is running, each BB is iterating over the activity

loop that is presented in Figure 3.26. The coupling in our system is realized by

exchanging data at discrete communication points in simulation time. However,

that does not exclude components that for instance embrace a time-continuous

model. The wrappers of affected components need to provide a mapping between

the communication points and their internals (e.g., by sampling or aggregating over

time windows).

Before the simulation loop is entered, the BB subscribes to all topics from the

provision channel that are matching its own responsibility set and represent the

distributor element (e.g., Topic 3.19). Each synchronized BB subscribes to the

synchronization topic to get notified about pending messages and the progress of

other participants that are involved in the synchronization process. In order to

announce its presence to others a join message is published to said topic.

provision.sce2.traffic.micro.edge.edge23.vehicles (3.19)

Each iteration begins with the computation of the next simulation state. The new

state is processed. Using the element that is tagged as isDistributor (see Section 3.4.2)

it is checked whether an entity of the NDM is leaving the region of responsibility.

Therefore, every component has to implement an appropriate strategy that checks if

entities are outside of the responsibility region. In such a case, the corresponding

NDM is published and the entity is either instantly removed or marked as a ghost

(i.e., converted to a passive representation that will be removed at a later point in

time). After all messages are published, their quantities are announced together

with the logical time of the next desired synchronization/communication point on

the timing topic in the orchestration channel.

74 3.4 Coupling Concept

Then, the consuming part of the iteration begins. (However, messages are

constantly consumed and buffered for obvious reasons.) Based on incoming synchro-

nization messages, the LBTS and the number of expected messages is continuously

updated. As soon as the LBTS equals the desired new simulation time and all an-

nounced messages are received, the BB identifies that it is safe to proceed. Buffered

messages are filtered, sorted (as previously described), and are processed. A typical

result will be the integration of an entity that moved in the BB’s region of respon-

sibility or the invocation of an interaction. Finally, the updated simulation state is

considered valid and the configured observers are executed.

Afterwards, the loop continues at the beginning unless the scenario end time

is reached or the termination is triggered. Finally, the timing process is left by

publishing a quit message and other post-simulation tasks (e.g., provide final results)

are performed.

Process sorted
messages

Announce messages &
request time advance

Compute next
simulation state

Received all msgs

Publish NDMs

Message
buffer

Initialize

Finish SynchronizeRun observers

Process distributor
elements

Figure 3.26 – The main simulation loop.

3.4.5 Composing Building Blocks

The described protocol is already sufficient to distribute a simulation scenario among

BBs of the same layer. In this subsection, we illustrate this and further explain the

mechanisms that enable the coupling of BBs of different layers within the same

domain and also of BBs of different domains (see Figure 3.27). From a modeling

perspective, these three cases address different kinds of conceptual connections. The

first aims to connect consistent views and therefore creates consistent representations

of transferred entities. The second is not so strict. However, the goal is still to preserve

as much information as possible and minimize the error between the representations

of connected components, although there is awareness that this is only possible

to a certain extent. For the third case, it is clear that there will be no consistent

representation in general. In addition, bidirectional information transfer is not the

usual case. As a preliminary step, we will address the partitioning.

3.4 Coupling Concept 75

Horizontal Inter-Domain Coupling

Green DomainBlue Domain

Component B

Component D

Component F

Component H

Green_C Layer

Blue_B Layer

Green_B Layer

Green_A Layer

Component A

Component CBlue_A Layer

Component E

Component G

Simple Coupling V
e
rt

ic
a
l
In

tr
a
-D

o
m

a
in

C
o
u
p

lin
g

Figure 3.27 – The different types of coupling.

Connecting Similar Building Blocks

For the purpose of illustration, Figure 3.28 shows two different models of an ex-

emplary scenario in an artificial domain called DomainBlue. Entities move around

the world. The Blue_A layer is a more detailed approach, while the Blue_B layer

uses an aggregated representation. The Blue_A NDM represents single entities and

the Blue_B NDM groups of entities. The domain reference will be a cell as the blue

world is divided into several cells.

c1 c2 c3 c4

c5 c6 c7 c8

c1 c2 c3 c4

c5 c6 c7 c8

Blue_B ModelBlue_A Model

Figure 3.28 – Blue_A and Blue_B model of the base scenario.

As described, the coupling approach is primarily based on exchanging NDM

tuples that represent a subset of the simulation state. In the simplest case that means

either connecting multiple instances of the same component (i.e., classical parallel

distributed simulation) or connecting instances of different components that are still

of the same layer. Both senders and receivers are using the same NDM structure.

When transferring an entity, the published NDM can be processed natively by the

receiver. Therefore, there is no room for interpretation or the need for a conversion

in order to process the incoming data. The purpose of coupling BBs of the same

layer is usually done in order to split the total workload over multiple instances, for

instance to reduce the overall execution time.

The example scenario is partitioned into two spatial regions (Figure 3.29) that

are assigned to two BBs (InstA and InstB) of a Blue_A component by setting their

responsibilities to {c1, c2, c5, c6} and {c3, c4, c7, c8}, respectively. In case an entity

leaves one region (e.g., the red entity is moving from cell c2 to cell c3), the entity is

transferred simply by publishing and consuming a Blue_A NDM tuple that reflects

all necessary information for representing the entity. That implies in particular that

76 3.4 Coupling Concept

entity identifiers are preserved across BBs, so that a user can track and analyze an

entity scenario-wide. If there are more than two BBs of the same layer involved, the

distribution mechanism can also be applied without any modification.

c1 c2 c3 c4

c5 c6 c7 c8

DomainBlue.LayerBlue_A.InstA DomainBlue.LayerBlue_A.InstB

Figure 3.29 – Two BBs of the same layer share the work.

The information flow would look like the following. Let us assume that the

persons attribute of a cell is tagged as isDistributor. As the responsibility set of InstB

consists of the grid cells {c3, c4, c7, c8}, the BB subscribes to the following topics, in

order to receive all necessary information.

provision.simpleExample.blue.blueA.cell.(c3|c4|c7|c8).persons (3.20)

Accordingly, InstA’s responsibility region consists of cells c1, c2, c5, and c6. As soon

as the red entity is moving outside the responsibility set (i.e., entering cell c3), InstA

identifies that the entity is leaving its own scope. This is realized by detecting the

entity’s appearance in a distributor element (cell.c3.persons) that is not linked to the

own responsibilities. As a consequence, InstA is publishing the entity’s current state

in form of the NDM before removing it from the local simulation state. Using the

entity’s new cell, the NDM is published to Topic 3.21. From there it will be consumed

by InstB, as the topic matches InstB’s subscriptions.

provision.simpleExample.blue.blueA.cell.c3.persons (3.21)

This basic logic can be extended by further conditions and feedback loops. As

arbitrary adaptions are thinkable, an example for an extension is used in Chapter 5.

Connecting Layers by Translation

However, it is obviously not sufficient to couple only similar components in order to

meet our requirements of a flexible and extendable simulation system. If a composed

model consists of BBs that belong to different layers of a domain, further actions

have to be taken as their information flows are not connected at the current point.

The NDMs of the involved layers will differ and therefore a conversion between the

data models of the sending and the receiving BB is required. If both layers belong to

the same domain, this conversion will be called a translation that aims for preserving

as much information as possible and minimizing the error between the different

3.4 Coupling Concept 77

representations. Again, preserving entity identifiers is aspired if possible. Typically,

the various layers of a domain will have a different level of detail. As a consequence,

the complexity of a translation will not be symmetrical. One direction of a translation

process represents an aggregation, while in the other direction the incoming data

might needs to be disaggregated (i.e., enriched with information that was acquired

or sampled in parallel). Obviously, the aggregation is usually easier and provides

less room for interpretations and modeling decisions.

As pointed out in Section 3.4.1, the core idea of having a flexible simulation

system consists in having detached translators, so that a component does not have to

bother about any other interface and data model than its own. Existing components

do not need to be modified once a new component is integrated in the simulation

system.

A translation component will connect the data models of two different layers

LA (i.e., aggregated layer, the layer with a lower level of detail) and LD (i.e., dis-

aggregated layer, the layer with a higher level of detail) of the same domain. The

translation itself will convert the data models of these two by providing an aggrega-

tion function fa and a disaggregation function fd . The input tuple of fa has to be

the output of fd and vice versa.

fa : N DMLD
→ N DMLA

, fd : N DMLA
→ N DMLD

(3.22)

In other words, the NDM tuple of one layer can be converted to an NDM tuple of

the other layer. Usually, the aggregation function fa is not invertible. In algebraic

terms, the functions would need to provide a surjective mapping (i.e., elements of

the input set can be ignored, but all elements of the output set need to be mapped).

Therefore, a translation component T is defined by two layers and the two related

translation functions as depicted in Figure 3.30.

T = (LA, LD, fa, fd) (3.23)

state

Aggregator Disaggregator

NDMLD NDMLA NDMLD NDMLA

Tr
an

sl
at
or

Figure 3.30 – A translator provides two individual conversion functions.

78 3.4 Coupling Concept

The implemented functions can be rather simple or use an internal state for

sophisticated sampling. Generating an output does not need to happen for every

input tuple (input-triggered), but can also happen state-triggered or time-triggered.

The first mode indicates that the multiplicity of NDMs is similar in both layers (i.e.,

for each NDM input tuple there will be exactly one NDM output tuple). The second

implies the opposite. The destination layer might model groups of entities. As soon

as a certain amount of NDMs is received an output is generated. The last one is

suitable if the input NDM is describing continuous processes, which need to be

sampled or aggregated until a communication point is reached.

There is no exclusive association between a layer and a single translator, which

means that it is possible to define several varying translators for the same two

layers (Equation 3.24). In addition, the connection of one layer is not limited

to only one other layer. There can be multiple translators that connect the layer

with different other layers (Equation 3.25). Lastly, it is feasible to stack multiple

translators (Equation 3.26) in order to compose new layer connections based on

existing translators.

T1 = (L1, L2, f1, f2), T2 = (L1, L2, f3, f4) (3.24)

T3 = (L2, L3, f5, f6), T4 = (L1, L3, f7, f8) (3.25)

T5 = T1 x T3 = (L1, L3, f1 x f5, f6 x f2) (3.26)

As an illustration, the base scenario is partitioned into a region for a BB of the

Blue_A layer and another region for a BB of the Blue_B layer (see Figure 3.31).

Such a setup could be desirable to achieve a performance gain by only representing

certain areas of interest with a higher detailed model. The layers of both BBs differ

and so do their NDMs. The presented translation is applied in order to establish the

information flow between the two instances. We assume that the responsibility set

for the right region consists of {c3, c4, c7, c8} and that the distributor element of

the Blue_B layer is cell.groups. InstB will subscribe to Topic 3.27. The left part is

identical to the example from the previous example in Figure 3.29, resulting in the

identical publication of a Blue_A NDM by InstA to Topic 3.28.

c1 c2 c3 c4

c5 c6 c7 c8

DomainBlue.LayerBlue_A.InstA DomainBlue.LayerBlue_B.InstB

Figure 3.31 – Two instances of different layers share the work.

3.4 Coupling Concept 79

In contrast to the previous example, Topic 3.28 does not match the subscriptions

of InstB (by intention, as their NDMs differ). However, Topic 3.28 does match the

subscriptions of the translator’s aggregation function (Topic 3.29). Consequently, the

tuple is consumed by the translator and then translated and published on Topic 3.30,

where it is finally consumed by InstB.

provision.transExample.blue.blueB.cell.(c3|c4|c7|c8).groups (3.27)

provision.transExample.blue.blueA.cell.c3.persons (3.28)

provision.transExample.blue.blueA.cell.(c3|c4|c7|c8).persons (3.29)

provision.transExample.blue.blueB.cell.c3.groups (3.30)

To conclude, in the case of connecting different layers within a domain, the

coupling is again realized be exchanging (translated) NDM tuples. This is possi-

ble, because all layers within a domain are models of the same system, which is

partitioned in disjunctive regions. The translation functionality is not limited to

simulators, but can also be used to bridge data gaps in general (e.g., an available

data set from another layer is translated and then consumed by a certain BB).

Connecting Domains by Projection

The translation opens up for a variety of new applications, but a typical cross-domain

co-simulation is still not covered. The main motivation for composed simulation

topologies, which involve instances of different domains, is by no means to split work

for enhancing performance. The connection type of a projection does fundamentally

differ from the simple connection and the translation. The primary purpose is clearly

the generation of new functionality by composing different models. With that the

consideration of responsibility regions is not necessary, if coupling two instances

from different domains. Therefore, also the transfer of NDMs between BBs will not

be utilized for solving this problem.

In contrast to the two previous cases, there is an awareness that it might be neither

useful nor possible to have uniform and consistent representations of the simulation

scenario in BBs of different domains. Based on that, connected BBs of different

domains are permitted to cover identical regions, as the exclusive partitioning

applies only within a domain. A projection will not preserve as much information as

possible, but may use a subset of a layer’s elements by purpose. Different domains

will in general be so heterogeneous that a more specific rule regarding the mapping

between data models is not useful. Consequently, the inputs for a projection do

not have to originate from the NDMs, but can rather consist off all layer elements

that can be published by an observer. Establishing the coupling will happen by a

projector component that is consuming such a data tuple. In a following step, the

80 3.4 Coupling Concept

projector is either providing tuples that correspond to the receiving layer’s NDM or

initiating method calls via the interaction channel (e.g., incorporating the projected

data into the receiving layer’s environment). Exemplary projectors are depicted in

Figure 3.32. As for the translation, the actions can be input-triggered, state-triggered

or time-triggered.

Source
Layer Destination

Layer

Source Domain Destination Domain

Pr
oj

ec
to

r 1

Source
Layer Destination

Layer

Source Domain Destination Domain

Pr
oj

ec
to

r 2
Source
Layer Destination

Layer

Source Domain Destination Domain

Pr
oj

ec
to

r 3

N
DM

N
DM N
DM

N
DM

N
DM

N
DM

Figure 3.32 – Three examples for projectors that are connecting different
layers.

In comparison to the translation, a projection is a unidirectional function, since

a unidirectional information flow between certain layer elements is rather typical

between domains. One could argue that the projection loosens up the data-centric

thought and the point of restricting each layer to a single class of stereotypical

entities (i.e., the NDM). However, opening up for these cross-domain functionalities

is necessary in order to provide a certain amount of flexibility regarding the coupling

topologies and a variety of use cases. As the projectors are still operating on the layer

definition, the key features still apply, such as plug-and-play capabilities, reusability,

and a modular design. Therefore, projections are consistent with the overall idea.

As an example, contents of the DomainBlue are projected into another domain

(see Figure 3.33). The projector component is consuming (observable) information

about the entities of all Blue_A cells (Topic 3.31). In order to ingest the data into

the environment of DomainAnotherExample, API calls are invoked via messages that

are published to Topic 3.32.

provision.projExample.blue.blueA.cell.*.persons (3.31)

interaction.projExample.anotherExample.foo.request (3.32)

DomainBlue.LayerBlue_A.InstA

DomainAnotherExample.LayerFoo.InstB

Figure 3.33 – A projector example is ingesting data into another domain.

3.5 MSaaS Concept 81

3.5 MSaaS Concept

The concepts from Section 3.3 and Section 3.4 do already satisfy many of the specified

requirements and lay a good foundation for further applications. However, using

the concept for realizing a DS does require manual implementation work at this

point, although a ready-to-use simulation system with a low entry barrier is aspired.

Therefore, this section deals with the application layer at the top of the overall system

(see Figure 3.34).

Fundamental information on MSaaS was given in Section 2.3.5. A service

character is mainly characterized by the ability to compose models or components

(i.e., design scenarios), trigger the simulation of scenarios, and evaluate results from

the simulation. All of this should be covered by our service, without the need for the

user to have the involved simulators and other components locally installed. The

execution should be performed on one or more nodes that can be geographically

separated from each other and from the user. Moreover, the service should provide

possibilities to manage domain/layer definitions, components, and resources. In

the following, the different aspects are described in more detail. Finally, the system

architecture that integrates all developed blocks into a single MSaaS solution is

presented.

 Service /
Application

Coupling

Infrastructure /
 Core

Design Execution Evaluation

Management VisualizationS
ce

na
rio

Resources & Definition Management

Monitoring

Execution

Orchestration

Building Blocks Connectors

Serialization

Simulation
Controller

Frontend

Scenario Definition

Distributed Simulation

Topic Mapping Distributed Simulation Protocol

Domain & Layer Taxonomy Time Sync

Communication Data Storage

Middleware

Figure 3.34 – The application layer is addressed in this section.

3.5.1 Definition and Design of Scenarios

The MSaaS layer should support the design of simulation scenarios by composing

different BBs. In addition, there should be the ability to adjust the parameters of

BBs. This involves computation related parameters (such as simulation step length),

execution related parameters (observers), as well as customized input resources

and desired result outputs. Apart from that, there are scenario wide parameters

(e.g., simulation end time) and connectors that realize the information flow between

82 3.5 MSaaS Concept

BBs. Thus, a scenario is characterized by global parameters and a topology of BBs,

connectors, and their parameter sets.

The design of a scenario should be possible in two ways. First, by providing a

text-based definition of the scenario. This allows automatizing the creation and a

script-based execution of scenarios, reusing (potentially modified) existing scenarios,

or simply creating new scenarios in a fast way without any overhead. Second, a

graphical user interface should guide and support a user to create new scenarios from

scratch (i.a., by providing drag and drop functionalities for adding BBs and connectors

from a component catalog). In order to store and transfer a scenario, a defining

text-based structure is designed and specified in the following. Corresponding files

will be called Scenario Definition Files (SCEs), which can be created and modified

via the graphical user interface as well as directly by the user.

Scenario Definition File

All information that is necessary to define and (re)run a scenario is embedded in the

scenario definition file. Its structure is depicted in Figure 3.35 and provided in A.4

in the appendix. A scenario is defined as a set of BBs and parameters that describe a

simulation experiment. Each scenario has a unique identifier and will be executed

once, which will be referred to as scenario execution. The scenario identifier allows

for differentiation between different runs.

There are four different sections in a SCE. Scenario-wide parameters are set in

a general section. The scenarioID is very important as it is incorporated in every

scenario related topic. This allows for running multiple scenarios in parallel and

the retrospective access to historical runs. The simulation time frame, provides a

start and end time, that is used by the instances. The domainReference files provide

information that is used to organize the topologies of the involved domains. With

the execution block it is possible to define a global random seed in order to achieve

repeatable results and set the number of components that take part in the time sync

process. In addition, it is possible to define the priority of the execution and other

constraints such as that the execution should run in real-time mode (i.e., synced to

wall-clock time).

The second part consists of the involved BBs and their instance-specific parame-

ters. Each BB is defined by providing an instanceID and information that is related

to its component (i.e., the type of the component, the layer, and the domain). In

addition, component-specific parameters are given, as well as references to required

resources and desired results. Related to the scenario topology, there is a list of

responsibilities. The synchronized field allows defining the participation in the syn-

chronization mechanism (e.g., for a typical simulator). It is also possible to ignore the

time synchronization mechanism, which can be useful if, for example, just plotting

3.5 MSaaS Concept 83

Scenario
Definition

scenarioID : string

scenarioStart : long

scenarioEnd : long

domainReferences : list
domain : string

reference Path : string

execution

randomSeed : long

constraints : string

priority : long

numSynced : long

buildingBlocks : list

instanceID : string

domain : string

layer : string

type : string

stepLength : long

isExternal : bool

parameters : list
parameter : string

value : string

resources : list
path : string

type : string

results : list
type : string

param : string

responsibilities : list〈string〉

synchronized : bool

observers : list

task : string

element : string

filter : string

period : long

trigger : string

type : string

translators : list

translatorID : string

type : string

domain : string

layerA : string

layerB : string

responsibilitiesA : list〈string〉

responsibilitiesB : list〈string〉

resources : list
path : string

type : string

parameters : list
parameter : string

value : string

projectors : list

projectorID : string

type : string

domainA : string

layerA : string

domainB : string

layerB : string

resources : list
path : string

type : string

parameters : list
parameter : string

value : string

Figure 3.35 – The structure of the scenario definition file.

84 3.5 MSaaS Concept

recent updates. Moreover, the instance can be tagged to be internal or external. In

the external case, the instance is not instantiated and orchestrated by the simulation

controller although being a part of the scenario. As a consequence, external instances

haves to be executed by some external party (e.g., a component that will not be

disclosed by some stakeholder and is operated on their site). Finally, it is possible to

add entries to the observer list in order to let the instance publish certain elements

of the layer data model on topics in the provision channel. Observers can be cyclic

(i.e., “publish a certain attribute every 100 ms of simulation time”) or event-based

(i.e., “publish a certain attribute when threshold x is reached”).

The third and fourth part is about translators and projectors. Their parameteriza-

tions and responsibilities are given in separate blocks. Again ids, types, domains, and

layers are provided. They are complemented with resources and custom parameters.

Scenario Design Rules

In order to be able to execute designed scenarios, there are some rules that need to

be followed when populating a scenario description file.

1. The scenario identifier must be either empty or unique (i.e., not already present

in the data pool). If empty, the simulation service will assign a unique scenario

identifier.

2. The time frame needs to consist of non-negative numbers, provided in seconds.

3. There needs to be a domainReference file for each involved domain.

4. There needs to be at least one BB.

(a) The BB’s instance id must be unique within the scenario.

(b) Domain, layer, and type of the BB must be known definitions.

(c) All mandatory parameters for the component have to be provided.

(d) All given parameter values must lie within the valid value ranges.

(e) All mandatory resources for the component have to be provided.

(f) All given resources must have valid types and exist.

(g) All desired results have to be valid.

(h) The responsibility set is a subset of the elements of the reference domain

file. The responsibility sets of all BBs of the same domain are distinct

within the scenario definition.

5. Translators are optional, even if instances of different layers are involved.

(a) The translator id must be unique within the scenario.

(b) The domains and the translator type have to be registered definitions.

3.5 MSaaS Concept 85

(c) The input and output layer must differ, be registered, and be assigned to

the given domain.

6. Projectors are optional, even if instances of different domains are involved.

(a) The projector id must be unique within the scenario.

(b) The projector type has to be registered.

(c) The input and output layer must be registered and be assigned to the

given input and output domain, respectively.

3.5.2 Execution of Scenarios

In addition to the design of scenarios, the MSaaS layer is responsible for executing

a designed scenario. Therefore, there will be a simulation controller component,

which is responsible for instantiating involved BBs and orchestrating the scenario run.

The developed scenario definition is used as an input for the simulation controller.

Following the data-centric idea and aiming for a slim architecture, all communication

is still realized via Kafka messages. Messages related to the execution are using the

orchestration channel and the provision channel.

The simulation controller builds the heart of the service and fulfills several

tasks. It will continuously wait for incoming requests on Topic 3.33. A validation

of incoming requests is performed, before a scenario execution is triggered. In that

case, internal BBs are instantiated in various ways (locally or on remote nodes,

using native binaries or docker containers). The acceptance, the revocation, and the

termination of a scenario run are published by the controller on Topic 3.34 along

with other general status updates. Such information can, for instance, be used by

third parties in order to instantiate external BBs and let them join the scenario run.

The simulation controller and all BBs listen to control commands on Topic 3.35 (e.g.,

“pause scenario run”). The BBs publish status updates (e.g., “waiting for resources”)

on Topic 3.36 and use Topic 3.37 to exchange synchronization related information.

Announced resources are consumed by the BBs on Topic 3.39. After finishing, they

publish requested results on Topic 3.40.

orchestration (3.33)

orchestration.status (3.34)

orchestration.[sceID].ctrl (3.35)

orchestration.[sceID].status (3.36)

orchestration.[sceID].sync (3.37)

provision.[sceID].scenario (3.38)

provision.[sceID].resources (3.39)

provision.[sceID].results (3.40)

86 3.5 MSaaS Concept

More precisely, an execution life-cycle has three sequential stages concerning

initialization, running the simulation, and cleaning up. The first stage is launched

as soon as a scenario description file is posted on the orchestration channel. The

simulation controller runs several checks (e.g., if there are sufficient hardware

resources). In case an execution of the posted scenario is possible, the instantiation

of involved BBs is triggered. The results of the check is posted on the status channel.

Scenario wide topics are created (Topics 3.35-3.40). The simulation controller

publishes a copy of the initial scenario description on Topic 3.38 after successfully

instantiating all internal BBs. This copy acts as an acknowledgment for the client

that triggered the scenario run and provides the scenario information to involved

external parties. Moreover, it can be consumed by the involved BBs in order to

receive all necessary scenario information without having to consume and filter

messages from the general Topic 3.33. BBs register observers that are requested

within the scenario definition and create topics that will be populated during the

scenario run. Potentially, they may join the synchronization mechanism.

The second stage is entered when every designated BB has joined the synchro-

nization procedure. The simulation coupling protocol (see Section 3.4.4) is applied

until the scenario run is over. Finally, the last stage is used to clean all temporary

files, collect (and upload) final results and publish them (via a reference) to the

results topic. Running instances such as containers are terminated. Apart from that,

the simulation controller periodically kills all spawned processes that are exceeding

a pre-configured run time in order to clean up zombie processes and crashed BBs.

3.5.3 Evaluation of Scenarios

For most cases, the plain execution of a simulation scenario is not enough and an eval-

uating of the results will follow. Due to the data-centric nature, the proposed system

already brings a variety of possibilities that do not require additional functionality

from a dedicated service component.

• The data pool stores messages persistently. All exchanged information can be

reproduced by (re-)consuming the messages from the topics. This includes

among other things:

– Scenario definition and status messages

– Input resources

– Messages that are related to the distribution of a simulation

– Information flows between BBs (simulators, data sources, data sinks,

physical devices, ...), translators, and projectors

– Simulation state updates provided by the observers

– Final results

3.5 MSaaS Concept 87

• As Kafka is widely-used, there are many compatible technologies that can

be utilized. For instance, ksqlDB can be used to run SQL-like queries on the

existing topics [60,61].

• Furthermore, the (post-)processing is not restricted to a single scenario. Data

from multiple scenarios can be integrated in the analysis (e.g., conducting a

parameter study).

• As one major requirement is usability, the graphical user interface provides

access to the topics in an easy way.

3.5.4 Management

Besides these three scenario related task areas, it should be possible to manage the

catalog of domains, layers, components, connectors, and resources. The simulation

controller is supposed to check the validity of received scenario run requests. At first

sight, it may seem reasonable to store and manage the catalog within the controller

component. However, this would contradict the data-centric thought of having a

common data pool and no isolated silos. As a consequence, definitions and resources

will also be stored on topics. Adding, removing, or modifying definitions is done by

publishing an updated configuration that contains all valid contents to the according

topic. Hence, the most recent message on Topic 3.41 - Topic 3.44 represents the

current definitions. Resources are added similarly, with the difference that each

resource is published in a single message in order to avoid redundancy. A resource

can contain a reference to a file or the file itself. Deletion of old resources happens

by using Kafka’s retention policies.

orchestration.definitions.domains (3.41)

orchestration.definitions.layers (3.42)

orchestration.definitions.components (3.43)

orchestration.definitions.connectors (3.44)

orchestration.definitions.resources (3.45)

88 3.5 MSaaS Concept

3.5.5 Graphical User Interface

The Graphical User Interface (GUI) should support the user in all four addressed task

areas. We decided to use a web-based technology to implement the GUI in order to

minimize the system requirements for the user. Therefore, a recent web browser is all

that is required to use the simulation system (impressions are given in Section 4.2.1).

There is a logical separation between general management, scenario-related tasks,

and a historical scenario catalog. The management view provides functionality

for uploading resources and for creating, modifying, and deleting domain, layer,

component, translator, and projector definitions. The scenario view is split into two

parts:

• Design

– Create instances of components in form of BBs

– Design topologies for various domains

– Add connecting translators and projects

– Parameterize all involved BBs (observers, resources, ...) and connectors

– Export a scenario into a SCE

• Execution

– Trigger a new simulation run by sending a SCE to the orchestration

channel

– Provide referenced resources on the corresponding topic

– Display simulation state updates and BB status updates during a scenario

run

The catalog view is designed to list historical runs and according SCEs and provide

raw access to the scenario topics.

3.5.6 Service Architecture

As a result, the elaborations and design decisions of this section lead to the system

architecture that is depicted in Figure 3.36. The central component is the simulation

controller that is responsible for instantiating BBs and managing scenario runs.

Almost any connection is realized via Kafka. One exception is the connection between

web frontend and web backend because there is no client side web technology library

for Kafka. The other exception is the connection between BBs and the resource

storage, which can be used if large resource files should not be stored persistently in

the data pool5. For such use cases, it is suitable to put a file reference in the Kafka

5Kafka’s default size limit for messages is 1 MB. While this parameter can be adjusted, one could
assume that this is the intended order of magnitude for smooth operations.

3.6 Summary 89

message. More details regarding the implementation and other technical aspects

are given in Section 4.2.

Service

«component»
Kafka Broker

«component»
Simulation Controller

Running Scenario

«component»
Building Block

«component»
Building Block

Kafka

GUI

«component»
Frontend

«component»
Backend

REST

Web Browser

Kafka

Kafka
«component»

External Component

«component»
External Data Stream

instantiates

User

SCE

SCE REST

«component»
External Storage

Figure 3.36 – A component diagram of the developed service architecture.

3.6 Summary

In summary, all specified requirements from Section 3.1 are met by the developed

system design. Decisions were based on the requirements and were explained when

there were multiple reasonable options. In addition, this section will provide an

overview on which requirement is impacting which part of the system. In order

to do so, all developed concepts are labeled with a letter (see Figure 3.37). These

labels are used in Table 3.2 to visualize the relations between system elements and

requirements. REQ 1.3, for instance, is satisfied by block d and h and so forth.

 Service /
Application

Coupling

Infrastructure /
 Core

Design Execution Evaluation

Management VisualizationS
ce

na
rio

Resources & Definition Management

Monitoring

Execution

Orchestration

Building Blocks Connectors

Serialization

Simulation
Controller

Frontend

Scenario Definition

Distributed Simulation

Topic Mapping Distributed Simulation Protocol

Domain & Layer Taxonomy Time Sync

Communication Data Storage

Middlewarea

b

d

f

h

i

j

c

e

g

k

Figure 3.37 – Developed architecture with labeled components.

90 3.6 Summary

Architectural Element

a b c d e f g h i j k

REQ 1.1 ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗

REQ 1.2 ↗ ↗ ↗ ↗ ↗

REQ 1.3 ↗ ↗

REQ 1.4 ↗ ↗ ↗ ↗

REQ 1.5 ↗ ↗ ↗ ↗ ↗

REQ 1.6 ↗ ↗ ↗ ↗

REQ 1.7 ↗ ↗

REQ 2.1 ↗

REQ 2.2 ↗ ↗ ↗

REQ 2.3 ↗ ↗ ↗

REQ 2.4 ↗ ↗

REQ 3.1 ↗

REQ 3.2 ↗ ↗ ↗ ↗

REQ 3.3 ↗ ↗ ↗

REQ 3.4 ↗ ↗ ↗

REQ 4.1 ↗ ↗

REQ 4.2 ↗ ↗

REQ 4.3 ↗ ↗ ↗

REQ 4.4 ↗ ↗ ↗

REQ 4.5 ↗ ↗ ↗

REQ 4.6 ↗ ↗ ↗

REQ 5.1 ↗ ↗ ↗

REQ 5.2 ↗

REQ 5.3 ↗

REQ 5.4 ↗ ↗ ↗

Table 3.2 – Relations between requirements and architectural elements.

Chapter 4

System Implementation and

Evaluation

In this chapter, we provide implementation related details of the described concept.

That covers Apache Kafka and Avro, the simulation controller component, the graph-

ical user interface, and base wrapper libraries that can be used for building own

components. Afterwards, demo components are developed and used to evaluate the

concept in an application-agnostic way. Parts of this chapter are based on previously

published works in [97] and [98].

4.1 Apache Kafka and Avro . 93

4.2 Implementation Details . 94

4.2.1 Simulation Controller and Graphical User Interface 94

4.2.2 Base Wrapper Libraries . 95

4.3 Minimal Working Example . 99

4.3.1 Exemplary Data Models and Components 100

4.3.2 Evaluation of Test Applications 103

91

4.1 Apache Kafka and Avro 93

4.1 Apache Kafka and Avro

As stated in Section 3.3.3, Kafka is using the TCP/IP protocol. In contrast to UDP,

this enables a reliable communication, which simplifies the logic on upper layers.

Regarding the delivery semantics, Kafka offers several acknowledge modes. There is

the “0”-mode, where a publisher does not wait for any acknowledgments by the server.

In the “1”-mode, a publisher does wait until the leading broker has acknowledged

the reception of a message. Lastly, there is the “all”-mode, where a publisher waits

until all replicated brokers have acknowledged the message. Although using TCP,

we will set the acknowledge option to “1” in order to prevent message loss that

is for instance caused by violated deadlines or overflowing buffers. In order to

keep the latency low, we use the default value for “linger.ms” and set it to 0 ms.

If efficiency is more important, one could increase this value to enforce batching.

“max.in.flight.requests.per.connection” is set to 1, because we want to assure a

deterministic publication order of messages per publisher. For the implementations,

we are using the native Java library [59], librdkafka for C++ [76], kafka-python for

Python [177], and KafkaJS for Node.js [122].

According to the specification, a Kafka topic name does not contain any hierar-

chies. The “.” is therefore used by us as a level delimiter. Any other non-alphanumeric

character in the topic name is escaped by replacing it with two dashes followed by

the character’s ASCII code.

Per default, Avro serialization will be used in conjunction with a schema registry

for managing the Avro schema definitions. We configure Kafka to use the schema

registry with the topic naming strategy, which requires that all messages on a specific

topic comply to the same schema. Apart from the already presented structure for

representing the scenario definition (including the building blocks, the translators,

and the projectors), we designed additional Avro schema definitions that are used

domain-agnostic by the components (Appendix A.5):

Control Message (CtrlMsg):

Exchange control commands. For example, pause or resume a simulation.

Structure: string sender, string receiver, string command

Resource File (ResourceFile):

Transfer resources. Depending on the MoM’s characteristics and custom set-

tings, the maximum message size that is acceptable might vary. Therefore,

one has to decide if resources can be embedded directly as a byte stream, or if

it is more suitable to hand over a plain reference to an external source.

Structure: string id, string type, bytes file, string fileref

94 4.2 Implementation Details

Synchronization Message (SyncMsg):

Exchange the synchronization data. That incorporates the desired time and

epoch advance and a list of all (relevant) messages that were published since

the last synchronization message. Each component that is participating in the

synchronization mechanism will use the contained info to locally compute the

current LBTS.

Structure: long time, int epoch, string sender, string action,

map〈string,long〉 messages

4.2 Implementation Details

4.2.1 Simulation Controller and Graphical User Interface

The simulation controller is responsible for the orchestration of scenario runs. The

execution of a scenario is requested by publishing the corresponding scenario de-

scription on the orchestration topic. A user can do this manually (e.g., by using

a Kafka CLI tool) or by using the developed GUI. The SimulationService is continu-

ously polling for new messages on said topic. The ScenarioManager checks for each

received SCE tuple if the request is valid (e.g., outdated) and if there are enough

resources available. In the event of success, a ScenarioInstanceExecutor thread is

spawned and the core thread returns to the main loop in the SimulationService class.

Before the next polling is performed, the statistics on currently running scenarios

are updated and occasionally a keep alive message is sent to the broker. For each

referenced instance in the scenario description that is tagged as isInternal, the Scenar-

ioInstanceExecutor is spawning threads that are executing the respective instances.

This happens by calling customized run scripts that can either execute native binaries,

instantiate docker containers, or trigger similar actions on a computing cluster.

For the graphical user interface, we decided to develop a browser-based solution

that does not require the installation of any software artifacts from the user (apart

from an internet browser). The application is classically split into a frontend and a

backend part. The frontend is a JavaScript application that uses the Vue.js framework

and is communicating via HTTP/REST with the backend that is based on Node.js.

The user can access three different logical areas: general management, scenario,

and catalog. In the general tab, it is possible to manage resources, data models,

components, and connectors (see Figure 4.1). Based on this, the user can create and

trigger a new simulation scenario in the scenario tab and also observe live data (see

Figure 4.2 and Figure 4.3). Results and topics of historic runs can be browsed in the

catalog tab (see Figure 4.4).

4.2 Implementation Details 95

Figure 4.1 – General management tab.

Figure 4.2 – Designing a scenario.

Figure 4.3 – Running a scenario.

Figure 4.4 – Catalog view.

4.2.2 Base Wrapper Libraries

In order to have a starting point that allows fast prototyping, we implemented

wrapper libraries for C++, Java, and Python, which realize the described coupling

approach. Due to certain limitations and capabilities of the respective programming

languages and the involved technologies the architectures, the implementations,

and the extents will differ for the respective languages. However, the resulting

libraries are still so similar that we will describe only the Java base library in more

detail. The main components of the JavaBaseWrapper’s system architecture are given

in Figure 4.5 and are described along with other included classes textually in the

following.

96 4.2 Implementation Details

Instance

InteractionHandlerOrchestrationHandler

Producer

KafkaProducerSimulator Translator

Observer

Consumer

KafkaConsumer

ProvisionHandler

Projector

TimeSync

Figure 4.5 – Main architecture of the JavaBaseWrapper.

Config:

A Config instance imports and provides the parameters of the textual config-

uration file and offers several helper functions for instance regarding topic

name inference.

Consumer:

The Consumer class represents a general Pub/Sub-Consumer. It serves as an

additional abstraction in order to be able to add other messaging technologies

easily. Basically, a Consumer can either subscribe to a list of topics or a list of

regular expressions. Moreover, it can be counting, which defines if a received

message is logged for synchronization purposes. A Consumer can be used

in a manual or an automatic polling mode. When in auto-mode, a thread is

spawned that continuously checks for new messages. In the manual mode,

a user has to call the poll() function every time new messages should be

received. For both modes, a received message will be delegated to an instance

that implements the ConsumerCallback interface. By using Java Generics, a

single message type that can be fetched by the consumer is parameterized for

each Consumer instance.

KafkaConsumer:

The KafkaConsumer class inherits from the general Consumer class and imple-

ments the intended functionality in accordance to the Kafka stack.

Producer:

As for the Consumer, the Producer is a general Pub/Sub-Producer class. A

Producer can be counting, which results in the appending of sent messages

to a log that is used for the synchronization process. The generic parameter

of the Producer specifies the type of a message that can be published with a

certain instance. The publish() method returns a boolean value indicating

4.2 Implementation Details 97

the success of a single publications. In addition, there is a method for creating

topics in case explicit topic creation is required.

KafkaProducer:

The KafkaProducer implements the general Producer in compliance with the

Kafka technology.

TimeSync:

In order to read and write to the synchronization topic, the TimeSync class

instantiates one Producer and one Consumer object. Accordingly, both are

typed to the SyncMsg definition and the TimeSync class is implementing the

ConsumerCallback interface (i.e., a method for processing received messages).

Received SyncMsgs have an impact on the current LBTS and the list of ex-

pected messages. The main purpose of the class is the implementation of

the synchronization procedure that was developed in Section 3.4.3. Most

importantly, there is the timeAdvance() method that is used in order to par-

ticipate in the proceeding of the overall simulation. Its structure is depicted

in Algorithm 4.1. In addition, there are methods for joining and leaving the

collaborative synchronization progress.

1: procedure TIMEADVANCE(t ime, epoch)
2: MSGS← getSentMsgsSinceLastAdvance()
3: SMSG← createSyncMsg(t ime, epoch, MSGS)
4: publish(SMSG)
5: TOK ← timeOK() . Checks if LBTS is ≥ t ime.epoch
6: MOK ← msgOK() . Checks if all expected messages are received
7: while !(TOK & MOK) do
8: sleep()
9: poll()

10: TOK ← timeOK()
11: MOK ← msgOK()
12: end while
13: localT ime← t ime
14: localEpoch← epoch
15: end procedure

Algorithm 4.1 – Time advance algorithm.

OrchestrationHandler:

The OrchestrationHandler is responsible for all communication related to

the orchestration channel. That involves mainly the gathering of the initial

scenario definitions, logging capabilities, and control commands.

InteractionHandler:

In order to minimize the overhead of processing messages that are not of

98 4.2 Implementation Details

interest for a certain component, a single InteractionHandler instance is ei-

ther in request mode (i.e., subscribing to a interaction.[...].reply topic

and producing to a interaction.[...].request topic) or in reply mode

(i.e., subscribing to a interaction.[...].request topic and producing to

a interaction.[...].reply topic). When messages are received from sub-

scribed topics, they are stored in a sorted buffer until an Instance component

calls the processBuffer function, which delegates messages in a determinis-

tic order to the processInteraction method of the calling Instance.

DomainHelper:

The DomainHelper is used to store the intra-domain responsibilities. It provides

a mapping between domain references and layer entities and thus provides

knowledge about responsibilities of entities.

ProvisionHandler:

The ProvisionHandler is mainly subscribing and producing to topics that are

used to realize the scenario distribution. Therefore, there is a Producer and

a Consumer object that is typed to the component’s NDM. The subscription

pattern is constructed, based on the layer-internal responsibilities that are

provided by the DomainHelper. It provides the same buffer and process mecha-

nism as the InteractionHandler for incoming messages. In addition, observers

that were requested in the scenario definition are managed. They are executed

systematically, when runObservers() is called.

