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Abstract

Most modern computer games provide a virtual environment as a context for player inter-

action. Recently, many multi-player online games have adopted the persistent-state gaming

model, which provides a central virtual environment with essentially infinite lifetime. How-

ever, a displeasing part of these long-lasting environments is that, like their predecessors, they

are still assumed to be static, unchanging even in the long-term. In response to this fact, we

introduce the adaptive virtual environment which automatically adapts based on activity occur-

ring within the environment. In computer games, adaptive virtual environments are systems

that correspond to real-world physical or social systems. These systems are computationally

formalized by adhering to a generic adaptation model containing abstract components and pro-

cedures. Herein, as a proof of concept, we design and analyze the behavior of two adaptive

versions of such systems commonly found in persistent-state games. To achieve this, we build

an implementation of an abstract interactive simulator that applies the adaptation process to

our example systems. Each system is internally represented as a plug-in module containing

system-specific implementations of the model’s abstractly-defined procedures. Performance of

the adaptation process is then evaluated using simulation data. Finally, improvements such

as optimizations and better movement models for agent simulation are investigated, and the

general usefulness and applicability of the concepts is discussed.
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Résumé

La plupart des jeux informatiques modernes offrent aux joueurs un environnement virtuel

qui leur permet d’interagir entre eux. Récemment, plusieurs jeux multi-joueurs en-ligne ont

adopté un modèle de jeu avec état persistant qui fournit un environnement virtuel central et

dont le temps de vie est quasi-infini. Ces nouveaux environnements ont tout de même hérité du

même problème que leurs prédécesseurs : on les considère comme étant statiques c’est-à-dire

qu’ils ne changent pas avec le temps, même à long terme. Considérant ce fait, nous présentons

l’environnement virtuel adaptable qui s’ajuste automatiquement en fonction des événements qui

se déroulant dans l’environnement. Pour les jeux vidéo, les environnements virtuels adaptables

sont des reproductions de notre monde physique ou social. Ces systèmes sont formalizés en

respectant un modèle d’adaptation générique qui contient des des procédures et modules ab-

straits. Afin de démontrer cette formalisation, nous avons élaboré et analysé le comportement

de deux versions adaptables de systèmes couramment retrouvés dans des jeux à état persistant.

Pour y parvenir, nous avons construit un simulateur interactif abstrait qui qui met en appli-

cation le processus d’adaptation dans chacun de nos deux systèmes témoins. Chaque système

analysé par notre simulateur est réprésenté par un module d’ajout (plug-in) qui contient le

comportement des méthodes abstraites spécifiques à ce système. La performance du processus

d’adaptation est alors évaluée avec des données de simulation. Finalement, des améliorations,

telles que des optimisations et des modèles de mouvement perfectionnés pour la simulation

d’agents sont étudiées. L’utilité de ce concept et ses débouchés sont également discutées.
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Chapter 1

Introduction and Contributions

Not very long ago, developing a computer game was largely considered a 1-person project.

Many components were involved of course such as different types of programming (graphics,

physics, game logic, sound, user interface) as well as designing a believable and somewhat

interesting storyline, designing challenging levels, drawing impressive image scenes, creating

captivating sound files, and so on. However, it was still the case that these components were

small and simple enough so that it was feasible for the same person to be responsible for all of

them and their integration into the final game product.

Modern computer games are large, complex software projects that require many more than

one single person to produce. In fact, it is not uncommon to have 100 people working on a

modern computer game during the beta-testing phase [Com03]. Computer games have become

so vast that now they include a large amount of complex components. Due to the commercial

aspect of the industry such as demand from consumers, game development companies do not

have the time nor resources to spend analyzing the academic properties of these projects or

experimenting with potential features.

Many modern computer games support online gameplay: that is, networked multi-player

gameplay over the Internet. Usually a service is offered by the same companies that sell the

game which allows players to meet other players to play an instance of the online game over

the Internet. With a suitable design infrastructure such games can become quite large in terms

of numbers of players. Large scale networked games are referred to as Massively Multi-player

Online Games (MMOGs).

A specific type of MMOG, influenced in part by role-playing games, is one that doesn’t

recreate a new game instance every time players join the game; that is, only one instance exists

and the game setting is never-ending. New players are admitted to the game at its current

state and produce the history of the virtual “world” by playing. The game world state exists
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regardless of whether players are playing inside it. These persistent-state computer games have

become popular, have been commercially-explored in the online gaming industry, and now form

an important subfield of modern online gaming [Com04]. In this thesis, we propose and analyze

a potential new feature specifically intended for persistent-state computer games.

Traditional and modern Artificial Intelligence (AI) researchers who focus on agent-based

techniques separate a virtual environment into 2 major components: the static environment, and

the dynamic agents [RN02]. Since new environment instances are continually being constructed

with each new game instance, the lifetime of the environments are relatively short. Therefore,

it is fair to assume that the environment is approximately unchanging, since real-world physical

environments are not static but change only slowly and over the long-term. Typically the role

of the environment is a constant entity that restricts the dynamics of the agents’ behavior.

This approximation becomes noticeable in a persistent-state online game where the life of the

environment is effectively infinite. Our motivation then is to describe a generic system for

environmental adaptation within these contexts.

A basic problem encountered by vendors of large scale, persistent-state gaming environments

is how to continuously improve and change the virtual environment so as to maintain player

interest, and also reflect the activities of players in the virtual world. In a more generic sense this

falls under content creation [Mel03], altering or adding new virtual content to the game. Manual

approaches are typically used due to the creative requirements of general content creation and

the complexity of determining realistic adaptation results, but impose extra game maintenance

costs and administration requirements. Automatic approaches that sensibly alter and tune the

game world with minimal human intervention are thus desirable.

We present a generic model for adaptation in computer games that allows the virtual world

to change automatically, with reasonable efficiency. We demonstrate the utility of our technique

through two different forms of dynamic common game content: 1) an environment-based basic

weather cycle that adapts wind, rain and water accumulation to variations and changes in a

large-scale terrain, and 2) a simple agent-based reputation system that allows agents in the

virtual world to respond appropriately to a player’s actual behavior in a game.

Furthermore, we design and conduct a game-playing experiment to collect data from actual

players for analysis. The purpose of the experiment is to improve the movement model used

in the agent simulation for agent-based adaptation. We propose heuristics for agents’ decisions

which are functions of the game state at given times in the game experiment. The heuristic

calculations are then used as input to some classification problems that learn which heuristics

are good for determining the actions to take under the specific conditions.

Finally, the implementation of the simulator used to represent the adaptation of the systems

2



1.1. Contributions

designed using the framework is explained in detail. An architecture for integration of the

adaptation simulator into modern game projects is proposed. Performance analyses are done

on the simulations and specific optimizations are measured.

1.1 Contributions

Specific contributions of this work include:

• Design of a general adaptation framework suitable for modeling flow-based properties

in game simulations. Our approach is based on cellular automata, ensuring only local

information is required at each computation; this allows for reasonable scalability in

distributed environments.

• Design and experimental verification of systems for two forms of popular, dynamic game

content. We describe a simple, aesthetic and logically consistent adaptive weather model

for game worlds, and a game reputation system that can dynamically respond to changing

patterns of information dispersal and player behavior.

• Implementation of a simple multi-player computer game and organization of a game-

playing experiment to obtain real data from game players. Using collected data, we

analyze the value of certain proposed heuristic strategies for deciding how to move based

on the state of the game. Several movement models for agents in game simulation are

analyzed; among them a dynamic model based on decision-tree learning is proposed.

• Design and analysis of an implementation of the entire framework in Java. The pur-

pose of the implementation is threefold: to see how well the concept fits into an object-

oriented programming model, to analyze the behavior of the example adaptation systems

described, and to assess performance feasibility and optimizations.

1.2 Road map

In the following chapter we describe other research work that is related to our endeavors. We

then explain the fundamental notions and basic, underlying concepts used in our approach

in Chapter 3. Following this, Chapter 4 describes in detail example applications built upon

the basic model. Chapter 5 contains a study on improvement player movement in persistent-

state MMOGs. Lastly, Chapter 6 fits the adaptation scheme into MMOGs and describes an

implementation of a simulator used to simulate example adaptive systems.