Instance:

The instance is the abstract main wrapper class. It provides all attributes and

methods that are used by interacting components (i.e., BBs and connectors).

That includes instantiating a logger, a TimeSync instance and a scenario run

loop. The loop is implementing the loop concept from Section 3.4.4. In order

to provide flexibility regarding inheritance, the structure of the loop looks as

depicted in Algorithm 4.2. In addition, it provides a processMessage() and

processInteraction() method stub that can be used by InteractionHandlers

and ProvisionHandlers, respectively. In addition, each instance provides a

pseudo random number generator that is initialized with the scenario’s random

seed.

Simulator:

The generic Simulator class is inherited from the Instance class. It holds a

ProvisionHandler instance that is typed to the addressed component’s NDM.

As a consequence, it has to implement a processMessage() method that

is called when the processBuffer() method is called (which happens af-

4.3 Minimal Working Example 99

1: procedure SCENARIOLOOP

2: preLoopEvent() . Initial preparations
3: while T 6= SC ENARIO_EN D do
4: preStepEvent(T) . Preparations
5: stepEvent(T) . E.g., perform a simulation step
6: processStepEvent(T) . Process new state, e.g., transfer entities
7: synchronizeEvent(T) . Block until proceeding is safe
8: postStepEvent(T) . Run observers
9: T ← T + Step

10: end while
11: postLoopEvent() . Clean up
12: end procedure

Algorithm 4.2 – Scenario loop.

ter each synchronize event) and if there are unprocessed messages in the

ProvisionHandler buffer.

Projector:

As a Projector has no predefined behavior, its generic class will inherit from

the Instance class and provides the projector description from the scenario

description file. Any additional functionality (ProvisionHandlers, Interaction-

Handlers) has to be implemented by a specific projector implementation.

Translator:

The generic Translator class is initialized with the classes of the two data models

A and B that should be connected. The translator instantiates two Provision-

Handlers, one for each of the two layers to be connected. Depending on the

incoming tuple, the processMessage() method calls either translateA2B()

or translateB2A(). For typical use cases, a specific translator implementa-

tion is only required to implement the latter two methods. However, it might

be necessary to extend the existing logic for more sophisticated conversions

(e.g., adding a sampling logic if bridging between a continuous and a discrete

regime).

4.3 Minimal Working Example

Finally, we design exemplary data models and create a minimal working example

that covers all fundamental aspects. The exemplary definitions are also provided

in Appendix B.1. This serves as a demonstration, but as well for a subsequent

performance evaluation. In addition, the demo applications might be a good starting

point for developing own applications.

100 4.3 Minimal Working Example

4.3.1 Exemplary Data Models and Components

The first demo domain is related to numbers. The domain reference consists of

intervals that are described by an ID and a lower and upper bound (see Figure 4.6).

The number of intervals and their bounds can be specified individually for each

scenario. Moreover, we define two layers that use a different representation for

numbers: integers and doubles. The integer layer consists of entities that will be

called demoInteger and entities that will be called interval. The demoInteger represents

the NDM. The NDM’s key is an ID string. In addition, it holds one primitive attribute

called value with the data type integer. The interval is a compound, with an ID string

as key, a list of demoIntegers, and a counter for the current amount of contained

demoIntegers. The list holds the representations of all demoIntegers that are currently

assigned to an interval and is tagged as the distributor element (see Figure 4.7). The

double layer will be designed likewise. The only difference is the name of the NDM

(demoDouble) and its value’s data type (see Figure 4.8).

Number Domain

name number

version 1

reference interval
key ID : string

additional
lowerBound : int

upperBound : int

Figure 4.6 – Definition of the number domain.

Integer Layer

domain number

name integer

version 1

NDM demoInteger 0

key ID : string

primitives value : int

compounds interval � � 0

key ID : string

primitives
elements : list〈demoInteger〉 � 0 '

elementCount : int � 0

Figure 4.7 – Integer layer definition in the number domain.

Double Layer

domain number

name double

version 1

NDM demoDouble 0

key ID : string

primitives value : double

compounds interval � � 0

key ID : string

primitives
elements : list〈demoDouble〉 � 0 '

elementCount : int � 0

Figure 4.8 – Double layer definition in the number domain.

4.3 Minimal Working Example 101

The second exemplary domain is about colors. The domain reference is a cell with

an ID and coordinates (see Figure 4.9). We define two layers that have a different

representation for colors: 3-bit RGB and 24-bit RGB. The RGB3 layer holds an NDM

called pixel with an ID integer. It has three primitive values red, green, and blue of

the datatype boolean (i.e., one bit for each color). In addition, there is a compound

called cell with an ID string as key and a list of pixels (see Figure 4.10) that acts as

the distributor element. The RGB24 layer is defined in the same way, but the data

type of red, green, and blue is a char (i.e., 8 bit per color, see Figure 4.11). Both

NDMs provide methods to increase and decrease the color temperature.

Color Domain

name color

version 1

reference cell
key ID : string

additional
x : int

y : int

Figure 4.9 – Definition of the color domain.

RGB3 Layer

name rgb3

domain color

version 1

NDM pixel � � 0

key ID : int

primitives

red : bool

green : bool

blue : bool

methods
decreaseTemperature : (void)(void)

increaseTemperature : (void)(void)

cell � � 0

key ID : string

primitives pixels : list〈pixel〉 � 0 '

Figure 4.10 – 3-bit RGB layer definition in the color domain.

RGB24 Layer

name rgb24

domain color

version 1

NDM pixel � � 0

key ID : int

primitives

red : char

green : char

blue : char

methods
decreaseTemperature : (void)(void)

increaseTemperature : (void)(void)

cell � � 0

key ID : string

primitives pixels : list〈pixel〉 � 0 '

Figure 4.11 – 24-bit RGB layer definition in the color domain.

Simulator Components

A simulator SI of the integer layer in the number domain is constructed in the

following way. The scenario-wide domainReference file will provide available intervals.

102 4.3 Minimal Working Example

A set of input parameters contains a number of integers N , a list with initial values

V , and a pseudo random number generation function F . The number of iterations

I and the responsibilities are derived from the scenario definition. The simulator

will create N demoInteger variables and preinitialize them with the given values

V . Afterwards, the simulation loop is repeated for I iterations. In each iteration,

each variable is modified using F and might be moved to another interval container,

depending on the value. After the simulation step, the updated simulation state is

processed.

The distribution logic checks the content of each distributor element of the

layer that is not in the responsibility set of the BB. In this example, this is the

interval.elements container. The NDMs of variables that no longer belong to an

interval container of own responsibility are published to the topic that is also derived

by the distributor element (i.e., provision.number.integer.interval.[key].

elements). The published messages and the wish to proceed to the next iteration

are announced by a synchronization message. When all expected messages are

consumed, they are sorted, and processed. Finally, custom observers are processed.

In the same way a simulator SD is implemented for the double layer.

For the second domain, there will be two color simulators: S3 will operate in the

3-bit RGB layer and S24 in the 24-bit RGB layer. As for the number simulators, they

will have no real practical use, as they are designed to have minimal complexity

in order to be able to understand the executable’s code easily. Their exemplary

purpose is to modify an input picture (i.e., a set of RGB tuples) incrementally over

the simulation duration. The S3 simulator is capable of rendering the picture with a

3-bit RGB color model (i.e., with 8 possible colors). In contrast, S24 can differentiate

between 16,777,216 different colors.

Connectors

A translator T0 is designed in the following way. The translation between the integer

and the double layer clearly shows a (dis-) aggregation pattern. The more detailed

double layer is translated to the integer layer by rounding the value element of the

double NDM, while the ID is not modified. The disaggregation function, on the

other hand, will incorporate some randomness to sample missing information. In

particular, the output NDM’s value is constructed by adding a uniformly distributed

random offset within ±0.5 to the value of the demoInteger element of the input NDM.

The ID is preserved. The translator is trigger-based, hence every incoming NDM will

trigger the creation and publication of another NDM.

A projector P0 is implementing the following logic in order to connect the num-

ber and the color domain. P0 is subscribing to all demoIntegers on provision.

number.integer.demoInteger. If the values of all consumed integers of one

4.3 Minimal Working Example 103

simulation step are negative, the temperature of all pixels in the color domain

is decreased. Similarly, the temperature is increased if all received values are pos-

itive. The modification is triggered by sending according interaction messages to

interaction.color.[rgb3|rgb24].request.

4.3.2 Evaluation of Test Applications

In this section, we use the given example layers, simulators, and connectors to

demonstrate and evaluate the functionalities on an exemplary level. As for the

definitions and components, the experiments will be as simple as possible in order

to focus on the core mechanics.

Experiment 1: Baseline

For a first experiment, we use a single BB of SI that should perform a simulation

in the number domain. This use case is for testing the workflow and generating a

baseline for further experiments. The whole scenario definition is given along with

the input file in B.2 in the appendix. The scenario-wide domainReference file defines

two intervals (negative: [−10000,0), positive: [0, 10000)). The BB is responsible for

both intervals. There are two demoIntegers in the scenario, whose behavior (i.e.,

values) are simulated by using a function called growingSine. We want to let the BB

publish information about all demoIntegers after each simulation step.

0 200 400 600 800 1000 1200 1400
Simulation Time

1000

0

1000

Va
lu

e

var0 var1

Figure 4.12 – Generated baseline data.

The generated simulation data is depicted in Figure 4.12. It is also published on

provision.experiment1.number.integer.demoInteger, according to the spec-

ified observer. In each simulation step, the demoInteger entities’ values are modified

by adding a static and an oscillating part to the old value by the growingSine function.

This function has four input parameters (the random seed s, the current simulation

time t , the step length l, and the variables current value v) and implements the

following formula that allows deriving a dynamic but deterministic behavior:

growingSine(s, t, l, v) = v + l ∗ (1+ sin((s+ t) ∗α) ∗ β)

104 4.3 Minimal Working Example

Experiment 2: Distribution

As a second application, we use two BBs of SI that shall split the workload (i.e., the

responsibility list of the first BB SI0 will contain the negative interval, the second BB

SI1 will cover the positive interval). Apart from that, we will use the same parameters

as in the first experiment. As intended, we get the exact same results as before,

although two independent BBs shared the work and repeatedly exchanged integer

entities. Figure 4.13 shows the combined results and gives information about the

origin of data points. With this example, we can demonstrate that our approach

provides the features for a correct distribution of a simulation scenario. The results

of the distributed run show no deviation to the non-distributed baseline.

0.0 0.2 0.4 0.6 0.8 1.0
Simulation Time

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200 1400

1000

500

0

500

1000

Va
lu

e

Merged Outcome
var0 var1

0 200 400 600 800 1000 1200 1400

1000

500

0

500

1000

Va
lu

e

Origin of Data Points
SI0 SI1

Figure 4.13 – Merged result and origin of data points for experiment 2.1.

Based on our fully functional implementation of a distributed simulation system,

we can illustrate the importance of the synchronization for correctness. A BB has

a synchronized flag, which can be disabled individually for each BB involved in a

scenario (see Section 3.5.1). If disabled, the BB will not take part in the developed

synchronization mechanism. This makes sense for certain use cases (e.g., for a BB

that is just rendering the current simulation state, or if performance is top priority,

while correctness is not so important). However, if such non-synchronized BBs are

actively participating in the simulation of the scenario, this may lead to causality

violations. In order to emphasize the importance of synchronization for deterministic

results, we will disable the synchronization for both BBs in the scenario definition of

experiment 2.2. The results are depicted in Figure 4.14. As a consequence from the

missing synchronization, the results differ from the baseline. Each entity transfer

4.3 Minimal Working Example 105

between BBs bears the risk of receiving and processing data too late, too early, or in

the wrong order. Hence, we can observe a growing error over the simulation time.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

0 250 500 750 1000 1250 1500
Simulation Time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Va
lu

e

×103 Actual Values vs. Baseline

Reference var0
Actual var0
Error var0
Reference var1
Actual var1
Error var1

0 250 500 750 1000 1250 1500
Simulation Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ab
so

lu
te

 D
ev

ia
tio

n

×102 Deviation to Baseline
Error var0
Error var1

Figure 4.14 – If synchronization is disabled, the results of the distributed run
differ from the baseline for experiment 2.2.

106 4.3 Minimal Working Example

Experiment 3: Translation

In order to demonstrate the composition of two BBs of different layers within a

domain, the second BB SD0 is an instance of SD (see Appendix B.3). Addition-

ally, the step length of SI0 is set to 20 to show the possibility of having differing

step lengths (e.g., for the purpose of speeding up the simulation). Besides these

modifications, the other parameters match experiment 2.1. As both BBs operate in

different layers, we need to add a translator to the scenario in order to establish

a data flow between the BBs. The already specified translator T0 is used for this

purpose. The outcome is depicted in Figure 4.15. We can see smooth changes for the

modifications that are done by SD0. For SI0, the bigger step size is leading to clearly

notable edges. In addition, the simulation state of SD0 is also impacted as NDMs

are sent and processed by SI0 only every 20th-step. Errors of such kind are typically

accepted when considering a trade-off between accuracy and computational effort.

Moreover, introducing errors by inaccuracies are inherent for multi-level modeling.

However, the resulting deviation to the baseline is deterministic and not random as

in experiment 2.2 when synchronization was missing. Experiment 3 is therefore still

reproducible and repeatable.

0.0 0.2 0.4 0.6 0.8 1.0
Simulation Time

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600 700

1000

500

0

500

1000

Va
lu

e

Merged Outcome
var0 var1

0 100 200 300 400 500 600 700

1000

500

0

500

1000

Va
lu

e

Origin of Data Points
SI0 SD0

Figure 4.15 – Merged result and origin of data points using two BBs with
different levels of detail and step lengths.

4.3 Minimal Working Example 107

Experiment 4: Projection

The composition of BBs of different domains will be illustrated by coupling simulators

from the color domain with an integer simulator. As already stated, a color simulator

takes an input picture and displays a simulated representation that is according to

its color model. Moreover, it is possible to modify single pixels by setting the values

of the different color components or trigger a change in the color temperature of

the whole picture. For an exemplary application, we might find it useful to modify

the temperature based on the intermediate results of a simulator from the number

domain. To establish the information flow between the BBs from different domains,

the projector P0 is used.

The input picture will be a random set of pixels with a size of 8 x 1 that is shown

at the top of Figure 4.16. At the bottom left and at bottom center the development

of the simulation state is illustrated for a simulator from the 24-bit layer and from

the 3-bit layer, respectively. The resulting output picture is given in the last rows of

both plots (i.e., for a simulation time of 1500). At the bottom right, the incorporated

simulation state from the integer simulator is shown. Red and blue colored areas

depict situations where P0’s conditions for triggering interactions in the color domain

are met. At the beginning of the simulation, there is a phase where the temperature

is decreased, followed by a steady phase, and finally the temperature is increased as

the integer values are mostly in the positive interval. Consequently, we demonstrated

the modeling and simulation of a cross-domain problem by simply connecting data

models.

0 1 2 3 4 5 6 7
Pixel

0
150
300
450
600
750
900

1050
1200
1350
1500

Si
m

ul
at

io
n

Ti
m

e

Projection on 24-Bit Sim

0 1 2 3 4 5 6 7
Pixel

Projection on 3-Bit Sim

1000 0 1000
Values

Temperature Conditions

Increase
Decrease

0 1 2 3 4 5 6 7
Pixel

Input Picture

Figure 4.16 – Cross-domain coupling using a projector. Data from the number
domain is affecting the modeled picture.

108 4.3 Minimal Working Example

Experiment 5: Performance

Finally, we assess the overhead of the coupling protocol by measuring the duration of

the synchronization in each iteration. For this purpose, we will consider a local setup,

where all components including the data pool are operated on a single physical

multi-core system, and a physically distributed setup that involves several desktop

PCs. The local setup is executed on a HP ProLiant DL380 G7 with 12 physical Intel

Xeon X5690 cores operated by Ubuntu 20.04.4 LTS. For the distributed run, the

broker will remain on the HP server. Each synchronized participant is executed on a

dedicated Ubuntu 20.04.4 LTS machine with four Intel i7-2600 cores. All devices

are connected via a Gigabit Ethernet switch.

For both setups, we considered two, four, six, and eight involved BBs, which had

to synchronize for 1000 steps, respectively. We repeated the experiments for ten

times. The measures for the synchronization efforts are given in Figure 4.17 and

Table 4.1. As expected, the local run for only two synchronized instances requires the

least amount of time. With an increasing number of participants the duration seems

to grow linearly. While the mean and average duration is below two milliseconds for

the topology with two instances, it takes around 5 milliseconds for a synchronization

step when eight instances are involved. Interestingly, the physically distributed run

shows a better performance for almost all topologies. The local run is only faster

when just two instances are connected. As the server provides 12 physical cores

this indicates a bottleneck regarding the communication. Moreover, one can see a

nearly static behavior for all four physically distributed topologies. For the median

values, all of them require around 2.4 milliseconds. With that we could demonstrate

that our approach is introducing an acceptable low overhead. Furthermore, the

performance is comparable to the synchronization performance of current HLA

implementations [95].

2 4 6 8
Synchronized Participants

0.1

0.2
0.3
0.4
0.5
0.7
1.0

2.0
3.0
4.0
5.0
7.0

Ti
m

e
pe

r S
yn

ch
ro

ni
za

tio
n

St
ep

 (m
s)

×101 Local Run

2 4 6 8
Synchronized Participants

0.1

0.2
0.3
0.4
0.5
0.7
1.0

2.0
3.0
4.0
5.0
7.0

×101 Physically Distributed Run

Figure 4.17 – Measurements for time synchronization steps in ms.

4.3 Minimal Working Example 109

Local Run Physically Distributed Run

Participants 2 4 6 8 2 4 6 8

Median 1.72 2.48 3.82 5.05 2.43 2.43 2.45 2.38

Mean 1.84 2.81 4.51 6.14 2.60 2.63 2.65 2.62

Std. 0.53 1.35 3.00 4.25 0.79 0.90 1.00 1.11

Max 10.60 56.96 64.70 61.45 16.27 19.83 19.69 18.76

Min 0.80 1.13 1.16 1.46 1.11 1.19 1.29 1.27

Table 4.1 – Measurements for time synchronization steps in ms.

Chapter 5

Application to the Traffic Domain

In the previous chapters, we developed a generalized data-centric distributed simu-

lation concept and implemented it in form of a MSaaS system. As a second part of

this thesis, we will now apply the general and domain-agnostic concept to a specific

application domain, the road traffic domain. In order to do so, we first provide

fundamentals on traffic and its modeling. This underlines the assumption that from

the application’s perspective, collaborating with domain-experts or having domain

knowledge is important for the modeling. Based on the given theory, we then develop

the domain definition and the layer definitions for all major modeling paradigms

within the traffic domain. Finally, we design translators, implement wrappers for

well-known traffic simulators, and integrate another domain. Parts of this chapter

have been previously published in [96], [97], [98], and [100].

5.1 Modeling and Simulation of Traffic . 113

5.1.1 Established Modeling Paradigms and Stereotypical Tools . . . 114

5.1.2 Distributed Traffic Simulation Approaches 121

5.1.3 Mobility Data . 122

5.2 Using the Approach in the Traffic Domain 125

5.2.1 Modeling of the Domain Definition 125

5.2.2 Modeling of the Layer Definitions 128

5.2.3 Modeling of the Translators . 133

5.3 Implementing Wrappers . 137

5.4 Extension to a Further Domain . 142

111

5.1 Modeling and Simulation of Traffic 113

5.1 Modeling and Simulation of Traffic

As for many other domains, methods from the M&S field are precious tools in

the domain of road traffic. Barcelo [20] describes the causes for mobility as a

phenomenon of social and economic aspects that are caused by human nature.

Our lifestyle and behavior creates a demand for moving people as well as cargo

(i.e., mobility). The transportation system provides the infrastructure that has the

potential to enable one or multiple ways to realize these movements in form of trips.

Regarding the process of transportation, it is not only about the origin and destination

of a trip. It is also relevant when a journey happens, how long it takes, how much it

costs, what mode is used, and how subordinate modalities look like (e.g., reliability

or ecological impact). Barcelo further describes the transportation system as a system

consisting of two main elements: the infrastructure and the user. While the user

has needs, the infrastructure offers possibilities. From a modeling perspective, this

leads to the question of how users make choices about trips. Making choices implies

that a user has certain preferences and an own individual understanding of the

principles and the functioning of the transportation system. Both preferences and

understanding are used in conjunction with the user’s plans to make decisions.

Modeling of demand can happen on various levels. Typically, there are two

different ways [20]. An aggregated method uses so-called origin-destination matrices

to represent mobility demand. Each origin-destination pair holds information about

the demand traveling from source to destination. In the simplest case, this could

be a single number of total trips. However, the level of detail can still be manifold,

for instance the matrix can hold time-varying values or information about mode

choices. Both origin and destination nodes are usually not representing a precise

geo-location or a street address, but rather cover a whole area (also called a traffic

zone). The input for such models does not necessarily come from knowledge about

behavior of individuals. Moreover, it is common to use traffic count data to estimate

origin/destination matrices [1,51,186].

On a more detailed level, the activities that cause mobility can be used to represent

demand. By using an activity-based approach, there might be additional information

for each trip such as planned stopovers. However, this implies that there is some

model about the emergence of activities (i.e., activity demand modeling). Ben-

Akiva et al. [22] are stating assumptions used for activity modeling by referring to

Chapin [55] and Hagerstand [101]. The assumptions include that the household has

an impact on decisions. For instance, the income, the size, the availability of cars, the

age, and the number of children can play an important role. Besides, there are more

general assumptions that are useful. A person typically rests at the same place every

night or a human being can only be present in one certain location at a certain time.

In addition, there might be other constraints that do not arise from the personal

114 5.1 Modeling and Simulation of Traffic

circumstances, such as office hours. Activity-based modeling does typically consider

a whole day and categorizes activities in certain groups such as work, leisure, or

shopping.

The modeling of the transportation network on the other hand, can be modeled

in a more straight-forward way. Most of the necessary information is accessible at a

certain fidelity and there is little room for interpretation compared to the demand

modeling. Depending on the questions that should be answered, different modeling

paradigms and levels of details are suitable. More information on that will follow

in the subsequent sections. While the network offers possibilities, it has a certain

capacity that has to be taken into account for most analyses in order to get useful

results. The process of mapping the mobility demand to the network is called traffic

assignment. As a result, it is often the case that routes are sampled for each trip [22].
Finally, the simulation of the developed model will consider how the traffic

system model behaves over time. As for simulations in general, the simulation

time can be continuous or advanced in discrete steps (see Section 2.1.1). Usually,

discrete simulations are used and although it is thinkable to have event-based traffic

simulations with varying step lengths, it is more common to have a fixed step length

(e.g., SUMO or MATSim).

5.1.1 Established Modeling Paradigms and Stereotypical Tools

Different objectives lead to different models with varying purposes. The most mature

and popular approaches are macroscopic and microscopic models [108]. Later, the

category of mesoscopic models appeared. While there are numerous definitions of

mesoscopic, which are partially contradictory, there is a consensus about mesoscopic

models filling the gap between macroscopic and microscopic models. Lastly, there is

the group of submicroscopic models that is sometimes also referred to as nanoscopic.

Figure 5.1 depicts their relation to each other. In the following, the approaches of all

four groups will be described briefly in order to have an elementary understanding of

them and their differences. In addition, one well-known off-the shelf implementation

out of each category is presented as it will be integrated as a stereotypical simulator

into the simulation system later on. The decisions for or against tools are based on

our own experience in the traffic field and backed by other scientific publications

[64,77,81]. We tried to stick to open source projects if possible.

Macroscopic Traffic Simulation

Macroscopic traffic modeling is the most aggregated approach. Within this category,

it is more common to have time-continuous models. Many approaches use equation-

based attempts for modeling traffic flows. Established time-continuous models use

first or higher order differential equations. They allow the modeling of the traffic

5.1 Modeling and Simulation of Traffic 115

Macro

Meso

Micro

Submicro

Traffic Modeling Paradigms

Level of detail is increasing

Figure 5.1 – Different traffic modeling paradigms based on [99].

evolution over time. Well-known ones are the models of Aw-Rascle-Zhang [13,235]
and Lighthill-Whitham-Richards [135,184].

The models are inspired by hydrodynamics. As traffic is seen as a flow, there

is no representation of single traffic participants such as vehicles. Helbing [108]
sees the purpose of macroscopic models mainly in short-term traffic predictions, as

a foundation for traffic management systems, and for evaluating aggregate numbers

such as average vehicle speeds or emissions. The lack of details brings advantages

regarding the simulation. There are relatively low input data requirements and the

computational effort is small. In general, there is no proportional relation between

traffic load and computational effort as in microscopic models. Basic variables of

interest are the traffic density, the traffic flow, and the speed of a certain road stretch

at a certain time.

• The density (k) describes the coverage of a stretch by vehicles. In order to

normalize values, its unit is commonly given in the number of vehicles per

kilometer or mile.

• The flow (q) describes the throughput of a stretch by vehicles per hour. Some-

times the flow is also referred to as volume.

• The speed (u) describes the average speed on a stretch by kilometers per hour

or miles per hour.

Matching the hydrodynamic idea, the traffic system can also be imagined as a

pipeline system. Similarly, there is a conservation of traffic flow on a stretch that has

116 5.1 Modeling and Simulation of Traffic

no additional entries and exits (i.e., the outgoing traffic equals the incoming traffic).

Obviously, density, flow, and speed are correlated. The relation of these three basic

variables is well studied under the term Macroscopic Fundamental Diagram (MFD)

(see Figure 5.2). Backed by a sound mathematical foundation [89], one can spot

phenomena that match one’s individual experience on the road. When there is a

stationary state, a simplified relation between the variables can be expressed as in

Equation 5.1.

q = ku (5.1)

There is typically a turning point regarding the density (kc). For a density

between 0 and kc the traffic situation is described as free flow (see Figure 5.2). There

is (practically) no restriction caused by other traffic participants. If the density is

higher than kc , than this changes and the behavior of vehicles is impacted, which

can for example lead to traffic jams. Within the free flow regime, there is another

turning point ks. While the density lies between 0 and ks, the traffic state is stable. A

nearly linear relation between q and k can be seen (see Equation 5.1). This relation

justifies, for example, the meaningfulness of variable speed limit signs, which reduce

the allowed maximum speed when the density is growing in order to prevent traffic

jams and optimize the traffic flow.

k

q

ks kc

Figure 5.2 – Macroscopic fundamental diagram based on [65].

PTV Visum is a well-known macroscopic tool that primarily addresses traffic

engineers and municipal decision makers. PTV GmbH describes it as a traffic planning

software that is suitable to satisfy the various needs of people without losing sight of

economic aspects. By having the opportunity to model multi-modal traffic, a digital

representation of a whole transportation system can be generated. The model can be

used to analyze current problems or identify future possibilities [181]. This implies

to be capable of modeling large-scale scenarios. Currently, PTV Visum runs only on

Windows although a Linux version is announced. There is a COM-API that provides

access to most functions and attributes. It is possible to use the common macroscopic

origin-destination matrices to specify travel demand between zones. This can be

done for each mode of transport or in a combined way. Also, adding a time dimension

5.1 Modeling and Simulation of Traffic 117

is no problem. The traffic network is modeled with nodes and links. A node is a

representation of a junction. It has a certain position and holds information about

connected links. Each link object is bidirectional, but has two directed sub-elements.

The sub-elements have certain attributes such as allowed modes, start and end node,

and a capacity. Zones are connected to (multiple) nodes [111]. Typically, a PTV

Visum user wants to analyze the resulting traffic by providing the travel demand

and using the integrated assignment procedures. Results of interest include, for

example, the traffic volumes, speeds, and mode choices. The available assignment

procedures use different algorithms for estimating the traffic situation. In general,

this is realized by finding all possible ways to realize the travel demand. Then, initial

choices are made and travel costs are evaluated. In an iterative procedure, some

choices are then consecutively modified until the overall costs are converging (e.g.,

if all cars take the shortest route, there might be a traffic jam, while it is less bad to

take a little detour than to be stuck in traffic).

Microscopic Traffic Simulation

In contrast to macroscopic traffic models, microscopic traffic models are more de-

tailed. By modeling individual traffic participants and their behavior, the overall

traffic conditions of a system can be inferred bottom-up. Moreover, these approaches

do also allow for a detailed investigation of the individual behavior. Burghout et

al. [41]mention that microscopic models offer the required level of detail to evaluate

intelligent traffic system technologies. At the same time, they admit that the effort

for input modeling and calibration is not neglectable and that the potential error

grows with the level of detail. The computational effort is also increased with each

loaded vehicle. Scalability is therefore an issue.

The most common modeling approach is using car-following models [90,123].
Hence, it is not only about modeling individual vehicles but also individual behavior

of vehicles. The general idea behind these models is that each vehicle has a desired

speed. It follows a certain route in order to accomplish a trip and is affected by the

transportation infrastructure (e.g., road topology and speed limits) and other traffic

participants. The behavior of each vehicle is computed by taking into account the

speed and distance of the vehicle that is driving in front of it, the speed limit, and

the desired speed.

Figure 5.3 – A car-following model is mainly based on the distance between
vehicles.

118 5.1 Modeling and Simulation of Traffic

Typically, this decision process leads to actions such as accelerate or decelerate,

which in turn can be used to calculate the current acceleration and the speed in

the next simulation step. Besides the longitudinal control, it is also common to

model lane change maneuvers, for instance, in order to overtake. The basis for

this is a simple physical vehicle dynamics model (e.g., it is not possible to stop a

vehicle immediately). This does not only lead to a more realistic model of the traffic

dynamics. It also helps to estimate certain variables within a vehicle more precisely.

With the slope of the road, even the third dimension could be considered. This

might be required for a good accuracy when calculating the consumption (fuel or

electricity) or emissions in hilly areas. Considering discrete calculation steps, the

car-following models are suitable to be implemented in a DES. Smaller steps can

obviously lead to a higher precision, but will cause an increased computational effort.

Besides traffic infrastructure related information, simulating microscopic models

requires basically a set of vehicles, their parameters, and their routes as an input.

Some simulators provide the possibility to sample parameters from random distri-

butions or calculate routes based on origin-destination pairs. Possible parameters

of a vehicle describe the vehicle itself (e.g., type, geometrical dimensions, physical

limits) and the driver (e.g., perception time, error rate, mood).

The SUMO (Simulation of Urban MObility) package is a microscopic traffic

simulation tool. In contrast to PTV Visum, it is an open source project, which is

implemented in C++ and runs on Linux, macOS, and Windows. Multiple modalities

are supported as well as large networks. However, it is obvious that the computational

effort for a large-scale scenario is bigger than with PTV Visum. Typical use cases are

the evaluation of traffic light programs or the analysis of route choices. Providing

speed values and absolute positions for vehicles, it is popular to be coupled with

simulators of other domains (e.g., for V2X applications). SUMO implements various

car-following models. Per default, an adaption of the well-known Krauss model

is used. A SUMO user needs to provide at least a set of vehicles with departure

times, starting point, and destination. Usually, one introduces multiple types of

vehicles with different characteristics (e.g., slow car, fast car, truck, bus, ...) in order

to enhance the degree of realism. Also, the explicit definition of routes for involved

vehicles is common. Besides vehicles, it is also possible to model pedestrians and

additional entities such as traffic lights or parking places. [8,75]

Mesoscopic Traffic Simulation

As already pointed out, the definition of mesoscopic models is not as clear as it was

for the prior ones. Burghout [42] lists several exemplary approaches that fill the gap

between microscopic and macroscopic models:

5.1 Modeling and Simulation of Traffic 119

• Multiple vehicles are grouped into one representation. The group is moving

as a single entity. Each vehicle has still an individual representation, but its

speed is derived from the MFD-relation (i.e., using the link density) [133].

• Vehicles can enter and leave cells that are also moving (called cell-based

aggregation). A vehicle infers its speed from its cell’s speed [21].

• Roads are modeled as queues. The vehicles can have individual speeds that

are derived from a MFD relation. When arriving at the end of a road, a queue-

server is moving the vehicle to a connected road (i.e., the next queue). This

concept also allows for a more elaborate intersection modeling (e.g., traffic

lights) [119].

• Roads are partitioned into stationary cells that have capacity for a single vehicle.

Based on a cellular automaton, a vehicle is moving in discrete steps from cell

to cell [155].

In the following, we call a model mesoscopic, if traffic is modeled by discrete

(groups of) passive traffic participants that are moved through a system. As for any

modeling approach other than macroscopic, the focus is clearly shifted from the road

to the road user. Burghout et al. [41] see the big advantages over microscopic models

in the fact that there are typically fewer parameters that need to be calibrated. Also,

mesoscopic models are less sensitive to faulty inputs (e.g., small errors in the road

network, demand mismatch). Obviously, the computational effort is lower than

for microscopic approaches. The cost of the more aggregated nature is a lack of

information (e.g., the current acceleration or the precise position of a vehicle). There

is no driver state and behavior. Nevertheless, it might be sufficient for evaluating use

cases that require individual representations of vehicles, but not in a very detailed

way (e.g., fleet management algorithms or novel taxi services). Possible outputs

range from the number of customers and the assigned routes to the travel times. As

for microscopic models, one has to provide the trip data as input.

The MATSim (Multi-Agent Transport Simulation) software aims for estimating

the resulting mobility of a synthetic population [142]. It is an open source project

that is implemented in Java and can therefore be used on various platforms. The

maintainers do also aim for supporting large-scale scenarios. There is no dedicated

API. However, the code is implemented in a very modular and extendable way. For

demand modeling, MATSim follows an activity-based approach, where the population

consists of agents that try to realize their individual plans of activities. A plan usually

covers a whole day in an agent’s life, which is sufficient for many traffic analyses.

Agents do not only try to realize their plans, they try also to optimize their route,

mode, and time choices. In order to do this, the traffic simulation is iteratively

repeated, while allowing some agents to modify their choices. A key to this is having

120 5.1 Modeling and Simulation of Traffic

an efficient traffic simulation algorithm. One supported algorithm is implementing

a queue-based model, where each link is representing a queue [17]. Moreover, for

an already calibrated set of agent plans (incorporating mode choices and routes),

a user can disable additional iterations and use only the traffic simulation feature

of MATSim. Partly because of the individual agents, MATSim is also considered

to be representing a microscopical approach. However, in our understanding, and

in comparison with SUMO and PTV Visum, MATSim seems like a good fit for the

gap-filling category of mesoscopic models.

Submicroscopic Traffic Simulation

The most recent modeling approach is called submicroscopic and is characterized

by having an even more detailed model of the vehicle and also of the environment

compared to the microscopic traffic modeling. That means that there is a realistic

physics engine combined with a three-dimensional graphics engine. It is common

to use state-of-the-art game engines as they provide both components (e.g., Unity,

Unreal Engine). As a consequence, it is possible to model the environment in a

very realistic way (e.g., road surface, weather, lighting conditions). The presence

of a realistic 3D environment allows for the reasonable modeling of additional

components inside a vehicle (e.g., cameras or lidar sensors). Eventually, detailed

sensor models can be used to evaluate advanced driving functions such as Adaptive

Cruise Control (ACC) or Automatic Emergency Braking (AEB).

A difference to prior approaches is that a submicroscopic experiment is often

about one (or a few) ego vehicle that is under study and not about the system behavior.

Other vehicles may be modeled with less detail, as they are seen as parts of the

environment. Obviously, this is related to a major increase in terms of computational

effort and input modeling effort. Although the quality of the input and the validity

of the models are crucial, it is clear that such a desired degree of detail makes only

sense if one can provide inputs at an adequate level (e.g., a realistic vehicle dynamics

model, if investigating the impact of different road surfaces).

The CARLA software is also an open source project and represents a submi-

croscopic tool. It is mainly aiming to provide support for problems in the field of

autonomous driving. That can for instance include the training of perception algo-

rithms or the evaluation of driving functions. It is built on top of the Unreal Engine

and will therefore be assigned to the submicroscopic category. CARLA runs on Linux,

macOS, and Windows. The architecture follows a client-server structure, where

the simulation states are computed in the server component, while modifications

(e.g., spawn a new vehicle) are triggered via scripts running on a client. For this

purpose, CARLA offers a Python and C++ API [48,49,74]. The offered degree of

detail obviously comes at the cost of performance. Moreover, the modeling effort for

5.1 Modeling and Simulation of Traffic 121

a realistic scenario can be tremendous at this level. Nevertheless, it can be necessary

for certain applications, for instance, when developing sensor models or algorithms

that are related to autonomous driving. Regarding resources, CARLA supports the

OpenDRIVE standard as input for the road topology. Contrary to the microscopic

and mesoscopic tools, there is no initial input file that holds involved vehicles and

their plans. Therefore, a user has to trigger the spawning and the parameterization

of each vehicle explicitly during the scenario run. This can be done using the API.

5.1.2 Distributed Traffic Simulation Approaches

As for many domains, DS has mainly two manifestations within the field of traffic.

On one hand, there is the plain distribution of logical partitions to multiple instances

of the same simulator for the sake of overcoming hardware limitations (e.g., increase

performance or overcome memory limits). This results, for example, in having one

instance simulating the northern part of a city and another instance simulating the

southern part of that city. Ideally, this would boost the performance by a factor of

two. The challenges are mainly having a working synchronization, a partitioning

algorithm, and a concept for the data exchange at the connecting border regions

between instances. All in all, this manifestation requires hardly any further modeling.

The main issue is to assure a sound implementation of the parallelization on a

technical level. One issue regarding the connection of neighboring regions is how

to communicate the state of connecting links. If dealing with microscopic models

one would exchange vehicles on a connecting road between neighboring instances.

However, if there is no additional knowledge, the sending instance would not know

if the target link in the receiving instance is congested and cannot host any new

vehicles. This specific problem was already addressed by a few works using the term

ghosting to describe a solution approach [41,196]. Passive representations of vehicles

remain on the connection road in the out-sending instance. These passive vehicles

are referred to as ghosts. The internal states of ghost entities are not computed by

the old instance anymore, but are rather ingested from an external source (e.g.,

from the new receiving instance). Using such concepts, it is possible to propagate

environment conditions such as traffic jams across partition borders. A practical

example for the distribution of a traffic scenario to multiple SUMO instances is given

in [37].

On the other hand, there is the idea of multi-level simulation, where traffic models

with a varying degree of detail are combined. This can be motivated once more

by computational aspects (e.g., aiming for the perfect trade-off between required

level of detail and performance). However, it could also be necessary from an input

modeling perspective (e.g., available inputs and desired outputs do not match a

single model). In order to realize a multi-level simulation, the previous distribution

122 5.1 Modeling and Simulation of Traffic

challenges have to be tackled. In addition, it requires a modeling effort regarding

the information transfer between different submodels. In a simple example, there

is aggregated traffic volume data for a specific region. The data would be suitable

to be used in a macroscopic model. We may want to determine good locations for

adaptive traffic lights in this region by conducting a simulation study. However, the

adaptive algorithm might need information of individual vehicles and therefore the

need for a microscopic traffic model arises. As a result, one option would be to have

a macroscopic model of the whole region that is based on the available input data. In

the same scenario, interesting junctions could be modeled in a microscopic way. The

challenge would then be to realize the information transfer between the different

models that are running side by side (e.g., sample discrete vehicles from continuous

traffic flows). Practical examples are given in [99,199].

5.1.3 Mobility Data

In the following, there will be a non-exhaustive collection of mobility data, its

availability, data requirements, and on how inputs find their way into models and

simulations. We distinguish between two different kinds of information related to

mobility: static and dynamic data. The first category of static data is not necessarily

understood as mobility data in the first place as it is mostly describing infrastructural

elements. Nevertheless, input from this group is absolutely necessary for almost all

traffic studies. The most important piece of static information is the transportation

network itself. Data requirements of existing traffic models differ greatly, but there

is almost always a need to know which locations are connected in which way and

at which costs (e.g., distance). A basic representation of a transportation network

can be given as a graph with vertices and edges. The OpenStreetMap project is a

precious source for real-world mobility network topologies [102,165]. Embedded

or related information covers:

• Roads, train lines, bus lines, bicycle lanes

• Modalities of the links (e.g., one-way restrictions)

• Junctions, turning rules, traffic lights

• Geo-locations, elevation information

• Additional information such as crosswalks or buildings

Comparable to the Wikipedia project [226], volunteers play an important role

in maintaining the data in the OpenStreetMap project. Therefore, the amount of

information is huge. However, it must also be taken into account that the level of ac-

curacy can differ significantly for certain maintainers and regions. Other information

that can be queried from heterogeneous sources include:

5.1 Modeling and Simulation of Traffic 123

• Public transport schedules and prices

• Reasonable general estimations (maximum acceleration of an average car,

average speed of a bicycle)

• Tolls, (varying) speed limits

On the other hand, there is dynamic information, which is obviously more likely

to change. This could cover gas prices, the presence of a public event that would

attract a lot of people, or the availability of limited resources such as a rental car or

bicycle. Mobility patterns are one of the most interesting pieces of information in

this context. They can be estimated based on historical or live sources:

• Meta models on individual choices or region-wide mobility distributions

• Aggregated measures (e.g., loop detector data, overhead radars)

• Aggregated processed measures (e.g., pseudo-anonymized data sets from

telecommunication providers, taxi and company fleet data)

• (Commercial) traffic information (e.g., Here, TomTom, Google)

• Detailed trajectories (e.g., floating car data from fleets, test drives)

• Surveys

Depending on the objective of a study and the type of the model, the suitability

of the various sources differs. Moreover, technical and regulatory reasons may

negatively affect the availability and quality of available data. From a privacy

perspective, an individual’s traffic data might be highly sensitive. Macroscopic

models typically require a road network with capacities and OD-matrices as input.