3



Chapter 2

Related Work

In this chapter, we give a brief survey of the related previously-studied areas that have

all in some way influenced this work. We first present the study of computational adaptation

because it is by far the most relevant. Then, we will look at the work that has been done on

the two core computational concepts used in the work: Cellular Automata, and Fuzzy Logic.

We also discuss previous research done in and influence of systems for which we chose to apply

adaptation: weather modeling (including terrain generation), and reputation schemes. We

mention the difficulties involved in massive Multi-player Game Design, the constraints of the

context, and how it relates to the adaptation tasks.

2.1 Adaptation

Adaptation is a traditional target of Artificial Intelligence (AI) research. It is usually viewed

as a complement to the problem of Machine Learning (ML), which is is concerned with the

question of how to construct computer programs that automatically improve with experience.

The most common type of learning is supervised learning in which there is a collection (sample)

of input data and output data for each input; the goal is to find a function (classifier) that

represents the data well enough so that it can predict the output of future input sets [Mit97].

Adaptation is more closely related to the problem of unsupervised learning in which no output

sets are included with the inputs, the goal being to group the data sets by some similarity

metric such as n-dimensional Euclidean distance in cluster analysis [HTF01]. Learning tasks

typically focus on finding a good static classifier assuming a very specific, fixed problem. On

the other hand, in adaptive tasks the problem(target) is still well-defined but it also dynamic.

Therefore, adaptation becomes an on-going, possibly never-ending process of modifying the

model/system towards its ever-changing target. In addition, it is often harder to quantify what

4



2.2. Cellular Automata

the adaptation engine is adapting to in comparison to what a learning engine is trying to learn.

Unlike ML, adaptation does not have a list of classic algorithms and structures that can be

easily applied to a data set because the reason for performing adaptation is comparatively much

more domain-specific.

In the context of computer games, adaptation has been investigated [SSKP03], though

like most other applications of AI it has been primarily directed at adapting agents (NPCs,

game opponents) [CM98] rather than the environment. For example, [DdOC03] presents a

scheme for online adaptation of agent behavior in action games. Similarly, [Pon04] describes

genetic learning algorithms that improve game AI in real-time strategy games. Most generic

AI architectures focus on agent behaviors, such as in [NC01]. Even non-constant, fluctuating

environments are usually viewed as the process to react to, rather than the target of adaptation

[HW95]. Our motivations more closely resemble building an artificial model as in done in

ALife [Ste94] and co-evolving that model based on user input as in [DdOC03]; we, however,

focus on constructing an adaptive environment irrespective of adaptivity of the agents.

2.2 Cellular Automata

The approach here is based on 2-dimensional Cellular Automata (CA). The theoretical basis

for the cellular automaton formalism was inspired by John von Neumann’s studies in self-

reproducing automata [vNB66]. The aim then was not to create a new computational formal-

ism in of itself, but instead to investigate the algorithmic analogue to the natural concept of

evolution. Only a few years after von Neumann’s original work had been published, Martin

Gardner studied Jon Conway’s Game of Life [Gar70]. He found that using the CA formalism

very complex patterns could be generated from an iterative update process with relatively sim-

ple update rules. In fact, under certain conditions chaotic behavior is observed, which leads to

visually-pleasing fractal patterns [WP85]. The evolution of CAs was interesting enough that it

formed the core of a well-known classic computer game: SimCity [Sta96].

The Cellular Automaton has become a rather popular computational formalism in many

fields of Computer Science. It seems to have become a classic formalism in the field of Model-

ing and Simulation, particularly in association with discrete event systems. A comprehensive

general relationship between CA and DEVS is outlined in [VV00] while timed Cell-DEVS and

remote execution are examined in [WG01] and [WC03], respectively. CAs have been used for

weather and ecological modeling, and are amenable to simple parallelization. The details for

this topic are deferred to Section 2.4.
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2.3. Fuzzy Logic and Fuzzy Set Theory

2.3 Fuzzy Logic and Fuzzy Set Theory

Fuzzy logic was first presented in 1965 as a mathematical means for dealing with complex ill-

defined systems [Zad65]. It has become popular as a control device in the domain of electronic

systems, influenced in part by [Mam74]. Fuzzy Logic is also used a lot in conjunction with

models and algorithms traditionally found in AI such as neural networks (neuro-fuzzy systems),

adaptation (Robo-Cup Soccer [AW04]), and machine learning. A comprehensive introduction

to how fuzzy control systems work is given in [HD03].

An interesting and particularly relevant formalism is the Fuzzy Cellular Automaton (FCA)

[Ada94]. In this book, the problem of identification (or classification) of cellular automata

is addressed. A gradient descent learning algorithm is designed for FCAs in [RGT00], where

it is shown that real-valued functions can be well approximated by using a clever encoding

representation for function values.

It is currently unknown whether Fuzzy Logic is used in any existing modern computer

games, but a proposed usage is found in [McC00]. This article motivated the construction of

the fuzzy system used in the adaptation framework presented in Chapter 3.

2.4 Ecological(Weather) Modeling and Simulation

The Weather/Ecosystem modeling and simulation field is concerned mostly with using com-

puters as a tool to make predictions about the future behavior of a system. Geographic Infor-

mation Systems (GIS) such as Global Positioning Systems (GPS) are used to retrieve precise

geographic information about Earth regions in order to gain insight on the ecological behav-

ior of the model. In many cases, the collected data is analyzed via adaptation and learning

methods as in [GWJT97]. Fuzzy Systems are also used as models in this context [HAKB96].

In recent years, one research focus is to use massively parallel computers on top of an

underlying DEVS formalism to model weather forecasting [WZ93]. The CA model fits well

into the parallel architecture [Dag92] and into the DEVS formulation [Zei84]. Consequently, it

makes a natural choice for ecological modeling within both these contexts [DZG93].

The Finite Element Method (FEM) is used in the field of Computational Fluid Dynamics

(CFD) to approximate the dynamics of a continuous system by using a discrete, often triangular

grid. These methods are similar to the fluid dynamics based on hexagonal CA presented

in [Wol86b].

All the methods presented in this section have a common goal: they aim to realistically

model real-world physical behaviors. In modern computer games however, physically realistic
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ecological modeling is far too costly a process; computer games already have hard, real-time

requirements and efficiency is typically a great priority than realism/precision. Our approach

is to focus on a model that achieves a good appearance for an immersive game experience but

which is also very fast to compute.

2.5 Reputation Systems

Automated reputation systems (or trust systems) have become quite popular in recent years as

an efficient method to measure trust between users.

Around the same time trust was first formalized as a computational concept [Mar94], the

first widely used reputation system was introduced by the Ebay auction site(www.ebay.com).

Ebay introduced a point-based system which allowed users to rate each other manually. The

winner of an auctions(buyers) on Ebay are allowed to rate the starter of the auction(sellers)

once the merchandise is received. Buyers are allowed to submit positive points, negative points,

and comments about the seller. These points form the seller’s reputation. The seller is not

allowed to modify his/her own reputation: it is strictly formed by the buyers in the auctions

held. Other buyers are allowed to view the sellers’ reputation before they place a bid. Therefore,

the relative amount of positive feedback (reputation level) you have directly corresponds to how

satisfied others have been with your auctions. In turn, this encourages sellers to ensure prompt

delivery and accurate description of the state of the merchandise.

The Ebay system was studied by the community and was soon labeled a binary reputation

system [Del01]. It was around the same time that people started presenting mathematical

frameworks for computing trust in online trading communities [Del] [YS00]. The problem with

such a system is that it is not automatic: it requires each user to faithfully (and honestly)

provide feedback.

Recently, a large amount of research work has been put into automated trust-measuring

algorithms in distributed, especially peer-to-peer, trading environments [DGGZ03]. The Eigen-

Rep system computes the a global trust value for a peer based on local trust values computed

by all peers [KSGM03]. Appleseed [ZL04] uses the Semantic ”Web of Trust” infrastructure for

trust propagation. This kind of trust propagation has also been seen in the context of open

rating systems [Guh] which were used on web sites Slashdot.org and epinions.com. These

rating systems described methods for ranking users’ posts based on the feedback given to the

system by other users who read the posts. Although again, the systems require considerable

amount of user input to work.

In modern computer games, very little research has been done on automated reputation
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systems. While [Jak] outlines the importance of a character’s reputation in the game EverQuest,

it is unfortunately completely user-based and subject to interpretation. EverQuest was the first

MMORPG to introduce factions [mer]. Factions are basically reputation groups: collections of

players that have different relationships with each other. A player or group can raise or lower

his/her faction with that reputation group by performing certain actions. The faction value

(positive or negative) represents how the members of that faction react to the character.

There have been some commercial attempts at incorporating locality in faction-based repu-

tation systems, but results have been disappointing [Bro03]. Our approach was inspired by the

Dungeons & Dragons reputation system [CDNR04], which assumes a global reputation value

per character. We’ll see later that this can be easily extended to groups of characters. This

system states that as a player progresses his or her reputation will rise by performing “heroic

deeds.” Symmetrically, of course there should also be the inverse property, to degrade reputa-

tion by performing negative actions. We extend this base system by capturing locality via the

flow of information dispersal throughout the virtual environment.

2.6 Multi-player Game Design

Before the growth of world-wide networking, computer games did not support multiple players

unless the players were both physically using the same computer. As the Internet emerged

for widely public use, games began supporting multi-player options. At first games were only

playable one-on-one by modem, or multi-player over a local area network (LAN). In these times

and settings the games were still relatively simple; network bandwidths and latency as well as

efficient and consistent data transfers were minimal concerns.

Today, for large-scale Massively Multi-player (MMP) games the teams grow to 100 people

or more and could cost anywhere from under 5 million to 30 million dollars to develop [Com03].

For groups of such large sizes, clever software engineering techniques such as good project

coordination are required to ensure efficient work flow [Ruc02].

Multi-player games are faced with the problem of sending data over networks. This simple

fact adds a burden to the game designers in several different ways [SKH02]. First and foremost,

the game designers are faced with constructing a consistent protocol which must be implemented

as a communication mechanism between the hosts. This is usually a simple task in itself.

However, since sending data by network is comparatively slow and much more prone to error

it is fairly important that the protocol and network architecture remain simple and efficient

[RRER03]. Another notable problem with multi-player game design that has been arising lately

particularly in online games is cheating and security [YC02]. This is particularly bothersome
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in larger scale games where the problem is a lot harder to control [BL01].

Massively multi-player games add more issues to these problems. The main issue in mas-

sively multi-player games is scalability. In fact, this is such a problem in large-scale games

that game designers have had to look into entirely new network topologies [Fun96] and archi-

tectures [CFKJ02] to deal with such large numbers of players. Of particular interest is the

divergence from the typical client/server model to new distributed models [Qua03]. In fact,

the use of Multicast UDP in [DG99] influenced the network design of the multi-player game-

playing experiment described in Chapter 5. We will talk more about choices for network design

in computer games in Chapter 6.

2.7 Terrain Generation

Terrain generation is an interesting problem faced by virtual world creators. The problem is

how to automatically generate terrain for a virtual world that satisfies a set of criteria. Typical

criteria for computer games are realistic, smooth, and randomized.

A fundamental structure in terrain modeling is the height field [EMP+98], here after denoted

the altitude map. A common way to produce random altitude maps is via general stochastic

subdivision [Lew87]. A more intriguing way of generating realistic terrain which is related to

the adaptation concept is to take existing real elevation data and apply water flow erosion to

sculpt the surface details [KMN88].

According to [O’N01], the Perlin Noise algorithm is a procedural method which acts as

a base algorithm for techniques used in computer games. Fractal landscapes [HM95] have

also become popular due to their straight-forward recursive implementation. We will soon see

that the method for scaling bitmaps in [Mar99] is quite similar to the techniques used in our

adaptation model.
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Chapter 3

A General Model for Adaptive Environments

The Adaptive Virtual Environment (AVE) concept splits itself naturally into two major

components: generic adaptation concepts and system-specific adaptation concepts. A specific

system is a particular AVE that is well-defined and exhibits behavior particular to a given phys-

ical or social system; it can be thought of as an instance of more generically-defined adaptation

model. The particular AVEs both adhere to the generic model and define the semantics of the

data representation present within the model.

In this chapter, we describe in detail the generic model that example systems implement.

For clarity, we well refer to example AVE systems as applications of the model. Some specific

applications of the model will be examined in greater detail in Chapter 4.

The chapter is divided into two sections: the first section presents the fundamental compu-

tational notions that are required to present the core formalisms used in the model. The second

section presents the core procedural and data abstractions which are used to manipulate the

AVE undergoing the adaptation process.

3.1 Fundamental Notions

In this section an overview of the fundamental background knowledge is presented. These

concepts form the foundation upon which the adaptation framework is constructed. The ideas

described herein are by no means complete nor extensive; they are merely presented as reminders

of the basic notions and to present conventions for notation. Where applicable, references will

be given to more comprehensive sources.
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3.1.1 Cellular Automata

One of the attractive features of CAs is their unique and inherent ability to capture the influence

of local properties. This main fact is what inspired the use of CAs as a central notion in the

adaptation framework.

Classical One-Dimensional CA

A classical one-dimensional cellular automaton is a 4-tuple (C, Q, τ , f), where C = (· · · , c−3, c−2,

c−1, c0, c1, c2, · · ·) is a bi-infinite lattice of discrete cells, Q is a set of cell states, τ : C → Cn is a

neighborhood function, and f : Cn → Q is a transition function [Wol83]. The index or position

of a cell is an integer representing the cell’s position in the integer range. c0 ∈ C has position 0

and is labeled the midpoint cell. Paired with the formalism itself is usually a discretized notion

of time via time steps (t0, t1, · · ·) where t0 is the initial time step.

The configuration of a cellular automaton Ck, is the lattice of cells in their corresponding

cell states at time tk where C0 is the initial configuration. In general, the configuration of the

cellular automaton C at time t is denoted Ct. Ct is obtained by the simultaneous application

of the transition function on the cells’ neighborhood in Ct−1. That is, if qt(c) is the value of

cell c at time t, then ∀ck ∈ Ct, c
′
k ∈ Ct−1, qt(ck) = f(τ(c′k)). The evolution of the CA is a term

meaning how the states change over time. Unless otherwise noted, it is commonly assumed that

the default state set is Q = {0, 1} and the initial configuration is C0 = 0 = {· · · , 0, 0, 0, · · ·}.

Here is a simple example of taken from [Wol83]. The initial configuration is a simple seed:

C0 = {c0 = 1, cn = 0 for (n 6= 0)}. The neighborhood is only the direct neighbors of each cell:

τ(cn) = {cn−1, cn+1}. The transition function is f(τ(cn)) = q(cn−1) + q(cn+1) (mod 2).

Such a simple function leads to an interesting evolution. If we look at the Ct vs. t graph,

assuming that time increases down the axis and we represent graphically a black dot for 1s and

a white dot for 0s, we get the picture seen in Figure 3.1.

An extensive examination of general cellular automata can be found in [Wol86a].

Two-Dimensional CA

Two-dimensional cellular automata are more complex structures than their one-dimensional

predecessors. First, the bi-infinite lattice is extended to a two-dimensional rectangular grid of

cells. As in the first case, we assumed some form of connectedness between cells and that each

cell is discrete. For the sake of simplicity, let’s assume that this grid is bounded (equivalently:

there exists no straight paths of infinite length) with finite dimension. We’ll see in Section 4.1.1

that there exists more than just a single way of defining connected, unbounded grids.
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Source: [Wol83]

Figure 3.1: Evolution (Ct vs. t) for a simple CA example.

Source: http://www.bitstorm.org/gameoflife/

Figure 3.2: The effects of one iteration in Game of Life.

Secondly, the neighborhood function becomes two-dimensional in the sense that a cell can

have neighbors in more than just 2 directions (left, right AND up, down). We’ll also see later

that even the notion of a neighborhood can be awkward to define using the rectangular grid.