Outputs are, for example, the modal split, the route distributions, and the flow

values. For mesoscopic and microscopic models, there is a need for an input set of

trips or even a synthetic population with day plans. Possible outputs are the driven

trajectories, the occurring traffic jams, or the duration of trips. Submicroscopic

models may need the driving dynamics model and sensor models as input. The road

network might need to be modeled in a very detailed way (surface, weather). Desired

outputs can aim for a specific ego vehicle and involve, for instance, its generated

sensor data or the behavior of integrated assistance systems.

Integration of mobility data into models can happen straight-forward (e.g., im-

porting the network topology into an according data structure). However, more

sophisticated processes might require the use of calibration methods. Calibration

happens on different levels. If building a general mobility model, one can take

empirical data and use it to adjust model parameters for all simulations. In a mi-

croscopic car-following model, such fixed parameters include perception times or

the probability of speed limit violations. If the model is assumed to be ready and

validated, it might be desirable to reproduce a specific real-world scenario based on

mobility measurements. For this purpose, there are two approaches. A scenario can

124 5.1 Modeling and Simulation of Traffic

be iteratively repeated with modified inputs (e.g., estimated route choices) until the

error between simulated measures and real measures are below a certain threshold

(i.e., offline calibration). Another approach is to perform online calibration, where

adaptions are done during a single simulation run. This could be necessary, for

example, when simulating a live digital twin.

5.2 Using the Approach in the Traffic Domain 125

5.2 Using the Approach in the Traffic Domain

The proposed data-centric coupling approach is now being applied to the traffic

domain. The required domain and layer definitions are designed by using the

provided information on the traffic domain.

5.2.1 Modeling of the Domain Definition

Typical entities in the traffic domain (i.e., traffic participants) are moving over

time in a spatial dimension. While spatial relocation of objects happens in many

domains, these movements are the inner essence of the traffic domain. Furthermore,

for some applications in this domain it is only about these movements. A LP will

therefore cover a certain spatial region (see Section 2.3 for fundamentals on DS).

Communication is primarily needed when an entity is leaving the region of one LP

and entering the region of a neighboring LP. Considering that movements are often

modeled (pseudo) space-continuously and are bound to physical laws, the estimated

communication overhead between LPs seems to be satisfactory if regions are chosen

in a reasonable way. As spatial partitioning is a well-accepted partitioning strategy

in general [70], it is in particular suitable in this context.

Figure 5.4 depicts examples for different strategies for partitioning a road network

(gray) into two partitions. Assuming that the traffic pattern is distributed uniformly,

it might be considered to use the topology on the left (A). An advantage of this

choice is that there are only two links that connect the separate regimes. In order to

split work fairer, the second choice could be made, as both regions cover an equal

part of the road network. However, in this setup there are more connecting links that

have to be monitored and handled. For a uniform traffic pattern, the third option

might be a bad choice. It is even likely that a single entity has to be transferred

multiple times between the LPs. Obviously, the partitioning strategy has a significant

impact on the overall performance.

The first thing to be modeled is the domain reference (see Section 3.4.2). It is

tightly connected to the partitioning strategy. We will use a location related element

Figure 5.4 – Different topologies as a result of exemplary partitioning strate-
gies.

126 5.2 Using the Approach in the Traffic Domain

as a reference object for the traffic domain. It has been discussed that a street map

is one of the most elementary data sources of a transport system (see Section 5.1.3).

Furthermore, all presented modeling approaches rely on some representation of the

road topology. When designing a scenario of a real-world system, it is convenient to

convert a real map section into such a representation of the network. Basically, all

of the presented off-the-shelf tools model the road topology as a set of vertices and

a set of connecting edges. The same graph concept applies to common digital street

map formats (e.g., OpenStreetMaps, OpenDrive). As the different elements of road

network models are positioned at certain locations, it seems like a reasonable choice

to use one of them as the domain reference instead of raw geo-spatial locations.

As mentioned, all of the four presented stereotypical simulation software packages

use graph networks. However, when it comes to the details, their concepts for

representing the transportation network differs as illustrated in Figure 5.5:

• Visum works with pairs of directed link objects that are grouped by a common id.

Each link holds parameters such as the id, the type, the length, the capacity, the

number of lanes, the permitted speed, the allowed modes, and the connected

nodes (see E1).

• MATSim has unidirectional links that have an id, a length, a capacity, a number

of lanes, a permitted speed, allowed modes, and the connected nodes (see

E5 and E6). There is no direct grouping of links that are connecting the same

nodes.

• SUMO has unidirectional edges that connect two nodes (see E2 and E3). An

edge contains at least one lane that is defined by an index, a length, a maximum

speed value, and optionally a list of three-dimensional vectors that describes

the lane’s shape [72].

• CARLA uses the OpenDrive standard for representing the road network. A

network consists of roads that may have several sections with several lanes in

both directions. The geometry is given for the whole road, while each lane

has certain offset values [11]. In addition, there are waypoints that have a

three-dimensional location and rotation vector. Each waypoint is assigned

to a position on a specific street lane (see E4). Sets of connected waypoints

represent a route for navigating vehicles [47].

Consequently, there is no common road concept that is directly usable by all

approaches and tools. Neither a link, an edge, a lane, nor a road is well suited to

represent a common reference for the whole traffic domain because the available

and required parameters differ between paradigms. On the contrary, all of the

different road representations do have the understanding that a road is connecting

5.2 Using the Approach in the Traffic Domain 127

N1 N4 N3
E1

E2

E6

E4

E5E3

N2

Figure 5.5 – Different possibilities for road representations.

two elements (i.e., vertices). Therefore, we will use the second elementary type

of graph structures and thus the domain reference will be a node. A node can for

instance be thought of as a junction or a simple connection between two roads. The

resulting definition of the traffic domain is given in Figure 5.6 and in Appendix C.1. A

node will have a unique id and a spatial position. As a consequence, the responsibility

set for all layers in the traffic domain will be a list of node ids.

Traffic
Domain

Definition

name traffic

version 1

reference node

key nodeID : string

additional

x : double

y : double

z : double

Figure 5.6 – Traffic domain definition.

128 5.2 Using the Approach in the Traffic Domain

5.2.2 Modeling of the Layer Definitions

In the following, the layer definitions for the four modeling paradigms are given and

described. Our choices regarding the definitions were made based on typical tool

capabilities from each field and domain expert knowledge.

Macroscopic Layer

The macroscopic layer will embrace macroscopic components. As described before,

this modeling paradigm is about traffic flows. Individual traffic participants are not in

focus of the modeling, but the road network. Therefore, the NDM of the macroscopic

layer will represent a link between two nodes. The key is a linkID string and in

addition there will be eight primitive attributes that describe the status of a link:

the flow (in vehicles per hour), the density (in vehicles per kilometer), the average

speed on that link (in kilometers per hour), the allowed modes of transportation on

that link, the maximum capacity (in vehicles per kilometer), the length (in meters),

the contained paths, and the turning probabilities. As many macroscopic procedures

are based on differential equations that are solved once per simulation run, we will

introduce a method for triggering the recalculation of values. A link is tagged as

persistent, observable, and as the distributor element itself. Also, all dynamic link

attributes are observable. It is possible to retrieve a full description of specific links,

as well as query every single link primitive. On the contrary, we will only permit to

set the allowed modes on a link and modify its maximum capacity. The full definition

can be found in Appendix C.2.

Macro
Layer

Definition

domain traffic

layer macro

version 1

NDM link � � 0 '

key linkID : string

primitives

allowedModes : map〈int,string〉
 � 0

capacity : double
 �

density : double � 0

flow : double � 0

length : double �

paths : map〈string,double〉 � 0

speed : double � 0

turningProbabilities : map〈string,double〉 � 0

methods runAssignment : (void)(void)

Figure 5.7 – Definition of the macroscopic layer.

5.2 Using the Approach in the Traffic Domain 129

Mesoscopic Layer

From the mesoscopic layer on, there is a focus-shift from the road network towards

the traffic participant. Therefore, the mesoscopic NDM will describe vehicles. A

mesoscopic vehicle contains a vehicleID, is located on a certain link, has a route,

and is described further by a vehicle type. One could approximate further attributes

(e.g., the vehicle’s speed) incorporating link statistics, but as these attributes do not

originate from the vehicle model itself, that does not seem reasonable. As the focus

is shifted to the vehicle, the simulation distribution mechanism will not work by

publishing link attributes, but by transferring individual vehicles. Besides the NDM,

we add a link compound to the layer definition. A link entity has an identifier and

can host multiple vehicles. Furthermore, a link is described by the current occupancy

(in vehicles per kilometer), the flow (in vehicles per hour), and the average speed of

passing vehicles (in kilometers per hour). While a link will exist persistently during

the scenario run, a vehicle is tagged as non-persistent. A link, its primitives, a vehicle,

and the current link of a vehicle can be observed. Each primitive attribute is gettable,

while only the current link and route of a vehicle is settable. The list of vehicles

on a link is tagged as the distributor element. The full definition can be found in

Appendix C.3.

Meso
Layer

Definition

domain traffic

layer meso

version 1

NDM vehicle � 0

key vehicleID : string

primitives

link : string
 � 0

route : list〈string〉
 �

type : string �

compounds link � � 0

key linkID : string

primitives

flow : double � 0

occupancy : double � 0

speed : double � 0

vehicles : list〈meso.vehicle〉 � 0 '

vehicleIDs : list〈string〉 � 0

Figure 5.8 – Definition of the mesoscopic layer.

130 5.2 Using the Approach in the Traffic Domain

Microscopic Layer

The microscopic layer definition will be similar to the mesoscopic layer, while adding

more detail. Therefore, the logic regarding the transfer of NDMs will also be compa-

rable. However, as a microscopic vehicle will hold information about its position

on a certain edge, ghosting can be implemented reasonably (see Section 5.1.2).

Besides the position on an edge, a vehicle is identified by a vehicleID, and has an

acceleration (in meters per square second), an angle (in degrees), an edge, a lane,

an absolute position vector, a route, a slope (in degrees), a speed (in meters per

second), and a type value.

Micro
Layer

Definition

domain traffic

layer micro

version 1

NDM vehicle � 0

key vehicleID : string

primitives

acceleration : double
 � 0

angle : double
 � 0

edge : string
 � 0

lane : int
 � 0

position : vec3
 � 0

positionEdge : double
 � 0

route : list〈string〉
 � 0

slope : double � 0

speed : double
 � 0

type : string �

compounds

edge � � 0

key edgeID : string

methods

setAllowedTypes : (void)(int,list〈string〉)

getAllowedTypes : (list〈string〉)(int)

getLaneNumber : (int)(void)

getLaneGradient : (double)(void)

getLaneLength : (double)(void)

getLaneWidth : (double)(void)

primitives

emission : string � 0

flow : double � 0

occupancy : double � 0

speed : double � 0

vehicles : list〈micro.vehicle〉 � 0 '

vehicleIDs : list〈string〉 � 0

detector � � 0

key detectorID : string

primitives values map〈string,var〉 � 0

Figure 5.9 – Definition of the microscopic layer.

5.2 Using the Approach in the Traffic Domain 131

Furthermore, there will be an edge compound that consists of an emission string,

a flow value (in vehicles per hour), and a speed value (in meters per second). It

also holds a list of contained vehicles and a list of contained vehicle ids. Another

compound will represent detectors, which are common in microscopic models. As

their nature differs greatly from model to model, the detector compound will be

very general and hold only an identifier string and a generic value map.

One can query all primitive attributes and also the full vehicle, edge, and detector

tuples. There are many possibilities to modify a vehicle. It is possible to set the

acceleration value, the angle, the edge, the lane, the position, the route, and the

speed. No primitive attributes of the edge or the detector compound are settable,

because these attributes are only derived from the microscopic vehicles and not

modeled explicitly. As for the mesoscopic layer, the distributor element will be the

vehicle list of an edge. The full definition can be found in Appendix C.4.

132 5.2 Using the Approach in the Traffic Domain

Submicroscopic Layer

In the submicroscopic layer, the focus lies still on the vehicle. Again, we add addi-

tional details to the vehicle compared to the microscopic and the mesoscopic layer.

Once more, the transfer logic will be based on the information of vehicles on lanes

that are (not) in the responsibility set. As the physical vehicle models are assumed

to be far more detailed than in the microscopic case, the NDM holds relative values

for throttling, the steering angle, braking, and the current gear. Also, already known

values such as acceleration are now represented as three-dimensional vectors (e.g.,

in meters per square second). The reason for this is that multiple forces might

be exerted on a vehicle and that a vehicle does by no means have to follow the

road track. In contrast to the microscopic definition, the laneID is a scenario-wide

descriptor string. A lane compound mainly provides information about vehicles that

are currently present, but also about their average speed (in meters per second). In

addition, its vehicle list is tagged as distributor element.

The full NDM and all primitive attributes can be queried. Besides the static

vehicle type, the laneID, and the contained sensors, the vehicle attributes can be

modified by setters. The vehicle and the lane tuple can be observed. Also, all vehicle

and lane children are observable except for the static type and the route. The full

definition can be found in Appendix C.5.

Submicro
Layer

Definition

domain traffic

layer submicro

version 1

NDM vehicle � 0

key vehicleID : string

compounds sensors : list � 0

ID : string

type : string

data : list〈bool|bytes|double|int|string〉

primitives

acceleration : vec3
 � 0

brake : double
 � 0

laneID : string � 0

gear : int
 � 0

position : vec3
 � 0

rotation : vec3
 � 0

route : list〈vec3〉
 � 0

speed : double
 � 0

steer : double
 � 0

throttle : double
 � 0

type : string �

velocity : vec3
 � 0

compounds lane � � 0

key laneID : string

primitives

speed : double � 0

vehicles : list〈submicro.vehicle〉 � 0 '

vehicleIDs : list〈string〉 � 0

Figure 5.10 – Definition of the submicroscopic layer.

5.2 Using the Approach in the Traffic Domain 133

5.2.3 Modeling of the Translators

The combination of multiple layers requires not only the modeling of layer definitions,

but especially the modeling of translation rules between those layers. The purpose of

a translator is always to create a mapping between the NDM definitions of two layers

in order to translate NDMs back and forth. As a proof-of-concept, in the following,

we describe the modeling of translators for all neighbored layers (i.e., macro-meso,

meso-micro, micro-submicro). All of them are implemented using the presented

JavaBaseWrapper.

Macroscopic↔ Mesoscopic

One of the most interesting challenges of the translator between the macroscopic

and the mesoscopic layer is the connection between a time-continuous and a time-

discrete modeling paradigm. Therefore, its logic is not representable by a classic

function with a 1:1 relation between input NDM tuple and output NDM tuple. Hence,

it will not be reasonable to create a dedicated output message for each received

input message by solely converting the input using a translation rule as it will be

possible for the following two translators. Another cause of this peculiarity is that

a mesoscopic NDM is representing a single vehicle, while a macroscopic NDM is

representing a road. Therefore, also a shifted focus for the NDMs has to be taken

into account. This is also accompanied by a different modeling perspective. While

the system is described top-down in the macroscopic case, the system behavior arises

bottom-up in the mesoscopic case.

For the aggregation (i.e., meso→ macro), information about each mesoscopic

vehicle is stored until a macroscopic sample window is over. Afterwards, speeds,

amount, and routes of all collected vehicles are averaged per transfer link and

thereby the generation of a macroscopic representation of each relevant link is

straight-forward. The mesoscopic vehicle.link attribute is therefore linked to the key

of a macroscopic tuple (link.linkID) and vice versa.

For the disaggregation (i.e., macro → meso), it is required that the existence

and the state of vehicles is inferred from macroscopic data describing roads. While

the number of vehicles to be created is easily accessible, the most basic question

is how to sample the spawn times (i.e., arrival times) of vehicles that enter the

mesoscopic regime. Equidistantly distributed inter-arrival times could lead to very

artificially appearing mobility patterns. Another approach for sampling arrival

events in a discrete system is to incorporate a Poisson Arrival Process (PAP). This

requires that the arrivals are assumed to be independent of each other. A well-

known application example for this is the modeling of incoming calls in a phone

network [117]. Therefore, we will utilize a PAP to sample discrete vehicle arrivals

based on a link’s traffic flow, which results in exponentially distributed interarrival

134 5.2 Using the Approach in the Traffic Domain

times. Using Equation 5.2, we can calculate the probability that n arrivals happen

during a certain period t. The arrival rate is given as λ, which is directly representing

the traffic flow. If there would be for instance an incoming flow of 2 vehicles per

minute, λ would be 2 veh/min. If we are interested in sampling at which point in

simulation time the next arrival is likely to happen, we estimate the next exponentially

distributed interarrival time. In order to do so, the Cumulative Distribution Function

(CDF) is used (Figure 5.11).

0 2 4 6 8
Vehicle Spawns

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ilit

y

=0.1
=0.5
=2

0 2 4 6 8
Steps Since Last Spawn

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

=0.1
=0.5
=2

Figure 5.11 – Spawn probabilities and cumulative representation.

In the translation process, we would then draw a random number r ∈
�

0,1
�

from a uniform distribution for each arrival. We map this random number r to an

interarrival time i by using the inverse CDF (Equation 5.3) as depicted in Figure 5.12

and are able to schedule a new spawn event. This makes sense if we face a relatively

low traffic flow. If we only have sparsely scheduled spawn events, we can benefit

from not having to synchronize on every mesoscopic simulation step, but only on our

next scheduled spawn event in order to send out the corresponding mesoscopic NDM.

However, this only works flawlessly with a stationary arrival rate. When considering

the translation of traffic, a varying λ might be very likely. For a changing λ, our

PAP is called non-homogeneous. An exemplary sampling result with a changing

arrival rate is depicted in Figure 5.12. In order to consider such varying conditions,

it requires additional logic to interpolate between an old and an updated arrival

rate for an already scheduled spawn event. Otherwise, we would most likely never

recover from a phase with an arrival rate of (almost) zero, for example.

P{N(t) = n}=
(λt)n

n!
e−λt (5.2)

C DF(t) = 1− e−λt , C DF−1(r) =
−ln(r)
λ

= i (5.3)

Therefore, we also implement a more straight-forward approach that is especially

suitable for higher arrival rates. The translator will use the smallest simulation step

length that is found in a scenario definition as an own synchronization step length.

With that, we do not have to schedule future arrivals, but simply can use the current

arrival rate and Equation 5.2 in each step to figure out the amount of NDM tuples

that should be published.

5.2 Using the Approach in the Traffic Domain 135

0.0 0.2 0.4 0.6 0.8 1.0
Random Input r

0

10

20

30

40
In

te
r-A

rri
va

l T
im

e
i =0.1

=0.5
=2

0 50 100 150 200
Time

0

5

10

15

20

Ar
riv

al
 R

at
e,

 A
rri

va
ls

Arrivals

Figure 5.12 – The mapping of an input value r to an inter-arrival time i and
the outcome of a non-homogeneous PAP.

In addition to the spawn time, a mesoscopic vehicle requires a route. In order

to provide some flexibility, we incorporate two mechanisms to sample a route from

a macroscopic NDM. If the NDM contains path information, we use the provided

information to compute the probabilities of following a certain path and simply draw

a random path for each vehicle. In case that there is no path information, we have no

direct access to global system knowledge about traffic patterns. Therefore, we have to

subscribe to the turning probabilities of all links. Based on this information we build

a map of turning probabilities that allows rolling a dice at every intersection and thus

assemble a random route piece by piece. As we already discussed in Section 5.2.1,

the common element of all layers is not the edge, but the node as there are various

concepts for modeling the links of a road network topology. Therefore, another

important task of the translator is to convert macroscopic link ids to mesoscopic

link ids and vice versa. If reasonable, a vehicle type can be sampled from a mode

probability table (e.g., 5 % trucks, 30 % aggressive cars, ...). Such a table is specified

as a scenario resource, as the probability distribution is highly scenario dependent.

Mesoscopic↔ Microscopic↔ Submicroscopic

Compared to the macro-meso translator, the meso-micro translator is more straight-

forward as we have a 1:1 relation between incoming and outgoing NDMs in both

directions. The translation happens mainly by adding or dropping information pieces

to already existing discrete vehicle representations.

For the aggregation (i.e., micro → meso), all attributes that originate in the

microscopic car-following model (i.e., acceleration, angle, lane, edge, position,

positionEdge, slope, speed) are dropped. As for the macro-meso translator, the

microscopic edge identifier is converted to its matching counterpart in the mesoscopic

regime. Also, the route is translated in the same way.

For the disaggregation (i.e., meso→ micro), we are populating attributes that

will be updated frequently in a microscopic regime such as acceleration, position,

or slope with default values. The mesoscopic linkID is converted to the according

microscopic edgeID. The same applies to the route, while the vehicle type is kept.

136 5.2 Using the Approach in the Traffic Domain

Regarding the target lane, for instance, the highway capacity manual states that it is

not possible to provide general lane distribution patterns [159]. Being aware that

the microscopic lane change models will move a vehicle anyway (if necessary and

possible) we use a fair circular pattern for choosing an initial lane in order to utilize

the existing space on the road well.

The micro-submicro translator works similarly. A mapping between submicro-

scopic laneIDs and microscopic edgeIDs is used for the conversion. NDM elements

that cannot be represented in the microscopic NDM (e.g., the gear) are dropped.

In addition, basic math is used to convert attributes such as acceleration. They are

represented as a three-dimensional vector in the submicroscopic regime, while we

mostly consider the vectors’ lengths in the microscopic regime:

micro.acc =
Æ

submicro.acc.x2 + submicro.acc.y2 + submicro.acc.z2

5.3 Implementing Wrappers 137

5.3 Implementing Wrappers

In Section 5.1.1, we described a typical traffic software package for each modeling

paradigm. All four will be integrated in the developed simulation system. In the

following section, we give a brief overview on the implementation of their wrappers.

These insights are useful if the existing wrappers should be modified. Also, if a new

simulator should be integrated, such an impression of potential workflows might be

helpful.

PTV Visum

PTV Visum [181] is a commercial closed-source application that provides an API

over a COM-Interface. Although it is not very convenient to user other languages,

a COM-interface does not necessarily restrict the developer to use languages from

the Microsoft platform (e.g., C#). It can also be used via suitable Python or Java

libraries such as JACOB [83]. As there is currently no Linux version of Visum, we are

using the Windows Version of Visum 2022 and build the Visum wrapper on top of

our JavaBaseWrapper. Hence, we are using JACOB 1.20 in order to utilize the COM-

Interface. As the officially provided JACOB jar is built with a Java 8 compiler, one has

to build it manually for Java 11 in order to be compliant with our JavaBaseWrapper.

In order to be able to represent time dynamics, we considered two non-static

traffic assignment procedures of Visum: Dynamic User Equilibrium (DUE) and

Simulation-based Dynamic Assignment (SBA) [182]. We decided to use the DUE

procedure, because it allows modifying the maximum link capacities. This will be

important to ingest traffic information from other layers back into the macroscopic

simulation. However, setting the capacity is only possible over the whole scenario

duration and not for specific time periods. Therefore, recalculations of the whole

assignment procedures might be necessary during the overall simulation.

JavaBaseWrapper

Simulator<Macro>

Observer Config

VisumWrapper

VisumWrapper

VisumObserver

VisumAPI

DomainHelperTraffic

JACOB

ActiveXComponent

Figure 5.13 – Class diagram of the VisumWrapper.

Although the DUE is based on using individual travel paths, the current Visum

implementation allows only querying the total flow rates over the whole scenario

and not for specific time steps. As we face the same issue for the capacity, we will

138 5.3 Implementing Wrappers

deal with this constraint. With the SBA, we could retrieve path flows per time step,

but as a drawback, there is no way to manipulate the capacities of roads.

VisumWrapper is the main class and extends the Simulator class of the Jav-

aBaseWrapper package (see Figure 5.13). Via the API we can specify traffic assign-

ment methods with their parameters and trigger the execution of the traffic assign-

ment calculations. Afterwards, we can access the computed macroscopic numbers

by jumping to predefined discrete sampling intervals. On a processStepEvent(t)

call, for each outgoing link a macroscopic NDM containing the link’s state at time t is

queried using the VisumAPI class. The NDM tuples are published to corresponding

topics using the provisionHandler that is provided by the simulator base class. On

postStepEvent(t), custom observers are triggered. The VisumAPI class provides

the bridge between the wrapper and Visum via the COM-interface. An impression

on the usage of the offered COM-interface is shown in Listing 5.1.

ActiveXComponent ax, oNetLinks;
void init(){

ax = new ActiveXComponent("Visum.Visum.22");
oNetLinks =

ax.getPropertyAsComponent("Net").getPropertyAsComponent("Links");,→

}
Dispatch getLink(long from, long to) {

return Dispatch.call(oNetLinks, "ItemByKey",String.valueOf(from),
String.valueOf(to)).toDispatch();,→

}
double getFlow(MacroLink link){

Dispatch link = getLink(link.getFromNode(), link.getToNode());
Variant v = Dispatch.call(d, "AttValue",

"VOLVEHPRT("+time+")");,→

double flow = v.getDouble() * (60 / stepLengthInMinutes);
return flow;

}
void setCapacity(MacroLink link, double flow) {

Dispatch link = getLink(link.getFromNode(), link.getToNode());
Variant variant = new Variant();
variant.putDouble(flow);
setValue(link,"Capprt",variant);

}

Listing 5.1 – Exemplary Visum COM-commands via JACOB.

MATSim

MATSim [113] is published under an open source license and is developed in Java.

Therefore, we build the MatsimWrapper as well on top of the JavaBaseWrapper. We

use MATSim in version 12.0. In contrast to Visum, MATSim offers no dedicated

5.3 Implementing Wrappers 139

API. Instead, a comprehensive event listener approach [17] was designed by the

developers that can be utilized when adding custom extensions.

Using the event listeners, we cannot stick to the general simulation workflow

that is provided by the Simulator class of the JavaBaseWrapper. For instance, the

MatsimWrapper has to run its final initialization routines when notifyMobsim-

Initialized() is called by MATSim. In addition, it is not possible to proceed

the simulation by triggering a next simulation step. On the contrary, we only can

delay the proceeding of the simulation that is carried out by the MATSim logic.

Thus, we replace the scenario loop logic of the Simulator by executing the required

tasks for one simulation step every time notifyMobsimAfterSimStep() is called

as depicted in Listing 5.2. In addition, we subscribe to the LinkEnterEventHandler.

Thus, MATSim calls handleEvent(LinkEnterEvent) each time a vehicle enters a

new link. In this handler function, we check for each entering vehicle if the new link

is not in the BBs responsibility region. In such case, we generate a mesoscopic NDM

using the MatsimAPI class and publish the tuple. In the local MATSim state, we let

the vehicle end its trip on the current link. When a mesoscopic NDM is received, the

MatsimWrapper is calling addAgentToMobSim() of the MatsimAPI class in order to

adopt the received vehicle in the local simulation state. The mentioned components

can be found in Figure 5.14.

public void notifyMobsimAfterSimStep(MobsimAfterSimStepEvent e) {
long t = TimeSync.getLocaltime();
simulator.preStepEvent(t);
simulator.stepEvent(t);
simulator.processStepEvent(t);
simulator.synchronizeEvent(t);
simulator.postStepEvent(t);

}

Listing 5.2 – Main simulation loop of the MatsimWrapper.

SUMO

SUMO [8] is also an open source project and is written in C++. It provides an API

called TraCI, which will be used by our SumoWrapper. Originally, interaction was

only possible via network sockets. Since SUMO 1.0, there is also a C++ API library

called Libsumo that supports similar function calls, but comes without the network

overhead. We use SUMO 1.13 and Libsumo for our wrapper.

As we are using the C++ API library, we will build the wrapper on top of our

CppBaseWrapper library. With the offered API functionality, we are in full control over

the simulation and can trigger the next simulation on our own. The simulation loop

in the SumoSimulationControl class is proceeding SUMO via the SumoAPILibsumo

140 5.3 Implementing Wrappers

JavaBaseWrapper

Simulator<Meso>

Config TimeSync

Observer

MATSim

«Interface»
MobsimBeforeSimStepListener

«Interface»
MobsimAfterSimStepListener

«Interface»
MobsimInitializedListener

«Interface»
LinkEnterEventHandler

ConfigUtils QSim

MatsimWrapper

MatsimWrapperMatsimAPI

DomainHelperTraffic MatsimObserver

Figure 5.14 – Class diagram of the MatsimWrapper.

class. Afterwards, for each vehicle in the local simulation state that is not marked as

a ghost, we check if its current edge is still in the local responsibility set. If not, we

tag the vehicle as a ghost, create a microscopic NDM representation of it, publish

the tuple, and let the vehicle finish its existence in the local simulation world after

passing the current edge. With the tagging as a ghost, a vehicle has officially left the

simulation scope of the BB and will not appear in observer outputs.

If ghosting is enabled per scenario parameter, and there is another BB that is

covering the outgoing edge, we use the attribute updates of the receiving BB to

update the attributes of their ghost representations in the out-sending BB. Therefore,

a ghost represents a perfect copy of an active vehicle in another instance, as long as

that vehicle is still on the transfer link. As a next step, we request a time advance

and announce all messages that were published by us. When the synchronization

is finished, we process all incoming messages (e.g., position updates for ghosts or

incoming vehicles) and finally run custom observers before starting with the next

iteration. Figure 5.15 illustrates the main components.

CppBaseWrapper

Simulator SimulationControl ObserverTimeSync

SumoWrapper

SumoSimulationControl SumoObserverSumoWrapper SumoAPILibsumo

«Component»
Libsumo

Figure 5.15 – Class diagram of the SumoWrapper.

5.3 Implementing Wrappers 141

CARLA

Similarly, CARLA [74] is an open source project that is written in C++. Besides a

C++ API, there is also a Python API for interacting with the simulation core. In

order to demonstrate the flexibility of our approach, we will use the Python API and

build a wrapper on top of our PythonBaseWrapper library.

The architectural design of CARLA is mainly split in a server and a client compo-

nent. For the wrapper, we create a client script that connects to the CARLA server and

runs initialization routines (e.g., loading the scenario map). The following procedure

resembles that of the SumoWrapper. Iteratively, we trigger a new simulation step on

the CARLA server component and process the updated state. If there are vehicles on

outgoing roads, we publish representing submicroscopic NDMs and end their journey

in the local world. After synchronizing, we adopt incoming submicroscopic NDMs

into the local simulation state and run observers. A brief orientation is presented in

Figure 5.16.

CarlaWrapper

CarlaAPI CarlaWrapper

PythonBaseWrapper

TimeSync KafkaProducerKafkaConsumer

«Component»
Carla

Figure 5.16 – Class diagram of the CarlaWrapper.

142 5.4 Extension to a Further Domain

5.4 Extension to a Further Domain

As a last section in this chapter, we want to demonstrate the extendability of the

approach by expanding to another domain using the domain of communication

networks. Such a domain might address the question if and under which conditions

communication happens between several communicating nodes. Different layers

in the domain might consider various levels of detail (e.g., simple probabilistic

approaches or detailed packet-level models) and different technologies (e.g., 802.11p

or 5G). Developed definitions can be found in Appendix D.

Definitions for the Communication Domain

Regarding the domain definition, a common reference element is required that can

be understood by all layers of the domain. It does not seem reasonable to use a very

spatial-related element such as grid cells, as most communication flows will travel

nearly with light speed. A partitioning based on spatial cells could make sense, if only

isolated radio cells are considered, for instance. However, implementing a useful

partitioning on top of such regions might not work well in general, as communication

messages might propagate almost instantaneous within a whole system. In contrast

to the traffic domain, we therefore use a logical network as the domain reference

for all communication layers, which will basically be a set of nodes that might be

communicating with each other. With that, several networks may co-exist and can

be used to form logical partitions. A network may be further described with a textual

description and a technology identifier.

Communication
Domain

Definition

name communication

version 1

reference logicalNetwork
key networkID : string

additional
description : string

technology : string

Figure 5.17 – Communication domain definition.

We will design a layer for the wireless communication standard IEEE 802.11p.

The reason for choosing this layer is that it was designed for vehicular communication.

Thereby, we clearly recognize the link to the traffic domain and are in the position

to demonstrate a cross-domain study in the following chapter. The 80211p layer

focuses on radio messages. The NDM is represented by a message tuple that contains

information about the networkID, the sender, the receiver, the type, the stage,

the (radio) channel, the priority, and the payload. The message stage is used to

distinguish between events, where messages were sent or were received. As a radio

message is highly transient, it will not be possible to get or set message attributes

nor to observe specific attributes of a message. The only possibility is to observe all

5.4 Extension to a Further Domain 143

generated messages in general. Besides the NDM, there is also information about

the environment. There is a compound related to existing logical networks that

gives information about sent and received messages within the logical network. It

builds the connection to the domain reference element. The received field is used

for the coupling mechanism and is therefore tagged as the distributor element. All

network child attributes are gettable and observable. A logical network is supposed

to be persistent during a scenario run, which does not mean that it has to host nodes

all the time. In addition, there is a compound that is observable and represents

all nodes in the environment. The position of each node is settable, gettable and

observable.

80211p
Layer

Definition

domain communication

layer 80211p

version 1

NDM message 0

key messageID : string

primitives

networkID : string

sender : string

receiver : string

type : string

stage : string

channel : int

priority : int

payload : string

compounds

logicalNetwork � � 0

key networkID : string

primitives

received : list〈80211p.message〉 � 0 '

receivedNumber : int � 0

sent : list〈80211p.message〉 � 0

sentNumber : int � 0

node 0

key nodeID : string

primitives position : vec3
 � 0

Figure 5.18 – Definition of the 80211p layer.

We model a projector that links the communication layer to a layer from the traffic

domain. A detailed wireless communication model for vehicular ad-hoc networks

depends strongly on the positions of the sending and receiving nodes, which would be

offered by both the microscopic and the submicroscopic layer. Considering simulation

performance, we will focus on the microscopic layer and create a projector between

the microscopic layer and the 80211p layer. The main task of the projector is to create

representations of new vehicles in the environment of the communication model

and remove them when vehicles leave the simulation. In addition, the projector

continuously has to retrieve the positions of vehicles and trigger position updates

of nodes in the communication model. In order to get the needed information, the

projector will subscribe to Topic 5.4. Based on an internal log, the projector can infer

144 5.4 Extension to a Further Domain

the required actions: add a new node, remove a node that is not present anymore,

or update the position of a node. Each action will result in an interaction request by

publishing a corresponding message to Topic 5.5.

provision.[sceID].traffic.micro.vehicle.position (5.4)

interaction.[sceID].comunication.80211p.request (5.5)

OMNeT++ Wrapper Implementation

Finally, we implement a component for the developed layer. OMNeT++ is a well-

known DES framework in the context of communication simulations. Many protocols

were already modeled as extension to the framework. There is for instance an

IEEE 802.11p model that was added as part of the Veins project [206]. We use

parts of the Veins library and the OMNeT++ simulator in version 5.6.1 in order

to provide an 802.11p communication simulator in our system. The OMNeT++
environment is using C++. That is why we are building the wrapper on top of our

CppBaseWraper. There is no dedicated API provided by OMNeT++. An OMNeT++
user is implementing the desired features within the OMNeT++ framework and is

able to modify existing parts of the already provided DES functionality. According to

the existing architecture, we modify the default discrete event scheduler of OMNeT++
and ingest our synchronization logic. Inspired by the Veins workflow, there is a

ScenarioManager that takes care of updating the communication nodes based on

messages that are provided by the OppProvisionImpl class. Another important part is

the TriggerMsgApp class that is inherited from the BaseAppLayer class of the Veins

OmnetWrapper

OppWrapper

Scheduler

TriggerMsgApp

ScenarioManager OppProvisionImp OppInteractionImpl

OppObserver

CppBaseWrapper

TimeSync

SimulationWrapper

Observer

OMNeT++

cScheduler

«Component»
SimCore

Veins

BaseAppLayer

«Component»
802.11p Model

Figure 5.19 – Class diagram of the OmnetWrapper.

5.4 Extension to a Further Domain 145

library. It represents a proxy application that runs on each simulated network node

and has two functions. First, it is able to notify the OmnetWrapper that a radio

message was successfully received by a node. This information can then be published

on the provision channel if corresponding observers are specified. Second, it is used

to trigger the transmission of a radio message if such an action was requested via

the interaction channel. The main components are depicted in Figure 5.19.

Chapter 6

Exemplary Case Studies in the Traffic

Domain

In the following, we demonstrate the capabilities of the developed system and its

application to the traffic domain. Five exemplary simulation studies cover and make

use of the system’s main features: distributed simulation, multi-level simulation, data

enrichment, integration of real-world data, data reuse, and cross-domain simulation.

In order to illustrate the different aspects, we give examples of situations in which a

certain feature might be desirable.

6.1 Study 1: Distributed Simulation . 149

6.1.1 Validation . 149

6.1.2 Performance Gains . 152

6.2 Study 2: Multi-level Simulation . 155

6.3 Study 3: Data Enrichment . 162

6.4 Study 4: Integration of External Data . 167

6.5 Study 5: Cross-Domain Simulation . 171

147

6.1 Study 1: Distributed Simulation 149

6.1 Study 1: Distributed Simulation

In the first study, we cover the simulation distribution abilities. We consider two

different aspects in this light. In a first step, the correctness of a distributed traffic

simulation is assessed by comparing a naive and error-prone approach with a valid

traffic distribution approach. After that, possible speed-ups using the correct version

are evaluated. The scenario definitions can be found in Appendix E.1.

6.1.1 Validation

The general correctness of the coupling approach (i.e., mainly the synchronization

mechanism) was demonstrated in Section 4.3.2. However, depending on the appli-

cation we also mentioned that additional measures might have to be taken if the

exchange of NDMs also depends on additional external conditions. In the road traffic

context, such a condition is the state of the transfer link. If there are for example

slow vehicles at the beginning of the transfer link, approaching vehicles typically

already brake on the preceding link. Furthermore, the receiving link could also be

completely congested. In such a case, it will not be realistic to transfer the NDM at

all as a vehicle cannot move forward. This specific problem was already addressed

in Section 5.1.2 using the term ghosting.

Using the observer concept, the integration of a ghosting approach with our

system works flawlessly. In the following, we will use a simple scenario to illustrate

the importance of such a feedback mechanism. The road network consists of five

100 m long road stretches that form a straight road line of 500 m (see Figure 6.1).

Fast vehicles will drive from the start to the end of the road (i.e., starting at 0 m

and leaving at 500 m). In addition, there will be one slower vehicle that spawns

on the centered road stretch, pauses for 20 seconds, and drives to the end of the

road. The fast vehicles are illustrated as a red rectangle, and the slower vehicle

as a blue rectangle. The scenario is equally partitioned into two regions (red and

blue), which means that the central road is the transition link. Both LPs will be

simulated by two microscopic SUMO instances (Instance0, Instance1), respectively.

As vehicles drive from the left to the right, the red instance is responsible for the

first two road stretches, while the blue instance is covering the three others. For the

opposite direction, the blue instance would be responsible for the roads between

300m and 500m, while the red instance would cover the three other stretches.

As a result, the blue vehicle is spawned in the blue regime and the red instance

would never know about its existence if there would be no ghosting concept. This

is not necessarily a problem. For instance, if the traffic situation is relaxed enough,

there is a high probability that no inconsistencies would arise. However, without a

feedback mechanism, we cannot guarantee that distributing the traffic simulation

150 6.1 Study 1: Distributed Simulation

0 100 200 300 400 500
Distance to Start of Road (m)

FastVeh SlowVeh

Figure 6.1 – Line scenario with five connected road stretches.

will lead to results that match the non-distributed runs. A typical problem is a traffic

jam that is propagating over the partition boundaries. One example that illustrates

this is shown in Figure 6.2. The distance of the vehicles to the start of the road

is given on the y-axis, while the simulation time is progressing on the x-axis. The

reference trajectories are produced by simulating the same scenario with a single

instance of the same microscopic traffic simulator.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Simulation Time (s)

0

100

200

300

400

500

Di
st

an
ce

 to
 S

ta
rt

of
 R

oa
d

(m
)

Reference trajectory of vehicles originating in Instance0
Reference trajectory of vehicles originating in Instance1
Trajectory calculated in Instance0
Trajectory calculated in Instance1

SlowVehicle1 (spawned in Instance1)
FastVehicle9 (spawned in Instance0)
FastVehicle10 (spawned in Instance0)
FastVehicle11 (spawned in Instance0)
FastVehicle11 (reference)
FastVehicle11 (computed in Instance1)

SlowVehicle1 (spawned in Instance1)
FastVehicle9 (spawned in Instance0)
FastVehicle10 (spawned in Instance0)
FastVehicle11 (spawned in Instance0)
FastVehicle11 (reference)
FastVehicle11 (computed in Instance1)

Figure 6.2 – Distributed micro simulation that produces wrong trajectories
due to missing ghosting features.