Finally, the states are often more generally simple scalar values instead of bits (0 or 1).

The first popular use of two-dimensional CAs were described in the Jon Conway’s Game of

Life [Gar70]. An example transition in the game is found in Figure 3.2.

A list of analyses, results, and facts about two-dimensional CAs can be found in [WP85].
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3.1.2 Fuzzy Control

Fuzzy control is a method which uses fuzzy set theory and fuzzy logic to regulate the behavior

of systems. The fuzzy control mechanism consists of three general concepts: fuzzification, fuzzy

rule evaluation, and defuzzification. We will describe how these concepts work together after

we describe some of the basics.

Fuzzy Sets

A fuzzy set is a generalized extension of a classic crisp set. A fuzzy set intentionally quantifies

vague linguistic terms such as “HOT” and “TALL”. A fuzzy set is defined entirely by its

characteristic function, µ(x) : D → [0, 1], where D is some arbitrary domain outlined by the

task at hand. We follow with an example.

In the classic set theory, the membership operator(∈) is a boolean function that takes as

arguments an element and a set and whose value represents whether the element is contained

in the set. That is, crisp sets are sets where the membership is a discrete binary property. For

example, 3 ∈ S = {1, 2, 3, 4} is clearly true whereas 5 ∈ S is clearly false. However, the truth

value of the linguistic interpretation of “x is TALL” depends on how “TALL” is defined which

in turn depends on who is interpreting the claim. That is, the expression “x is TALL” is vague

unless we quantify “TALL”. One way to do that is describe “TALL” as the fuzzy set:

µTALL(x) =



















0 if x < 65;
x−65
19

if 65 ≤ x < 84;

1 if x ≥ 84.

This is a set with full and partial(fractional) membership, the meaning of which depends

on the concept of fuzzy logic. The membership function is graphically illustrated in Figure 3.3.

Fuzzy Logic

Fuzzy Logic is based upon fuzzy set theory. In Fuzzy logic, a logical term has a fuzzy truth value

which is a value in the interval [0, 1]. A value of 1 represents “absolutely true” while a value of

0 represents “absolutely false”. Values in between are interpreted with confidence proportional

to how far the value is from the absolute values: 0.2 could mean “hardly true” (“very false”),

where 0.85 could mean “very true” (“hardly false”).

The value of a membership function µS(x) represents the truth value of “x is in S”. In other

words, it represents x’s degree of membership in S. From the previous example, a person whose
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8465

1

0

0
x

Figure 3.3: The graph of the membership function, µTALL(x), vs x for the fuzzy set “x is TALL”.

height is 71 inches would have a 6
19

= 0.316 degree of tallness, whereas a person whose height

is 78 inches would have a degree of 0.684 degree of tallness.

Conjunction and disjunction of fuzzy logical terms have been defined in several ways. The

most common definition is that the truth value of “x is X and y is Y” is min(µX(x), µY (y),

with a similar function for disjunction using max. The value of an inverse of a logical term, ie.

“x is not in X”, is given by 1− µX(x).

We now have the components we need to construct a fuzzy rule base. A rule base is an

intuitive way to describe the behavior of a system. A rule base consists of a collection of rules.

Rules are linguistic terms of the form ”if A then B”. The antecedent, A, is a general logical term

while the consequent, B, is a simple logical term which is usually in the form of a command.

A 3-step Guide for Fuzzy Control

We assume that we have a control system where we are given several options that change the

state of the system in different way, we would like to control the system by making decisions such

that the state of the system approaches some appropriate target state or long-term behavior.

Before we present a common usage via the 3 main steps, we must first define the problem

at hand. Take for a simple example a task faced by many students every morning on their

way to school. Their options are to go directly to school, stop for coffee first, and/or grab

breakfast first. We assume for simplicity of our example that the coffee shops used in thesis

example analogies do not sell breakfasts and the coffee sold by the breakfast restaurant contains

a substance which the student is violently allergic to. The option taken depends on the time

the student arrives at school, how hungry and tired he/she is.

Step 1: Fuzzification. We define the following fuzzy membership functions. In all cases,

if the value is lower than 0 it is rounded to 0 or if the value is higher than 1 it is rounded to 1.
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1. µTIRED(x) =
12−xslept

12
, where xslept is the number of hours of sleep the student got the

night before.

2. µHUNGRY (x) = xate

24
, where xate is the number of hours it has been since the student’s last

meal.

3. µLATE(x) = xarrival

30
, where xarrival is the number of minutes the student arrives after the

class has started.

4. A = {EAT, COFFEE, CLASS} is the set of linguistic command variables, each describ-

ing an actions to be taken by the student.

We also define command sets such as EAT, COFFEE, CLASS. Elements of these sets are

actions; memberships are the degree to which these actions are desired.

Step 2: Query the Rule-base. We define the rule base. Here, y ∈ A is a rule’s suggested

consequential action:

1. IF ((x is HUNGRY) AND (x is not LATE)) then (y is EAT)

2. IF ((x is TIRED) AND (x is not LATE)) then (y is COFFEE)

3. IF (x is LATE) then (y is CLASS)

So if the student only had 5 hours of sleep and ate supper at 19:00 the night before, class is

at 8:00 and we arrive at school at 8:12, then µTIRED = 0.58, µHUNGRY = 0.54, and µLATE = 0.4.

The values of the consequences are the sum of all antecedents that yield the given consequence.

In this case, eating would score min(0.54, 0.6) = 0.54 (ie. the student is more hungry than

early), getting coffee would score min(0.58, 0.6) = 0.58, and going directly to class would score

0.4.

Step 3: Defuzzification. In the example above, it is clear which option is more desirable:

you simply choose the maximum membership over each action set to determine which action to

take. In particular, the student would choose to get a coffee before going to class because his

attentiveness is more important. However, while this method of defuzzification is the simplest

and most obvious in this case choosing is not always so straight-forward.

Here, we assumed that the actions are completely independent: the student either eats,

gets coffee, or goes to class but can’t pick more than one action. By construction, there is

no overlap in the fuzzy sets defined by the actions. In general, however, the consequence

of these rules define new fuzzy sets whose membership functions may overlap in their graph
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(a) (b)

Source: http://www.doc.ic.ac.uk/ nd/surprise 96/journal/vol2/sbaa/article2.html

Figure 3.4: (a) The region produced by center-of-gravity defuzzification in a fuzzy controller with an

action set containing 3 overlapping fuzzy actions, and (b) The center of gravity, and the chosen (red)

action.

representations. In these cases it is less clear as to which action to choose, so we must resort

to a more distinguishable method for defuzzifying the collection of fuzzy values into one crisp

decision.

One common method used is the center-of-gravity calculation. A bounded region is con-

structed by taking the union of all regions under the membership functions for which the top

is of the region is bound by the membership value of the linguistic variables, the bottom is

bounded by the x-axis, the sides by the boundaries of the membership values of the fuzzy sets.

The center of gravity of this region is found. The chosen action is the highest membership

value of all fuzzy membership functions at the center of gravity. An example of such a region

is displayed in Figure 3.4.

As a consequence, fuzzy controllers permit the flexibility of making decisions even in cases

when the action to choose is ambiguous due to nature of the system. It is often harder to choose

between an ambiguous action set than it is to describe a linguistic variable by an defining an

arbitrary membership function. Thus, essentially, fuzzy controllers use math to calculate the

best action to choose given the descriptions of the linguistic variables. The model can then later

be re-used; it just needs the linguistic variables’ membership functions and rules describing how

to act.

A thorough source for learning about fuzzy sets, fuzzy logic, and fuzzy control is [Wan96].
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Figure 3.5: The virtual terrain.

3.2 Basics of the Adaptation Model

Our model is based on a finite continuous 2-dimensional space, the virtual terrain, R. The

virtual terrain is partitioned into a discrete mapping or grid, G. In the examples below we

use the familiar situation of a subset of R ⊂ <2 and a square grid G, though we believe that

the techniques we use apply equally well to any metric space [BBI01]. This is partially shown

by applying the same adaptation techniques used in a rectangular grid to a hexagonal grid in

Section 4.1.1.

We define the metric space (G, gd), and a surjective mapping f : G → R. For convenience

and clarity, we will call the points in our metric space grid sections or cells, and the metric space

itself the grid, without loss of generality. G is a discrete grid approximation of its continuous

counterpart R with the association that any grid section in R is representative of a continuous,

bounded region in R (via f). For simplicity we as well assume that f describes a complete

partition of R; that is,
⋃

g∈G f(g) = R and
⋂

g∈G f(g) = ∅. The easiest way to think of this grid

is as an overlay covering the continuous Cartesian plane with grid lines defined by the set of

lines that cross the axes at integer coordinates. The idea is illustrated in Figure 3.5.

An important requirement for locality that is supplied by the metric space is the notion of

a neighborhood. In “nice” metric spaces such as hexagonal grids, the neighborhood of a point

is defined as all points which are of distance 1 away. However, sometimes, the neighborhood

is not so intuitively defined [Tou]. Such is the case in our rectangular grid approximation,

where there are 2 commonly used definitions of neighborhood: the 4-neighborhood and the

8-neighborhood [DHS00]. The 4-neighborhood of a grid section consists of the sections found
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directly north, south, east, and west of the section whereas the 8-neighborhood also includes

the diagonal points on the surrounding box: sections immediately to the northeast, northwest,

southeast, southwest. In general however, any neighborhood function can be used. The notion

of a cell neighborhood allows us to describe the locality of a grid section on the grid. Local

sections are sections which are close by; where closeness is objectified further by the the value

of the distance function between the two cells.

The grid contains abstractly-defined properties. Properties are similar to local variables:

they are given the ability to hold values and change with respect to computation time. Each

grid section has a different instance of the property variable so that the value of a property on

a grid section is completely independent of the value of the same property on a different grid

section. To contrast, the procedure which changes the values is defined on neighborhood cells,

making them locally-dependent. The idea is to use this generic model and then describe your

properties depending on the context of the system in which the model is used. For instance,

imagine that we have a mountainous virtual environment. We define the altitude property to be

the value of the height of the surface with respect to the lowest point in the environment. Then,

the altitude property would have a high value in high-mountain region but low value in the flat

regions. Altitude is only one example property; in general, a virtual environment is made up

of several different properties. We will denote the value of a given property gij[property name],

where i and j are coordinates in some two-dimensional discrete partition described by f . The

collection of grid sections and values of all properties on all grid sections is defined as the current

state. The list of these properties and the semantics tied to them form a major component of

a virtual system. These systems can be seen as instances, applications, or implementations of

the generic model. We will discuss the construction of such systems in much greater detail in

Chapter 4.

Coupled with the notion of state is a procedural process which describes how the state

changes with respect to time. Since the systems we are typically interested in modeling are

self-reproducing [vNB66], we do not describe these state changes as independent of each other

and solely dependent on time itself. Instead as is done in the CA formalism, we discretize

time into a series of timesteps T = (t0, t1, t2, ...) called the timeline and describe the state of

the system as a function of the previous state. In other words, the state of the system at ti is

entirely and only dependent on the state of the system at ti−1. Here,we assume that the virtual

environment begins its life at t0 and that the timeline is evenly divided among timesteps so

that the actual time spent between ti and ti+1 is constant for all i. In doing so, the timeline

T simply becomes an approximation of the continuous concept of time. The accuracy of the

approximation depends on the actual time taken to get from ti to ti+1. We will denote the
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(a) (b)

Figure 3.6: The effects of one iteration of blurring on a letter image, A letter is displayed closeup (a)

before and (b) after the blurring of the image.

value of a property p on grid section gij at time t as gt
ij[p].

The process is formulated as an an iterative update algorithm. This algorithm is just a list

of functions that modify the state of the grid. The system begins in some initial state and this

algorithm just applies these functions independently and simultaneously based on the current

state of the system to give the next state of the system. Note that given this description of the

model at any given time, ti, the state of any future configuration, tj, is obtained by applying

the iterative algorithm (j − i) times. As a result, the evolution of the system without any

external influence is completely deterministic. The following pseudo-code summarizes the core

of the process:

∀i ∈ N = {0, 1, ...}, ∀g ∈ G, gti+1[p]← fp(τ(gti[p])) (3.1)

where gp is the value of property p on grid section g, fp is the transition function for property

p, and τ(g) describes the neighborhood of g.

A simple example of an application of local property updates is blurring or spatial low-

pass/box filtering in the field of image processing [Bax94]. Each pixel px,y (corresponds to a

grid section) in an image has a scalar intensity property, I(px,y), and a neighborhood of nearby

pixels τ(px,y). To create a blurred image, a new intensity for each point is defined:

p′x,y =
I(px,y) +

∑

p∈τ(px,y) I(p)

|τ(px,y)|+ 1

and a simultaneous update rule is applied: ∀x, y : px,y ← p′x,y. A good demonstration of the

locality of the effects of the blurring algorithm can be found in Figure 3.6. The larger-scale

effects of blurring an image are shown in Figure 3.7.

We extend this model to include a means for tweaking the state of the system externally.

That is to say that the system can evolve in and of itself by the continual application of
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(a) (b)

Source: http://www.geocities.com/danjnm_2000/dragons.htm

Figure 3.7: The effects of one iteration of blurring on a dragon image. A dragon is displayed (a)

before and (b) after the blurring of the image.

iterative updates as in the classical CA case, but we introduce an event-based interface for

external entities to interact with the system at any given time. We do this to mainly for the

purpose of allowing player agents to provide input into the evolutionary growth of the virtual

environment, but these external entities need not only be player agents. The external agents

can also be autonomous artificially intelligent, simulated expert systems, or simply completely

random. The major point here is that we have a system that evolves on its own but can be

perturbed by outside influences or events.

As before, events are abstractly defined. Semantics for events only exist when the events

are formally described in a meaningful context. Events have an event type. An event is exactly

what its name implies: it is something than can occur in the system. Instances of events are

called occurrences. An occurrence is a 2-tuple (e, t) where e is the event type and t is the

timestep. The occurrence set, O = {o1, o2, ...} precisely describes the external causality of the

virtual environment; the method for which O is formed is an abstract layer only functionally

defined by the model. This layer acts as the interaction interface between the system and

the model: the system is described by the implementor so that the rules that govern external

interaction can be domain-specific. External entities interacting within the virtual environment

have control over the production of occurrences in the system. Transitively, they have limited

control over the evolution of the state of the virtual environment.

The adaptation process aims to modify the values of the properties over time based on the

impact of events that occur in the system. This is done by defining a functional specification

for the changes that get applied in the iterative algorithm. By using this specification, the

iterative state-update process is uniform over all functions. Since the process is defined until

the end of time, the adaptation process will continually adapt to any and all external influence

it is subject to, leaving a completely automatic self-adapting system.
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Figure 3.8: The causal block diagram representing the general adaptation process.

As a result of the abstractions, the model splits itself into an adaptation engine module which

is completely generic and the adaptation system sub-modules which are not at all generic. These

sub-modules plug into the adaptation engine and use it to modify the state of the adaptation

system. The implementor of the system modules is completely free to build a customized virtual

environment which adheres to the adaptation model, and use the adaptation engine to perform

the adaptive tasks required by the system.

The general idea is summarized by a causal block diagram [PdLV02] in Figure 3.8.

3.2.1 Generic Adaptation Procedures

Experimental evidence has shown that there are some generic adaptation concepts which are

common to most systems and thus can be more generically formulated. Such algorithms further

generalize the model and hence increase the overall usefulness of the framework. Most concepts

listed below are simply intuitive constructions obtained by reflecting upon the adaptation pro-

cess.

Simultaneous Cell-Update Masks

As stated in the previous section, the value of the properties on each cell change in time

as a function of the values on neighboring cells at the previous time step. It is natural for

programmers to implement the effects of the updates to cell values (at a given time in the
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Figure 3.9: A region affected by modifications after 1 timestep of blurring using (a) sequential iterative

updates and (b) simultaneous update rules

timeline) as a sequential iteration over all grid cells. This causes a bias problem, because for a

given cell-update, the value of its neighbors could already have been modified due to the order

of the iteration. The effect of the bias in an example of blurring is demonstrated in Figure 3.9a.