Because there is no awareness of the slow-driving blue vehicle in the scope of the

red instance, the red instance is sending out vehicles as there would be no congestion

on the third road stretch. In the non-distributed case, FastVehicle9, FastVehicle10, and

FastVehicle11 would already start to slow down at the end of the second road stretch.

Consequently, this leads to inconsistent results with FastVehicle11 being delayed for

two seconds. Obviously, this can lead to arbitrarily large errors, for instance if the

transfer link is completely congested for a significant amount of time.

In contrast, one can see the perfect match between both instances and therefore

also between the non-distributed reference and the distributed simulation in Fig-

ure 6.3 if the ghosting feature is activated. Due to the ability of integrating external

status updates on the border regions, the propagation and representation of traffic

situations across system borders is now possible. Using this feature, the overall

results are consistent with the non-distributed baseline run as desired.

6.1 Study 1: Distributed Simulation 151

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Simulation Time (s)

0

100

200

300

400

500
Di

st
an

ce
 to

 S
ta

rt
of

 R
oa

d
(m

)
Reference trajectory of vehicles originating in Instance0
Reference trajectory of vehicles originating in Instance1
Trajectory calculated in Instance0
Trajectory calculated in Instance1
Trajectory available in Instance0, calculated in Instance 1

SlowVehicle1
FastVehicle9
FastVehicle10
FastVehicle11

SlowVehicle1
FastVehicle9
FastVehicle10
FastVehicle11

Figure 6.3 – Distributed micro simulation that produces correct trajectories
by using ghosting features.

152 6.1 Study 1: Distributed Simulation

6.1.2 Performance Gains

One reason for using DS is to split the work across multiple computing nodes so that

hardware constraints (e.g., main memory) of a single node can be overcome. For

example, the required main memory of a single node could decrease accordingly if

the executed simulator instance has to represent and simulate half as many vehicles

as present in the overall scenario. Another reason for using DS is to speed up the

overall simulation by taking advantage of the parallelization effects that arise. As

the involved communication and synchronization tasks of the developed approach

require a non-negligible effort, we will assess exemplary speed-ups that are resulting

from the offered distribution possibilities in this study.

Assumption Let us assume that we are interested in the performance impact

of using different numbers of instances and partitioning strategies

when running a microscopic traffic simulation of a Manhattan grid

with a random traffic pattern. The used topologies are shown in

Figure 6.4. Each LP is covered by a single SUMO instance.

Requirements We need a microscopic traffic model, the traffic input, and the road

resources.

The main goal of this study is to demonstrate that speed-ups are possible, but that

the overall performance is at the same time highly dependent on the scenario and the

partitioning strategy. Furthermore, we are using the Manhattan grid scenario with

uniformly distributed traffic flows because we are considering it as a challenging

scenario for such an application. Due to the traffic pattern and the road topology,

there are no inherent regions that are forming largely self-contained traffic clusters.

When facing traffic clusters with a reduced amount of inter-vehicle traffic, an even

1 LP 2 LPs 3 LPs 4 LPs a 4 LPs b

5 LPs 6 LPs 8 LPs 10 LPs a 10 LPs b

Figure 6.4 – Different topologies for the distributed simulations.

6.1 Study 1: Distributed Simulation 153

better performance is conceivable. Such clusters might be found in real-world maps

as they can contain for instance rivers, self-contained districts, or freeways.

Topology Total Synchronize
Process

Outgoing Simulate
Process

Incoming

Baseline 46.23 0.00 0.00 0.00 0.00
1 LP 50.45 0.01 0.00 50.44 0.00
2 LPs 40.01 9.18 0.54 28.30 2.12
3 LPs 45.54 19.53 0.56 23.39 2.06
4 LPs a 29.14 10.40 0.64 15.58 2.78
4 LPs b 40.33 19.33 0.63 17.92 2.30
5 LPs 43.83 28.40 0.55 12.05 2.46
6 LPs 33.26 20.59 0.56 10.02 2.32
8 LPs 58.22 46.60 0.55 8.49 2.03
10 LPs a 96.00 80.64 1.28 9.20 5.41
10 LPs b 54.30 44.60 0.47 7.44 2.00

Table 6.1 – Median values of scenario run effort in seconds.

The simulations are executed on an HP ProLiant DL380 G7 machine with 12

physical Intel Xeon X5690 cores that is operated by Ubuntu 20.04.4 LTS. For each

topology we are conducting 25 simulation runs and measure the required amount

of wall-clock time for each run. The results are given in Table 6.1 and illustrated in

Figure 6.5. A classical SUMO simulation that is executed without using any of the

concepts that were developed in this work is building the baseline. As expected, the

1 LP runs are slower than the baseline, because no parallelization can happen. At

the same time, the framework’s overhead is already added. However, using such a

topology might still be useful, as the execution is orchestrated easily by the developed

service and the observer concept can be used for simple generation and processing of

Baseline 1 LP 2 LPs 3 LPs 4 LPs a 4 LPs b 5 LPs 6 LPs 8 LPs 10 LPs a 10 LPs b
Partitioned Topologies

100

30

40

50

60
70
80
90

200

Co
m

pu
ta

tio
na

l T
im

e
(s

)

Figure 6.5 – Scenario runtimes of different topologies.

154 6.1 Study 1: Distributed Simulation

simulation results. Starting from the 2 LPs topology until the 6 LPs topology a benefit

regarding the overall execution duration is observable, either for all repetitions or at

least for the average values. The best suited topology for increasing the performance

seems to be 4 LPs a. Topologies 8 LPs, 10 LPs a, and 10 LPs b do not make any

sense from a performance point of view as most runs are even slower than the 1 LP

topology.

In addition, we tracked the respective shares of computing the next simulation

state, synchronizing instances, processing states for publications, and ingesting

incoming entities in the total amount of time. The results are depicted in Figure 6.6.

Nearly all time is spent for pure simulation for the runs with one LP. Starting from

the runs with two LPs to the runs with ten LPs, we see a trend of an increasing

share of time that is needed for synchronization. That can be explained with an

increased message volume that needs to be delivered reliably between an increased

number of communication partners. Even more than 50 % of the overall time is

spent on synchronization if at least five partitions are used. The bad performance of

the topologies 8 LPs, 10 LPs a, and 10 LPs b seems reasonable as more than 75 % of

the total time is spent on synchronization.

1 LP 2 LPs 3 LPs 4 LPs a 4 LPs b

5 LPs 6 LPs 8 LPs 10 LPs a 10 LPs b

Simulating Waiting / Synchronization Processing Outgoing Processing Incoming

Figure 6.6 – Time consumption shares per topology.

Besides the possibility of achieving speed-ups, an interesting finding is that not

only the number of involved instances appears to be important but also the specific

partitioning strategy. When looking at the two different topologies involving four

instances, the median run time of the 4 LPs a approach is below 30 seconds, while

the median run time of the 4 LPs b topology is above 40 seconds. 4 LPs b is therefore

performing significantly poorer, even if the same number of instances is used. Reasons

for these differences may include the pure number of transferred vehicles and the

distribution of the communication patterns over time (e.g., transmissions during

each synchronization period vs. communication breaks) that are related to the

partitioning.

6.2 Study 2: Multi-level Simulation 155

6.2 Study 2: Multi-level Simulation

Figure 6.7 – Used traffic pat-
tern. The purple ellipse shows
the bottleneck.

1

10

100

103

106

110

114

118

122

126

13

130

134

138

141

144

148

152

156

16

160

164

168

172

176

179

182

186

19

190

194

198

202

206

210

214

217

22

220

224

228

232

236

240

244

248

25 252

255

258

262

266

27

270

274

278

282

286

290

293

29630

300

304

308

312

316

320

324

328

331

34

38

4

42

46

50

54

58

62

65

68

7

72

76

80

84

88

92

96

Figure 6.8 – Topology for the
multi-level run as defined in Ap-
pendix E.2.

When aspiring to increase the overall performance, the use of a coarser model is

also a reasonable approach besides parallelization through distribution. However,

performance benefits often come at cost of fidelity. A lack of detail is not limited to

rounding errors. If the behavior of entities or systems are modeled in a simpler way,

it is possible that certain situations cannot be represented at all. This can introduce

errors, which eventually lead to major deviations when comparing final results of

different models. Given that, it is obvious that using the fastest model is not always

reasonable and using the highest detail is not always necessary. The question on

if a modeling approach is suitable for a certain scenario is highly dependent on

the use case (i.e., the input data, the questions to be answered, and the arising

conditions within the simulation state). In this study, we want to showcase the

potential of the combination of different modeling paradigms. As possible benefits

depend completely on the use case and we are only considering exemplary questions

in exemplary studies in this chapter, a specific investigation on which speed-up is

possible in a certain case is not purposeful. In contrast, we demonstrate that the

appropriateness of using certain paradigms is changing. Therefore, we simulate

different variations of a common scenario with different paradigms and examine

the respective errors and the computational efforts.

Assumption Let us assume that we are interested in a Manhattan grid road

map that has a peculiar characteristic in the south. The traffic

pattern consists of horizontal traffic flows (see Figure 6.7). By

156 6.2 Study 2: Multi-level Simulation

declaring two roads as one-way roads (red crosses), we reroute the

two affected flows (orange arrows) over the same neighbored road,

which results in a bottleneck (purple ellipse). As a result, we are

creating a potential congestion at the road that is now exposed to

the vehicles of three flows in east-direction. We are interested in

the impact of using a mesoscopic, a microscopic, and a combined

model in order to assess the vehicle density on several roads.

Requirements We need a mesoscopic and a microscopic traffic model, the traffic

input, road resources, and a mesoscopic-microscopic translator.

As we mainly expect an error of the mesoscopic model around the area of the

bottleneck, we are using the topology that is depicted in Figure 6.8 for the multi-level

simulation. The yellow area that is assumed to be critical is modeled microscopically,

while the surroundings are modeled mesoscopically. We consider three variations

of the described scenario with a low, medium, and high overall traffic load. The

traffic volume of the medium traffic variant is 50 % higher than of the low traffic

variant and the high traffic variant is 50 % higher than the medium one. In contrast

to the number of vehicles, the qualitative development of the traffic pattern over the

time and the used routes remain the same for all three variants. As the microscopic

model is the most detailed approach, we will use its results as a baseline.

Mesoscopic Microscopic Multi-level

1

10

100

Re
la

tiv
e

Tr
af

fic
 D

en
sit

y
(%

)

Figure 6.9 – Simulated densities with a low traffic volume at 21 min.

1000 1250 1500 1750 2000 2250 2500
X-Coordinate (m)

0

200

400

600

800

1000

Y-
Co

or
di

na
te

 (m
)

Edge: 106

Edge: 110

Edge: 114

Edge: 144

Edge: 148

Edge: 152

Edge: 68

Edge: 72

Edge: 76

Microscopic

1000 1250 1500 1750 2000 2250 2500
X-Coordinate (m)

0

200

400

600

800

1000

Y-
Co

or
di

na
te

 (m
)

Edge: 106

Edge: 110

Edge: 114

Edge: 144

Edge: 148

Edge: 152

Edge: 68

Edge: 72

Edge: 76

Multi-level

Figure 6.10 – Simulated distribution with a low traffic volume at 21 min.

6.2 Study 2: Multi-level Simulation 157

For the low traffic variant, two things in particular can be learned from the results,

when considering the situation at 21 minutes of simulation time (see Figure 6.9).

First, the bottleneck is not leading to a congestion. Second, all three approaches

lead to quite similar results. At the bottleneck there is a relative vehicle density6 of

5.05 % in the mesoscopic model, a density of 5.25 % in the microscopic model, and

a density of 5.48 % in the combined model. On the preceding link there is a relative

density of 1.69 % in the mesoscopic model, a density of 1.72 % in the microscopic

model, and a density of 1.97 % in the combined model. When looking at the

distribution of the single vehicles on the roads in the critical area (see Figure 6.10),

the similarity between the baseline and the combined approach can also be seen.

Edge 148 represents the bottleneck. There is no illustration for the mesoscopic

model as positions of individual vehicles are explicitly not modeled in that paradigm.

Mesoscopic Microscopic Multi-level

1

10

100

Re
la

tiv
e

Tr
af

fic
 D

en
sit

y
(%

)

Figure 6.11 – Simulated densities with a medium traffic volume at 21 min.

1000 1250 1500 1750 2000 2250 2500
X-Coordinate (m)

0

200

400

600

800

1000

Y-
Co

or
di

na
te

 (m
)

Edge: 106

Edge: 110

Edge: 114

Edge: 144

Edge: 148

Edge: 152

Edge: 68

Edge: 72

Edge: 76

Microscopic

1000 1250 1500 1750 2000 2250 2500
X-Coordinate (m)

0

200

400

600

800

1000

Y-
Co

or
di

na
te

 (m
)

Edge: 106

Edge: 110

Edge: 114

Edge: 144

Edge: 148

Edge: 152

Edge: 68

Edge: 72

Edge: 76

Multi-level

Figure 6.12 – Simulated distribution with a medium traffic volume at 21 min.

For the medium traffic variant, a deviation between the microscopic baseline and

the mesoscopic outcome is recognizable in Figure 6.11. In contrast, the multi-level

approach appears quite accurate. The latter two create a dense traffic situation at

the link that is preceding the bottleneck, while there is a relaxed state on said link

in the mesoscopic model. The reason for this difference might probably be that the

fast mesoscopic model does not model individual junction behavior per default and

therefore a traffic jam might not arise.
6Sum of estimated vehicle lengths and safety gaps divided by the link length.

158 6.2 Study 2: Multi-level Simulation

On the bottleneck road, there is a relative density of 10.12 % in the mesoscopic

model, a density of 10.97 % in the microscopic model, and a density of 11.13 %

in the combined model. On the preceding link there is a density of 3.38 % in the

mesoscopic model, a density of 20.93 % in the microscopic model, and a density of

26.65 % in the combined model. Similarly to the densities, the distribution patterns

of vehicles in the microscopic and the multi-level approach are comparable (see

Figure 6.12).

Mesoscopic Microscopic Multi-level

1

10

100

Re
la

tiv
e

Tr
af

fic
 D

en
sit

y
(%

)

Figure 6.13 – Simulated densities with a high traffic volume at 21 min.

1000 1250 1500 1750 2000 2250 2500
X-Coordinate (m)

0

200

400

600

800

1000

Y-
Co

or
di

na
te

 (m
)

Edge: 106

Edge: 110

Edge: 114

Edge: 144

Edge: 148

Edge: 152

Edge: 68

Edge: 72

Edge: 76

Microscopic

1000 1250 1500 1750 2000 2250 2500
X-Coordinate (m)

0

200

400

600

800

1000

Y-
Co

or
di

na
te

 (m
)

Edge: 106

Edge: 110

Edge: 114

Edge: 144

Edge: 148

Edge: 152

Edge: 68

Edge: 72

Edge: 76

Multi-level

Figure 6.14 – Simulated distribution with a high traffic volume at 21 min.

The biggest differences can be observed in the high traffic scenario (see Fig-

ure 6.13). In the baseline results, there is an exhaustive congestion on two of the

links preceding the bottleneck. The same situation can be found in the combined

model. However, the mesoscopic model is not leading to any serious congestion.

The bottleneck road has a density of 20.63 % in the mesoscopic model, a density of

67.16 % in the microscopic model, and a density of 66.13 % in the combined model.

On the preceding link there is a density of 6.75 % in the mesoscopic model, a density

of 93.38 % in the microscopic model, and a density of 91.50 % in the combined

model. The congestion can also clearly be seen for the latter two approaches in

Figure 6.14. A difference to the baseline can be observed, when looking at the path

starting from edge 68 to edge 148 via edge 106. However, this deviation is not a

result of a systematic difference, but rather expression of temporal dynamics. The

volume that is missing on the vertical link can be found on edge 68. This might be

6.2 Study 2: Multi-level Simulation 159

happening because of a dense burst of vehicles flowing from edge 144 to edge 68 at

that time. Consequently, left turn maneuvers of vehicles on edge 106 are temporarily

delayed.

As a first conclusion, the simulated outcome is comparable between the meso-

scopic and the microscopic model for the used scenario, as long as there is no serious

62 100 138 176 214 252 290
Edge

0

10

20

30

40

Av
er

ag
e

Nu
m

be
r o

f V
eh

icl
es

Average Numbers of Vehicles on North Axis
High Meso
High Micro
High ML
Med Meso
Med Micro
Med ML
Low Meso
Low Micro
Low ML

34 72 110 148 186 224 262
Edge

0

20

40

60

80

100

120

140

Av
er

ag
e

Nu
m

be
r o

f V
eh

icl
es

Average Numbers of Vehicles on South Axis
High Meso
High Micro
High ML
Med Meso
Med Micro
Med ML
Low Meso
Low Micro
Low ML

Figure 6.15 – Traffic load at 21 minutes.

62 100 138 176 214 252 290
Edge

0

1

2

3

4

5

6

Ab
so

lu
te

 L
oa

d
Er

ro
r

Error on the Average Numbers of Vehicles on North Axis
High Meso
High ML
Med Meso
Med ML
Low Meso
Low ML

34 72 110 148 186 224 262
Edge

0

20

40

60

80

100

120

140

Ab
so

lu
te

 L
oa

d
Er

ro
r

Error on the Average Numbers of Vehicles on South Axis
High Meso
High ML
Med Meso
Med ML
Low Meso
Low ML

Figure 6.16 – Errors of traffic load at 21 minutes.

160 6.2 Study 2: Multi-level Simulation

jam situation. Compared to the deviation of the mesoscopic model, the multi-level

model works quite well. This is as expected, because the critical areas are modeled

microscopically while only the surroundings are modeled mesoscopically.

The traffic load and error of two interesting traffic axes are illustrated in detail

for the discussed simulation time in Figure 6.15 and Figure 6.16. Both axes are

directed from west to east. The south axis consists of the roads that are forming

the straight line through the bottleneck, and the north axis is the counterpart in the

north. For orientation, the map in Figure 6.8 contains labels of the used edge names.

The different densities are plotted over the simulation time for all paradigms and

variations in Figure 6.17. For the illustration, we averaged the densities of the two

described axes. Further illustrations on found absolute and relative errors compared

to the simulated vehicle loads are given in Appendix E.3 for each scenario variation.

At this point, we only considered the error compared to the baseline. The question

arises why an inaccurate approach should be considered at all, even if the error is

relatively low. Such a decision seems more reasonable, when looking at the runtimes

of the different models (see Figure 6.18). Of course, the pure mesoscopic model

has the highest potential regarding speed-ups. For the high traffic volume scenario

a speed-up factor of 125.9 compared to the baseline run was measured. For the

medium and the low traffic variations of the scenarios the speed-up was still 47.2

and 22.2. However, this comes at the cost of relative errors of 28.4 %, 7.8 %, and

5.8 %, respectively. In case of the combined model, we face exemplary speed-ups

of 2.3 for the high traffic load, 3.5 for the medium traffic load, and 2.6 for the low

traffic load. The performance gains of the combined model come with an error of

0

10

20

30

De
ns

ity
 (%

)

North Axis, High

Mesoscopic
Microscopic
Multi-level

North Axis, Med
Mesoscopic
Microscopic
Multi-level

North Axis, Low
Mesoscopic
Microscopic
Multi-level

6 12 18 24
Simulation Time (min)

0

10

20

30

40

De
ns

ity
 (%

)

South Axis, High
Mesoscopic
Microscopic
Multi-level

6 12 18 24
Simulation Time (min)

South Axis, Med
Mesoscopic
Microscopic
Multi-level

6 12 18 24
Simulation Time (min)

South Axis, Low
Mesoscopic
Microscopic
Multi-level

Figure 6.17 – Relative traffic densities on two main axes over the simulation
time for the different traffic loads.

6.2 Study 2: Multi-level Simulation 161

12.0 %, 6.2 %, and 5.9 %, respectively. The corresponding absolute computational

times are depicted in Figure 6.19.

1 10 100
Speed-up Compared to the Microscopic Baseline

0
5

10
15
20
25
30

Er
ro

r (
%

)

Low, Multi-level
Low, Mesoscopic
Med, Multi-level
Med, Mesoscopic
High, Multi-level
High, Mesoscopic

Figure 6.18 – Error of the whole road network vs. speed-up.

Given that, the typical dilemma of choosing an adequate model (or a combination)

by estimating the trade-off between expected error and speed-up is outlined. If we

say, for instance, that an error of 15 % is acceptable and performance is top priority,

the pure mesoscopic model would be the best fit for the scenarios with a low and a

medium traffic load. However, in the case of the scenario with a high traffic load the

multi-level approach would be the better fit as the error is below 15 % and we are still

able to accelerate the computational effort by a factor of 2.3. The poorer speed-up

performance of the combined approach for the high traffic scenario compared to the

medium traffic scenario might be attributed to the excessive exchange of NDMs due

to the high traffic volume. In summary, we demonstrated that a speed-up at cost of

accuracy is possible when using coarser models and that the combination of models

of different detail level can also be beneficial when aiming for performance gains.

10 100 1000
Computational Effort (s)

0
5

10
15
20
25
30

Er
ro

r (
%

)

Low, Microscopic
Low, Multi-level
Low, Mesoscopic
Med, Microscopic
Med, Multi-level
Med, Mesoscopic
High, Microscopic
High, Multi-level
High, Mesoscopic

Figure 6.19 – Error of the whole road network vs. computational time.

162 6.3 Study 3: Data Enrichment

6.3 Study 3: Data Enrichment

One of the most crucial benefits of multi-level models is the ability to generate

knowledge on detailed levels, while the input data is provided on coarser levels. We

want to showcase the ability to use multi-level traffic simulations in order to enrich

existing macroscopic data sets in this study. In addition, we use this scenario as a

proof-of-concept for demonstrating that all four developed layers are interoperable.

Assumption Let us assume that we developed an AEB system. Before we conduct

real tests, we want to evaluate the AEB system virtually by feeding

in virtual sensor data. Therefore, we want to gather sensor data

in detailed three-dimensional virtual environments. At the same

time, we want to be able to define the traffic pattern of a city in a

simple way (i.e., in a macroscopic format). Hence, we are aiming

for a multi-level approach, where we define the traffic patterns in a

macroscopic regime and generate sensor data in a submicroscopic

regime that is embedded in the macroscopic scenario.

Requirements We need a macroscopic traffic model, a mesoscopic traffic model,

a microscopic traffic model, a submicroscopic traffic model, the

macroscopic traffic input, road resources, and translators between

all different layers.

The quality of the resulting synthetic sensor data of the environment highly

depends on the quality of the model. If there is, for example, no information about

road signs, pavements, or buildings, it is obviously not possible to find such objects

in simulated lidar scans. As a consequence, the generation of detailed road maps and

shape files is very time-consuming. While most of the static scenario resources for

macroscopic, mesoscopic, and microscopic models can be generated automatically

from available sources such as the OpenStreetMap project [165], typically, a lot of

manual work is required to create resources for submicroscopic models.

Therefore, we use an existing three-dimensional model that is provided by the

CARLA project. It represents a part of an artificial town and is called Town01. The

original road topology is shown with a red background in Figure 6.20. As the map

size is rather small, we added incoming and outgoing axes at the north and at the

south borders of the original map, which is also depicted in the figure. In order

to showcase the translation between all traffic layers, we will use an onion like

topology, where the most northern and southern nodes are in the responsibility

of a macroscopic BB that is neighbored to a mesoscopic BB. A microscopic region

is then surrounding the central area, which falls in a submicroscopic regime (see

Figure 6.20 for a graphical representation of the topology). We will use a traffic

6.3 Study 3: Data Enrichment 163

Macroscopic
Mesoscopic
Microscopic
Submicroscopic

N ➤

SW

SE

NW

NE

C3 C2 C1 NW2 NW1

Figure 6.20 – The extended road network of Town01 with the used responsi-
bility topology.

pattern with flows between north and south, so that the traffic has to pass all different

modeling paradigms. Thus, all modeled translation processes are actively used. The

used exemplary traffic pattern is shown as an origin-destination matrix in Table 6.2.

Apart from the conducted multi-level simulation, we also simulate the same scenario

exclusively by a macroscopic component to generate a baseline.

provision.study3.traffic.macro.road.NW1 (6.1)

provision.study3.traffic.meso.link.NW1.vehicles (6.2)

provision.study3.traffic.meso.link.NW2.vehicles (6.3)

provision.study3.traffic.micro.edge.NW2.vehicles (6.4)

provision.study3.traffic.micro.edge.C1.vehicles (6.5)

provision.study3.traffic.submicro.lane.C11.vehicles (6.6)

Data is, for instance, published by the macroscopic BB to Topic 6.1, where it is

consumed by the macroscopic-mesoscopic translator, converted, and again published

to Topic 6.2, where it is consumed by the mesoscopic BB. If vehicles arrive on

NW2, the mesoscopic BB is publishing the NDMs on Topic 6.3, where it is consumed

by the mesoscopic-microscopic translator, converted, and published to Topic 6.4.

From there it is consumed by the microscopic BB. As soon as vehicles arrive on

C1, the microscopic BB is publishing according NDMs on Topic 6.5, where data is

consumed by the microscopic-submicroscopic translator, converted, and published to

Topic 6.6. The data is finally consumed and integrated by the central submicroscopic

BB. Similarly, the traffic is propagated further south and also back north in the

opposite direction.

We simulate a period of 30 minutes. First, we compare the resulting traffic on

link C3 between the multi-level simulation and the baseline simulation. In total, a

minimal deviation regarding the flow can be observed. If the observation window is

small enough, we can also see the impact of the PAP that is powering the macroscopic-

164 6.3 Study 3: Data Enrichment

NW SW SE NE

NW 0 900 0 0
SW 600 0 0 300
SE 0 0 0 0
NE 0 0 0 0

Table 6.2 – Origin-destination matrix. Traffic demand per hour.

mesoscopic translator. For a window of 1 minute the average error is around 7.7 %,

for a window of 5 minutes we see an average error of 2.4 %, for 10 minutes 1.5 %,

and for a window of 30 minutes the error is below 1 %. The fluctuations for different

observation windows are depicted in Figure 6.21. For the 10 minute observation

window and especially for the 30 minute observation window, the near match can

clearly be seen, which allows us to approve the validity of the translators. Regarding

observed average speeds on road C3, we see values close around the allowed 30

km/h on said road.

The fluctuations regarding the traffic flow, which are especially visible when

looking at the 1 minute window, are not there by accident. On the contrary, we

intended to create such behavior and therefore used the PAP in the translator as

uniformly distributed spawn events (i.e., interarrival times) would not be very

realistic. The underlying sampled spawn events are depicted in Figure 6.22. One

can clearly see regions of different densities (i.e., different numbers of spawned

vehicles), while the macroscopic traffic flow values remained static.

Besides considerations regarding the validity, we can now benefit from a much

more detailed world that is populated according to the macroscopic input. The

exemplary goal was to generate sensor data that can be further used. The following

5 10 15 20 25
Simulation Time (min)

500
750

1000
1250
1500

Fl
ow

 (v
eh

/h
)

Flow Rates
1min
5min

10min
30min

Reference

5 10 15 20 25
Simulation Time (min)

29.75

30.00

30.25

Sp
ee

d
(k

m
/h

)

Average Speed
Simulated
Reference

Figure 6.21 – Traffic flows and speeds on road C3.

5 10 15 20 25
Simulation Time (min)

Figure 6.22 – Each black line represents a discrete spawn event in the submi-
croscopic regime.

6.3 Study 3: Data Enrichment 165

Figure 6.23 – Snapshots of the evaluation scenario taken in the three-
dimensional world of CARLA.

examples are produced by using sensors that are available out of the box by CARLA

and using only the macroscopic traffic input. In total, we illustrate six different

views on the same scene. In Figure 6.23, the RGB camera sensor is used to create

an impression of the scene to let the researcher understand the current context. It is

done by using a view into the distance and a bird’s eye view on an ego vehicle. Of

course, the camera could also be positioned behind the windshield to act as a typical

in-vehicle camera sensor. The rendered scene also contains lightning conditions

(e.g., there are shadows on the road). Such level of detail could be useful when

generated pictures are used to train neural networks that should recognize objects

purely based on camera input.

Figure 6.24 – Exemplary sensors: distance estimation and semantic segmen-
tation.

However, it might also be desirable to not only work on raw camera data, but

on data from other sensors, or already existing preprocessed camera data. Two

examples are shown in Figure 6.24. On the left side, there is a depth image that

represents the distance between the ego vehicle and external objects. For the picture

on the right side, we use the semantic segmentation camera of CARLA that maps

the type of an object to a certain color.

166 6.3 Study 3: Data Enrichment

Figure 6.25 – Lidar scan point clouds from above and from the side.

As a last example, we assume that the vehicle is additionally equipped with a lidar

sensor and creates lidar scans of the surroundings. Exemplary point clouds of the

given scene are depicted in Figure 6.25. For instance, the stairs that are also shown

in Figure 6.23 are clearly visible. Many functions from the field of autonomous

driving and other recent assistance systems (e.g., this study’s exemplary AEB) are

relying on lidar input. All of them can benefit from the opportunity to create an

unlimited amount of input data and use it for tests, evaluations, and enhancements

of the application under test.

We demonstrated the possibility to enrich existing data sets with additional,

potentially far more detailed, information pieces. In addition, we showed our ap-

proaches’ capabilities regarding tool and platform interoperability: PTV Visum was

executed under Windows, while the other components were run in Linux Docker

containers. Also, three different programming languages are involved. The trans-

lators, the VisumWrapper, and the MatsimWrapper are implemented in Java. The

SumoWrapper is implemented in C++ and the CarlaWrapper is implemented in

Python.

6.4 Study 4: Integration of External Data 167

6.4 Study 4: Integration of External Data

In the fourth case study, we want to demonstrate two additional features of the

developed approach: integrating real-world data and creating a new virtual translator

by pipelining already existing translators.

Assumption Let us assume that we want to consider the traffic impact of closing

one or two lanes due to construction work on a road stretch of the

motorway A9 in Germany. In order to assess this question appro-

priately, we might have decided that the fidelity of a microscopic

model is required as well as a realistic traffic pattern. In addition,

access to real-world traffic data of the region of interest is available.

However, the accessible data is generated by physical road detectors

and is already aggregated. It is therefore in a macroscopic format

(i.e., traffic volumes and speeds in a minute resolution).

Requirements We need a microscopic traffic model, the macroscopic traffic input,

and a possibility to use the macroscopic data in the microscopic

model.

We create a digital twin of a section of the A9 motorway in the south of Nurem-

berg (see Figure 6.26) and run what-if experiments with it. In order to bridge

the information gap between the macroscopic and the microscopic world, we use

translators as in the use case before. In contrast to study 3, we do not necessarily

have to import the input data in a macroscopic BB such as Visum for publishing it

to the data pool. As the whole coupling process is focused on data, we will use the

external data source directly as a macroscopic BB that provides traffic information

input on corresponding topics.

More precisely, we received a dump of historical detector data from a whole

weekday in April 2018 from the German Die Autobahn GmbH des Bundes. The data

was gathered on the A9 in northbound direction at a detector near Allersberg and

Figure 6.26 – The road section to be considered is located in the south of
Nuremberg, Germany and stretches from (49.2441, 11.2176) to (49.3634,
11.2024). The traffic is ingested near the start label. The map is based on
contents from ©OpenStreetMap [165].

168 6.4 Study 4: Integration of External Data

contains i.a. traffic volumes that are already aggregated to one minute slices. As we

use historic data, we implemented a simple data provider using the JavaBaseWrapper

library. The provider acts as a normal BB and takes part in the synchronization

process. It is therefore capable of publishing the input data at the corresponding

points in simulation time. A live-data source could be used similarly. In this case, an

external component could directly publish the data to the scenario topics in the data

pool. The only drawback of such a live version of a digital twin would be that the

synchronization mechanism obviously cannot influence the wall-clock time (i.e., the

real-world detector device will continuously publish data at a fixed period). Involved

BBs would need to make sure to run at least with a real-time factor of one, if a live

representation of the real-world is desired.

Regarding the translation between the different layers, there are multiple options.

We prefer not to include an intermediate mesoscopic model as it was done in study

3, because we are only interested in the outcome of the microscopic simulation

model. Consequently, there are two options to connect the macroscopic and the

microscopic regime. We could either model a new translator that is capable of

translating directly between macroscopic and microscopic NDMs. Or we could

map a chain between the two existing macroscopic-mesoscopic and mesoscopic-

microscopic translators, which results in a new virtual translator that is also capable

of transforming macroscopic NDMs to microscopic NDMs. In the following, we will

use the latter strategy and demonstrate the strengths of the developed approach

regarding flexibility and reusability.

provision.study4.traffic.macro.road.start (6.7)

provision.study4.traffic.meso.link.start (6.8)

provision.study4.traffic.micro.edge.start (6.9)

provision.study4.traffic.micro.edge.observed (6.10)

As the macroscopic BB acts as a pure data source, we can observe a single data

flow in one direction. The BB provides macroscopic NDMs for every minute of

the scenario for the most southern road stretch on Topic 6.7. The macroscopic-

mesoscopic translator subscribes to said topic and uses the macroscopic information

to sample mesoscopic NDMs at exponentially distributed spawn times, as described

in Section 5.2.3, which are published to Topic 6.8. The mesoscopic-microscopic

translator subscribes to that topic and uses its disaggregation logic to sample and

publish microscopic NDMs to Topic 6.9. Finally, the microscopic BB subscribes

to Topic 6.9 and integrates received microscopic NDMs into its simulation state.

Because we are interested in the traffic condition on the road section directly before

the potential construction site, an observer for that edge is specified in the definition

6.4 Study 4: Integration of External Data 169

of the microscopic BB. All described parameters can be found in the used scenario

definition in Appendix E.4.

The simulated traffic pattern of the baseline scenario appears as expected. The

resulting relative vehicle densities per lane are depicted in Figure 6.27 as stackplots

(i.e., the total relative road density is the sum of all colored parts). It gives not

only insights about the traffic pattern but also about potential congestions. While

there is minimal traffic between 2 am and 4 am there is a peak in the afternoon.

From 12 am to 5 am, the traffic condition allows using a single lane without any

limitations for the vehicles. For the “no construction work”-scenario, the density of

the observed edge stays below 20 % during the whole 24 hours of simulation time.

If the right lane is closed, two peaks in the afternoon slightly exceed the density

of 20 %. However, the impact on the overall traffic condition is limited. On the

contrary, if two lanes are closed, there are multiple peaks that almost reach the level

of 40 %. We can infer that the traffic condition is highly impacted by the decision of

closing two lanes.

4 8 12 16 20
Simulation Time (h)

0

10

20

30

40

50

Ve
hi

cle
 D

en
sit

y
(%

)

No Construction Work
Right Lane
Center Lane
Left Lane

4 8 12 16 20
Simulation Time (h)

0

10

20

30

40

50 Right Lane Closed
Right Lane
Center Lane
Left Lane

4 8 12 16 20
Simulation Time (h)

0

10

20

30

40

50 Two Lanes Closed
Right Lane
Center Lane
Left Lane

Figure 6.27 – Relative vehicle densities of the three different scenarios.

The impact can also be identified when looking at the average speeds. Over the

whole 24 hour period, the speeds differ significantly for the different scenarios. If

all lanes are open, the average speed is 113 km/h. If the right lane is closed, the

average speed drops to 105 km/h. If two lanes are closed, the speed drops further to

80 km/h. The distribution over the whole 24 hour period is depicted in Figure 6.28.

Between 12 am and 4 am, there is so little traffic flow that there is no impact of

the closing decisions on the average speeds. Similarly, only one lane is used by all

vehicles when looking at the vehicle densities. On the contrary, the average speed

partly drops below 50 km/h between 1 pm and 6 pm for the scenario where both

lanes are closed.

As an exemplary conclusion, we could state that the closing of one lane is feasible.

Carrying out construction works on two lanes at the same time is no reasonable

decision and would regularly lead to strong congestions. However, if works on two

lanes at the same time are necessary, a possible time window could be 8 pm to 6

170 6.4 Study 4: Integration of External Data

am. We demonstrated the integration of a real-world data set and the reusability

capabilities of our approach.

4 8 12 16 20
Simulation Time (h)

40

60

80

100

120

140

Sp
ee

d
(k

m
/h

)

No Construction Work
No Construction Work (24h Mean)

Right Lane Closed
Right Lane Closed (24h Mean)

Two Lanes Closed
Two Lanes Closed (24h Mean)

Figure 6.28 – Average speeds of the three different scenarios.

6.5 Study 5: Cross-Domain Simulation 171

6.5 Study 5: Cross-Domain Simulation

As a final study, we demonstrate the abilities to combine BBs from different domains

in order to model cross-domain problems. In addition, we will show the advantages

of being able to directly reuse simulation data from the data pool. A domain that

is closely related to the traffic domain is the communication domain. Vehicular

communication is an innovation driver and will enable a lot of new business models

such as smart parking and enhance safety, for instance, by providing blind spot

warnings [10]. Naturally, if a certain technology is relying on communication,

the performance of the communication medium has a great impact on the overall

quality. Thus, it is of interest to assess the quality of a communication system.

Such investigations can be carried out as real-world experiments. However, if a

whole system of vehicles is under observation, the effort increases immensely and

conducting real experiments is often no longer feasible. Instead, simulation can

be used - even if large-scale scenarios are intended. One of the most interesting

aspects of vehicular communication is the underlying dynamic network topology

that originates from the movement of the vehicles. Updating the positions of the

communication nodes is therefore crucial and often an adequate mobility model is

required rather than simple linear movement models. That means nodes representing

discrete vehicles should not float randomly in free space, but move in a realistic

way according to a road network and complying to mobility patterns. By doing so,

the characteristics of communication can also be examined for typical corner cases

such as traffic jams, sparse traffic, or dense traffic. The evaluation of the quality of a

vehicular communication system is not straight-forward as different use-cases have

different requirements. Comfort applications, for instance, might require a high

bandwidth as a lot of data is exchanged (e.g., video streaming), while latency is not

that important. On the contrary, safety applications might need to exchange low

volumes of data, while latency or reliable delivery is top priority. In a cooperative

safety application, each participating vehicle might be broadcasting status updates

(e.g., its position) and might be gathering the same messages from surrounding

vehicles. The received information can then be used to build a virtual representation

of neighboring road participants and display warnings to the driver.

Assumption Let us assume that we are interested in the time the radio channel is

busy in order to assess whether such a cooperative safety application

can be realized in a robust way. Further constraints are that the

used communication technology will be IEEE 802.11p, and that we

are using a realistic traffic pattern on a stretch of the south-north

axis of the motorway A9 in Germany that is depicted in Figure 6.29.

172 6.5 Study 5: Cross-Domain Simulation

Requirements We need a traffic pattern as input data, a microscopic traffic model,

and an 802.11p model.

Figure 6.29 – We use a part of the map from study 4. The area of inter-
est is marked by the red rectangle. The map is based on contents from
©OpenStreetMap [165].

As we constructed a similar example as for the previous study, we can reuse the

generated data from study 4. We do so by creating a scenario definition with similar

global parameters, a BB from the 802.11p layer in the communication domain, and

the projector that was developed in Section 5.4. The projector will subscribe to the

historic vehicle data from study 4 and trigger API-calls to the 802.11p communica-

tion layer in order to create, delete, or move nodes that represent modeled vehicles.

Because we want to equip all vehicles with a radio and have a common beaconing

rate of 1 Hz, we are adding these parameters in the parameter section of the com-

munication BB. Finally, we are interested in the average channel busy time that is

sensed by each vehicle, lost packets, and required backoff slots. Thus, we specify

desired results. The resulting scenario description can be found in Appendix E.5.

0 4 8 12 16 20 24
Simulation Time (h)

0.0

0.5

1.0

1.5

2.0

2.5

Ch
an

ne
l B

us
y

Ti
m

e
(%

)

Figure 6.30 – Busy time of the channel as perceived by each vehicle.

Due to the packet-level simulation of the wireless communication, the overall

simulation took almost 2.5 h (8898 s), which is far longer than the time needed

in study 4. Over the whole 24 hours, we are facing an average channel busy time

of 1.40 % and a maximum value of 2.47 %. The distribution over the simulated

day is depicted in Figure 6.30. If compared to the traffic pattern that was already

depicted in study 4 (see Figure 6.27), one can clearly see the relation between the

two curves. As the traffic volume grows, the number of required backoff slots is also

6.5 Study 5: Cross-Domain Simulation 173

increasing. This can especially be seen during the hours with a high traffic volume

(see Figure 6.31). As a result of the study, the simulated busy times might be seen

as low enough to establish such a system in practice.

0 4 8 12 16 20 24
Simulation Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

Re
qu

ire
d

Ba
ck

of
f S

lo
ts

×103

Figure 6.31 – Diced backoff slots per vehicle.

However, despite the relaxed busy times, one could also argue that the communi-

cation system is not good enough. We have a look at packets that were theoretically

received with a sufficient signal-to-noise ratio, but were lost nevertheless, because

an own transmission was ongoing. These lost packets are plotted in Figure 6.32.

We see that a few vehicles lose many messages. Consequently, we infer that some

information of surrounding vehicles was not delivered reliably, which could increase

the risk of an accident.

0 4 8 12 16 20 24
Simulation Time (h)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
st

 P
ac

ke
ts

 d
ue

 to
 R

XT
X

Er
ro

r ×102

Figure 6.32 – Lost packets due to ongoing transmission on signal reception.

With this fifth study, we demonstrated how easy it is to realize cross-domain

simulations with our approach. In addition, we showed the potential that arises from

simply reusing already existing simulation data. However, if the reuse of existing

simulation data should not be appropriate, it is of course also possible to simulate

the vehicle movements in parallel. For such cases, one could simply add the SUMO

BB description from the scenario definition file of study 4 to the current scenario

definition and let the projector consume this scenario’s vehicle data.

Chapter 7

Conclusion and Future Directions

In this chapter, we summarize the work that was presented within this thesis and

draw a conclusion. Finally, we talk about limitations of the developed approach and

give an outlook on possible future directions and research topics.

7.1 Summary and Conclusion

The purpose of this thesis is to provide a sound distributed simulation methodology

that satisfies the described requirements as well as a framework that implements the

developed approach. By doing so, the gaps between existing solutions and identified

requirements are bridged. Furthermore, the utility of the concept is demonstrated

by applying it to the field of road traffic simulation.

The intention for this was to tackle five urging simulation aspects. The grow-

ing linkage of domains increasingly brings up problems that span across domains.

Modeling and simulation of such problems might require the connection of multiple

components, which can also be utilized to overcome hardware limitations of single

nodes. Input data may have to be retrieved or generated, converted, and ingested

into a coupled simulation ecosystem. Finally, diversity of stakeholders has to be taken

into account as well as supporting validation of coupled models and reproducibility

of simulation runs.

In order to do so, we described theoretical and practical foundations, identified

current solution approaches and existing requirements. Based on the gained insights,

we developed a data-centric methodology that is capable of solving the drawn issues.

The main idea was to move away from considering specific tools, but rather put

data models in the focus of a co-simulation protocol. Following our approach, there

will be no dedicated and custom-tailored data model for each tool or application.

Contrarily, we aim for having stereotypical data models that cover whole groups of

tools, for instance all components of a certain modeling paradigm within a domain.

175

176 7.1 Summary and Conclusion

We called such a data model layer and introduced several tags that can be added

to the elements of a layer data model. Most importantly, the layer contains the

information on what data structure (NDM) is communicated in which occasions.

Therefore, the layer abstraction provides the foundation of the co-simulation protocol

and defines the component coupling logic from a pure data perspective.

Each component that is integrated in the simulation system is assigned to a single

layer and infers its interface exclusively from the layer definition. Consequently, there

is a high abstraction level between integrated (simulation) components and the co-

simulation protocol. Regarding the communication between components, we chose

an approach where we abandon all transient communication, but rather persistently

store each exchanged message. This happens in order to strengthen reproducibility

and traceability of simulation runs and allows providing generated data for further

analysis. In the course of this, we picked a topic-based communication system as

a foundation that allows a direct mapping of the used data models on topics. This

enables a structured access to the simulation data (even for external components),

while we can implement a flexible communication schema that operates without

global knowledge of other involved participants. Consequently, components are

coupled in a loose and very extendible way. Regarding correctness, we designed a

synchronization mechanism, which assures that messages are delivered on time and

in a deterministic order, while communicating via multiple topics without a global

ordering.

From a practical point of view, we implemented the methodology in client libraries

for C++ (CppBaseWrapper), Java (JavaBaseWrapper), and Python (PythonBaseWrap-

per). The simulation service functionality was implemented in a Java component

(SimulationController). In order to support heterogeneous users, a graphical user

interface is provided via a web application (Frontend) allowing to manage resources

and definitions, design scenarios via drag and drop functionalities and execute them,

and access historic runs in a user-friendly way. Afterwards, we evaluated the ap-

proach in a domain-agnostic way demonstrating the developed synchronization

mechanism and showing its performance. We also illustrated the problem that

arises if we would not provide an appropriate mechanism for assuring deterministic

information exchange.

In a second part, we then demonstrated the practicability of the approach by

applying it to the traffic domain. We created layer definitions for the macroscopic, the

mesoscopic, the microscopic, and the submicroscopic traffic modeling paradigms. We

chose a representative simulation package for each layer and implemented integrat-

ing wrappers for every tool. Therefore, PTV Visum (VisumWrapper), MATSim (Mat-

simWrapper), SUMO (SumoWrapper), and CARLA (CarlaWrapper) were integrated in

our system. To enable multi-level simulations and bridge data gaps, we modeled and

implemented translators between each neighboring layer (macroscopic↔ meso-

7.1 Summary and Conclusion 177

scopic, mesoscopic↔ microscopic, and microscopic↔ submicroscopic). Also, we

defined a related domain (communication) with one exemplary layer (80211p)

in order to demonstrate the cross-domain capabilities of the approach. Thus, we

implemented a wrapper for OMNeT++ and the Veins IEEE 802.11p model for sim-

ulating wireless communication (OmnetWrapper) and a corresponding projector

(traffic.micro→ communication.80211p). The implementations are accessible in

a public repository [94]. Several exemplary case studies concluded the work by

illustrating different capabilities of the developed approach.

• First, we showed that performance gains are possible when using several

instances of the same tool to distribute and parallelize a simulation run.

• In second study, we illustrated the relation between error and speed-up when

combining models of varying level of detail.

• Third, we demonstrated the coupling of all four relevant traffic modeling

paradigms in a single scenario. It was used to generate sensor data from a

submicroscopic environment, while only providing input at a macroscopic

level.

• In the fourth study, we showcased the benefits of the abstraction by stereotyp-

ical data models. We used a real-world traffic data stream and ingested it via

a macroscopic component, translated it, and generated a microscopic digital

twin of a German motorway stretch.

• Lastly, we reused simulation data by ingesting vehicle positions into a compo-

nent from the communication domain, and evaluated a vehicular communica-

tion scenario on the motorway, which resulted in a cross-domain simulation.

In conclusion, we fulfilled the specified requirements that were motivated by

five simulation challenges given in Chapter 1. The developed ideas help to create

reusable co-simulation scenarios by following a data-centric approach. The key

features of the developed methodology and the simulation framework comprise the

support of distributed, multi-level, and cross-domain simulations using a data-centric

protocol. Furthermore, reproducibility of results is ensured by storing all exchanged

messages. A black-box approach that is powered by the stereotypical data models

enables interoperability, reusability, and the individual validation of components and

connectors. The concept allows the plug-and-play design of sophisticated simulation

scenarios, which is further facilitated by providing a simulation service with a user-

friendly frontend.

178 7.2 Limitations and Future Directions

7.2 Limitations and Future Directions

Due to its nature, this thesis covers a broad area and is by no means presenting a

closed solution to all issues related to future simulations. On the contrary, there are

potential extension points in various directions, from which some are pointed out in

the following.

The flexible coupling protocol is mainly driven by the concealing of a component’s

peculiarities behind the stereotypical layer interface. At the same time, reducing the

externally available functionality of a component by purpose might be a limitation

for the user. It would be interesting to investigate the acceptance of having building

blocks with deliberately limited API functions, if the user benefits from the fea-

tures of the developed system in return (e.g., plug-and-play design of new scenario

topologies). Similarly, regarding the extension to additional domains, another open

question is if the constraint of having one single NDM per layer is always suitable.

Therefore, a study on the usefulness of the presented concept in different fields of

application would be worthwhile.

As a result, an extensive catalog with domain and layer definitions could be

provided, shared, and collaboratively enhanced. The same applies to developed tool

wrappers, translators, and projectors. Another interesting step in this direction could

be the integration of existing reference data models, especially ontologies. Currently,

the domain and layer definitions are based on individual domain expert knowledge

and are represented in a custom JSON structure. Following the ideas of the semantic

web [24], there are already standardized definitions of structures of concepts found

in the world called schemas. Incorporating these schemas in our system could bring

the benefit of having access to a big amount of potential layer definitions that were

already designed by other domain experts. Moreover, as it is the core idea of the

semantic web, there might be links between different schemas, which could be used

to infer connectors automatically. As schemas are actively used in other applications,

for instance when providing public data with a semantic model, one could directly

integrate these data sets in simulations.

From an implementation perspective, one could add code generation features to

automatically create skeleton wrappers in all main programming languages directly

based on a layer definition. In addition, the wrappers use a local deterministic pseudo

number generator. As a consequence, the resimulation of a scenario will lead to the

same results if the same seed is used and the topology is not changed. If repeatability

would be also desired for repetitions with varying topologies, a scenario-wide pseudo

random number generator provider would be a possible extension. However, this

would add a lot overhead and will only work for suitable scenarios (e.g., distribution

of a scenario over several instances of the same component).

7.2 Limitations and Future Directions 179

At the moment, the design of a scenario and especially the partitioning is done

by hand. By providing the graphical user interface, this is easily possible. However,

it would be interesting to add a functionality that generates the simulation topology

(e.g., components and their responsibility sets) automatically based on predefined

indicators (e.g., average density on road X should be simulated, while performance

is important). Such functionality could also be extended in order to adapt the

simulation topology dynamically during a simulation run. As we have placed special

emphasis on an expandable system, we are curious to see whether these or new

ideas will be contributed in the future and what research our approach may enable.

Appendix A

General Definitions

A.1 Domain Definition

1 {
2 " $schema ": "http :// json - schema .org/draft -07/ schema #",
3 " title ": " Domain ",
4 " description ": " Domain Sefinition ",
5 "type": " object ",
6 " definitions ": {
7 " simplePrimitive ": {
8 "type": " object ",
9 " required ": [

10 "name",
11 "type"
12],
13 " properties ": {
14 "name": {
15 " description ": "The attribute 's name",
16 "type": " string "
17 },
18 "type": {
19 " description ": "The attribute 's type , e.g. 'double '. ↘

This has nothing to do with json types ",
20 "type": " string "
21 },
22 "unit": {
23 " description ": "The attribute 's unit , e.g., ms",
24 "type": " string "
25 },
26 " description ": {
27 " description ": "A further description ",
28 "type": " string "
29 }
30 }

181

182 A.1 Domain Definition

31 },
32 " reference ": {
33 "type": " object ",
34 " required ": [
35 "name",
36 "key"
37],
38 " properties ": {
39 "name": {
40 " description ": "The compound 's name",
41 "type": " string "
42 },
43 "key": {
44 " description ": "The compound 's key",
45 "$ref": "#/ definitions / simplePrimitive "
46 },
47 " additional ": {
48 " description ": " Additional elements ",
49 "type": " array ",
50 " items ": {
51 " anyOf ": [
52 { "type": " array " },
53 {
54 "$ref": "#/ definitions / simplePrimitive "
55 }
56]
57 }
58 }
59 }
60 }
61 },
62 " required ": [
63 "name",
64 " version ",
65 " reference "
66],
67 " properties ": {
68 "name": {
69 " description ": "The domain 's name",
70 "type": " string "
71 },
72 " version ": {
73 " description ": " Version of the domain definition ",
74 "type": " integer "
75 },
76 " reference ": {
77 " description ": "The domain reference ",
78 "$ref": "#/ definitions / reference "
79 },
80 " description ": {

A.2 Layer Definition 183

81 " description ": "A description ",
82 "type": " string "
83 }
84 }
85 }

Listing A.1 – Domain definition.

A.2 Layer Definition

1 {
2 " $schema ": "http :// json - schema .org/draft -07/ schema #",
3 " title ": " Layer ",
4 " description ": " Layer Definition ",
5 "type": " object ",
6 " definitions ": {
7 " compound ": {
8 "type": " object ",
9 " required ": [

10 "name",
11 "key"
12],
13 " properties ": {
14 "name": {
15 " description ": "The compound 's name",
16 "type": " string "
17 },
18 "key": {
19 " description ": "The compound 's key",
20 "$ref": "#/ definitions / primitive "
21 },
22 " compounds ": {
23 " description ": " Embedded compound structures ",
24 "type": " array ",
25 " items ": {
26 "$ref": "#/ definitions / compound "
27 }
28 },
29 " methods ": {
30 " description ": " Interface extensions ",
31 "type": " array ",
32 " items ": {
33 "$ref": "#/ definitions / method "
34 }
35 },
36 " primitives ": {
37 " description ": " Embedded primitive attributes ",

184 A.2 Layer Definition

38 "type": " array ",
39 " items ": {
40 "$ref": "#/ definitions / primitive "
41 }
42 },
43 " isDistributor ": {
44 " description ": "Is this related to the distribution ↘

process ?",
45 "type": " boolean ",
46 " default ": false
47 },
48 " isGettable ": {
49 " description ": "Is there a getter ?",
50 "type": " boolean ",
51 " default ": false
52 },
53 " isObservable ": {
54 " description ": "Is there an observer ?",
55 "type": " boolean ",
56 " default ": false
57 },
58 " isPersistent ": {
59 " description ": "Are contents persistent ?",
60 "type": " boolean ",
61 " default ": false
62 },
63 " isSettable ": {
64 " description ": "Is there a setter ?",
65 "type": " boolean ",
66 " default ": false
67 }
68 }
69 },
70 " method ": {
71 "type": " object ",
72 " required ": [
73 "name",
74 " input ",
75 " output "
76],
77 " properties ": {
78 "name": {
79 " description ": "The method 's name",
80 "type": " string "
81 },
82 " input ": {
83 " description ": "A list of parameter types ",
84 "type": " array ",
85 " items ": {
86 "type": " string "

A.2 Layer Definition 185

87 }
88 },
89 " output ": {
90 " description ": " Return type of method ",
91 "type": " string "
92 },
93 " description ": {
94 " description ": "A further description ",
95 "type": " string "
96 }
97 }
98 },
99 " primitive ": {

100 "type": " object ",
101 " required ": [
102 "name",
103 "type"
104],
105 " properties ": {
106 "name": {
107 " description ": "The attribute 's name",
108 "type": " string "
109 },
110 "type": {
111 " description ": "The attribute 's type , e.g. 'double '. ↘

This has nothing to do with json types ",
112 "type": " string "
113 },
114 " isDistributor ": {
115 " description ": "Is this related to the distribution ↘

process ?",
116 "type": " boolean ",
117 " default ": false
118 },
119 " isGettable ": {
120 " description ": "Will there be a getter ?",
121 "type": " boolean ",
122 " default ": false
123 },
124 " isObservable ": {
125 " description ": "Will there be an observer ?",
126 "type": " boolean ",
127 " default ": false
128 },
129 " isSettable ": {
130 " description ": "Will there be a setter ?",
131 "type": " boolean ",
132 " default ": false
133 },
134 "unit": {

186 A.2 Layer Definition

135 " description ": "The attribute 's unit , e.g., ms",
136 "type": " string "
137 },
138 " description ": {
139 " description ": "A further description ",
140 "type": " string "
141 }
142 }
143 }
144 },
145 " required ": [
146 "name",
147 " domain ",
148 "NDM",
149 " version "
150],
151 " properties ": {
152 "name": {
153 " description ": "The layer 's name",
154 "type": " string "
155 },
156 " domain ": {
157 " description ": "The layer 's domain ",
158 "type": " string "
159 },
160 " version ": {
161 " description ": " Version of the layer definition ",
162 "type": " number "
163 },
164 "NDM": {
165 " description ": "The layer 's native data model ",
166 "$ref": "#/ definitions / compound "
167 },
168 " compounds ": {
169 " description ": "The layer 's compound structures ",
170 "type": " array ",
171 " items ": {
172 "$ref": "#/ definitions / compound "
173 }
174 },
175 " methods ": {
176 " description ": " Interface extensions ",
177 "type": " array ",
178 " items ": {
179 "$ref": "#/ definitions / method "
180 }
181 },
182 " primitives ": {
183 " description ": "The layer 's primitive attributes ",
184 "type": " array ",

A.3 Component Definition 187

185 " items ": {
186 "$ref": "#/ definitions / primitive "
187 }
188 }
189 }
190 }

Listing A.2 – Layer definition.

A.3 Component Definition

1 {
2 " $schema ": "http :// json - schema .org/draft -07/ schema #",
3 " title ": " Component ",
4 " description ": " Component definition ",
5 "type": " object ",
6 " definitions ": {
7 " result ": {
8 "type": " object ",
9 " required ": [

10 "name",
11 " parameters "
12],
13 " properties ": {
14 "name": {
15 " description ": "The result 's name",
16 "type": " string "
17 },
18 " parameters ": {
19 " description ": "The result 's parameters ",
20 "type": " array ",
21 " items ": {
22 "type": " object "
23 }
24 }
25 }
26 },
27 " parameter ": {
28 "type": " object ",
29 " required ": [
30 "name",
31 " isMandatory ",
32 " values "
33],
34 " properties ": {
35 "name": {
36 " description ": "The parameter 's name",

188 A.3 Component Definition

37 "type": " string "
38 },
39 " isMandatory ": {
40 "type": " boolean "
41 },
42 " values ": {
43 " description ": "A list of possible values ",
44 "type": " array ",
45 " items ": {
46 "type": " string "
47 }
48 }
49 }
50 }
51 },
52 " required ": [
53 "name",
54 " domain ",
55 " layer ",
56 " version "
57],
58 " properties ": {
59 "name": {
60 " description ": "The component 's name",
61 "type": " string "
62 },
63 " version ": {
64 " description ": "The component 's version ",
65 "type": " integer "
66 },
67 " domain ": {
68 " description ": "The component 's domain ",
69 "type": " string "
70 },
71 " layer ": {
72 " description ": "The component 's layer ",
73 "type": " string "
74 },
75 " parameters ": {
76 " description ": "The component 's parameters ",
77 "type": " array ",
78 " items ": {
79 "$ref": "#/ definitions / parameter "
80 }
81 },
82 " resources ": {
83 " description ": "The component 's resources ",
84 "type": " array ",
85 " items ": {
86 "type": " string "

A.4 Scenario Definition 189

87 }
88 },
89 " results ": {
90 " description ": "The component 's results ",
91 "type": " array ",
92 " items ": {
93 "$ref": "#/ definitions / result "
94 }
95 }
96 }
97 }

Listing A.3 – Component definition.

A.4 Scenario Definition

1 {
2 " $schema ": "http :// json - schema .org/draft -07/ schema #",
3 " title ": " Scenario ",
4 " description ": " Scenario Definition ",
5 "type": " object ",
6 " definitions ": {
7 " domainReference ": {
8 "type": " object ",
9 " properties ": {

10 " domain ": {
11 " description ": "The domain 's name",
12 "type": " string "
13 },
14 " referencePath ": {
15 " description ": "The path to the referenceFile ",
16 "type": " string "
17 }
18 }
19 },
20 " observer ": {
21 "type": " object ",
22 " properties ": {
23 "task": {
24 " description ": "The observer 's task",
25 "type": " string "
26 },
27 " element ": {
28 " element ": "The element under observation ",
29 "type": " string "
30 },
31 " filter ": {

190 A.4 Scenario Definition

32 " element ": " Filter for certain elements ?",
33 "type": " string "
34 },
35 " period ": {
36 " element ": " Observation cycle ",
37 "type": " number "
38 },
39 " trigger ": {
40 " element ": " Additional conditions ",
41 "type": " string "
42 },
43 "type": {
44 " element ": "The serialization method ",
45 "type": " string "
46 }
47 }
48 },
49 " buildingBlock ": {
50 "type": " object ",
51 " properties ": {
52 " instanceID ": {
53 " description ": "The bb 's id",
54 "type": " string "
55 },
56 " domain ": {
57 " description ": "The bb 's domain ",
58 "type": " string "
59 },
60 " layer ": {
61 " description ": "The bb 's layer ",
62 "type": " string "
63 },
64 "type": {
65 " description ": "The bb 's component ",
66 "type": " string "
67 },
68 " stepLength ": {
69 " description ": "The bb 's step length ",
70 "type": " number "
71 },
72 " isExternal ": {
73 " description ": "Is the bb external ?",
74 "type": " boolean "
75 },
76 " parameters ": {
77 " description ": "The bb 's parameters ",
78 "type": " object ",
79 " additionalProperties ": {
80 "type": " string "
81 }

A.4 Scenario Definition 191

82 },
83 " resources ": {
84 " description ": "The bb 's resources ",
85 "type": " object ",
86 " additionalProperties ": {
87 "type": " string "
88 }
89 },
90 " results ": {
91 " description ": "The bb 's results ",
92 "type": " object ",
93 " additionalProperties ": {
94 "type": " string "
95 }
96 },
97 " responsibilities ": {
98 " description ": "The bb 's responsibilities ",
99 "type": " array ",

100 " items ": {
101 "type": " string "
102 }
103 },
104 " synchronized ": {
105 " description ": " Synchronization modes ",
106 "type": " boolean "
107 },
108 " observers ": {
109 " description ": "The bb 's observers ",
110 "type": " array ",
111 " items ": {
112 "$ref": "#/ definitions / observer "
113 }
114 }
115 }
116 },
117 " translator ": {
118 "type": " object ",
119 " properties ": {
120 " translatorID ": {
121 " description ": "The translator 's instance id",
122 "type": " string "
123 },
124 "type": {
125 " description ": "The translator 's type",
126 "type": " string "
127 },
128 " domain ": {
129 " description ": "The translator 's domain ",
130 "type": " string "
131 },

192 A.4 Scenario Definition

132 " layerA ": {
133 " description ": "The first layer ",
134 "type": " string "
135 },
136 " layerB ": {
137 " description ": "The second layer ",
138 "type": " string "
139 },
140 " resources ": {
141 " description ": "The translator 's resources ",
142 "type": " object ",
143 " additionalProperties ": {
144 "type": " string "
145 }
146 },
147 " responsibilitiesA ": {
148 " description ": "The first layer 's responsibilities ",
149 "type": " array ",
150 " items ": {
151 "type": " string "
152 }
153 },
154 " responsibilitiesB ": {
155 " description ": "The second layer 's responsibilities ",
156 "type": " array ",
157 " items ": {
158 "type": " string "
159 }
160 },
161 " parameters ": {
162 " description ": " Custom parameters ",
163 "type": " object ",
164 " additionalProperties ": {
165 "type": " string "
166 }
167 }
168 }
169 },
170 " projector ": {
171 "type": " object ",
172 " properties ": {
173 " projectorID ": {
174 " description ": "The projector 's instance id",
175 "type": " string "
176 },
177 "type": {
178 " description ": "The projector 's type",
179 "type": " string "
180 },
181 " domainA ": {

A.4 Scenario Definition 193

182 " description ": "The first domain ",
183 "type": " string "
184 },
185 " layerA ": {
186 " description ": "The first layer ",
187 "type": " string "
188 },
189 " domainB ": {
190 " description ": "The second domain ",
191 "type": " string "
192 },
193 " layerB ": {
194 " description ": "The second layer ",
195 "type": " string "
196 },
197 " resources ": {
198 " description ": "The projector 's resources ",
199 "type": " object ",
200 " additionalProperties ": {
201 "type": " string "
202 }
203 },
204 " parameters ": {
205 " description ": " Custom parameters ",
206 "type": " object ",
207 " additionalProperties ": {
208 "type": " string "
209 }
210 }
211 }
212 }
213 },
214 " required ": [
215 "name",
216 " domain ",
217 "NDM",
218 " version "
219],
220 " properties ": {
221 " scenarioID ": {
222 " description ": "The scenario 's id",
223 "type": " string "
224 },
225 " scenarioStart ": {
226 " description ": "The scenario 's start time",
227 "type": " number "
228 },
229 " scenarioEnd ": {
230 " description ": "The scenario 's end time",
231 "type": " number "

194 A.4 Scenario Definition

232 },
233 " domainReferences ": {
234 " description ": "The scenario 's domain references ",
235 "type": " array ",
236 " items ": {
237 "$ref": "#/ definitions / domainReference "
238 }
239 },
240 " execution ": {
241 " description ": " Execution related parameters ",
242 "type": " object ",
243 " properties ": {
244 " constraints ": {
245 "type": " string "
246 },
247 " numSynced ": {
248 "type": " number "
249 },
250 " priority ": {
251 "type": " number "
252 },
253 " randomSeed ": {
254 "type": " number "
255 }
256 }
257 },
258 " buildingBlocks ": {
259 " description ": "The scenario 's building blocks ",
260 "type": " array ",
261 " items ": {
262 "$ref": "#/ definitions / buildingBlock "
263 }
264 },
265 " translators ": {
266 " description ": "The scenario 's translators ",
267 "type": " array ",
268 " items ": {
269 "$ref": "#/ definitions / translator "
270 }
271 },
272 " projectors ": {
273 " description ": "The scenario 's projectors ",
274 "type": " array ",
275 " items ": {
276 "$ref": "#/ definitions / projector "
277 }
278 }
279 }
280 }

A.5 Avro Definitions 195

Listing A.4 – Scenario definition.

A.5 Avro Definitions

1 {
2 "type": " record ",
3 " namespace ": "eu.fau.cs7. daceDS . datamodel ",
4 "name": " CtrlMsg ",
5 " fields ": [
6 {
7 "name": " sender ",
8 "type": " string "
9 },

10 {
11 "name": " receiver ",
12 "type": " string "
13 },
14 {
15 "name": " command ",
16 "type": " string "
17 }
18]
19 }

Listing A.5 – CtrlMsg.avro definition.

1 {
2 "type": " record ",
3 "name": " ResourceFile ",
4 " namespace ": "eu.fau.cs7. daceDS . datamodel ",
5 " fields ": [
6 {
7 "name": "id",
8 "type": " string "
9 },

10 {
11 "name": "type",
12 "type": " string "
13 },
14 {
15 "name": "file",
16 "type": [
17 "null",
18 " bytes "
19],

196 A.5 Avro Definitions

20 " default ": null
21 },
22 {
23 "name": " fileReference ",
24 "type": [
25 "null",
26 " string "
27],
28 " default ": null
29 }
30]
31 }

Listing A.6 – ResourceFile.avro definition.

1 {
2 "type": " record ",
3 " namespace ": "eu.fau.cs7. daceDS . datamodel ",
4 "name": " SyncMsg ",
5 " fields ": [
6 {
7 "name": " sender ",
8 "type": " string "
9 },

10 {
11 "name": " action ",
12 "type": " string ",
13 " default ": " request "
14 },
15 {
16 "name": "time",
17 "type": "long"
18 },
19 {
20 "name": " epoch ",
21 "type": "int",
22 " default ": 0
23 },
24 {
25 "name": " messages ",
26 "type": {
27 "type": "map",
28 " values ": "long",
29 " default ": {}
30 }
31 }
32]
33 }

A.5 Avro Definitions 197

Listing A.7 – SyncMsg.avro definition.

Appendix B

Evaluation Resources

B.1 Demo Definitions

1 {
2 "name": " number ",
3 " version ": 1,
4 " description ": "this domain covers numbers ",
5 " reference ": {
6 "name": " interval ",
7 "key": {
8 "name": "ID",
9 "type": " string "

10 },
11 " additional ": [
12 {
13 "name": " lowerBound ",
14 "type": "int"
15 },
16 {
17 "name": " upperBound ",
18 "type": "int"
19 }
20]
21 }
22 }

Listing B.1 – Number domain definition.

1 {
2 "name": " integer ",
3 " domain ": " number ",
4 " version ": 1,
5 "NDM": {

199

200 B.1 Demo Definitions

6 "name": " demoInteger ",
7 " isPersistent ": false ,
8 " isGettable ": false ,
9 " isSettable ": false ,

10 " isObservable ": true ,
11 " compounds ": [],
12 "key": {
13 "name": "ID",
14 "type": " string ",
15 " isGettable ": false ,
16 " isSettable ": false ,
17 " isObservable ": false
18 },
19 " methods ": [],
20 " primitives ": [
21 {
22 "name": " value ",
23 "type": "int",
24 " isGettable ": false ,
25 " isSettable ": false ,
26 " isObservable ": false
27 }
28]
29 },
30 " compounds ": [
31 {
32 "name": " interval ",
33 " isPersistent ": true ,
34 " isGettable ": true ,
35 " isSettable ": false ,
36 " isObservable ": true ,
37 " compounds ": [],
38 "key": {
39 "name": "ID",
40 "type": " string ",
41 " isGettable ": false ,
42 " isSettable ": false ,
43 " isObservable ": false
44 },
45 " methods ": [],
46 " primitives ": [
47 {
48 "name": " elements ",
49 "type": "list < demoInteger >",
50 " isGettable ": true ,
51 " isSettable ": false ,
52 " isObservable ": true ,
53 " isDistributor ": true
54 },
55 {

B.1 Demo Definitions 201

56 "name": " elementCount ",
57 "type": "int",
58 " isGettable ": true ,
59 " isSettable ": false ,
60 " isObservable ": true
61 }
62]
63 }
64],
65 " methods ": [],
66 " primitives ": []
67 }

Listing B.2 – Integer layer definition.

1 {
2 "name": " double ",
3 " domain ": " number ",
4 " version ": 1,
5 "NDM": {
6 "name": " demoDouble ",
7 " isPersistent ": false ,
8 " isGettable ": false ,
9 " isSettable ": false ,

10 " isObservable ": true ,
11 " compounds ": [],
12 "key": {
13 "name": "ID",
14 "type": " string ",
15 " isGettable ": false ,
16 " isSettable ": false ,
17 " isObservable ": false
18 },
19 " methods ": [],
20 " primitives ": [
21 {
22 "name": " value ",
23 "type": " double ",
24 " isGettable ": false ,
25 " isSettable ": false ,
26 " isObservable ": false
27 }
28]
29 },
30 " compounds ": [
31 {
32 "name": " interval ",
33 " isPersistent ": true ,
34 " isGettable ": true ,

202 B.1 Demo Definitions

35 " isSettable ": false ,
36 " isObservable ": true ,
37 " compounds ": [],
38 "key": {
39 "name": "ID",
40 "type": " string ",
41 " isGettable ": false ,
42 " isSettable ": false ,
43 " isObservable ": false
44 },
45 " methods ": [],
46 " primitives ": [
47 {
48 "name": " elements ",
49 "type": "list < demoDouble >",
50 " isGettable ": true ,
51 " isSettable ": false ,
52 " isObservable ": true ,
53 " isDistributor ": true
54 },
55 {
56 "name": " elementCount ",
57 "type": "int",
58 " isGettable ": true ,
59 " isSettable ": false ,
60 " isObservable ": true
61 }
62]
63 }
64],
65 " methods ": [],
66 " primitives ": []
67 }

Listing B.3 – Double layer definition.

1 {
2 "name": " color ",
3 " version ": 1,
4 " description ": "this domain covers colors ",
5 " reference ": {
6 "name": "cell",
7 "key": {
8 "name": "ID",
9 "type": " string "

10 },
11 " additional ": [
12 {
13 "name": "x",

B.1 Demo Definitions 203

14 "type": "int"
15 },
16 {
17 "name": "y",
18 "type": "int"
19 }
20]
21 }
22 }

Listing B.4 – Color domain definition.

1 {
2 "name": "rgb3",
3 " domain ": " color ",
4 " version ": 1,
5 "NDM": {
6 "name": " pixel ",
7 " isPersistent ": true ,
8 " isGettable ": true ,
9 " isSettable ": false ,

10 " isObservable ": true ,
11 " compounds ": [],
12 "key": {
13 "name": "ID",
14 "type": "int",
15 " isGettable ": false ,
16 " isSettable ": false ,
17 " isObservable ": false
18 },
19 " methods ": [
20 {
21 "name": " increaseTemperature ",
22 " input ": [],
23 " output ": "void"
24 },
25 {
26 "name": " dereaseTemperature ",
27 " input ": [],
28 " output ": "void"
29 }
30],
31 " primitives ": [
32 {
33 "name": "red",
34 "type": "bool",
35 " isGettable ": false ,
36 " isSettable ": true ,
37 " isObservable ": false

204 B.1 Demo Definitions

38 },
39 {
40 "name": " green ",
41 "type": "bool",
42 " isGettable ": false ,
43 " isSettable ": true ,
44 " isObservable ": false
45 },
46 {
47 "name": "blue",
48 "type": "bool",
49 " isGettable ": false ,
50 " isSettable ": true ,
51 " isObservable ": false
52 }
53]
54 },
55 " compounds ": [
56 {
57 "name": "cell",
58 " isPersistent ": true ,
59 " isGettable ": true ,
60 " isSettable ": false ,
61 " isObservable ": true ,
62 " compounds ": [],
63 "key": {
64 "name": "ID",
65 "type": " string ",
66 " isGettable ": false ,
67 " isSettable ": false ,
68 " isObservable ": false
69 },
70 " methods ": [],
71 " primitives ": [
72 {
73 "name": " pixels ",
74 "type": "list <pixel >",
75 " isGettable ": true ,
76 " isSettable ": false ,
77 " isObservable ": true ,
78 " isDistributor ": true
79 }
80]
81 }
82],
83 " methods ": [],
84 " primitives ": []
85 }

Listing B.5 – RGB3 layer definition.

B.1 Demo Definitions 205

1 {
2 "name ": " rgb24 ",
3 " domain ": " color ",
4 " version ": 1,
5 "NDM ": {
6 "name ": " pixel ",
7 " isPersistent ": true ,
8 " isGettable ": true ,
9 " isSettable ": false ,

10 " isObservable ": true ,
11 " compounds ": [],
12 "key ": {
13 "name ": "ID",
14 "type ": "int",
15 " isGettable ": false ,
16 " isSettable ": false ,
17 " isObservable ": false
18 },
19 " methods ": [
20 {
21 "name ": " increaseTemperature ",
22 " input ": [],
23 " output ": "void"
24 },
25 {
26 "name ": " dereaseTemperature ",
27 " input ": [],
28 " output ": "void"
29 }
30],
31 " primitives ": [
32 {
33 "name ": "red",
34 "type ": "char",
35 " isGettable ": false ,
36 " isSettable ": true ,
37 " isObservable ": false
38 },
39 {
40 "name ": " green ",
41 "type ": "char",
42 " isGettable ": false ,
43 " isSettable ": true ,
44 " isObservable ": false
45 },
46 {
47 "name ": "blue",
48 "type ": "char",
49 " isGettable ": false ,

206 B.2 Scenario Definition Experiment 1

50 " isSettable ": true ,
51 " isObservable ": false
52 }
53]
54 },
55 " compounds ": [
56 {
57 "name ": "cell",
58 " isPersistent ": true ,
59 " isGettable ": true ,
60 " isSettable ": false ,
61 " isObservable ": true ,
62 " compounds ": [],
63 "key ": {
64 "name ": "ID",
65 "type ": " string ",
66 " isGettable ": false ,
67 " isSettable ": false ,
68 " isObservable ": false
69 },
70 " methods ": [],
71 " primitives ": [
72 {
73 "name ": " pixels ",
74 "type ": "list <pixel >",
75 " isGettable ": true ,
76 " isSettable ": false ,
77 " isObservable ": true ,
78 " isDistributor ": true
79 }
80]
81 }
82],
83 " methods ": [],
84 " primitives ": []
85 }

Listing B.6 – RGB24 layer definition.

B.2 Scenario Definition Experiment 1

1 {
2 " scenarioID ": " experiment1 ",
3 " domainReferences ": {
4 " number ": " NumberIntervals .xml"
5 },
6 " simulationStart ": 0,

B.3 Scenario Definition Experiment 3 207

7 " simulationEnd ": 1500 ,
8 " execution ": {
9 " randomSeed ": 87,

10 " constraints ": "",
11 " priority ": 0,
12 " syncedParticipants ": 1
13 },
14 " buildingBlocks ": [
15 {
16 " instanceID ": " negSim ",
17 "type": " IntegerSimulator ",
18 " stepLength ": 1,
19 " layer ": " integers ",
20 " domain ": " numbers ",
21 " parameters ": {
22 "F": " growingSine ",
23 "N": "2",
24 "V": " -350 , -916"
25 },
26 " resources ": {},
27 " responsibilities ": [" negative ", " positive "
28],
29 " results ": {},
30 " synchronized ": false ,
31 " isExternal ": false ,
32 " observers ": [{
33 "task": " publish ",
34 " element ": " demoInteger ",
35 " filter ": "",
36 " period ": 1,
37 " trigger ": "",
38 "type": "avro"
39 }
40]
41 }
42 }
43],
44 " translators ": [],
45 " projectors ": []
46 }

Listing B.7 – Scenario definition of experiment 1.

B.3 Scenario Definition Experiment 3

1 {
2 " scenarioID ": " experiment3 ",

208 B.3 Scenario Definition Experiment 3

3 " domainReferences ": {
4 " number ": " NumberIntervals .xml"
5 },
6 " simulationStart ": 0,
7 " simulationEnd ": 1500 ,
8 " execution ": {
9 " randomSeed ": 87,

10 " constraints ": "",
11 " priority ": 0,
12 " syncedParticipants ": 3
13 },
14 " buildingBlocks ": [
15 {
16 " instanceID ": " negSim ",
17 "type": " IntegerSimulator ",
18 " stepLength ": 20,
19 " layer ": " integers ",
20 " domain ": " numbers ",
21 " parameters ": {
22 "F": " growingSine ",
23 "N": "2",
24 "V": " -350 , -916"
25 },
26 " resources ": {},
27 " responsibilities ": [" negative "
28],
29 " results ": {},
30 " synchronized ": true ,
31 " isExternal ": false ,
32 " observers ": [{
33 "task": " publish ",
34 " element ": " demoInteger ",
35 " filter ": "",
36 " period ": 1,
37 " trigger ": "",
38 "type": "avro"
39 }
40]
41 },
42 {
43 " instanceID ": " posSim ",
44 "type": " DoubleSimulator ",
45 " stepLength ": 1,
46 " layer ": " doubles ",
47 " domain ": " numbers ",
48 " parameters ": {
49 "F": " growingSine ",
50 "N": "0",
51 "V": ""
52 },

B.3 Scenario Definition Experiment 3 209

53 " resources ": {},
54 " responsibilities ": [" positive "
55],
56 " results ": {},
57 " synchronized ": true ,
58 " isExternal ": false ,
59 " observers ": [{
60 "task": " publish ",
61 " element ": " demoDouble ",
62 " filter ": "",
63 " period ": 1,
64 " trigger ": "",
65 "type": "avro"
66 }
67]
68 }
69],
70 " translators ": [
71 {
72 " translatorID ": " translatorID0 ",
73 "type": " intDbl ",
74 " domain ": " numbers ",
75 " layerA ": " integers ",
76 " responsibilitiesA ": [" positive "
77],
78 " layerB ": " doubles ",
79 " responsibilitiesB ": [" negative "
80],
81 " resources ": {},
82 " parameters ": {}
83 }
84],
85 " projectors ": []
86 }

Listing B.8 – Scenario definition of experiment 3.

Appendix C

Definitions in the Traffic Domain

C.1 Traffic Domain Definition

1 {
2 "name": " traffic ",
3 " version ": 1,
4 " description ": "this domain covers traffic ",
5 " reference ": {
6 "name": "node",
7 "key": {
8 "name": " nodeID ",
9 "type": " string "

10 },
11 " additional ": [
12 {
13 "name": "x",
14 "type": " double "
15 },
16 {
17 "name": "y",
18 "type": " double "
19 },
20 {
21 "name": "z",
22 "type": " double "
23 }
24]
25 }
26 }

Listing C.1 – Traffic domain definition.

211

212 C.2 Macroscopic Layer Definition

C.2 Macroscopic Layer Definition

1 {
2 "name": " macro ",
3 " domain ": " traffic ",
4 " version ": 1,
5 "NDM": {
6 "name": "link",
7 " isPersistent ": true ,
8 " isGettable ": true ,
9 " isSettable ": false ,

10 " isObservable ": true ,
11 " isDistributor ": true ,
12 " compounds ": [],
13 "key": {
14 "name": " linkID ",
15 "type": " string ",
16 " isGettable ": false ,
17 " isSettable ": false ,
18 " isObservable ": false
19 },
20 " methods ": [],
21 " primitives ": [
22 {
23 "name": " allowedModes ",
24 "type": "map <integer ,string >",
25 " isGettable ": true ,
26 " isSettable ": true ,
27 " isObservable ": true
28 },
29 {
30 "name": " capacity ",
31 "type": " double ",
32 " isGettable ": true ,
33 " isSettable ": true ,
34 " isObservable ": false ,
35 "unit": "veh/km"
36 },
37 {
38 "name": " density ",
39 "type": " double ",
40 " isGettable ": true ,
41 " isSettable ": false ,
42 " isObservable ": true ,
43 "unit": "veh/km"
44 },
45 {
46 "name": "flow",
47 "type": " double ",

C.2 Macroscopic Layer Definition 213

48 " isGettable ": true ,
49 " isSettable ": false ,
50 " isObservable ": true ,
51 "unit": "veh/h"
52 },
53 {
54 "name": " length ",
55 "type": " double ",
56 " isGettable ": true ,
57 " isSettable ": false ,
58 " isObservable ": false ,
59 "unit": "m"
60 },
61 {
62 "name": " paths ",
63 "type": "map <string ,double >",
64 " isGettable ": true ,
65 " isSettable ": false ,
66 " isObservable ": true
67 },
68 {
69 "name": " speed ",
70 "type": " double ",
71 " isGettable ": true ,
72 " isSettable ": false ,
73 " isObservable ": true ,
74 "unit": "km/h"
75 },
76 {
77 "name": " turningProbabilities ",
78 "type": "map <string ,double >",
79 " isGettable ": true ,
80 " isSettable ": false ,
81 " isObservable ": true
82 }
83]
84 },
85 " compounds ": [],
86 " methods ": [
87 {
88 "name": " runAssignment ",
89 " input ": [],
90 " output ": "void"
91 }
92],
93 " primitives ": []
94 }

Listing C.2 – Macroscopic layer definition.