The modifications made to the cells assume no intermediate representations between time

steps: their values change simultaneously. The new value is strictly a function of current values.

There can also be any number of properties on a grid cell. To implement this, we propose using

cell-update masks, or simply masks.

Masks are temporary grids that hold only the modifications to be applied to the grid for

each grid cell. The adaptation algorithms calculate the modifications, store the modifications

temporarily in the corresponding section in the grid. When all the calculations are done for

the iteration, the mask is then applied to the grid: all modifications in each grid section in the

mask are applied to the corresponding grid section in the real grid. Then, the mask is cleared

for the next time step, and the process repeats at each time step.

Vector Averaging and Angular Propagation

As in blurring, grid properties in cellular automata are commonly scalar properties. SimCity

is an example of classic game that relies on cellular automata techniques [Sta96], associating

scalar quantities with grid cells. In SimCity each grid cell may have scalar properties such as

pollution levels, crime rates, land value, and so on. There is, however, no reason to restrict grid

properties to scalar values.

We define a discrete vector field as VG : G → <2, so that for each grid section g ∈ G,

there exists an associated vector. The vector at cell (3, 2) will be denoted ~g3,2. Note that a

2-dimensional vector can be thought of as a magnitude and angle; when we are interested in

just one component of the vector we can reduce it to the scalar case; e.g., a simple angle value

22



3.2. Basics of the Adaptation Model

Figure 3.10: Affect of an update on one grid section (assuming γ = 1), showing a) before the change

b) before the update on the middle grid section c) after the change and update

θ3,2.

Vector averaging is a technique analogous to image blurring, except on vector components

rather than scalar components. We initially ignore the vector’s magnitude and assume it does

not change. Each ~gi,j is then modified to have a new angle computed as a weighted average of

its own state and neighboring angles. Suppose we have an average angle θg for a grid section g

and its neighborhood. We define a shift from (~g′, ~g) for each neighbor g′ as the difference θg−θg′ .

In the special case where g′ = ḡ′, the shift represents the discrepancy between an angle and

its relative neighborhood average. For simplicity, we assume that all angles have the smallest

possible magnitude and sign respect the unit circle convention. That is, −π ≤ θ ≤ +π,

θg = 0 points “east”, θg = −π point is “west”, θg = +π
2

points “north”, and θg = −π
2

points “south”. Note that we assume this for all angles, so that shift from (î,−ĵ) = −π
2
, not

3π
2

. If the result of any mathematical calculations gives an angle outside these bounds, the

angles are immediately cyclized (repetitive addition or subtraction of 2π) until they are within

these bounds. An immediate consequence of this construction is that given any two vectors,

shift from(~v1, ~v2) = cyclize(θ2 − θ1).

As in blurring, the values approach their current relative neighborhood average. The total

angular change for g is then some proportion of shift from g, for some constant γ, δg = γ ·

shift from(~g). The update rule then becomes: ∀g ∈ G : θg ← θg + δg, applied simultaneously

(using masks) over all grid sections.

To demonstrate the effects of vector averaging, consider a single grid section surrounded by

its 8-neighborhood [Tou], all of its vectors pointing eastward (θ = 0) with arbitrary magnitude,

as seen in Figure 3.10. Now, if we shift each surrounding vector by 90◦, the average will shift

by ∆θ = (8/9)∗90◦ = 80◦, so the update will shift the middle vector’s angle by δ = γ∆θ. Since

the middle vector has shifted, upon the next application of the update (the next iteration) it

will in turn cause a difference in average of all points for which it is a neighbor. This will cause

those grid sections’ vectors to update, and so on. As a result, a change in angle propagates

through the grid via its neighboring cells, but loses influence each iteration.
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The long-term effects of a sudden change in angles over time is called angular propagation.

The effects of the changes are transferred to the surrounding areas over time until the influence

of the change is negligible. By adjusting weight parameters such as γ local turbulence can be

damped according to the needs of the system being modeled. A high value for γ may signify a

region particularly sensitive to change, whereas a lower value indicates a resistance to change.

Angular propagation can be caused by occurrences of events. The propagation shown in this

section was an example of a specific type of propagation applied to changes in angles of vectors.

However, the propagation concept itself is more general. If after 3000 iterations of blurring a

sudden block of black pixels were added, the event would cause an impact that would propagate

the dark colors to spread around evenly over the image. The system is thus adapting to the

occurrence by propagating effects of event occurrences to its surroundings.

Flow-based Fuzzy Property Update Rules

Non-constant scalar properties on grid sections can be modified differently than simple aver-

aging. When blurring, values are modified and set directly to the value of a given calculation

involving local and neighboring values (the average). A flow instead describes the transfer of

information between neighboring grid sections. When using flows, properties values are treated

as quantities that are displaced from one grid cell to a neighboring grid cell. The flow function

for a given property or set of properties describes precisely how information is transferred from

one grid cell to the next.

Vectors on each grid section describe a strength and direction of flow. The flow function

computes how much of a property is transferred from a grid cell to the cells in its neighborhood

as a result of the value of the vector property. Therefore, a flow function takes a vector as a

parameter and returns a set of displacement maps of the form (g, g ′ : g[p]← g[p]−k ·g[p], g′[p]←

g′[p]+k ·g[p]) where g′ is a neighbor of g, k ·g[p] is the amount of the property p to be displaced

from g to g′, and 0 ≤ k ≤ 1. The adaptation process applies the flow changes described by the

displacement maps for each grid section at each iteration of the computation.

We use a fuzzy approach similar to fuzzy control to compute flow displacements for a more

natural flow dispersal. The flow function can be formulated as a fuzzy controller. Formally,

the flow function consists of n fuzzy components: z1, z2, · · · , zn. Here, zj is an arbitrary fuzzy

membership function zx(~g) ∈ [0, 1] which represents the raw influence of that component over

a given property. The influences of the components are analogous to the values of the actions

obtained by querying a fuzzy rule-base. The displacements returned by the flow functions are

analogous to the actions chosen by a fuzzy controller. Fuzzy control is still used to query a

rule-base and the outcomes measure the influence of the displacement actions. The rule-base
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is created by the designer of the example application system.

In this case we allow simultaneous actions to be chosen and performed. The result of

this difference is that several displacement maps are created, each with different values of the

proportion parameter, k. To obtain k, the membership values are normalized so that they

represent the local influence in comparison to other influences:

fx(~gi,j, pi,j) =
zx(~gi,j, pi,j)

∑n
y=1 zy(~gi,j, pi,j)

To make this more clear, consider a scenario where the components are associated with the

four major cardinal directions: zN , zE, zS, zW . The amount transfered in each direction is

proportional to the corresponding flow influence value fdir. At each iteration, ∆pW = kp ∗

fW (~gi,j, pi,j) ∗ pi,j is the amount of pi,j that is displaced westwards, where the proportion pa-

rameter 0 < kp <= 1 is the rate of transfer. The simultaneous update rules for this component

would then be: R1 : pi−1,j ← pi−1,j +∆pW and R2 : pi, ← pi,j−∆pW . Components for other di-

rections are treated similarly. Note that it is also possible to define hybrid components, formed

by the conjunction or disjunction of the fuzzy properties; e.g., zNW = zN AND zW . Then the

displacement of moisture would be listed as a rule set in a fuzzy controller system as is done

in [McC00].

The actual behavior of the flow depends on the membership functions used; if a system

demands a smooth flow, then naturally the membership functions should reflect that. The

role of the fuzzy membership functions are to shape the flow. If, for instance we use a “crisp”

function, one with a sharply-defined peak such as:

zN =







1 if π/2− ε <= θ <= π/2 + ε;

0 otherwise.
(3.2)

for small ε, then the westward flow will move somewhat discretely. A smoother function like:

zN =
4

π

√

(
π

4
)2 − (x−

π

2
)2 (3.3)

will lead to a smoother spreading.