214 C.3 Mesoscopic Layer Definition

C.3 Mesoscopic Layer Definition

1 {
2 "name": "meso",
3 " domain ": " traffic ",
4 " version ": 1,
5 "NDM": {
6 "name": " vehicle ",
7 " isPersistent ": false ,
8 " isGettable ": true ,
9 " isSettable ": false ,

10 " isObservable ": true ,
11 " compounds ": [],
12 "key": {
13 "name": " vehicleID ",
14 "type": " string ",
15 " isGettable ": false ,
16 " isSettable ": false ,
17 " isObservable ": false
18 },
19 " methods ": [],
20 " primitives ": [
21 {
22 "name": "link",
23 "type": " string ",
24 " isGettable ": true ,
25 " isSettable ": true ,
26 " isObservable ": true
27 },
28 {
29 "name": " route ",
30 "type": "list <string >",
31 " isGettable ": true ,
32 " isSettable ": true ,
33 " isObservable ": false
34 },
35 {
36 "name": "type",
37 "type": " string ",
38 " isGettable ": true ,
39 " isSettable ": false ,
40 " isObservable ": false
41 }
42]
43 },
44 " compounds ": [
45 {
46 "name": "link",
47 " isPersistent ": true ,

C.3 Mesoscopic Layer Definition 215

48 " isGettable ": true ,
49 " isSettable ": false ,
50 " isObservable ": true ,
51 " compounds ": [],
52 "key": {
53 "name": " linkID ",
54 "type": " string ",
55 " isGettable ": false ,
56 " isSettable ": false ,
57 " isObservable ": false
58 },
59 " methods ": [],
60 " primitives ": [
61 {
62 "name": "flow",
63 "type": " double ",
64 " isGettable ": true ,
65 " isSettable ": false ,
66 " isObservable ": true ,
67 "unit": "veh/h"
68 },
69 {
70 "name": " occupancy ",
71 "type": " double ",
72 " isGettable ": true ,
73 " isSettable ": false ,
74 " isObservable ": true ,
75 "unit": "veh/km"
76 },
77 {
78 "name": " speed ",
79 "type": " double ",
80 " isGettable ": true ,
81 " isSettable ": false ,
82 " isObservable ": true ,
83 "unit": "m/s"
84 },
85 {
86 "name": " vehicles ",
87 "type": "list <vehicle >",
88 " isGettable ": true ,
89 " isSettable ": false ,
90 " isObservable ": true ,
91 " isDistributor ": true
92 },
93 {
94 "name": " vehicleIDs ",
95 "type": "list <string >",
96 " isGettable ": true ,
97 " isSettable ": false ,

216 C.4 Microscopic Layer Definition

98 " isObservable ": true
99 }

100]
101 }
102],
103 " methods ": [],
104 " primitives ": []
105 }

Listing C.3 – Mesoscopic layer definition.

C.4 Microscopic Layer Definition

1 {
2 "name": " micro ",
3 " domain ": " traffic ",
4 " version ": 1,
5 "NDM": {
6 "name": " vehicle ",
7 " isPersistent ": false ,
8 " isGettable ": true ,
9 " isSettable ": false ,

10 " isObservable ": true ,
11 " compounds ": [],
12 "key": {
13 "name": " vehicleID ",
14 "type": " string ",
15 " isGettable ": false ,
16 " isSettable ": false ,
17 " isObservable ": false
18 },
19 " methods ": [],
20 " primitives ": [
21 {
22 "name": " acceleration ",
23 "type": " double ",
24 " isGettable ": true ,
25 " isSettable ": true ,
26 " isObservable ": true ,
27 "unit": "m/s2",
28 " description ": "will lead to: ↘

interaction [...] micro . vehicle . acceleration .get , ↘
interaction [...] micro . vehicle . acceleration .ret , ↘
provision [...] micro . vehicle . acceleration "

29 },
30 {
31 "name": " angle ",

C.4 Microscopic Layer Definition 217

32 "type": " double ",
33 " isGettable ": true ,
34 " isSettable ": true ,
35 " isObservable ": true ,
36 "unit": "deg"
37 },
38 {
39 "name": "edge",
40 "type": " string ",
41 " isGettable ": true ,
42 " isSettable ": true ,
43 " isObservable ": true
44 },
45 {
46 "name": "lane",
47 "type": "int",
48 " isGettable ": true ,
49 " isSettable ": true ,
50 " isObservable ": true
51 },
52 {
53 "name": " position ",
54 "type": "vec3",
55 " isGettable ": true ,
56 " isSettable ": true ,
57 " isObservable ": true
58 },
59 {
60 "name": " positionEdge ",
61 "type": " double ",
62 " isGettable ": true ,
63 " isSettable ": true ,
64 " isObservable ": true ,
65 "unit": "m",
66 " description ": " distance to beginning of current edge"
67 },
68 {
69 "name": " route ",
70 "type": "list <string >",
71 " isGettable ": true ,
72 " isSettable ": true ,
73 " isObservable ": false
74 },
75 {
76 "name": " slope ",
77 "type": " double ",
78 " isGettable ": true ,
79 " isSettable ": false ,
80 " isObservable ": true ,
81 "unit": "deg"

218 C.4 Microscopic Layer Definition

82 },
83 {
84 "name": " speed ",
85 "type": " double ",
86 " isGettable ": true ,
87 " isSettable ": true ,
88 " isObservable ": true ,
89 "unit": "m/s"
90 },
91 {
92 "name": "type",
93 "type": " string ",
94 " isGettable ": true ,
95 " isSettable ": false ,
96 " isObservable ": false
97 }
98]
99 },

100 " compounds ": [
101 {
102 "name": "edge",
103 " isPersistent ": true ,
104 " isGettable ": true ,
105 " isSettable ": false ,
106 " isObservable ": true ,
107 " compounds ": [],
108 "key": {
109 "name": " edgeID ",
110 "type": " string ",
111 " isGettable ": false ,
112 " isSettable ": false ,
113 " isObservable ": false
114 },
115 " methods ": [
116 {
117 "name": " setAllowedTypes ",
118 " input ": [
119 " integer ",
120 " list_string "
121],
122 " output ": "void"
123 },
124 {
125 "name": " getAllowedTypes ",
126 " input ": [
127 " integer "
128],
129 " output ": "list <string >"
130 },
131 {

C.4 Microscopic Layer Definition 219

132 "name": " getLaneNumber ",
133 " input ": [],
134 " output ": " integer "
135 },
136 {
137 "name": " getLaneGradient ",
138 " input ": [
139 " integer "
140],
141 " output ": " double "
142 },
143 {
144 "name": " getLaneLength ",
145 " input ": [
146 " integer "
147],
148 " output ": " double "
149 },
150 {
151 "name": " getLaneWidth ",
152 " input ": [
153 " integer "
154],
155 " output ": " double "
156 }
157],
158 " primitives ": [
159 {
160 "name": " emission ",
161 "type": " string ",
162 " isGettable ": true ,
163 " isSettable ": false ,
164 " isObservable ": true ,
165 " description ": "some calculated emission information "
166 },
167 {
168 "name": "flow",
169 "type": " double ",
170 " isGettable ": true ,
171 " isSettable ": false ,
172 " isObservable ": true ,
173 "unit": "veh/h"
174 },
175 {
176 "name": " occupancy ",
177 "type": " double ",
178 " isGettable ": true ,
179 " isSettable ": false ,
180 " isObservable ": true ,
181 "unit": "veh/km"

220 C.4 Microscopic Layer Definition

182 },
183 {
184 "name": " speed ",
185 "type": " double ",
186 " isGettable ": true ,
187 " isSettable ": false ,
188 " isObservable ": true ,
189 "unit": "m/s"
190 },
191 {
192 "name": " vehicles ",
193 "type": "list <vehicle >",
194 " isGettable ": true ,
195 " isSettable ": false ,
196 " isObservable ": true ,
197 " isDistributor ": true
198 },
199 {
200 "name": " vehicleIDs ",
201 "type": "list <string >",
202 " isGettable ": true ,
203 " isSettable ": false ,
204 " isObservable ": true
205 }
206]
207 },
208 {
209 "name": " detector ",
210 " isPersistent ": true ,
211 " isGettable ": true ,
212 " isSettable ": false ,
213 " isObservable ": true ,
214 " compounds ": [],
215 "key": {
216 "name": " detectorID ",
217 "type": " string ",
218 " isGettable ": false ,
219 " isSettable ": false ,
220 " isObservable ": false
221 },
222 " methods ": [],
223 " primitives ": [
224 {
225 "name": " values ",
226 "type": "map <boolean ,double ,integer ,string >",
227 " isGettable ": true ,
228 " isSettable ": false ,
229 " isObservable ": true ,

C.5 Submicroscopic Layer Definition 221

230 " description ": " detector 's values , very generic ↘
because no further knowledge , key is ↘
det. attribute name , value is det. value "

231 }
232]
233 }
234],
235 " methods ": [],
236 " primitives ": []
237 }

Listing C.4 – Microscopic layer definition.

C.5 Submicroscopic Layer Definition

1 {
2 "name": " submicro ",
3 " domain ": " traffic ",
4 " version ": 1,
5 "NDM": {
6 "name": " vehicle ",
7 " isPersistent ": false ,
8 " isGettable ": true ,
9 " isSettable ": false ,

10 " isObservable ": true ,
11 " compounds ": [
12 {
13 "name": " sensor ",
14 " isPersistent ": false ,
15 " isGettable ": true ,
16 " isSettable ": false ,
17 " isObservable ": true ,
18 " compounds ": [],
19 "key": {
20 "name": " sensorID ",
21 "type": " string ",
22 " isGettable ": false ,
23 " isSettable ": false ,
24 " isObservable ": false
25 },
26 " methods ": [],
27 " primitives ": [
28 {
29 "name": "type",
30 "type": " string ",
31 " isGettable ": false ,
32 " isSettable ": false ,

222 C.5 Submicroscopic Layer Definition

33 " isObservable ": false
34 },
35 {
36 "name": "data",
37 "type": "list <bool ,bytes ,double ,int ,string >",
38 " isGettable ": false ,
39 " isSettable ": false ,
40 " isObservable ": false ,
41 " isDistributor ": false
42 }
43]
44 }
45],
46 "key": {
47 "name": " vehicleID ",
48 "type": " string ",
49 " isGettable ": false ,
50 " isSettable ": false ,
51 " isObservable ": false
52 },
53 " methods ": [],
54 " primitives ": [
55 {
56 "name": " acceleration ",
57 "type": "vec3",
58 " isGettable ": true ,
59 " isSettable ": true ,
60 " isObservable ": true ,
61 "unit": "m/s2 ,m/s2 ,m/s2"
62 },
63 {
64 "name": " brake ",
65 "type": " double ",
66 " isGettable ": true ,
67 " isSettable ": true ,
68 " isObservable ": true
69 },
70 {
71 "name": " laneID ",
72 "type": " string ",
73 " isGettable ": true ,
74 " isObservable ": true ,
75 " isSettable ": false ,
76 " description ": " contains road and lane id"
77 },
78 {
79 "name": "gear",
80 "type": "int",
81 " isGettable ": true ,
82 " isSettable ": true ,

C.5 Submicroscopic Layer Definition 223

83 " isObservable ": true
84 },
85 {
86 "name": " position ",
87 "type": "Vec3",
88 " isGettable ": true ,
89 " isSettable ": true ,
90 " isObservable ": true
91 },
92 {
93 "name": " rotation ",
94 "type": "Vec3",
95 " isGettable ": true ,
96 " isSettable ": true ,
97 " isObservable ": true ,
98 "unit": "deg ,deg ,deg"
99 },

100 {
101 "name": " route ",
102 "type": "list <vec3 >",
103 " isGettable ": true ,
104 " isSettable ": true ,
105 " isObservable ": false
106 },
107 {
108 "name": " speed ",
109 "type": " double ",
110 " isGettable ": true ,
111 " isSettable ": true ,
112 " isObservable ": true ,
113 "unit": "m/s"
114 },
115 {
116 "name": " steer ",
117 "type": " double ",
118 " isGettable ": true ,
119 " isSettable ": true ,
120 " isObservable ": true ,
121 "unit": "deg"
122 },
123 {
124 "name": " throttle ",
125 "type": " double ",
126 " isGettable ": true ,
127 " isSettable ": true ,
128 " isObservable ": true
129 },
130 {
131 "name": "type",
132 "type": " string ",

224 C.5 Submicroscopic Layer Definition

133 " isGettable ": true ,
134 " isSettable ": false ,
135 " isObservable ": false
136 },
137 {
138 "name": " velocity ",
139 "type": "list <vec3 >",
140 " isGettable ": true ,
141 " isSettable ": true ,
142 " isObservable ": true ,
143 "unit": "m/s,m/s,m/s"
144 }
145]
146 },
147 " compounds ": [
148 {
149 "name": "lane",
150 " isPersistent ": true ,
151 " isGettable ": true ,
152 " isSettable ": false ,
153 " isObservable ": true ,
154 " compounds ": [],
155 "key": {
156 "name": " laneID ",
157 "type": " string ",
158 " isGettable ": false ,
159 " isSettable ": false ,
160 " isObservable ": false ,
161 " description ": " contains road and lane id"
162 },
163 " methods ": [],
164 " primitives ": [
165 {
166 "name": " speed ",
167 "type": " double ",
168 " isGettable ": true ,
169 " isSettable ": false ,
170 " isObservable ": true ,
171 "unit": "m/s"
172 },
173 {
174 "name": " vehicles ",
175 "type": "list <vehicle >",
176 " isGettable ": true ,
177 " isSettable ": false ,
178 " isObservable ": true ,
179 " isDistributor ": true
180 },
181 {
182 "name": " vehicleIDs ",

C.5 Submicroscopic Layer Definition 225

183 "type": "list <string >",
184 " isGettable ": true ,
185 " isSettable ": false ,
186 " isObservable ": true
187 }
188]
189 }
190],
191 " methods ": [],
192 " primitives ": []
193 }

Listing C.5 – Submicroscopic layer definition.

Appendix D

Definitions in the Communication Do-

main

1 {
2 "name": " communication ",
3 " version ": 1,
4 " description ": "this definition covers the communication ↘

domain ",
5 " reference ": {
6 "name": " logicalNetwork ",
7 "key": {
8 "name": " networkID ",
9 "type": " string "

10 },
11 " additional ": [
12 {
13 "name": " description ",
14 "type": " string "
15 },
16 {
17 "name": " technology ",
18 "type": " string "
19 }
20]
21 }
22 }

Listing D.1 – Communication domain definition.

1 {
2 "name": " 80211 p",
3 " domain ": " communication ",
4 " version ": 1,

227

228 D Definitions in the Communication Domain

5 "NDM": {
6 "name": " message ",
7 " isPersistent ": false ,
8 " isGettable ": false ,
9 " isSettable ": false ,

10 " isObservable ": true ,
11 " compounds ": [],
12 "key": {
13 "name": " messageID ",
14 "type": " string ",
15 " isGettable ": false ,
16 " isSettable ": false ,
17 " isObservable ": false
18 },
19 " methods ": [],
20 " primitives ": [
21 {
22 "name": " transmissionPower ",
23 "type": " double ",
24 " isGettable ": true ,
25 " isSettable ": false ,
26 " isObservable ": false ,
27 "unit": "mW"
28 },
29 {
30 "name": " origin ",
31 "type": "vec3",
32 " isGettable ": true ,
33 " isSettable ": false ,
34 " isObservable ": false ,
35 "unit": "m"
36 },
37 {
38 "name": " networkID ",
39 "type": " string ",
40 " isGettable ": false ,
41 " isSettable ": false ,
42 " isObservable ": false
43 },
44 {
45 "name": " sender ",
46 "type": " string ",
47 " isGettable ": false ,
48 " isSettable ": false ,
49 " isObservable ": false
50 },
51 {
52 "name": " receiver ",
53 "type": " string ",
54 " isGettable ": false ,

D Definitions in the Communication Domain 229

55 " isSettable ": false ,
56 " isObservable ": false
57 },
58 {
59 "name": "type",
60 "type": " string ",
61 " isGettable ": false ,
62 " isSettable ": false ,
63 " isObservable ": false
64 },
65 {
66 "name": " stage ",
67 "type": " string ",
68 " isGettable ": false ,
69 " isSettable ": false ,
70 " isObservable ": false
71 },
72 {
73 "name": " channel ",
74 "type": "int",
75 " isGettable ": false ,
76 " isSettable ": false ,
77 " isObservable ": false
78 },
79 {
80 "name": " priority ",
81 "type": "int",
82 " isGettable ": false ,
83 " isSettable ": false ,
84 " isObservable ": false
85 },
86 {
87 "name": " payload ",
88 "type": " string ",
89 " isGettable ": false ,
90 " isSettable ": false ,
91 " isObservable ": false
92 }
93]
94 },
95 " compounds ": [
96 {
97 "name": " logicalNetwork ",
98 " isPersistent ": true ,
99 " isGettable ": true ,

100 " isSettable ": false ,
101 " isObservable ": true ,
102 " compounds ": [],
103 "key": {
104 "name": " networkID ",

230 D Definitions in the Communication Domain

105 "type": " string ",
106 " isGettable ": false ,
107 " isSettable ": false ,
108 " isObservable ": false
109 },
110 " methods ": [],
111 " primitives ": [
112 {
113 "name": " received ",
114 "type": "list <message >",
115 " isGettable ": true ,
116 " isSettable ": false ,
117 " isObservable ": true ,
118 " isDistributor ": true
119 },
120 {
121 "name": " receivedNumber ",
122 "type": "int",
123 " isGettable ": true ,
124 " isSettable ": false ,
125 " isObservable ": true
126 },
127 {
128 "name": "sent",
129 "type": "list <message >",
130 " isGettable ": true ,
131 " isSettable ": false ,
132 " isObservable ": true
133 },
134 {
135 "name": " sentNumber ",
136 "type": "int",
137 " isGettable ": true ,
138 " isSettable ": false ,
139 " isObservable ": true
140 }
141]
142 },
143 {
144 "name": "node",
145 " isPersistent ": false ,
146 " isGettable ": false ,
147 " isSettable ": false ,
148 " isObservable ": true ,
149 " compounds ": [],
150 "key": {
151 "name": " nodeID ",
152 "type": " string ",
153 " isGettable ": false ,
154 " isSettable ": false ,

D Definitions in the Communication Domain 231

155 " isObservable ": false
156 },
157 " methods ": [],
158 " primitives ": [
159 {
160 "name": " position ",
161 "type": "vec3",
162 " isGettable ": true ,
163 " isSettable ": true ,
164 " isObservable ": true
165 }
166]
167 }
168],
169 " methods ": [],
170 " primitives ": []
171 }

Listing D.2 – 80211p layer definition.

Appendix E

Exemplary Case Studies

E.1 Study 1

1 {
2 " scenarioID ": "uc11",
3 " domainReferences ": {
4 " traffic ": " MiniLine .net. reference .xml"
5 },
6 " simulationStart ": 0,
7 " simulationEnd ": 100 ,
8 " execution ": {
9 " randomSeed ": 23,

10 " constraints ": "",
11 " priority ": 0,
12 " syncedParticipants ": 2
13 },
14 " buildingBlocks ": [
15 {
16 " instanceID ": " SumoWrapper0 ",
17 "type": " SumoWrapper ",
18 " layer ": " micro ",
19 " domain ": " traffic ",
20 " stepLength ": 1000 ,
21 " parameters ": {},
22 " resources ": { " MiniLine .net.xml": " RoadMap ", ↘

"2lps. MiniLine . traffic . SumoWrapper0 .xml": ↘
" Traffic ", " vtypes .xml": " Additional "

23 },
24 " results ": {},
25 " synchronized ": true ,
26 " isExternal ": false ,
27 " responsibilities ": ["0", "1", "2"
28],
29 " observers ": []

233

234 E.1 Study 1

30 },
31 {
32 " instanceID ": " SumoWrapper1 ",
33 "type": " SumoWrapper ",
34 " layer ": " micro ",
35 " domain ": " traffic ",
36 " stepLength ": 1000 ,
37 " parameters ": {},
38 " resources ": { " MiniLine .net.xml": " RoadMap ", ↘

"2lps. MiniLine . traffic . SumoWrapper1 .xml": ↘
" Traffic ", " vtypes .xml": " Additional "

39 },
40 " results ": {},
41 " synchronized ": true ,
42 " isExternal ": false ,
43 " responsibilities ": ["3", "4", "5"
44],
45 " observers ": []
46 }
47],
48 " translators ": [],
49 " projectors ": []
50 }
51 {
52 " scenarioID ": "uc12",
53 " domainReferences ": {
54 " traffic ": " MiniLine .net. reference .xml"
55 },
56 " simulationStart ": 0,
57 " simulationEnd ": 100 ,
58 " execution ": {
59 " randomSeed ": 23,
60 " constraints ": "",
61 " priority ": 0,
62 " syncedParticipants ": 2
63 },
64 " buildingBlocks ": [
65 {
66 " instanceID ": " NorthWest ",
67 "type": " SumoWrapper ",
68 " layer ": " micro ",
69 " domain ": " traffic ",
70 " stepLength ": 1000 ,
71 " parameters ": {},
72 " resources ": { " Manhattan .net.xml": " RoadMap ", ↘

"4lps. Manhattan . traffic . NorthWest .xml": ↘
" Traffic ", " Manhattan . types .xml": " Additional "

73 },
74 " results ": {},
75 " synchronized ": true ,

E.1 Study 1 235

76 " isExternal ": false ,
77 " responsibilities ": ["15", "16", "17", "18", ↘

"19", "25", "26", "27", "28", "29", "35", ↘
"36", "37", "38", "39", "45", "46", "47", ↘
"48", "49", "5", "6", "7", "8", "9"

78],
79 " observers ": []
80 },
81 {
82 " instanceID ": " NorthEast ",
83 "type": " SumoWrapper ",
84 " layer ": " micro ",
85 " domain ": " traffic ",
86 " stepLength ": 1000 ,
87 " parameters ": {},
88 " resources ": { " Manhattan .net.xml": " RoadMap ", ↘

"4lps. Manhattan . traffic . NorthEast .xml": ↘
" Traffic ", " Manhattan . types .xml": " Additional "

89 },
90 " results ": {},
91 " synchronized ": true ,
92 " isExternal ": false ,
93 " responsibilities ": ["55", "56", "57", "58", ↘

"59", "65", "66", "67", "68", "69", "75", ↘
"76", "77", "78", "79", "85", "86", "87", ↘
"88", "89", "95", "96", "97", "98", "99"

94],
95 " observers ": []
96 },
97 {
98 " instanceID ": " SouthWest ",
99 "type": " SumoWrapper ",

100 " layer ": " micro ",
101 " domain ": " traffic ",
102 " stepLength ": 1000 ,
103 " parameters ": {},
104 " resources ": { " Manhattan .net.xml": " RoadMap ", ↘

"4lps. Manhattan . traffic . SouthWest .xml": ↘
" Traffic ", " Manhattan . types .xml": " Additional "

105 },
106 " results ": {},
107 " synchronized ": true ,
108 " isExternal ": false ,
109 " responsibilities ": ["0", "1", "10", "11", "12", ↘

"13", "14", "2", "20", "21", "22", "23", "24", ↘
"3", "30", "31", "32", "33", "34", "4", "40", ↘
"41", "42", "43", "44"

110],
111 " observers ": []
112 },

236 E.2 Study 2

113 {
114 " instanceID ": " SouthEast ",
115 "type": " SumoWrapper ",
116 " layer ": " micro ",
117 " domain ": " traffic ",
118 " stepLength ": 1000 ,
119 " parameters ": {},
120 " resources ": { " Manhattan .net.xml": " RoadMap ", ↘

"4lps. Manhattan . traffic . SouthEast .xml": ↘
" Traffic ", " Manhattan . types .xml": " Additional "

121 },
122 " results ": {},
123 " synchronized ": true ,
124 " isExternal ": false ,
125 " responsibilities ": ["50", "51", "52", "53", ↘

"54", "60", "61", "62", "63", "64", "70", ↘
"71", "72", "73", "74", "80", "81", "82", ↘
"83", "84", "90", "91", "92", "93", "94"

126],
127 " observers ": []
128 }
129],
130 " translators ": [],
131 " projectors ": []
132 }

Listing E.1 – Scenario definition of study 1.1 and 1.2.

E.2 Study 2

1 {
2 " scenarioID ": "uc2",
3 " domainReferences ": {
4 " traffic ": " Manhattan .net. reference .xml"
5 },
6 " simulationStart ": 0,
7 " simulationEnd ": 1800 ,
8 " execution ": {
9 " randomSeed ": 23,

10 " constraints ": "",
11 " priority ": 0,
12 " syncedParticipants ": 3
13 },
14 " buildingBlocks ": [
15 {
16 " instanceID ": " MatsimWrapper0 ",
17 "type": " MATSimWrapper ",

E.2 Study 2 237

18 " layer ": "meso",
19 " domain ": " traffic ",
20 " stepLength ": 1000 ,
21 " parameters ": {},
22 " resources ": { " Manhattan . matsim . network .xml": ↘

" RoadMap ", " routes .high. plans .xml": " Traffic "
23 },
24 " results ": {},
25 " synchronized ": true ,
26 " isExternal ": false ,
27 " responsibilities ": ["0", "1", "10", "11", "12", ↘

"13", "14", "15", "16", "17", "18", "19", "2", ↘
"20", "21", "22", "23", "24", "25", "26", ↘
"27", "28", "29", "3", "33", "34", "35", "36", ↘
"37", "38", "39", "4", "43", "44", "45", "46", ↘
"47", "48", "49", "5", "6", "7", "8", "9", ↘
"53", "54", "55", "56", "57", "58", "59", ↘
"63", "64", "65", "66", "67", "68", "69", ↘
"70", "71", "72", "73", "74", "75", "76", ↘
"77", "78", "79", "80", "81", "82", "83", ↘
"84", "85", "86", "87", "88", "89", "90", ↘
"91", "92", "93", "94", "95", "96", "97", ↘
"98", "99"

28],
29 " observers ": [{ "task": " publish ", ↘

" element ": "link", " filter ": "2 28 0 31 5 ↘
1 32 66 29 36 4 69 33 40 7 73 10 37 44 77 13 ↘
41 48 81 16 45 52 85 19 49 56 89 22 53 60 93 ↘
25 57 64 97 101 27 61 3 35 8 104 30 70 107 34 ↘
67 74 111 38 71 78 115 42 75 82 119 46 79 86 ↘
123 50 83 90 127 54 87 94 131 58 91 98 102 135 ↘
62 95 139 65 99 11 39 6 113 120 153 80 117 124 ↘
157 84 121 128 161 88 125 132 165 92 129 136 ↘
169 96 100 133 140 173 103 137 177 14 43 9 118 ↘
151 158 191 122 155 162 195 126 159 166 199 ↘
130 163 170 203 134 167 174 207 138 171 178 ↘
211 141 175 215 12 17 47 15 20 51 18 23 55 21 ↘
26 59 24 63 156 189 196 229 160 193 200 233 ↘
164 197 204 237 168 201 208 241 172 205 212 ↘
245 176 209 216 249 179 213 253 222 219 226 ↘
223 230 194 234 267 198 231 238 271 202 235 ↘
242 275 206 239 246 279 210 243 250 283 214 ↘
247 254 287 217 251 291 220 260 294 224 257 ↘
264 297 228 261 268 301 232 265 272 305 236 ↘
269 276 309 240 273 280 313 244 277 284 317 ↘
248 281 288 321 252 285 292 325 255 289 329 ↘
258 298 332 262 295 302 334 266 299 306 337 ↘
270 303 310 340 274 307 314 343 278 311 318 ↘
346 282 315 322 349 286 319 326 352 290 323 ↘
330 355 293 327 358 296 335 300 333 338 304 ↘

238 E.2 Study 2

336 341 308 339 344 312 342 347 316 345 350 ↘
320 348 353 324 351 356 328 354 359 331 357", ↘

" period ": 1000 , " trigger ": "", ↘
"type": "avro" }

30]
31 },
32 {
33 " instanceID ": " SumoWrapper1 ",
34 "type": " SumoWrapper ",
35 " layer ": " micro ",
36 " domain ": " traffic ",
37 " stepLength ": 100 ,
38 " parameters ": { " ghosting ": " false "
39 },
40 " resources ": { " Manhattan .net.xml": " RoadMap ", ↘

" Manhattan . types .xml": " Additional "
41 },
42 " results ": {},
43 " synchronized ": true ,
44 " isExternal ": false ,
45 " responsibilities ": ["30", "40", "50", "31", ↘

"41", "51", "32", "42", "52", "60", "61", "62"
46],
47 " observers ": [{ "task": " publish ", ↘

" element ": "edge", " filter ": "108 142 68 ↘
106 146 180 144 184 218 105 112 145 72 110 143 ↘
150 183 148 181 188 221 109 116 149 76 114 147 ↘
154 187 152 185 192 225 190 186 182 263 259 ↘
256 227", " period ": 1000 , " trigger ": ↘
"", "type": "json" }

48]
49 }
50],
51 " translators ": [
52 {
53 " translatorID ": " MicroMesoJava0 ",
54 "type": " MicroMesoJava ",
55 " domain ": " traffic ",
56 " layerA ": " micro ",
57 " responsibilitiesA ": ["0", "1", "10", "11", "12", ↘

"13", "14", "15", "16", "17", "18", "19", "2", ↘
"20", "21", "22", "23", "24", "25", "26", ↘
"27", "28", "29", "3", "33", "34", "35", "36", ↘
"37", "38", "39", "4", "43", "44", "45", "46", ↘
"47", "48", "49", "5", "6", "7", "8", "9", ↘
"53", "54", "55", "56", "57", "58", "59", ↘
"63", "64", "65", "66", "67", "68", "69", ↘
"70", "71", "72", "73", "74", "75", "76", ↘
"77", "78", "79", "80", "81", "82", "83", ↘
"84", "85", "86", "87", "88", "89", "90", ↘

E.2 Study 2 239

"91", "92", "93", "94", "95", "96", "97", ↘
"98", "99"

58],
59 " layerB ": "meso",
60 " responsibilitiesB ": ["30", "40", "50", "31", ↘

"41", "51", "32", "42", "52", "60", "61", "62"
61],
62 " parameters ": {},
63 " resources ": { " Manhattan . matsim . network .xml": ↘

" MesoNetwork "
64 }
65 }
66],
67 " projectors ": []
68 }

Listing E.2 – Scenario definition of study 2 (multi-level topology with high

traffic).

0 3 6 9 12 15 18 21 24 27 30
Simulation Time (min)

0

20

40

Ve
hi

cle
s o

n
Ax

is Vehicle Load
Low Meso
Low ML
Low Micro

0 3 6 9 12 15 18 21 24 27 30
Simulation Time (min)

0

50

100

150

Re
la

tiv
e

Er
ro

r Relative Error of Vehicle Load (%)
Low Meso
Low ML

0 3 6 9 12 15 18 21 24 27 30
Simulation Time (min)

0

10

20

Ab
so

lu
te

 E
rro

r Absolute Error of Vehicle Load
Low Meso
Low ML

Figure E.1 – Errors of traffic load over time on the south axis for low traffic.

240 E.2 Study 2

0 3 6 9 12 15 18 21 24 27 30
Simulation Time (min)

0

50

100

Ve
hi

cle
s o

n
Ax

is Vehicle Load
Med Meso
Med ML
Med Micro

0 3 6 9 12 15 18 21 24 27 30
Simulation Time (min)

0

50

100

150

Re
la

tiv
e

Er
ro

r Relative Error of Vehicle Load (%)
Med Meso
Med ML

0 3 6 9 12 15 18 21 24 27 30
Simulation Time (min)

0

25

50

Ab
so

lu
te

 E
rro

r Absolute Error of Vehicle Load
Med Meso
Med ML

Figure E.2 – Errors of traffic load over time on the south axis for medium
traffic.

0 3 6 9 12 15 18 21 24 27 30
Simulation Time (min)

0

200

400

Ve
hi

cle
s o

n
Ax

is Vehicle Load
High Meso
High ML
High Micro

0 3 6 9 12 15 18 21 24 27 30
Simulation Time (min)

0

50

100

150

Re
la

tiv
e

Er
ro

r Relative Error of Vehicle Load (%)
High Meso
High ML

0 3 6 9 12 15 18 21 24 27 30
Simulation Time (min)

0

200

Ab
so

lu
te

 E
rro

r Absolute Error of Vehicle Load
High Meso
High ML

Figure E.3 – Errors of traffic load over time on the south axis for high traffic.

E.3 Study 3 241

E.3 Study 3

1 {
2 " scenarioID ": "uc3",
3 " domainReferences ": {
4 " traffic ": " Town01 . reference .xml"
5 },
6 " simulationStart ": 0,
7 " simulationEnd ": 2100 ,
8 " execution ": {
9 " randomSeed ": 23,

10 " constraints ": "",
11 " priority ": 0,
12 " syncedParticipants ": 7
13 },
14 " buildingBlocks ": [
15 {
16 " instanceID ": " VisumWrapper3 ",
17 "type": " VisumWrapper ",
18 " layer ": " macro ",
19 " domain ": " traffic ",
20 " stepLength ": 3600000 ,
21 " parameters ": {},
22 " resources ": { " Town01_extended_NSLoad_DUE .ver": ↘

" Version "
23 },
24 " results ": {},
25 " synchronized ": true ,
26 " isExternal ": false ,
27 " responsibilities ": [" 10014 ", " 10015 ", " 10024 ", ↘

" 10025 ", " 10034 ", " 10035 ", " 10044 ", " 10045 "
28],
29 " observers ": []
30 },
31 {
32 " instanceID ": " MATSimWrapper2 ",
33 "type": " MATSimWrapper ",
34 " layer ": "meso",
35 " domain ": " traffic ",
36 " stepLength ": 1000 ,
37 " parameters ": {},
38 " resources ": { " Town01_extended . network .xml": ↘

" RoadMap ", " Town01 . noplans .xml": " Traffic "
39 },
40 " results ": {},
41 " synchronized ": true ,
42 " isExternal ": false ,

242 E.3 Study 3

43 " responsibilities ": [" 10011 ", " 10012 ", " 10013 ", ↘
" 10021 ", " 10022 ", " 10023 ", " 10032 ", " 10033 ", ↘
" 10042 ", " 10043 "

44],
45 " observers ": []
46 },
47 {
48 " instanceID ": " SumoWrapper0 ",
49 "type": " SumoWrapper ",
50 " layer ": " micro ",
51 " domain ": " traffic ",
52 " stepLength ": 1000 ,
53 " parameters ": { " ghosting ": " false "
54 },
55 " resources ": { " Town01 . vtypes .xml": " Additional ", ↘

" Town01_extended .net.xml": " RoadMap "
56 },
57 " results ": {},
58 " synchronized ": true ,
59 " isExternal ": false ,
60 " responsibilities ": [" 10031 ", " 10041 ", "110", ↘

"111", "139", "1513", "195", "2015", "26", ↘
"313", "43", "520", "60", "714", "77", "811", ↘
"814", "94"

61],
62 " observers ": []
63 },
64 {
65 " instanceID ": " CarlaWrapper1 ",
66 "type": " CarlaWrapper ",
67 " layer ": " submicro ",
68 " domain ": " traffic ",
69 " stepLength ": 100 ,
70 " parameters ": {},
71 " resources ": { " Town01 .xodr": " RoadMap "
72 },
73 " results ": {},
74 " synchronized ": true ,
75 " isExternal ": false ,
76 " responsibilities ": ["128", "156", "167", "184"
77],
78 " observers ": []
79 }
80],
81 " translators ": [
82 {
83 " translatorID ": " SubmicroMicroJava ",
84 "type": " SubmicroMicroJava ",
85 " domain ": " traffic ",
86 " layerA ": " submicro ",

E.3 Study 3 243

87 " layerB ": " micro ",
88 " responsibilitiesA ": [" 10031 ", " 10041 ", "110", ↘

"111", "139", "1513", "195", "2015", "26", ↘
"313", "43", "520", "60", "714", "77", "811", ↘
"814", "94"

89],
90 " responsibilitiesB ": ["128", "156", "167", "184"
91],
92 " parameters ": {},
93 " resources ": { " Town01_extended .net.xml": ↘

" MicroNetwork "
94 }
95 },
96 {
97 " translatorID ": " MicroMesoJava ",
98 "type": " MicroMesoJava ",
99 " domain ": " traffic ",

100 " layerA ": " micro ",
101 " layerB ": "meso",
102 " responsibilitiesA ": [" 10011 ", " 10012 ", " 10013 ", ↘

" 10021 ", " 10022 ", " 10023 ", " 10032 ", " 10033 ", ↘
" 10042 ", " 10043 "

103],
104 " responsibilitiesB ": [" 10031 ", " 10041 ", "110", ↘

"111", "139", "1513", "195", "2015", "26", ↘
"313", "43", "520", "60", "714", "77", "811", ↘
"814", "94"

105],
106 " parameters ": {},
107 " resources ": { " Town01_extended . network .xml": ↘

" MesoNetwork "
108 }
109 },
110 {
111 " translatorID ": " MesoMacroJava ",
112 "type": " MesoMacroJava ",
113 " domain ": " traffic ",
114 " layerA ": "meso",
115 " layerB ": " macro ",
116 " responsibilitiesA ": [" 10014 ", " 10015 ", " 10024 ", ↘

" 10025 ", " 10034 ", " 10035 ", " 10044 ", " 10045 "
117],
118 " responsibilitiesB ": [" 10011 ", " 10012 ", " 10013 ", ↘

" 10021 ", " 10022 ", " 10023 ", " 10032 ", " 10033 ", ↘
" 10042 ", " 10043 "

119],
120 " parameters ": {},
121 " resources ": { " Town01_extended . network .xml": ↘

" MesoNetwork "
122 }

244 E.4 Study 4

123 }
124],
125 " projectors ": []
126 }

Listing E.3 – Scenario definition of study 3.

E.4 Study 4

1 {
2 " scenarioID ": "uc4",
3 " simulationStart ": 0,
4 " simulationEnd ": 86399 ,
5 " domainReferences ": {
6 " traffic ": "A9. reference .xml"
7 },
8 " execution ": {
9 " randomSeed ": 123 ,

10 " constraints ": "",
11 " priority ": 0,
12 " syncedParticipants ": 4
13 },
14 " buildingBlocks ": [
15 {
16 " instanceID ": " provider0 ",
17 "type": " DataProviderTrafficMacro ",
18 " stepLength ": 60000 ,
19 " layer ": " macro ",
20 " domain ": " traffic ",
21 " parameters ": {},
22 " resources ": {},
23 " results ": {},
24 " synchronized ": true ,
25 " isExternal ": false ,
26 " responsibilities ": [],
27 " observers ": []
28 },
29 {
30 " instanceID ": " SumoWrapper1 ",
31 "type": " SumoWrapper ",
32 " layer ": " micro ",
33 " domain ": " traffic ",
34 " stepLength ": 1000 ,
35 " parameters ": { " ghosting ": " false "
36 },
37 " resources ": { "A9.open.net.xml": " RoadMap ", ↘

"add.xml": " Additional "

E.4 Study 4 245

38 },
39 " results ": {},
40 " synchronized ": true ,
41 " isExternal ": false ,
42 " responsibilities ": [" 31219920 ", " 31219921 ", ↘

" 31219922 ", " 1475350055 ", " 1475350057 ", ↘
" 1475350058 ", " 15848360 ", " 1618588414 ", ↘
" 1618588415 ", " 2139163501 ", " 21607269 ", ↘
" 21607745 ", " 2219600162 ", " 2309384888 ", ↘
" 2309384890 ", " 2309384908 ", " 2309384913 ", ↘
" 250966173 ", " 250966178 ", " 250966183 ", ↘
" 254482149 ", " 254482188 ", " 2557520658 ", ↘
" 2557520659 ", " 26609271 ", " 267532588 ", ↘
" 267532682 ", " 26869417 ", " 26869418 ", ↘
" 2800347206 ", " 29747074 ", " 29747075 ", ↘
" 29747082 ", " 3321250461 ", " 3347605792 ", ↘
" 3347606294 ", " 3347606296 ", " 3347606302 ", ↘
" 3347606305 ", " 3347606307 ", " 344222949 ", ↘
" 350380302 ", " 3779207414 ", " 3779207419 ", ↘
" 4971737525 ", " 5913529 ", " 5913535 ", ↘
" 679686945 ", " 747044287 ", " 8562052108 "

43],
44 " observers ": [{ "task": " publish ", ↘

" element ": "edge", " filter ": ↘
" observableedge ", " period ": 1000 , ↘
" trigger ": "", "type": "json" }, { ↘
"task": " publish ", " element ": ↘
"edge. vehicles ", " filter ": " 26869418 ↘
2557520658 3347606302 3347606296 29747082 ↘
250966183 250966178 3347606305 29747074 ↘
1618588415 3347606307 ", " period ": 1000 , ↘

" trigger ": "", "type": "avro" }
45]
46 }
47],
48 " translators ": [
49 {
50 " translatorID ": " MicroMesoJava ",
51 "type": " MicroMesoJava ",
52 " domain ": " traffic ",
53 " layerA ": " micro ",
54 " layerB ": "meso",
55 " responsibilitiesA ": [],
56 " responsibilitiesB ": [" 31219920 ", " 31219921 ", ↘

" 31219922 ", " 1475350055 ", " 1475350057 ", ↘
" 1475350058 ", " 15848360 ", " 1618588414 ", ↘
" 1618588415 ", " 2139163501 ", " 21607269 ", ↘
" 21607745 ", " 2219600162 ", " 2309384888 ", ↘
" 2309384890 ", " 2309384908 ", " 2309384913 ", ↘
" 250966173 ", " 250966178 ", " 250966183 ", ↘

246 E.4 Study 4

" 254482149 ", " 254482188 ", " 2557520658 ", ↘
" 2557520659 ", " 26609271 ", " 267532588 ", ↘
" 267532682 ", " 26869417 ", " 26869418 ", ↘
" 2800347206 ", " 29747074 ", " 29747075 ", ↘
" 29747082 ", " 3321250461 ", " 3347605792 ", ↘
" 3347606294 ", " 3347606296 ", " 3347606302 ", ↘
" 3347606305 ", " 3347606307 ", " 344222949 ", ↘
" 350380302 ", " 3779207414 ", " 3779207419 ", ↘
" 4971737525 ", " 5913529 ", " 5913535 ", ↘
" 679686945 ", " 747044287 ", " 8562052108 "

57],
58 " resources ": { "A9. network .xml": " MesoNetwork "
59 },
60 " parameters ": {}
61 },
62 {
63 " translatorID ": " MesoMacroJava ",
64 "type": " MesoMacroJava ",
65 " domain ": " traffic ",
66 " layerA ": "meso",
67 " layerB ": " macro ",
68 " responsibilitiesA ": [],
69 " responsibilitiesB ": [" 31219920 ", " 31219921 ", ↘

" 31219922 ", " 1475350055 ", " 1475350057 ", ↘
" 1475350058 ", " 15848360 ", " 1618588414 ", ↘
" 1618588415 ", " 2139163501 ", " 21607269 ", ↘
" 21607745 ", " 2219600162 ", " 2309384888 ", ↘
" 2309384890 ", " 2309384908 ", " 2309384913 ", ↘
" 250966173 ", " 250966178 ", " 250966183 ", ↘
" 254482149 ", " 254482188 ", " 2557520658 ", ↘
" 2557520659 ", " 26609271 ", " 267532588 ", ↘
" 267532682 ", " 26869417 ", " 26869418 ", ↘
" 2800347206 ", " 29747074 ", " 29747075 ", ↘
" 29747082 ", " 3321250461 ", " 3347605792 ", ↘
" 3347606294 ", " 3347606296 ", " 3347606302 ", ↘
" 3347606305 ", " 3347606307 ", " 344222949 ", ↘
" 350380302 ", " 3779207414 ", " 3779207419 ", ↘
" 4971737525 ", " 5913529 ", " 5913535 ", ↘
" 679686945 ", " 747044287 ", " 8562052108 "

70],
71 " resources ": { "A9. network .xml": " MesoNetwork "
72 },
73 " parameters ": {}
74 }
75],
76 " projectors ": []
77 }

Listing E.4 – Scenario definition of study 4 (all lanes open).

E.5 Study 5 247

E.5 Study 5

1 {
2 " scenarioID ": "uc5",
3 " simulationStart ": 0,
4 " simulationEnd ": 86399 ,
5 " domainReferences ": {
6 " traffic ": "A9. reference .xml",
7 " communication ": "net. reference .xml"
8 },
9 " execution ": {

10 " randomSeed ": 123 ,
11 " constraints ": "",
12 " priority ": 0,
13 " syncedParticipants ": 2
14 },
15 " buildingBlocks ": [
16 {
17 " instanceID ": " OMNeTWrapper2 ",
18 "type": " OMNeTWrapper ",
19 " layer ": " 80211 p",
20 " domain ": " communication ",
21 " stepLength ": 1000 ,
22 " parameters ": {
23 " equipped " : "1.0",
24 " beaconing " : "1.0"
25 },
26 " resources ": {},
27 " results ": {
28 "full" : " results .zip"
29 },
30 " synchronized ": true ,
31 " isExternal ": false ,
32 " responsibilities ": ["*"],
33 " observers ": []
34 }
35],
36 " translators ": [
37],
38 " projectors ": [
39 {
40 " projectorID ": " proj0 ",
41 "type": "v2x",
42 " domainA ": " traffic ",
43 " layerA ": " micro ",
44 " domainB ": " communication ",
45 " layerB ": " 80211 p",
46 " resources ": {},
47 " parameters ": { " sceID ": " uc4_all_lanes_open "

248 E.5 Study 5

48 }
49 }
50]
51 }

Listing E.5 – Scenario definition of study 5.

List of Acronyms

ABM Agent-Based Modeling

ABS Agent-Based Simulation

ACC Adaptive Cruise Control

ACL Access Control List

AEB Automatic Emergency Braking

BB Building Block

BOM Base Object Model

CDF Cumulative Distribution Function

DDM Data Distribution Management

DES Discrete Event Simulation

DS Distributed Simulation

DUE Dynamic User Equilibrium

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

FOM Federation Object Model

FQR Flush Queue Request

GUI Graphical User Interface

HiL Hardware-in-the-Loop

HLA High Level Architecture

IPC Inter-Process Communication

LBTS Lower Bound Time Stamp

LP Logical Process

MFD Macroscopic Fundamental Diagram

MOM Management Object Model

MoM Message-oriented Middleware

MSaaS Modeling-and-Simulation-as-a-Service

M&S Modeling and Simulation

NDM Native Data Model

NMR Next Message Request

249

250 List of Acronyms

NMRA Next Message Request Available

OMT Object Model Template

PAP Poisson Arrival Process

RO Receive Order

RPC Remote Prodecure Call

RTI Runtime Infrastructure

SaaS Simulation-as-a-Service

SBA Simulation-based Dynamic Assignment

SCE Scenario Definition File

SD System Dynamics

SDM Simulation Data Management

SLA Service Level Agreement

SOM Simulation Object Model

TAG Time Advance Grant

TAR Time Advance Request

TARA Time Advance Request Available

TSO Timestamp Order

V2X Vehicle-to-Everything

List of Algorithms

3.1 Synchronization algorithm. 67

4.1 Time advance algorithm. 97

4.2 Scenario loop. 99

251

List of Figures

2.1 Different layer architectures. Based on [219]. 13

2.2 Simulation type taxonomy. Based on [87]. 18

2.3 Extended simulation type taxonomy for distributed simulations. . . . 18

2.4 HLA architecture. 23

2.5 FMI modes. Based on [146]. 26

2.6 Application-centric and data-centric architectures. Based on [79]. . . 34

3.1 Data-centric architecture. 43

3.2 Similar components can be hidden behind the same layer. 44

3.3 The translation of information flows between submodels is detached

into separate reusable components. 45

3.4 Integration of external components. 46

3.5 The lower layer of the system’s architecture is developed. 47

3.6 Different link topologies. 48

3.7 The second layer of the system’s architecture is developed. 52

3.8 The receiver is responsible for decoding. 54

3.9 The sender is responsible for encoding. 54

3.10 An additional component is causing modifications. 54

3.11 The translation is detached. 55

3.12 There are different types of couplings. 57

3.13 Definition of the domain structure. 58

3.14 Definition of the layer structure. Gray fields are mandatory. 59

3.15 Definition of the component structure. 61

3.16 No global ordering across multiple topics. There are two possible

receive orders. 62

3.17 No global ordering across multiple partitions. There are two possible

receive orders. 62

3.18 Global ordering within a topic partition. 62

253

254 List of Figures

3.19 No deterministic appending order. After the messages are appended

to the partition, there is a deterministic consumption order for all

consumers. 63

3.20 Pre-processing in a buffer. 63

3.21 Basic synchronization using a dedicated synchronization topic. 65

3.22 Synchronization with the consideration of message delivery. 65

3.23 Epochs allow for quasi-simultaneous events. 66

3.24 The structure of messages. 68

3.25 There are three different logical channels that are also accessible for

external stakeholders. 69

3.26 The main simulation loop. 74

3.27 The different types of coupling. 75

3.28 Blue_A and Blue_B model of the base scenario. 75

3.29 Two BBs of the same layer share the work. 76

3.30 A translator provides two individual conversion functions. 77

3.31 Two instances of different layers share the work. 78

3.32 Three examples for projectors that are connecting different layers. . . 80

3.33 A projector example is ingesting data into another domain. 80

3.34 The application layer is addressed in this section. 81

3.35 The structure of the scenario definition file. 83

3.36 A component diagram of the developed service architecture. 89

3.37 Developed architecture with labeled components. 89

4.1 General management tab. 95

4.2 Designing a scenario. 95

4.3 Running a scenario. 95

4.4 Catalog view. 95

4.5 Main architecture of the JavaBaseWrapper. 96

4.6 Definition of the number domain. 100

4.7 Integer layer definition in the number domain. 100

4.8 Double layer definition in the number domain. 100

4.9 Definition of the color domain. 101

4.10 3-bit RGB layer definition in the color domain. 101

4.11 24-bit RGB layer definition in the color domain. 101

4.12 Generated baseline data. 103

4.13 Merged result and origin of data points for experiment 2.1. 104

4.14 If synchronization is disabled, the results of the distributed run differ

from the baseline for experiment 2.2. 105

4.15 Merged result and origin of data points using two BBs with different

levels of detail and step lengths. 106

List of Figures 255

4.16 Cross-domain coupling using a projector. Data from the number

domain is affecting the modeled picture. 107

4.17 Measurements for time synchronization steps in ms. 108

5.1 Different traffic modeling paradigms based on [99]. 115

5.2 Macroscopic fundamental diagram based on [65]. 116

5.3 A car-following model is mainly based on the distance between vehicles.117

5.4 Different topologies as a result of exemplary partitioning strategies. . 125

5.5 Different possibilities for road representations. 127

5.6 Traffic domain definition. 127

5.7 Definition of the macroscopic layer. 128

5.8 Definition of the mesoscopic layer. 129

5.9 Definition of the microscopic layer. 130

5.10 Definition of the submicroscopic layer. 132

5.11 Spawn probabilities and cumulative representation. 134

5.12 The mapping of an input value r to an inter-arrival time i and the

outcome of a non-homogeneous PAP. 135

5.13 Class diagram of the VisumWrapper. 137

5.14 Class diagram of the MatsimWrapper. 140

5.15 Class diagram of the SumoWrapper. 140

5.16 Class diagram of the CarlaWrapper. 141

5.17 Communication domain definition. 142

5.18 Definition of the 80211p layer. 143

5.19 Class diagram of the OmnetWrapper. 144

6.1 Line scenario with five connected road stretches. 150

6.2 Distributed micro simulation that produces wrong trajectories due to

missing ghosting features. 150

6.3 Distributed micro simulation that produces correct trajectories by

using ghosting features. 151

6.4 Different topologies for the distributed simulations. 152

6.5 Scenario runtimes of different topologies. 153

6.6 Time consumption shares per topology. 154

6.7 Used traffic pattern. The purple ellipse shows the bottleneck. 155

6.8 Topology for the multi-level run as defined in Appendix E.2. 155

6.9 Simulated densities with a low traffic volume at 21 min. 156

6.10 Simulated distribution with a low traffic volume at 21 min. 156

6.11 Simulated densities with a medium traffic volume at 21 min. 157

6.12 Simulated distribution with a medium traffic volume at 21 min. . . . 157

6.13 Simulated densities with a high traffic volume at 21 min. 158

256 List of Figures

6.14 Simulated distribution with a high traffic volume at 21 min. 158

6.15 Traffic load at 21 minutes. 159

6.16 Errors of traffic load at 21 minutes. 159

6.17 Relative traffic densities on two main axes over the simulation time

for the different traffic loads. 160

6.18 Error of the whole road network vs. speed-up. 161

6.19 Error of the whole road network vs. computational time. 161

6.20 The extended road network of Town01 with the used responsibility

topology. 163

6.21 Traffic flows and speeds on road C3. 164

6.22 Each black line represents a discrete spawn event in the submicro-

scopic regime. 164

6.23 Snapshots of the evaluation scenario taken in the three-dimensional

world of CARLA. 165

6.24 Exemplary sensors: distance estimation and semantic segmentation. 165

6.25 Lidar scan point clouds from above and from the side. 166

6.26 The road section to be considered is located in the south of Nurem-

berg, Germany and stretches from (49.2441, 11.2176) to (49.3634,

11.2024). The traffic is ingested near the start label. The map is based

on contents from ©OpenStreetMap [165]. 167

6.27 Relative vehicle densities of the three different scenarios. 169

6.28 Average speeds of the three different scenarios. 170

6.29 We use a part of the map from study 4. The area of interest is

marked by the red rectangle. The map is based on contents from

©OpenStreetMap [165]. 172

6.30 Busy time of the channel as perceived by each vehicle. 172

6.31 Diced backoff slots per vehicle. 173

6.32 Lost packets due to ongoing transmission on signal reception. 173

E.1 Errors of traffic load over time on the south axis for low traffic. 239

E.2 Errors of traffic load over time on the south axis for medium traffic. . 240

E.3 Errors of traffic load over time on the south axis for high traffic. . . . 240

List of Listings

5.1 Exemplary Visum COM-commands via JACOB. 138

5.2 Main simulation loop of the MatsimWrapper. 139

A.1 Domain definition. 181

A.2 Layer definition. 183

A.3 Component definition. 187

A.4 Scenario definition. 189

A.5 CtrlMsg.avro definition. 195

A.6 ResourceFile.avro definition. 195

A.7 SyncMsg.avro definition. 196

B.1 Number domain definition. 199

B.2 Integer layer definition. 199

B.3 Double layer definition. 201

B.4 Color domain definition. 202

B.5 RGB3 layer definition. 203

B.6 RGB24 layer definition. 205

B.7 Scenario definition of experiment 1. 206

B.8 Scenario definition of experiment 3. 207

C.1 Traffic domain definition. 211

C.2 Macroscopic layer definition. 212

C.3 Mesoscopic layer definition. 214

C.4 Microscopic layer definition. 216

C.5 Submicroscopic layer definition. 221

D.1 Communication domain definition. 227

D.2 80211p layer definition. 227

E.1 Scenario definition of study 1.1 and 1.2. 233

E.2 Scenario definition of study 2 (multi-level topology with high traffic). 236

257

258 List of Listings

E.3 Scenario definition of study 3. 241

E.4 Scenario definition of study 4 (all lanes open). 244

E.5 Scenario definition of study 5. 247

List of Tables

3.1 Recent considerations of MoMs in the literature. 49

3.2 Relations between requirements and architectural elements. 90

4.1 Measurements for time synchronization steps in ms. 109

6.1 Median values of scenario run effort in seconds. 153

6.2 Origin-destination matrix. Traffic demand per hour. 164

259

Bibliography

[1] T. ABRAHAMSSON, “Estimation of Origin-Destination Matrices Using Traffic

Counts - A Literature Survey,” International Institute for Applied Systems

Analysis, Austria, IIASA, Laxenburg, Austria, Interim Report, May 1998.

[2] S. ACHARYA, A. BHARADWAJ, Y. SIMMHAN, A. GOPALAN, P. PARAG, and H. TYAGI,

“CORNET: A Co-Simulation Middleware for Robot Networks,” in 2020 In-

ternational Conference on COMmunication Systems NETworkS (COMSNETS).

IEEE, Jan. 2020, pp. 245–251.

[3] A. AKKERMANN and B. Å. HJØLLO, “Scenario-Based V&V in a Maritime Co-

Simulation Framework,” in 2019 Spring Simulation Conference (SpringSim).

IEEE, Apr. 2019, pp. 1–12.

[4] K. AL-ZOUBI and G. WAINER, “RISE: A general simulation interoperability

middleware container,” Journal of Parallel and Distributed Computing, vol. 73,

no. 5, pp. 580–594, May 2013.

[5] M. ALBANO, L. L. FERREIRA, L. M. PINHO, and A. R. ALKHAWAJA, “Message-

oriented middleware for smart grids,” Computer Standards & Interfaces, vol. 38,

pp. 133–143, Feb. 2015.

[6] S. ALPERS, C. BECKER, A. OBERWEIS, and T. SCHUSTER, “Microservice Based

Tool Support for Business Process Modelling,” in 2015 IEEE 19th International

Enterprise Distributed Object Computing Workshop. IEEE, Sep. 2015, pp.

71–78.

[7] D. ALVAREZ-COELLO, D. WILMS, A. BEKAN, and J. MARX GÓMEZ, “Towards a

Data-Centric Architecture in the Automotive Industry,” Procedia Computer

Science, vol. 181, pp. 658–663, 2021.

[8] P. ALVAREZ LOPEZ, M. BEHRISCH, L. BIEKER-WALZ, J. ERDMANN, Y.-P. FLÖT-

TERÖD, R. HILBRICH, L. LÜCKEN, J. RUMMEL, P. WAGNER, and E. WIESSNER,

“Microscopic Traffic Simulation using SUMO,” in 2019 IEEE Intelligent Trans-

portation Systems Conference (ITSC). IEEE, Nov. 2018, pp. 2575–2582.

261

262 Bibliography

[9] APACHE, “Apache Kafka,” https://kafka.apache.org/31/documentation.html,

Mar. 2022.

[10] F. ARENA and G. PAU, “An Overview of Vehicular Communications,” Future

Internet, vol. 11, no. 2:27, pp. 1–12, Jan. 2019.

[11] ASAM, “ASAM OpenDRIVE®,” https://www.asam.net/standards/detail/
opendrive/, Feb. 2022.

[12] AVRO, “Welcome to Apache Avro!” https://avro.apache.org/, Mar. 2022.

[13] A. AW and M. RASCLE, “Resurrection of "Second Order" Models of Traffic

Flow,” SIAM Journal on Applied Mathematics, vol. 60, no. 3, pp. 916–938,

Jan. 2000.

[14] A. AWAD, P. BAZAN, and R. GERMAN, “SGsim: A simulation framework for

smart grid applications,” in 2014 IEEE International Energy Conference (ENER-

GYCON). IEEE, May 2014, pp. 730–736.

[15] M. U. AWAIS, M. CVETKOVIC, and P. PALENSKY, “Hybrid simulation using

implicit solver coupling with HLA and FMI,” International Journal of Modeling,

Simulation, and Scientific Computing, vol. 08, no. 04, pp. 1–21, Dec. 2017.

[16] M. U. AWAIS, P. PALENSKY, A. ELSHEIKH, E. WIDL, and S. MATTHIAS, “The

high level architecture RTI as a master to the functional mock-up interface

components,” in 2013 International Conference on Computing, Networking

and Communications (ICNC). IEEE, Jan. 2013, pp. 315–320.

[17] K. W. AXHAUSEN and ETH ZÜRICH, The Multi-Agent Transport Simulation

MATSim, ETH ZÜRICH, A. HORNI, K. NAGEL, and TU BERLIN, Eds. Ubiquity

Press, Aug. 2016.

[18] M. BACIC, “On hardware-in-the-loop simulation,” in Proceedings of the 44th

IEEE Conference on Decision and Control. IEEE, Dec. 2005, pp. 3194–3198.

[19] O. BALCI, G. L. BALL, K. L. MORSE, E. PAGE, M. D. PETTY, A. TOLK, and

S. N. VEAUTOUR, “Model Reuse, Composition, and Adaptation,” in Research

Challenges in Modeling and Simulation for Engineering Complex Systems, ser.

Simulation Foundations, Methods and Applications, R. FUJIMOTO, C. BOCK,

W. CHEN, E. PAGE, and J. H. PANCHAL, Eds. Cham: Springer International

Publishing, 2017, pp. 87–115.

[20] J. BARCELÓ, Ed., Fundamentals of Traffic Simulation, ser. International Series

in Operations Research & Management Science. New York, NY: Springer

New York, 2010, vol. 145.

Bibliography 263

[21] M. BEN-AKIVA, M. BIERLAIRE, H. KOUTSOPOULOS, and R. MISHALANI, “Dyna-

MIT: A simulation-based system for traffic prediction,” in DACCORD Short

Term Forecasting Workshop, 1998, pp. 1–12.

[22] M. E. BEN-AKIVA and J. L. BOWMAN, “Activity Based Travel Demand Model

Systems,” in Equilibrium and Advanced Transportation Modelling, P. MARCOTTE

and S. NGUYEN, Eds. Boston, MA: Springer US, 1998, pp. 27–46.

[23] P. BENJAMIN, M. PATKI, and R. MAYER, “Using ontologies for simulation model-

ing,” in Proceedings of the 2006 Winter Simulation Conference, L. F. PERRONE,

F. P. WIELAND, B. G. L. J. LIU, D. M. NICOL, and R. M. FUJIMOTO, Eds.

Piscataway, New Jersey: IEEE, 2006, pp. 1151–1159.

[24] T. BERNERS-LEE, J. HENDLER, and O. LASSILA, “The semantic web,” Scientific

American, vol. 284, no. 5, pp. 34–43, 2001.

[25] T. BITTERMAN, P. CALYAM, A. BERRYMAN, D. HUDAK, L. LI, A. CHALKER, S. GOR-

DON, D. ZHANG, D. CAI, C. LEE, and R. RAMNATH, “Simulation as a service

(SMaaS): A cloud-based framework to support the educational use of scientific

software,” Int. J. of Cloud Computing, vol. 3, pp. 177–190, Jan. 2014.

[26] G. BLONDET, J. LE DUIGOU, N. BOUDAOUD, and B. EYNARD, “Simulation

data management for adaptive design of experiments: A litterature review,”

Mechanics & Industry, vol. 16, no. 6, p. 611, 2015.

[27] P. BOCCIARELLI, A. D’AMBROGIO, A. GIGLIO, and E. PAGLIA, “A microservice-

based approach for fine-grained simulation in MSaaS platforms,” in Proc.

of the 2019 Summer Simulation Conf., ser. SummerSim ’19. Society for

Computer Simulation Int., Jul. 2019, pp. 1–12.

[28] BOER and VERBRAECK, “Distributed simulation with COTS simulation pack-

ages,” in Proceedings of the 2003 Winter Simulation Conference, S. E. CHICK,

P. J. SANCHEZ, D. FERRIN, and D. J. MORRICE, Eds. Piscataway, New Jersey:

IEEE, Dec. 2003, pp. 829–837.

[29] A. BONDARENKO and K. ZAYTSEV, “Studying systems of open source messag-

ing,” Journal of Theoretical and Applied Information Technology, vol. 97, no. 19,

p. 11, 2019.

[30] L. BONONI, M. BRACUTO, G. D’ANGELO, and L. DONATIELLO, “Artis Scalable

and Efficient Parallel and Distributed Simulation of Complex, Dynamic and

Mobile Systems,” in 2005 Workshop on Techniques, Methodologies and Tools

for Performance Evaluation of Complex Systems (FIRB-PERF’05). IEEE, Sep.

2005, pp. 136–145.

264 Bibliography

[31] L. BONONI, M. BRACUTO, G. D’ANGELO, and L. DONATIELLO, “Artis: Analysis of

High Performance Communication and Computation Solutions for Parallel and

Distributed Simulation,” in High Performance Computing and Communications,

ser. Lecture Notes in Computer Science, D. HUTCHISON, T. KANADE, J. KITTLER,

J. M. KLEINBERG, F. MATTERN, J. C. MITCHELL, M. NAOR, O. NIERSTRASZ,

C. PANDU RANGAN, B. STEFFEN, M. SUDAN, D. TERZOPOULOS, D. TYGAR, M. Y.

VARDI, G. WEIKUM, L. T. YANG, O. F. RANA, B. DI MARTINO, and J. DONGARRA,

Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, vol. 3726, pp.

640–651.

[32] A. BORSHCHEV and A. FILIPPOV, “From System Dynamics and Discrete Event to

Practical Agent Based Modeling: Reasons, Techniques, Tools,” in Proceedings

of the 22nd International Conference of The System Dynamics Society, Jul. 2004,

pp. 1–23.

[33] R. BOTTURA, D. BABAZADEH, K. ZHU, A. BORGHETTI, L. NORDSTRÖM, and

C. A. NUCCI, “SITL and HLA co-simulation platforms: Tools for analysis of

the integrated ICT and electric power system,” in Eurocon 2013. IEEE, Jul.

2013, pp. 918–925.

[34] Y. BOUANAN, S. GORECKI, J. RIBAULT, G. ZACHAREWICZ, and N. PERRY, “Includ-

ing in HLA federation functional mockup units for supporting interoperability

and reusability in Distributed Simulation,” in Summer Simulation Conference

2018. SCSI, Jul. 2018.

[35] S. BOUCHER, A. KALIA, D. G. ANDERSEN, and M. KAMINSKY, “Putting the

"Micro" Back in Microservice,” in 2018 USENIX Annual Technical Conference,

2018, pp. 645–650.

[36] G. E. BOX, “Robustness in the strategy of scientific model building,” in Ro-

bustness in Statistics. Elsevier, 1979, pp. 201–236.

[37] Q. BRAGARD, A. VENTRESQUE, and L. MURPHY, “dSUMO: Towards a dis-

tributed SUMO,” in 1st SUMO User Conference 2013, May 2013, pp. 132–146.

[38] S. C. BRAILSFORD, T. ELDABI, M. KUNC, N. MUSTAFEE, and A. F. OSORIO, “Hy-

brid simulation modelling in operational research: A state-of-the-art review,”

European Journal of Operational Research, vol. 278, no. 3, pp. 721–737, Nov.

2019.

[39] T. BRAY, “The JavaScript Object Notation (JSON) Data Interchange Format,”

Internet Engineering Task Force, Request for Comments RFC 8259, Dec. 2017.

[40] R. E. BRYANT, “Simulation of Packet Communication Architecture Computer

Systems.” Massachusetts Institute of Technology, Tech. Rep., Nov. 1977.

Bibliography 265

[41] W. BURGHOUT, H. N. KOUTSOPOULOS, and I. ANDRÉASSON, “Hybrid Meso-

scopic–Microscopic Traffic Simulation,” Transportation Research Record, vol.

1934, no. 1, pp. 218–225, Jan. 2005.

[42] W. BURGHOUT, TEKNISKA HÖGSKOLAN I STOCKHOLM, and INSTITUTIONEN FÖR

INFRASTRUKTUR, “Hybrid microscopic-mesoscopic traffic simulation,” Ph.D.

dissertation, Dept. of Infrastructure, Royal Institute of Technology, Stockholm,

2004.

[43] A. H. BUSS, “Component-based simulation modeling,” in Proceedings of the

2000 Winter Simulation Conference, J. A. JOINES, R. R. BARTON, K. KANG,

and P. A. FISHWICK, Eds. Piscataway, New Jersey: IEEE, Dec. 2000, pp.

964–971.

[44] F. CAGLAR, S. SHEKHAR, A. GOKHALE, S. BASU, T. RAFI, J. KINNEBREW, and

G. BISWAS, “Cloud-hosted simulation-as-a-service for high school STEM edu-

cation,” Simulation Modelling Practice and Theory, vol. 58, pp. 255–273, Nov.

2015.

[45] CAMBRIDGE UNIVERSITY PRESS, “Domain,”

https://dictionary.cambridge.org/us/dictionary/english/domain, Aug.

2022.

[46] B. CAMUS, T. PARIS, J. VAUBOURG, Y. PRESSE, C. BOURJOT, L. CIARLETTA, and

V. CHEVRIER, “MECSYCO: A Multi-agent DEVS Wrapping Platform for the

Co-simulation of Complex Systems,” Université de Lorraine, Tech. Rep., 2016.

[47] CARLA, “3rd- Maps and navigation - CARLA Simulator,”

https://carla.readthedocs.io/en/latest/core_map/, Feb. 2022.

[48] CARLA, “CARLA,” http://carla.org//, Feb. 2022.

[49] CARLA, “Introduction - CARLA Simulator,”

https://carla.readthedocs.io/en/latest/start_introduction/, Feb. 2022.

[50] J. CARSON, “Introduction to modeling and simulation,” in Proceedings of the

Winter Simulation Conference, 2005. IEEE, Dec. 2005, pp. 1–8.

[51] E. CASCETTA, “Estimation of trip matrices from traffic counts and survey

data: A generalized least squares estimator,” Transportation Research Part B:

Methodological, vol. 18, no. 4, pp. 289–299, Aug. 1984.

[52] E. CAYIRCI, “Modeling and simulation as a cloud service: A survey,” in 2013

Winter Simulations Conference (WSC). IEEE, Dec. 2013, pp. 389–400.

266 Bibliography

[53] D. ÇETINKAYA and H. OĞUZTÜZÜN, “A metamodel for the HLA object model,”

in Proceedings of the 20th European Conference on Modeling and Simulation,

W. BORUTZKY, A. ORSONI, and R. ZOBEL, Eds., Germany, 2006, pp. 207–213.

[54] K. M. CHANDY and J. MISRA, “Asynchronous distributed simulation via a

sequence of parallel computations,” Communications of the ACM, vol. 24,

no. 4, pp. 198–206, Apr. 1981.

[55] F. S. CHAPIN, Human Activity Patterns in the City: Things People Do in Time

and in Space. New York: Wiley, 1974.

[56] H. CHEONG and A. BUTSCHER, “Physics-based simulation ontology: An on-

tology to support modelling and reuse of data for physics-based simulation,”

Journal of Engineering Design, vol. 30, no. 10-12, pp. 655–687, Dec. 2019.

[57] M. CIAVOTTA, M. ALGE, S. MENATO, D. ROVERE, and P. PEDRAZZOLI, “A

Microservice-based Middleware for the Digital Factory,” Procedia Manufactur-

ing, vol. 11, pp. 931–938, Jan. 2017.

[58] S. CIRACI, J. DAILY, J. FULLER, A. FISHER, L. MARINOVICI, and K. AGAR-

WAL, “FNCS: A framework for power system and communication networks

co-simulation,” in Proceedings of the Symposium on Theory of Modeling & Sim-

ulation - DEVS Integrative, ser. DEVS ’14. Society for Computer Simulation

International, Apr. 2014, pp. 1–8.

[59] CONFLUENT, INC., “Kafka Java Client | Confluent Documentation,”

https://docs.confluent.io/clients-kafka-java/current/overview.html, Apr.

2022.

[60] CONFLUENT, INC., “ksqlDB,” https://github.com/confluentinc/ksql, Mar.

2022.

[61] CONFLUENT, INC., “ksqlDB: The database purpose-built for stream processing

applications.” https://ksqldb.io/distributions.html, Mar. 2022.

[62] CONFLUENT, INC., “Schema Registry,” https://github.com/confluentinc/schema-

registry, Mar. 2022.

[63] F. CREMONA, M. LOHSTROH, S. TRIPAKIS, C. BROOKS, and E. A. LEE, “FIDE: An

FMI integrated development environment,” in Proceedings of the 31st Annual

ACM Symposium on Applied Computing. ACM, Apr. 2016, pp. 1759–1766.

[64] H. G. CRIS, AN and N. FILIP, “Traffic Modeling Aspects Using Visum Software

and Effects on the Traffic Optimization,” in Proceedings of the European Auto-

motive Congress EAEC-ESFA 2015, C. ANDREESCU and A. CLENCI, Eds. Cham:

Springer International Publishing, 2016, pp. 495–506.

Bibliography 267

[65] C. F. DAGANZO and N. GEROLIMINIS, “An analytical approximation for the

macroscopic fundamental diagram of urban traffic,” Transportation Research

Part B: Methodological, vol. 42, no. 9, pp. 771–781, Nov. 2008.

[66] J. S. DAHMANN, R. M. FUJIMOTO, and R. M. WEATHERLY, “The Department of

Defense High Level Architecture,” in Proceedings of the 29th Conference on

Winter Simulation - WSC ’97. ACM Press, 1997, pp. 142–149.

[67] O. DALLE, “On reproducibility and traceability of simulations,” in Proceedings

of the 2012 Winter Simulation Conference (WSC). IEEE, Dec. 2012, pp. 1–12.

[68] A. D’AMBROGIO, P. BOCCIARELLI, and A. MASTROMATTEI, “A PaaS-based frame-

work for automated performance analysis of service-oriented systems,” in Proc.

of the 2016 Winter Simulation Conference. IEEE, Dec. 2016, pp. 931–942.

[69] G. D’ANGELO and M. BRACUTO, “Distributed simulation of large-scale and

detailed models,” International Journal of Simulation and Process Modelling,

vol. 5, no. 2, p. 120, 2009.

[70] M. DEVECI, S. RAJAMANICKAM, K. D. DEVINE, and Ü. V. ÇATALYÜREK, “Multi-

Jagged: A Scalable Parallel Spatial Partitioning Algorithm,” IEEE Transactions

on Parallel and Distributed Systems, vol. 27, no. 3, pp. 803–817, Mar. 2016.

[71] S. Y. DIALLO, J. J. PADILLA, R. GORE, H. HERENCIA-ZAPANA, and A. TOLK, “To-

ward a formalism of modeling and simulation using model theory,” Complexity,

vol. 19, no. 3, pp. 56–63, 2014.

[72] DLR, “SUMO Road Networks - SUMO Documentation,”

https://sumo.dlr.de/docs/Networks/SUMO_Road_Networks.html, Feb.

2022.

[73] P. DOBBELAERE and K. S. ESMAILI, “Kafka versus RabbitMQ: A comparative

study of two industry reference publish/subscribe implementations: Industry

Paper,” in Proceedings of the 11th ACM International Conference on Distributed

and Event-based Systems, ser. DEBS ’17. New York, NY, USA: Association for

Computing Machinery, Jun. 2017, pp. 227–238.

[74] A. DOSOVITSKIY, G. ROS, F. CODEVILLA, A. LOPEZ, and V. KOLTUN, “CARLA:

An open urban driving simulator,” in Proceedings of the 1st Annual Conference

on Robot Learning, Nov. 2017, pp. 1–16.

[75] ECLIPSE, “Eclipse SUMO - Simulation of Urban MObility,”

https://www.eclipse.org/sumo/, Feb. 2022.

[76] M. EDENHILL, “Librdkafka - the Apache Kafka C/C++ client library,”

https://github.com/edenhill/librdkafka, Apr. 2022.

268 Bibliography

[77] P. M. EJERCITO, K. G. E. NEBRIJA, R. P. FERIA, and L. L. LARA-FIGUEROA,

“Traffic simulation software review,” in 2017 8th International Conference on

Information, Intelligence, Systems Applications (IISA), Aug. 2017, pp. 1–4.

[78] J. ÉVORA GÓMEZ, J. J. HERNÁNDEZ CABRERA, J.-P. TAVELLA, S. VIALLE, E. KRE-

MERS, and L. FRAYSSINET, “Daccosim NG: Co-simulation made simpler and

faster,” in The 13th International Modelica Conference, Mar. 2019, pp. 785–

794.

[79] P. FELDMANN, J. WISE, and D. FORRESTER, “Enterprise Applications Program

Review,” https://slideplayer.com/slide/12748063/, Aug. 2022.

[80] J. FITZGIBBONS, R. FUJIMOTO, D. FELLIG, S. KLEBAN, and A. SCHOLAND,

“IDSim: An extensible framework for Interoperable Distributed Simulation,”

in Proceedings. IEEE International Conference on Web Services, 2004. IEEE,

Jul. 2004, pp. 532–539.

[81] N. FORMOSA, M. QUDDUS, A. PAPADOULIS, and A. TIMMIS, “Validating a Traffic

Conflict Prediction Technique for Motorways Using a Simulation Approach,”

Sensors, vol. 22, no. 2, p. 566, Jan. 2022.

[82] FRAUNHOFER FOKUS, “Eclipse MOSAIC,” https://www.eclipse.org/mosaic/
about/, Jan. 2019.

[83] J. FREEMAN, “JACOB Release Notes,” https://github.com/freemansoft/jacob-

project, Mar. 2022.

[84] G. FU, Y. ZHANG, and G. YU, “A Fair Comparison of Message Queuing Systems,”

IEEE Access, vol. 9, pp. 421–432, 2021.

[85] R. M. FUJIMOTO, “Distributed simulation systems,” in Proceedings of the 2003

Winter Simulation Conference. IEEE, Dec. 2003, pp. 124–134.

[86] R. M. FUJIMOTO, Parallel and Distributed Simulation Systems. Wiley, 2000.

[87] M. GEIMER, T. KRÜGER, and LINSEL. P., “Co-Simulation, gekoppelte Simulation

oder Simulatorkopplung? Ein Versuch der Begriffsvereinheitlichung,” O+P

Ölhydraulik und Pneumatik, vol. 50, no. 11-12, pp. 572–576, 2006.

[88] H. GEORG, S. C. MÜLLER, N. DORSCH, C. REHTANZ, and C. WIETFELD, “IN-

SPIRE: Integrated co-simulation of power and ICT systems for real-time eval-

uation,” in 2013 IEEE International Conference on Smart Grid Communications

(SmartGridComm). IEEE, Oct. 2013, pp. 576–581.

[89] D. L. GERLOUGH and M. J. HUBER, Traffic Flow Theory: A Monograph, ser.

Special Report. Washington: Transportation Research Board, National

Research Council, 1975, no. 165.

Bibliography 269

[90] P. G. GIPPS, “A behavioural car-following model for computer simulation,”

Transportation Research Part B: Methodological, vol. 15, no. 2, pp. 105–111,

Apr. 1981.

[91] C. GOMES, C. THULE, D. BROMAN, P. G. LARSEN, and H. VANGHELUWE, “Co-

Simulation: A Survey,” ACM Computing Surveys, vol. 51, no. 3, pp. 1–156,

May 2018.

[92] GOOGLE DEVELOPERS, “Protocol Buffers,” https://developers.google.com/
protocol-buffers, Mar. 2022.

[93] L. GRANOWETTER, “RTI Interoperability Issues – API Standards, Wire Stan-

dards, and RTI Bridges,” in Proceedings of the 2003 European Simulation

Interoperability Workshop. SISO, Jun. 2003, pp. 1–7.

[94] M. GÜTLEIN, “daceDS GitHub Repository,”

https://github.com/guetlein/daceDS, Aug. 2022.

[95] M. GÜTLEIN, W. BARON, C. RENNER, and A. DJANATLIEV, “Performance Evalu-

ation of HLA RTI Implementations,” in 2020 IEEE/ACM 24th International

Symposium on Distributed Simulation and Real Time Applications (DS-RT).

IEEE, Sep. 2020, pp. 1–8.

[96] M. GÜTLEIN and A. DJANATLIEV, “Coupled Traffic Simulation by Detached

Translation Federates: An HLA-Based Approach,” in 2019 Winter Simulation

Conference (WSC). IEEE, Dec. 2019, pp. 1378–1389.

[97] M. GÜTLEIN and A. DJANATLIEV, “Modeling and Simulation as a Service

using Apache Kafka:,” in Proceedings of the 10th International Conference

on Simulation and Modeling Methodologies, Technologies and Applications.

SCITEPRESS - Science and Technology Publications, Jul. 2020, pp. 171–180.

[98] M. GÜTLEIN and A. DJANATLIEV, “On-demand Simulation of Future Mobility

Based on Apache Kafka,” in Simulation and Modeling Methodologies, Tech-

nologies and Applications, ser. Lecture Notes in Networks and Systems, M. S.

OBAIDAT, T. OREN, and F. D. RANGO, Eds. Cham: Springer International

Publishing, 2022, pp. 18–41.

[99] M. GÜTLEIN, R. GERMAN, and A. DJANATLIEV, “Towards a Hybrid Co-simulation

Framework: HLA-Based coupling of MATSim and SUMO,” in 2018 IEEE/ACM

22nd International Symposium on Distributed Simulation and Real Time Appli-

cations (DS-RT). IEEE, Oct. 2018, pp. 1–9.

[100] M. GÜTLEIN, R. GERMAN, and A. DJANATLIEV, “Hide Your Model! Layer

Abstractions for Data-Driven Co-Simulations,” in 2021 Winter Simulation

Conference (WSC). IEEE, Dec. 2021, pp. 1–12.

270 Bibliography

[101] T. HAGERSTAND, “What about people in spatial science?” Regional Science

Association, vol. 24, pp. 7–21, 1970.