Several advantages are gained by formulating the flow function as a fuzzy controller. First,

it allows the designers of an application system to describe linguistic variables for flow com-

ponents. Linguistic variables quantify vagueness by construction and as such can be easier to

model when the exact information is not available. Secondly, the examples above use vectors

for flow components, but this is not generally necessary. Flow components can also be scalar

or other values, as long as a membership function can be defined from the arbitrary domain to

a value in [0, 1]. This fact allows designers to define complex arbitrary components that can
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still be made meaningful by way of a particular membership function. Thirdly, the rule base

is a widely familiar construct and often easy to use as well as easy to modify. Rule bases give

the application designer a natural modeling environment along with the flexibility of describing

flows based on logical statements that can involve many factors. Lastly, fuzzy controllers can

themselves be internally adaptive [Wan96], allowing the flow functions to change based on given

criteria.

In this chapter, the core concepts of the generic adaptation model were introduced. The

abstract model is simply a grid that is separated into grid cells paired with an adaptation

process that modifies the values of grid cell properties automatically over time. The properties

are global but can have different local values on individual grid sections. Adaptation is a

process that changes the local properties values automatically over time. Local adaptation

is adaptation which uses the values of neighboring cells to influence the modification of grid

cell property values. External entities are allowed to interact with the adaptive system by

causing occurrences of specified events. The adaptation process reacts to these occurrences by

applying abstract adaptation procedures at each iteration. Examples of external entities could

be players, or artificially intelligent bots.

The adaptation procedures are defined by the specific application of the model. The pro-

cedures defined by the applications are algorithmic modifications of the generic properties.

Semantics for abstractly defined properties and adaptation procedures are given by the de-

scription of the application system. The application systems are therefore thin instances of

the generic model. Examples of such application systems will described and analyzed in the

following chapter.
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Chapter 4

Applications of the Model

In this chapter, we show specific applications of the generic abstract model. The aim of these

applications is to emulate real-world systems. For this reason, we also call these applications

example systems. Since these systems are built in the adaptation model presented in Chapter 3,

they are inherently locally-adaptive. The applications in fact define semantics of a context by

giving meanings to property values and providing specific procedures that describe the evolution

of the data values over time. Additionally, each application specifically describes the events

that can occur in the system and the entities that can cause them. In the end, an example

system describes an adaptive virtual environment (AVE) which game players can explore.

In designing example virtual environments for systems to apply the adaptation model to, we

noticed that systems we had created can be classified into 2 top-level categories: environment-

based applications, and agent-based applications. Both types of applications adapt based on a

set of criteria; the difference is how the criteria is obtained. Environment-based applications

are adaptation systems that adapt depending entirely on values in the environment itself.

Agent-based applications adapt depending on the observations of agent behavior data as well

as environmental factors. Agents here take on their usual definition: they are simply entities

that interact with the system (or with each other) in some way.

Each section describes one or more applications of the model. Initially, the system is de-

scribed in general; and the criteria for adaptation in these systems are discussed. Then, the

system is formalized conceptually by breaking it down into its major algorithmic components.

Adaptation algorithms operate on meaningful data which are mapped to property values in

the model. The components are then fit into adaptation procedures, each of which calculates

the changes to values due to local adaptation. The adaptation process applies these changes

at each iteration of the overall process. We also suggest events that may occur in each sys-

tem along with their effects on the system and analyze the behaviors of the systems using the
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implementation described in Chapter 6.

4.1 Environment-based Applications

Environment-based applications are adaptive systems that change over time based on the values

of the surrounding environmental properties. Examples of environmental properties will be

given in the specific system being described.

Typically in modern games, the only role played by the environment is to provide a virtual

setting for the players to play in. The setting has a certain effect on the immersion and the

experience felt by the players, but is usually purely aesthetic rather than responsive. The only

interaction players have with the environment is with other players or other agents (monsters,

etc.). The players can discover the world in time, but they can never really change it, not even

indirectly. The environment can change due to game progression, but just in a predefined way.

Environment-based adaptation is an automatic means for the environment to adapt to itself;

for example, a tree growing around a physical barrier (power lines) instead of through it, the

water level of the sea rising as a consequence of lunar positioning, natural selection. These are

all examples of environment-based adaptation.

These examples all contain objects, entities, or things the players should be able to interact

with. By expanding the interactive capabilities of the entities and the environment, players

could affect the state of the system more meaningfully than by simply gaining more levels and

more equipment. In certain cases, allowing the players to interact with the environment, even in

very simple ways, should in turn lead to some adaptive behavior, ie. a long-term reaction from

the environment. For example, in a medieval fantasy setting, a powerful player sorcerer could

cast a spell to remove the natural production of water in a given region. An environment-based

application would react to this: after some time the ecosystem would die or deteriorate unless

it found another source of water.

4.1.1 An Adaptive Weather System

In computer games, weather simulation is commonly implemented to contribute to a pseudo-

realistic world. It is common because it is easy to implement as a randomized system and adds

realism. A physical world without any weather would soon become unbelievable. The overall

end result is that the players’ game experience is improved, most players are satisfied with a

random weather simulation system because to them it appears like a possible real system. When

one cannot make the computerized system behave exactly like a real-world system, making parts
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of the world at least appear real is a general goal in computer games.

The goals of this research are similar. In particular, we focus more on improving the

appearance of the system rather than making it more realistic. That is, we search for an

adaptation process that emulates real-world adaptation.

Weather simulation is typically considered a computationally intensive application, largely

reserved for supercomputers. In the virtual worlds of computer games, however, physical accu-

racy is less critical, and much simpler approaches suffice to produce aesthetic, in-game climate

effects. Note that by proposing to add adaptation to a non-adaptive simulation system we are

proposing to make it more like the real system it is modeling. As such, we are also indirectly

and inevitably making the system more realistic. However, this is not our intention; it is a

coincidental consequence.

Weather System Description

In its simplest form, a weather cycle displaces moisture: water from lakes and seas is carried by

wind to cooler locations, where the reduced water capacity of cooler air causes condensation;

rain water eventually runs downhill to refill lakes and oceans [Ent04]. There are several factors

that can affect this process, including altitude and terrain structure, wind, temperature, and

so on. Each of these can be quantified as a value-based property in our system. The value of

the property indicates the significance of the factor in the AVE.

We have modeled our weather system upon the following basic precepts:

1. Wind gathers moisture from bodies of water, and loses water at higher altitudes.

2. Water flows downstream.

3. Altitude affects wind patterns.

These basic precepts will be transformed into adaptation procedures (update rules) following

the process outlined in Section 3.2. We must however first properly define the data in the

adaptive weather system.

There are 2 basic scalar data values suggested by the basic precepts listed above: moisture

and altitude. Moisture represents the density of water in the air. Swamps, bodies of water,

humid regions have high moisture, whereas dry places like deserts have low moisture. Altitude

is the height of the ground relative to sea level. High regions like hills or mountains have high

altitude whereas lower regions like valleys and oceans have low values. The geographic location

usually influences a region’s climate because each physical location has a different configuration

of their surrounding environmental properties.
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Figure 4.1: Example gradient vector representation. Grid cells show local terrain altitudes.

The scalar values were limited to being between two chosen extremes: glow = −5000 and

ghigh = 5000. It can never be the case that a value is higher than the high extreme or lower

than the low extreme. In this system, the physical correspondence is that there are saturation

thresholds for moisture and dryness. A good example is that an ocean or sea cannot get any

more moist: they are at ghigh.

There is 1 basic vector value: the wind. The magnitude of the vector describes the strength

of the wind and its direction describes the direction of the wind. There is one more vector

property which is an induced property called the gradient vector. The gradient vector on a

grid section points to the direction of descent, and its magnitude represents the steepness of

the grade. Due to gravity, moisture flows downstream in the direction of the gradient and is

described as a a fuzzy flow controller (see Section 3.2.1).