[102] M. HAKLAY and P. WEBER, “OpenStreetMap: User-Generated Street Maps,”

IEEE Pervasive Computing, vol. 7, no. 4, pp. 12–18, Oct. 2008.

[103] M. HANAI, T. SUZUMURA, A. VENTRESQUE, and K. SHUDO, “An adaptive VM

provisioning method for large-scale agent-based traffic simulations on the

cloud,” in 2014 IEEE 6th Int. Conf. on Cloud Computing Tech. and Science,

2014, pp. 130–137.

[104] J. HÄRRI, M. KILLAT, T. TIELERT, J. MITTAG, and H. HARTENSTEIN, “DEMO:

Simulation-as-a-service for ITS applications,” in 2010 IEEE 71st Vehicular Tech.

Conf., 2010, pp. 1–2.

[105] W. HASSELBRING and G. STEINACKER, “Microservice Architectures for Scal-

ability, Agility and Reliability in E-Commerce,” in 2017 IEEE International

Conference on Software Architecture Workshops (ICSAW), Apr. 2017, pp. 243–

246.

[106] L. I. HATLEDAL, H. ZHANG, A. STYVE, and G. HOVLAND, “FMU-proxy : A Frame-

work for Distributed Access to Functional Mock-up Units,” in Proceedings of

the 13 Th International Modelica Conference. Linköping University Electronic

Press, Mar. 2019, pp. 79–86.

[107] R. G. HEGDE, “Low Latency Message Brokers,” International Research Journal

of Engineering and Technology, vol. 07, no. 05, pp. 2731–2738, 2020.

[108] D. HELBING, “Theoretical foundation of macroscopic traffic models,” Physica

A: Statistical Mechanics and its Applications, vol. 219, no. 3-4, pp. 375–390,

Oct. 1995.

[109] S. HENSEL, M. GRAUBE, L. URBAS, T. HEINZERLING, and M. OPPELT, “Co-

simulation with OPC UA,” in 2016 IEEE 14th International Conference on

Industrial Informatics (INDIN). IEEE, Jul. 2016, pp. 20–25.

[110] J. J. HERNANDEZ, J. EVORA, J.-P. TAVELLA, and B. G. MONGE, “Semantic inter-

operability in co-simulation: Use cases and requirements,” in 30th European

Simulation and Modelling Conference. Las Palmas de Gran Canaria, Spain:

EUROSIS, Oct. 2016, pp. 5–9.

[111] P. HEYKEN SOARES, L. AHMED, Y. MAO, and C. L. MUMFORD, “Public transport

network optimisation in PTV Visum using selection hyper-heuristics,” Public

Transport, vol. 13, no. 1, pp. 163–196, Mar. 2021.

Bibliography 271

[112] HIVEMQ GMBH, “HiveMQ - Enterprise ready MQTT to move your IoT data,”

https://www.hivemq.com/, Aug. 2022.

[113] A. HORNI, K. NAGEL, and K. W. AXHAUSEN, “Introducing matsim,” in The

Multi-Agent Transport Simulation MATSim. Ubiquity Press, 2016.

[114] Q. HUANG, T. E. MCDERMOTT, Y. TANG, A. MAKHMALBAF, D. J. HAMMERSTROM,

A. R. FISHER, L. D. MARINOVICI, and T. HARDY, “TESP: Simulation-Based

Valuation of Transactive Energy Systems,” IEEE Transactions on Power Systems,

vol. 34, no. 5, pp. 4138–4147, Sep. 2019.

[115] W. HUANG, A. GANJALI, B. H. KIM, S. OH, and D. LIE, “The State of Public

Infrastructure-as-a-Service Cloud Security,” ACM Computing Surveys, vol. 47,

no. 4, pp. 1–31, Jul. 2015.

[116] X. HUANG and O.-S. KWON, “UT-SIM: A Generalized Numerical/Experimen-

tal Distributed Simulation Framework,” Journal of Earthquake Engineering,

vol. 24, no. 4, pp. 682–703, 2018.

[117] R. IBRAHIM, N. REGNARD, P. L’ECUYER, and H. SHEN, “On the modeling and

forecasting of call center arrivals,” in Proceedings of the 2012 Winter Simulation

Conference (WSC). IEEE, Dec. 2012, pp. 1–12.

[118] IEEE, “IEEE standard for modeling and simulation (m s) high level architecture

(HLA)– framework and rules - redline,” IEEE Std 1516-2010 (Revision of IEEE

Std 1516-2000) - Redline, pp. 1–38, 2010.

[119] R. JAYAKRISHNAN, H. S. MAHMASSANI, and T.-Y. HU, “An evaluation tool for

advanced traffic information and management systems in urban networks,”

Transportation Research Part C: Emerging Technologies, vol. 2, no. 3, pp. 129–

147, Sep. 1994.

[120] D. JEFFERSON, B. BECKMAN, F. WIELAND, L. BLUME, and M. DILORETO, “Time

warp operating system,” in Proceedings of the Eleventh ACM Symposium on

Operating Systems Principles, ser. SOSP ’87. New York, NY, USA: Association

for Computing Machinery, Nov. 1987, pp. 77–93.

[121] J. A. JOINES and S. D. ROBERTS, “Simulation in an object-oriented world,” in

Proceedings of the 1999 Winter Simulation Conference, P. A. FARRINGTON, H. B.

NEMBHARD, D. T. STURROCK, and G. W. EVANS, Eds., vol. 1. Piscataway,

New Jersey: IEEE, 1999, pp. 132–140.

[122] KAFKAJS, “KafkaJS · KafkaJS, a modern Apache Kafka client for Node.js,”

https://kafka.js.org/, Apr. 2022.

272 Bibliography

[123] A. KESTING, M. TREIBER, and D. HELBING, “Enhanced intelligent driver model

to access the impact of driving strategies on traffic capacity,” Philosophical

Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences, vol. 368, no. 1928, pp. 4585–4605, Oct. 2010.

[124] A. A. KHALEQ and I. RA, “Cloud-Based Disaster Management as a Service: A

Microservice Approach for Hurricane Twitter Data Analysis,” in 2018 IEEE

Global Humanitarian Technology Conference (GHTC). IEEE, Oct. 2018, pp.

1–8.

[125] K. KHANDA, D. SALIKHOV, K. GUSMANOV, M. MAZZARA, and N. MAVRIDIS,

“Microservice-Based IoT for Smart Buildings,” in 2017 31st International

Conference on Advanced Information Networking and Applications Workshops

(WAINA). IEEE, Mar. 2017, pp. 302–308.

[126] J. C. KIRCHHOF, E. KUSMENKO, B. RUMPE, and H. ZHANG, “Simulation as a

service for cooperative vehicles,” in 2019 ACM/IEEE 22nd Int. Conf. on Model

Driven Engineering Languages and Systems Companion (MODELS-C). IEEE,

2019, pp. 28–37.

[127] J. P. KLEIJNEN, “Verification and validation of simulation models,” European

journal of operational research, vol. 82, no. 1, pp. 145–162, 1995.

[128] M. KRAMMER, M. BENEDIKT, T. BLOCHWITZ, K. ALEKEISH, N. AMRINGER,

C. KATER, S. MATERNE, R. RUVALCABA, K. SCHUCH, J. ZEHETNER, M. DAMM-

NORWIG, V. SCHREIBER, N. NAGARAJAN, I. CORRAL, T. SPARBER, S. KLEIN, and

J. ANDERT, “The Distributed Co-simulation Protocol for the integration of

real-time systems and simulation environments,” in SummerSim ’18: Pro-

ceedings of the 50th Computer Simulation Conference. Society for Computer

Simulation International, Jul. 2018, pp. 1–14.

[129] M. KRUMNOW, “SUMO as a Service–Building up a web service to interact with

SUMO,” in Simulation of Urban MObility User Conf., 2013, pp. 62–70.

[130] A. KRYLOVSKIY, M. JAHN, and E. PATTI, “Designing a Smart City Internet of

Things Platform with Microservice Architecture,” in 2015 3rd International

Conference on Future Internet of Things and Cloud. IEEE, Aug. 2015, pp.

25–30.

[131] M. KUDELSKI, L. M. GAMBARDELLA, and G. DI CARO, “RoboNetSim: An

integrated framework for multi-robot and network simulation,” Robotics and

Autonomous Systems, vol. 61, pp. 483–496, May 2013.

Bibliography 273

[132] A. M. LAW, Simulation Modeling and Analysis, 5th ed., ser. McGraw-Hill Series

in Industrial Engineering and Management Science. Dubuque: McGraw-Hill

Education, 2013.

[133] D. R. LEONARD, P. GOWER, and N. B. TAYLOR, “CONTRAM: Structure of the

Model,” TRRL RESEARCH REPORT, no. 78, 1989.

[134] C. LESTER, C. A. YATES, M. B. GILES, and R. E. BAKER, “An adaptive multi-

level simulation algorithm for stochastic biological systems,” The Journal of

Chemical Physics, vol. 142, no. 2:024113, pp. 1–23, Jan. 2015.

[135] M. J. LIGHTHILL and G. B. WHITHAM, “On Kinematic Waves. I. Flood

Movement in Long Rivers,” Proceedings of the Royal Society of London. Series A,

Mathematical and Physical Sciences, vol. 229, no. 1178, pp. 281–316, 1955.

[136] H. LIN, S. S. VEDA, S. S. SHUKLA, L. MILI, and J. THORP, “GECO: Global

Event-Driven Co-Simulation Framework for Interconnected Power System

and Communication Network,” IEEE Transactions on Smart Grid, vol. 3, no. 3,

pp. 1444–1456, Sep. 2012.

[137] A. M. DEL ESPOSTE, F. KON, F. M. COSTA, and N. LAGO, “InterSCity: A Scalable

Microservice-based Open Source Platform for Smart Cities:,” in Proceedings

of the 6th International Conference on Smart Cities and Green ICT Systems.

SCITEPRESS - Science and Technology Publications, 2017, pp. 35–46.

[138] C. MACAL and M. NORTH, “Tutorial on agent-based modeling and simulation,”

in Proceedings of the Winter Simulation Conference, 2005. IEEE, Dec. 2005,

pp. 1–14.

[139] MÄK, “MÄK RTI,” https://www.mak.com/products/link/mak-rti, Aug. 2022.

[140] A. MALIK, A. PARK, and R. FUJIMOTO, “Optimistic Synchronization of Parallel

Simulations in Cloud Computing Environments,” in 2009 IEEE International

Conference on Cloud Computing. IEEE, 2009, pp. 49–56.

[141] E. A. MARCONATO, M. RODRIGUES, R. D. M. PIRES, D. F. PIGATTO, L. C. Q.

FILHO, A. R. PINTO, and K. R. L. J. C. BRANCO, “AVENS - A Novel Flying

Ad Hoc Network Simulator with Automatic Code Generation for Unmanned

Aircraft System,” in Hawaii International Conference on System Sciences. Schol-

arSpace, Jan. 2017.

[142] MATSIM, “MATSim.org,” https://matsim.org/, Feb. 2022.

[143] D. MCGRATH, A. HUNT, and M. BATES, “A simple distributed simulation ar-

chitecture for emergency response exercises,” in Ninth IEEE International

274 Bibliography

Symposium on Distributed Simulation and Real-Time Applications. IEEE, Oct.

2005, pp. 221–226.

[144] B. MEYER, “Reusability: The case for object-oriented design,” IEEE Software,

vol. 4, no. 2, p. 50, 1987.

[145] MODELICA, “FMI 2.0.1 specification,” Oct. 2019.

[146] MODELICA ASSOCIATION, “Modelica Newsletter 2014-3 — Modelica Associa-

tion,” https://modelica.org/publications/newsletters/2014-3, Aug. 2022.

[147] B. MÖLLER, F. ANTELIUS, and M. KARLSSON, “Towards a Standardized Federate

Protocol for HLA 4,” in Proceedings of 2018 Winter Simulation Interoperability

Workshop. SISO, Jan. 2018, pp. 1–9.

[148] B. MÖLLER and M. KARLSSON, “New Object Modeling Opportunities in HLA

4,” in Proceedings of 2019 Winter Simulation Innovation Workshop. SISO,

Feb. 2019, pp. 1–9.

[149] B. MÖLLER, M. KARLSSON, R. HERZOG, and D. WOOD, “Security in Simulation

– New Authorization Opportunities in HLA 4,” in Proceedings of 2021 Virtual

Simulation Innovation Workshop. SISO, 2021, pp. 1–10.

[150] B. MÖLLER and L. OLSSON, “Practical Experiences from HLA 1.3 to HLA

IEEE 1516 Interoperability,” in 2004 European Simulation Interoperability

Workshop. SISO, 2004, pp. 1–7.

[151] A. L. MOLTHAN, J. L. CASE, J. VENNER, R. SCHROEDER, M. R. CHECCHI, B. T.

ZAVODSKY, A. LIMAYE, and R. G. O’BRIEN, “Clouds in the cloud: Weather

forecasts and applications within cloud computing environments,” Bulletin of

the American Meteorological Society, vol. 96, no. 8, pp. 1369–1379, 2015.

[152] F. MORADI, P. NORDVALLER, and R. AYANI, “Simulation model composition

using BOMs,” in Proceedings of the 10th IEEE International Symposium on

Distributed Simulation and Real-Time Applications, E. ALBA, S. J. TURNER,

D. ROBERTS, and S. J. E. TAYLOR, Eds. IEEE, 2006, pp. 242–252.

[153] Y. MOTIE, A. NKETSA, and P. TRUILLET, “Cosimate: A co-simulation framework

interoperability for Neo-campus project,” in 31st European Simulation and

Modelling Conference. EUROSIS, 2017, pp. 1–7.

[154] L. MULUGETA, A. DRACH, A. ERDEMIR, C. A. HUNT, M. HORNER, J. P. KU, J. G.

MYERS JR., R. VADIGEPALLI, and W. W. LYTTON, “Credibility, Replicability, and

Reproducibility in Simulation for Biomedicine and Clinical Applications in

Neuroscience,” Frontiers in Neuroinformatics, vol. 12, no. 18, pp. 1–16, 2018.

Bibliography 275

[155] K. NAGEL and M. SCHRECKENBERG, “A cellular automaton model for freeway

traffic,” Journal de Physique I, vol. 2, no. 12, pp. 2221–2229, Dec. 1992.

[156] C. NAN and I. EUSGELD, “Adopting HLA standard for interdependency study,”

Reliability Engineering & System Safety, vol. 96, no. 1, pp. 149–159, 2011.

[157] R. E. NANCE, “A tutorial view of simulation model development,” SIGSIM

Simul. Dig., vol. 15, no. 2, pp. 16–22, Apr. 1984.

[158] N. NANNONI, “Message-oriented Middleware for Scalable Data Analytics Ar-

chitectures,” KTH Stockholm, Master’s Thesis, 2015.

[159] NATIONAL RESEARCH COUNCIL (U.S.), Ed., Highway Capacity Manual. Wash-

ington, D.C: Transportation Research Board, National Research Council,

2000.

[160] C. NOBIS and T. KUHNIMHOF, “Mobilität in Deutschland (MiD): Ergebnis-

bericht 2018,” http://www. mobilitaet-indeutschland. de/pdf/MiD2017_-

Ergebnisbericht. pdf, Aug. 2022.

[161] T. NOUIDUI, M. WETTER, and W. ZUO, “Functional mock-up unit for co-

simulation import in EnergyPlus,” Journal of Building Performance Simulation,

vol. 7, no. 3, pp. 192–202, May 2014.

[162] T. S. NOUIDUI, J. COIGNARD, C. GEHBAUER, M. WETTER, J.-Y. JOO, and

E. VRETTOS, “CyDER – an FMI-based co-simulation platform for distributed

energy resources,” Journal of Building Performance Simulation, vol. 12, no. 5,

pp. 566–579, Sep. 2019.

[163] E. NOULARD, J.-Y. ROUSSELOT, and P. SIRON, “CERTI, an open source RTI,

why and how,” in Spring Simulation Interoperability Workshop. SISO, Mar.

2009, pp. 1–11.

[164] J. O’DONNELL, R. SEE, C. ROSE, T. MAILE, V. BAZJANAC, and P. HAVES, “Sim-

Model: A domain data model for whole building energy simulation,” in IBPSA

Building Simulation 2011, Jan. 2011, pp. 1–8.

[165] OPENSTREETMAP, “OpenStreetMap,” https://www.openstreetmap.org/, Feb.

2022.

[166] M. OPPELT, G. WOLF, and L. URBAS, “Capability-analysis of co-simulation

approaches for process industries,” in Proceedings of the 2014 IEEE Emerging

Technology and Factory Automation (ETFA). IEEE, Sep. 2014, pp. 1–4.

[167] PADS BOLOGNA, “ARTIS,” https://pads.cs.unibo.it/doku.php?id=pads:artis,

Dec. 2021.

276 Bibliography

[168] F. PALLONETTO, E. MANGINA, F. MILANO, and D. P. FINN, “SimApi, a smartgrid

co-simulation software platform for benchmarking building control algo-

rithms,” SoftwareX, vol. 9, pp. 271–281, Jan. 2019.

[169] B. PALMINTIER, D. KRISHNAMURTHY, P. TOP, S. SMITH, J. DAILY, and J. FULLER,

“Helics: Design of the HELICS high-performance transmission-distribution-

communication-market co-simulation framework,” in 2017 Workshop on Mod-

eling and Simulation of Cyber-Physical Energy Systems (MSCPES). IEEE, Apr.

2017, pp. 1–6.

[170] G. PARDO-CASTELLOTE, B. FARABAUGH, and R. WARREN, “An Introduction to

DDS and Data-Centric Communications,” Real-Time Innovations, pp. 1–16,

2005.

[171] K. PAWLIKOWSKI, H.-D. JEONG, and J.-S. LEE, “On credibility of simulation

studies of telecommunication networks,” IEEE Communications Magazine,

vol. 40, no. 1, pp. 132–139, Jan. 2002.

[172] F. PERABO, D. PARK, M. K. ZADEH, Ø. SMOGELI, and L. JAMT, “OSP: Digital

Twin Modelling of Ship Power and Propulsion Systems: Application of the

Open Simulation Platform (OSP),” in 2020 IEEE 29th International Symposium

on Industrial Electronics (ISIE). IEEE, Jun. 2020, pp. 1265–1270.

[173] A. PIATER, T. B. IONESCU, and W. SCHEUERMANN, “A Distributed Simulation

Framework for Mission Critical Systems in Nuclear Engineering and Radio-

logical Protection,” International Journal of Computers, Communications &

Control, vol. 3, pp. 448–453, 2008.

[174] PITCH, “Pitch pRTI USER’S GUIDEv 5.4,” 2019.

[175] PORTICO, “poRTIco project,” http://porticoproject.org/, Aug. 2022.

[176] A. POS, P. BORST, J. TOP, and H. AKKERMANS, “Reusability of simulation

models,” Knowledge-Based Systems, vol. 9, no. 2, pp. 119–125, Apr. 1996.

[177] D. POWERS and A. DAVID, “Kafka-python — kafka-python 2.0.2-dev documen-

tation,” https://kafka-python.readthedocs.io/en/master/, Apr. 2022.

[178] T. PREISLER, T. DETHLEFS, and W. RENZ, “Simulation as a service: A design

approach for large-scale energy network simulations,” in 2015 Federated Conf.

on Computer Science and Information Systems (FedCSIS). IEEE, 2015, pp.

1765–1772.

[179] S. PROFANTER, A. TEKAT, K. DOROFEEV, M. RICKERT, and A. KNOLL, “OPC

UA versus ROS, DDS, and MQTT: Performance Evaluation of Industry 4.0

Bibliography 277

Protocols,” in 2019 IEEE International Conference on Industrial Technology

(ICIT). Melbourne, Australia: IEEE, Feb. 2019, pp. 955–962.

[180] F. PROVOST and T. FAWCETT, “Data Science and its Relationship to Big Data

and Data-Driven Decision Making,” Big Data, vol. 1, no. 1, pp. 51–59, Mar.

2013.

[181] PTV GMBH, “PTV Visum,” https://www.ptvgroup.com/de/loesungen

produkte/ptv-visum/, Nov. 2021.

[182] PTV GMBH, “PTV Visum 2022 Manual,” 2022.

[183] T. RATHNAM and C. J. PAREDIS, “Developing federation object models using

ontologies,” in Proceedings of the 2004 Winter Simulation Conference, R. G.

INGALLS, M. D. ROSSETTI, J. S. SMITH, and B. A. PETERS, Eds. Piscataway,

New Jersey: IEEE, 2004, pp. 1054–1062.

[184] P. I. RICHARDS, “Shock Waves on the Highway,” Operations Research, vol. 4,

no. 1, pp. 42–51, Feb. 1956.

[185] R. RIEBL, H.-J. GÜNTHER, C. FACCHI, and L. WOLF, “Artery: Extending Veins

for VANET applications,” in 2015 International Conference on Models and

Technologies for Intelligent Transportation Systems (MT-ITS), Jun. 2015, pp.

450–456.

[186] P. ROBILLARD, “Estimating the O-D matrix from observed link volumes,” Trans-

portation Research, vol. 9, no. 2, pp. 123–128, Jul. 1975.

[187] S. ROBINSON, “Distributed Simulation and Simulation Practice,” SIMULATION,

vol. 81, no. 1, pp. 5–13, Jan. 2005.

[188] M. RONDINONE, J. MANEROS, D. KRAJZEWICZ, R. BAUZA, P. CATALDI, F. HRIZI,

J. GOZALVEZ, V. KUMAR, M. RÖCKL, L. LIN, O. LAZARO, J. LEGUAY, J. HÄRRI,

S. VAZ, Y. LOPEZ, M. SEPULCRE, M. WETTERWALD, R. BLOKPOEL, and F. CAR-

TOLANO, “iTETRIS: A modular simulation platform for the large scale eval-

uation of cooperative ITS applications,” Simulation Modelling Practice and

Theory, vol. 34, pp. 99–125, May 2013.

[189] C. ROTH, H. BUCHER, A. BRITO, O. SANDER, and J. BECKER, “A Simulation

Tool Chain for Investigating Future V2X-based Automotive E/E Architectures,”

in Proceedings of the 7th European Congress on Embedded Real Time Software

and Systems (ERTS2), Feb. 2014, pp. 1–10.

[190] T. ROTH, M. BURNS, and T. POKORNY, “Extending Portico HLA to Federations of

Federations with Transport Layer Security,” in 2018 Fall Simulation Innovation

Workshop. SISO, Sep. 2018, pp. 1–10.

278 Bibliography

[191] A. RUSCHEINSKI and A. UHRMACHER, “Provenance in modeling and simulation

studies — Bridging gaps,” in 2017 Winter Simulation Conference (WSC). IEEE,

Dec. 2017, pp. 872–883.

[192] M. SARAOGLU, A. MOROZOV, and K. JANSCHEK, “MOBATSim: MOdel-Based

Autonomous Traffic Simulation Framework for Fault-Error-Failure Chain Anal-

ysis,” IFAC-PapersOnLine, vol. 52, no. 8, pp. 239–244, Jan. 2019.

[193] J. L. SARLI, H. P. LEONE, and M. DE LOS MILAGROS GUTIÉRREZ, “Ontology-

based semantic model of supply chains for modeling and simulation in dis-

tributed environment,” in Proceedings of the 2016 Winter Simulation Confer-

ence, T. M. K. ROEDER, P. I.FRAZIER, R. SZECHTMAN, E. ZHOU, T. HUSCHKA,

and S. E. CHICK, Eds. Piscataway, New Jersey: IEEE, 2016, pp. 1182–1193.

[194] E. SAULNIER and B. BORTSCHELLER, “Simulation model reusability,” IEEE

Communications Magazine, vol. 32, no. 3, pp. 64–69, Mar. 1994.

[195] F. SCHLOEGL, S. ROHJANS, S. LEHNHOFF, J. VELASQUEZ, C. STEINBRINK, and

P. PALENSKY, “Towards a classification scheme for co-simulation approaches

in energy systems,” in 2015 International Symposium on Smart Electric Distri-

bution Systems and Technologies (EDST). IEEE, Sep. 2015, pp. 516–521.

[196] T. SCHULZE, S. STRASSBURGER, and U. KLEIN, “Migration of HLA into Civil

Domains: Solutions and Prototypes for Transportation Applications,” SIMU-

LATION, vol. 73, no. 5, pp. 296–303, Nov. 1999.

[197] B. SCHÜNEMANN, “V2X simulation runtime infrastructure VSimRTI: An assess-

ment tool to design smart traffic management systems,” Computer Networks,

vol. 55, no. 14, pp. 3189–3198, Oct. 2011.

[198] S. SCHÜTTE, S. SCHERFKE, and M. TRÖSCHEL, “Mosaik: A framework for

modular simulation of active components in Smart Grids,” in 2011 IEEE

First International Workshop on Smart Grid Modeling and Simulation (SGMS).

IEEE, Oct. 2011, pp. 55–60.

[199] J. SEWALL, D. WILKIE, and M. C. LIN, “Interactive hybrid simulation of large-

scale traffic,” in Proceedings of the 2011 SIGGRAPH Asia Conference. New

York, NY, USA: Association for Computing Machinery, Dec. 2011, pp. 1–12.

[200] S. SHEKHAR, H. ABDEL-AZIZ, M. A. WALKER, F. CAGLAR, A. GOKHALE, and

X. KOUTSOUKOS, “A simulation as a service cloud middleware,” Annals of

Telecommunications, vol. 71, pp. 93–108, 2016.

[201] R. SIEGFRIED, J. LLOYD, and T. BERG, “A new reality: Modelling & simulation

as a service,” J. of Cyber Security and Information Systems, vol. 6, no. 3, pp.

18–29, 2018.

Bibliography 279

[202] R. SIEGFRIED, T. VAN DEN BERG, A. CRAMP, and W. HUISKAMP, “M&S as a

service: Expectations and challenges,” in 2014 Fall Simulation Interoperability

Workshop, SISO. SISO, 2014, pp. 248–257.

[203] N. SIEVERT, “Modelica Models in a Distributed Environment Using FMI and

HLA,” Linköping University, Software and Systems, Master’s Thesis, 2016.

[204] A. SKOOGH and B. JOHANSSON, “Mapping of Time-Consumption During Input

Data Management Activities,” SNE Simulation Notes Europe, vol. 19, no. 2,

pp. 39–46, Aug. 2009.

[205] C. SOMMER, D. ECKHOFF, A. BRUMMER, D. S. BUSE, F. HAGENAUER, S. JOERER,

and M. SEGATA, “Veins: The Open Source Vehicular Network Simulation Frame-

work,” in Recent Advances in Network Simulation, A. VIRDIS and M. KIRSCHE,

Eds. Cham: Springer International Publishing, 2019, pp. 215–252.

[206] C. SOMMER, R. GERMAN, and F. DRESSLER, “Bidirectionally coupled network

and road traffic simulation for improved IVC analysis,” IEEE Transactions on

Mobile Computing (TMC), vol. 10, no. 1, pp. 3–15, Jan. 2011.

[207] P. SOMMER, F. SCHELLROTH, M. FISCHER, and J. SCHLECHTENDAHL, “Message-

oriented Middleware for Industrial Production Systems,” in 2018 IEEE 14th

International Conference on Automation Science and Engineering (CASE). IEEE,

Aug. 2018, pp. 1217–1223.

[208] C. STEINBRINK, F. SCHLÖGL, D. BABAZADEH, S. LEHNHOFF, S. ROHJANS, and

A. NARAJAN, “Future Perspectives of Co-Simulation in the Smart Grid Domain,”

in 2018 IEEE International Energy Conference (ENERGYCON). IEEE, Nov.

2018, pp. 1–6.

[209] G. STETTINGER, M. BENEDIKT, N. THEK, and J. ZEHETNER, “On the difficulties

of real-time co-simulation,” in International Conference on Computational

Methods for Coupled Problems in Science and Engineering, 2013, pp. 1–11.

[210] S. SÜSS, A. STRAHILOV, and C. DIEDRICH, “Behaviour simulation for virtual

commissioning using co-simulation,” in 2015 IEEE 20th Conference on Emerg-

ing Technologies Factory Automation (ETFA). IEEE, Sep. 2015, pp. 1–8.

[211] F. TAO, Q. QI, A. LIU, and A. KUSIAK, “Data-driven smart manufacturing,”

Journal of Manufacturing Systems, vol. 48, pp. 157–169, Jul. 2018.

[212] S. J. E. TAYLOR, T. ELDABI, T. MONKS, M. RABE, and A. M. UHRMACHER, “Crisis,

what crisis: Does reproducibility in modeling & simulation really matter?” in

2018 Winter Simulation Conference (WSC). IEEE, Dec. 2018, pp. 749–762.

280 Bibliography

[213] C. THULE, K. LAUSDAHL, C. GOMES, G. MEISL, and P. G. LARSEN, “Maestro:

The INTO-CPS co-simulation framework,” Simulation Modelling Practice and

Theory, vol. 92, pp. 45–61, Apr. 2019.

[214] A. TOLK, S. Y. DIALLO, J. J. PADILLA, and C. D. TURNITSA, “How is M&S

interoperability different from other interoperability domains?” M&S Journal,

vol. 7, no. 3, pp. 5–14, 2012.

[215] O. TOPÇU, U. DURAK, H. OĞUZTÜZÜN, and L. YILMAZ, Distributed Simulation:

A Model Driven Engineering Approach, ser. Simulation Foundations, Methods

and Applications. Cham: Springer International Publishing, 2016.

[216] E. TRUNZER, P. PRATA, S. VIEIRA, and B. VOGEL-HEUSER, “Concept and Evalua-

tion of a Technology-independent Data Collection Architecture for Industrial

Automation,” in IECON 2019 - 45th Annual Conference of the IEEE Industrial

Electronics Society. IEEE, Oct. 2019, pp. 2830–2836.

[217] E. TRUNZER, T. SCHILLING, M. MÜLLER, and B. VOGEL-HEUSER, “Comparison

of Communication Technologies for Industrial Middlewares and DDS-based

Realization,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 10 935–10 942, 2020.

[218] A. M. UHRMACHER, S. BRAILSFORD, J. LIU, M. RABE, and A. TOLK, “Panel

— Reproducible research in discrete event simulation — A must or rather a

maybe?” in 2016 Winter Simulation Conference (WSC). IEEE, Dec. 2016, pp.

1301–1315.

[219] M. VAN STEEN and A. S. TANENBAUM, Distributed Systems, 3rd ed. Maarten

van Steen, 2017.

[220] J. VANURA and P. KRIZ, “Perfomance Evaluation of Java, JavaScript and PHP

Serialization Libraries for XML, JSON and Binary Formats,” in Services Com-

puting – SCC 2018, ser. Lecture Notes in Computer Science, J. E. FERREIRA,

G. SPANOUDAKIS, Y. MA, and L.-J. ZHANG, Eds. Cham: Springer International

Publishing, 2018, no. 10969, pp. 166–175.

[221] A. VERBRAECK, “Component-based distributed simulations: The way forward?”

in Proceedings of the 18th Workshop on Parallel and Distributed Simulation.

New York, NY, USA: Association for Computing Machinery, 2004, pp. 141–

148.

[222] VMWARE, INC., “Messaging that just works — RabbitMQ,”

https://www.rabbitmq.com/, Aug. 2022.

[223] W3C, “Extensible Markup Language (XML),” https://www.w3.org/XML/,
Mar. 2022.

Bibliography 281

[224] S. WANG and G. A. WAINER, “A simulation as a service methodology with

application for crowd modeling, simulation and visualization,” SIMULATION,

vol. 91, pp. 71–95, 2015.

[225] C. WEINHARDT, A. ANANDASIVAM, B. BLAU, N. BORISSOV, T. MEINL,

W. MICHALK, and J. STÖSSER, “Cloud Computing – A Classification, Business

Models, and Research Directions,” Business & Information Systems Engineering,

vol. 1, no. 5, pp. 391–399, Oct. 2009.

[226] WIKIMEDIA FOUNDATION, INC., “Wikipedia Main Page,”

https://en.wikipedia.org/w/index.php?title=Main_Page, Jun. 2022.

[227] E. WOLFF, Microservices: Grundlagen Flexibler Softwarearchitekturen. dpunkt.

verlag, 2018.

[228] T. YARYGINA and A. H. BAGGE, “Overcoming Security Challenges in Mi-

croservice Architectures,” in 2018 IEEE Symposium on Service-Oriented System

Engineering (SOSE). IEEE, Mar. 2018, pp. 11–20.

[229] L. YILMAZ, “Using meta-level ontology relations to measure conceptual align-

ment and interoperability of simulation models,” in Proceedings of the Winter

Simulation Conference, S. G. HENDERSON, B. BILLER, M.-H. HSIEH, J. SHORTLE,

J. D. TEW, and R. R. BARTON, Eds. Piscataway, New Jersey: IEEE, 2007, pp.

1090–1099.

[230] L. YILMAZ, S. J. E. TAYLOR, R. FUJIMOTO, and F. DAREMA, “Panel: The future of

research in modeling amp; simulation,” in Proceedings of the Winter Simulation

Conference 2014. IEEE, Dec. 2014, pp. 2797–2811.

[231] J. YONGGUO, L. QIANG, Q. CHANGSHUAI, S. JIAN, and L. QIANQIAN, “Message-

oriented Middleware: A Review,” in 2019 5th International Conference on Big

Data Computing and Communications (BIGCOM), Aug. 2019, pp. 88–97.

[232] L. C. YU, J. S. STEINMAN, and G. E. BLANK, “Adapting your simulation for

HLA,” SIMULATION, vol. 71, no. 6, pp. 410–420, 1998.

[233] D. ZEHE, A. KNOLL, W. CAI, and H. AYDT, “SEMSim Cloud Service: Large-scale

urban systems simulation in the cloud,” Simulation Modelling Practice and

Theory, vol. 58, pp. 157–171, 2015.

[234] ZEROMQ, “ZeroMQ,” https://zeromq.org/, Aug. 2022.

[235] H. M. ZHANG, “A non-equilibrium traffic model devoid of gas-like behavior,”

Transportation Research Part B: Methodological, vol. 36, no. 3, pp. 275–290,

2002.

282 Bibliography

[236] F. ZHU, Y. YAO, H. CHEN, and F. YAO, “Reusable Component Model Develop-

ment Approach for Parallel and Distributed Simulation,” The Scientific World

Journal, vol. 2014, pp. 1–12, Mar. 2014.

[237] F. ZHU, Y. YAO, J. LI, and W. TANG, “Reusability and composability analysis for

an agent-based hierarchical modelling and simulation framework,” Simulation

Modelling Practice and Theory, vol. 90, pp. 81–97, 2019.

Statement on Contribution with regard

to Self-Citations

Statement on Contribution to Citation [95]
M. GÜTLEIN, W. BARON, C. RENNER, and A. DJANATLIEV, “Performance Evaluation

of HLA RTI Implementations,” in 2020 IEEE/ACM 24th International Symposium on

Distributed Simulation and Real Time Applications (DS-RT). IEEE, Sep. 2020, pp. 1–8.

• Idea and concept

• Formulation and solution of the problem

• Preponderant implementation and evaluation

• Preponderant preparation of the paper

Statement on Contribution to Citation [96]
M. GÜTLEIN and A. DJANATLIEV , “Coupled Traffic Simulation by Detached Translation

Federates: An HLA-Based Approach,” in 2019 Winter Simulation Conference (WSC).

IEEE, Dec. 2019, pp. 1378–1389.

• Idea and concept

• Formulation and solution of the problem

• Preponderant implementation and evaluation

• Preponderant preparation of the paper

Statement on Contribution to Citation [97]
M. GÜTLEIN and A. DJANATLIEV, “Modeling and Simulation as a Service using

Apache Kafka:,” in Proceedings of the 10th International Conference on Simulation

and Modeling Methodologies, Technologies and Applications. SCITEPRESS - Science

and Technology Publications, 2020, pp. 171–180.

• Idea and concept

283

284

• Formulation and solution of the problem

• Preponderant implementation

• Preponderant preparation of the paper

Statement on Contribution to Citation [98]
M. GÜTLEIN and A. DJANATLIEV, “On-demand Simulation of Future Mobility Based

on Apache Kafka,” in Simulation and Modeling Methodologies, Technologies and Appli-

cations, ser. Lecture Notes in Networks and Systems, M. S. OBAIDAT, T. OREN, and F.

D. RANGO, Eds. Cham: Springer International Publishing, 2022, pp. 18–41.

• Idea and concept

• Formulation and solution of the problem

• Preponderant implementation and evaluation

• Preponderant preparation of the paper

Statement on Contribution to Citation [99]
M. GÜTLEIN, R. GERMAN , and A. DJANATLIEV , “Towards a Hybrid Co-simulation

Framework: HLA-Based Coupling of MATSim and SUMO,” in 2018 IEEE/ACM 22nd

International Symposium on Distributed Simulation and Real Time Applications (DS-

RT). IEEE, 2018, pp. 1–9.

• Idea and concept

• Formulation and solution of the problem

• Preponderant implementation and evaluation

• Preponderant preparation of the paper

Statement on Contribution to Citation [100]
M. GÜTLEIN, R. GERMAN , and A. DJANATLIEV, “Hide Your Model! Layer Abstractions

for Data-Driven Co-Simulations,” in 2021 Winter Simulation Conference (WSC). IEEE,

Dec. 2021, pp. 1–12.

• Idea and concept

• Formulation and solution of the problem

• Preponderant implementation of the model

• Preponderant preparation of the paper

	Abstract
	Kurzfassung
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure

	2 Fundamentals and Related Work
	2.1 Modeling and Simulation
	2.1.1 Modeling Paradigms
	2.1.2 Confidence and Reliability
	2.1.3 Input Data

	2.2 Distributed Systems
	2.3 Distributed Simulation
	2.3.1 Modeling of Distributed Simulation
	2.3.2 Synchronization Mechanisms
	2.3.3 Distributed Simulation Standards
	2.3.4 Implementations of Distributed Simulation
	2.3.5 Simulation as a Service

	2.4 Data Centrism
	2.5 Requirements Analysis
	2.6 Research Gap

	3 System Specification and Design
	3.1 Requirements Specification
	3.2 Data-Centric Architectural Concept
	3.3 Communication Concept
	3.3.1 Middleware-based Approach
	3.3.2 Publish/Subscribe Messaging Systems
	3.3.3 Apache Kafka
	3.3.4 Data Serialization

	3.4 Coupling Concept
	3.4.1 Core Idea
	3.4.2 Domain & Layer Taxonomy
	3.4.3 Deterministic Information Exchange
	3.4.4 Coupling Protocol
	3.4.5 Composing Building Blocks

	3.5 MSaaS Concept
	3.5.1 Definition and Design of Scenarios
	3.5.2 Execution of Scenarios
	3.5.3 Evaluation of Scenarios
	3.5.4 Management
	3.5.5 Graphical User Interface
	3.5.6 Service Architecture

	3.6 Summary

	4 System Implementation and Evaluation
	4.1 Apache Kafka and Avro
	4.2 Implementation Details
	4.2.1 Simulation Controller and Graphical User Interface
	4.2.2 Base Wrapper Libraries

	4.3 Minimal Working Example
	4.3.1 Exemplary Data Models and Components
	4.3.2 Evaluation of Test Applications

	5 Application to the Traffic Domain
	5.1 Modeling and Simulation of Traffic
	5.1.1 Established Modeling Paradigms and Stereotypical Tools
	5.1.2 Distributed Traffic Simulation Approaches
	5.1.3 Mobility Data

	5.2 Using the Approach in the Traffic Domain
	5.2.1 Modeling of the Domain Definition
	5.2.2 Modeling of the Layer Definitions
	5.2.3 Modeling of the Translators

	5.3 Implementing Wrappers
	5.4 Extension to a Further Domain

	6 Exemplary Case Studies in the Traffic Domain
	6.1 Study 1: Distributed Simulation
	6.1.1 Validation
	6.1.2 Performance Gains

	6.2 Study 2: Multi-level Simulation
	6.3 Study 3: Data Enrichment
	6.4 Study 4: Integration of External Data
	6.5 Study 5: Cross-Domain Simulation

	7 Conclusion and Future Directions
	7.1 Summary and Conclusion
	7.2 Limitations and Future Directions

	A General Definitions
	A.1 Domain Definition
	A.2 Layer Definition
	A.3 Component Definition
	A.4 Scenario Definition
	A.5 Avro Definitions

	B Evaluation Resources
	B.1 Demo Definitions
	B.2 Scenario Definition Experiment 1
	B.3 Scenario Definition Experiment 3

	C Definitions in the Traffic Domain
	C.1 Traffic Domain Definition
	C.2 Macroscopic Layer Definition
	C.3 Mesoscopic Layer Definition
	C.4 Microscopic Layer Definition
	C.5 Submicroscopic Layer Definition

	D Definitions in the Communication Domain
	E Exemplary Case Studies
	E.1 Study 1
	E.2 Study 2
	E.3 Study 3
	E.4 Study 4
	E.5 Study 5

	List of Acronyms
	List of Algorithms
	List of Figures
	List of Listings
	List of Tables
	Bibliography
	Statement on Contribution with regard to Self-Citations