The gradient is a vector sum composed of vector components whose magnitudes are differ-

ences in altitude values of surrounding cells. The magnitudes of the vectors are determined

by subtracting the terrain altitude from the altitude of a neighboring cell, with corners of the

8-neighborhood having a weight factor or
√

2
2

. The direction of each vector in the sum is given

by the position of the neighbor relative to the center. Figure 4.1 shows an example gradient

induced from the altitude values of its surroundings. If we assume unit vectors for each of the

cardinal directions and therefore the identities N̂ = −Ŝ and Ŵ = −Ê, then the calculation

looks like:

~vgrad = (50− 10)N̂ + ((50− 60)sin(
π

2
)N̂ + (50− 60)cos(

π

2
)Ê)

+(50− 75)Ê + ((50− 90)sin(
π

2
)Ŝ + (50− 90)cos(

π

2
)Ê)

+(50− 85)Ŝ + ((50− 40)sin(
π

2
)Ŝ + (50− 40)cos(

π

2
)Ŵ )

+(50− 30)Ŵ + ((50− 20)sin(
π

2
)N̂ + (50− 20)cos(

π

2
)Ŵ )

= 54.142N̂ − 60.35534Ê − 56.2132Ŝ + 48.28427Ŵ
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Figure 4.2: Example of degenerate cases where (a) ~vgrad = 0 and (b) ~vwind avg = 0.

= 108.64Ŵ + 110.35N̂

giving a vector with angle tan−1(110.35/108.64) = 45.45◦ north of west.

The inverse gradient points in the direction of ascent, and is used to determine how wind

direction is altered by the current terrain. If a gust of wind is pointing into a wall, it will

instead blow around it. For wind to move around higher-altitude obstacles it must therefore

be pushed away from the direction of the inverse gradient or, equivalently in 2D, towards the

direction of the gradient.

Another induced property is the current local average wind value. The average wind value

is a vector whose magnitude is equal to the sum of all wind magnitudes in the 9-region divided

by 9; the average direction is precisely the direction obtained by the sum of all the vectors.

Comparing the current wind value with the current average gives a summary of how the current

wind value on a cell differs from its immediate surroundings.

Note that degenerate data representations are possible, as shown in Figure 4.2. For instance,

it is possible that the gradient has a 0 magnitude even though not all of the neighbor values are

equal to the current cell value. As well, the current average could have no direction at all when

all the vectors sum to a vector whose component magnitudes are all 0, or worse: numerical error

could lead to an arbitrary angle. These are of course due to the fact that what is described

here are approximations. In practice, we should be aware of these limitations and deal with

them accordingly.

Weather Adaptation Procedures

There are 3 major adaptation procedures in the weather system: moisturewind, gradDev, and

rain. The procedures are functional algorithms that perform the actions needed for adaptation

such as checking the values of some criteria and modifying values as a consequence. In this

subsection, we will thoroughly explain the steps in each procedure.
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TARGETvGRADv

vWIND_AVG

Figure 4.3: An example of obtaining ~vtarget given ~vgrad, ~vwind avg , and α = 0.8

The gradDev procedure represents the bending of the wind vectors over time due to the

values of altitude. The procedure uses the vector averaging and angular propagation concept

explained in Section 3.2.1. The current wind vector is shifted towards some target vector,

denoted ~vtarget. The shift is scaled by some damping parameter, 0 < γ < 1, which roughly

corresponds to the speed of the shift since one shift is applied per iteration of the adaptation

process. For example, when γ = 0.1 it would theoretically take 10 shifts before ~vwind = ~vtarget,

as opposed to 100 shifts if γ = 0.01, assuming of course no perturbation from other factors such

as angular propagation. Note that the damping parameter γ is similar to the weight parameter

used in Reinforcement Learning [SB98] update rules. The damping parameter is chosen by the

modeler depending on the specific needs of the system.

As previously mentioned, the most influential contributing factor to the wind shifting is the

gradient vector. We also incorporate an inertial factor, to give a smoother flow pattern; we

designate ~vtarget as some composition of the gradient vector and current average wind vector.

The composition is such that θtarget = θwind avg + α · shift from(~vwind avg, ~vgrad). An illustration

of obtaining ~vtarget is found in Figure 4.3. Again, α is a damping parameter which affects

the smoothness of the transitions versus the angular propagation due to influence from the

surroundings. This parameter further increases the flexibility available to the users of the

application.

Moisture is displaced in two ways: by the rain procedure and by the moisturewind pro-

cedure. Both procedures use fuzzy flow-update rules to transfer scalar values between neigh-

bors. Similarly to the gradDev procedure, each flow-update rule has a damping parameter

(kmoisturewind and krain) associated with them which scales the actual modification allowing the

modeler to easily modify the influence of the moisture-altering procedures.

In the moisturewind procedure, four independent components that comprise the wind are

represented by the cardinal directions: ~vN , ~vE, ~vS, ~vW . The value of each component is calculated
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Figure 4.4: An example weather system configuration after several hundred iterations showing wind

and altitude values. Bright red areas are high (land/mountains), black areas are low (seas), and the

arrows show the direction of wind movement.

by a fuzzy membership function. Any fuzzy membership function can be used, providing yet

more flexibility to the user of the application. In most of our simulations, a semi-circular fuzzy

membership was used (see Equation 3.3). The values are then normalized, and represent a

proportion of the amount of moisture displaced to surrounding grid sections, again as per the

method in Section 3.2.1.

The rain procedure represents the downpour of water from higher regions. It uses the same

vector component breakdown and same idea as the moisturewind procedure except that the

gradient is used instead of the current wind value. The rationale here is that the gradient points

towards downwards slope, the corresponding physical meaning being that some of the moisture

is carried down the slopes by gravity instead of purely carried by the wind.

A screenshot of the wind and altitude in weather system simulation is given in Figure 4.4.

The image shows an eastern ridge (brighter red) of Pakistan next to a flatland (black) region.

The system was given an initial configuration of ∀g, g[~vwind] = 50̂i (all wind vectors point

eastwards). Figure 4.5 shows another 2 screenshots of the south-western part of the Pakistan

map shows the moisture levels at 2 different times in the evolution of the moisture spread.
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(a) (b)

Figure 4.5: An example weather system configuration after (a) 100 iterations and (b) 300 iterations

showing moisture values and wind vectors. Bright green areas signify high moisture regions whereas

darker region correspond to dry regions.

Terrain Generation

Automatic terrain generation is often desired for computer games. Since terrain influences

weather and represents a crucial part of any real-world natural environment, it seems to fit

intuitively into a weather system.

Two methods were investigated for terrain (altitude) generation. The first method includes

3 steps: a coarse random distribution, a smoothing pass, and rescaling. The first step was a

simple iteration over every grid section that assigned some uniformly random value between

glow and ghigh to the altitude property on that grid section. The resulting altitude maps are

too coarse to be realistic, so they are blurred a number of times to smooth the surface. The

smoothing also removes many of the sharper parts of the altitude map. To accommodate,

the minimum and maximum values over the entire grid are found, and then then for each grid

section the value of altitude is scaled proportionally to [glow, ghigh]. As a result, there contains at

least one value (the maximum value) that is equal to ghigh and at least one value (the minimum

value) that is equal to glow. The advantage of this first method is that it is easy to implement,

simple to understand, and rather efficient. However, the disadvantage is that it provides a less

realistic result which may be extremal in local variation.

The second method used real-world physical location data obtained by the DIVA-GIS project
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[RHG03]. The DIVA-GIS information archive contained sufficiently accurate altitude maps of

many locations across the world. The problem for this particular application was that the

maps were actually too detailed to be easily represented during prototyping. Therefore, a re-

sampling process was run to downscale the data: the points were organized into 2x2 square

regions containing 4 points each, the values of the 4 altitude points are averaged and then

considered 1 point in the new map. In the case of odd-number points on one of the axes,

the last row or column of sections becomes 3x2, 2x3 or 3x3. This special case creates a loss-

of-information bias towards the outer points, but since the loss is minimal the bias is not a

critical issue. Since the boundary of these maps is arbitrary, we could have also simply omit

the outermost points altogether. We chose to include them as to encourage the least amount

of information loss. The re-sampling is repeated until the map is sufficiently small enough to

represent on a screen. Some larger samples were also kept for performance measurements to be

taken (see Section 6.3).

Boundary Conditions

Carefully-designed boundary conditions are important for many systems to behave properly.

One common mistake in system design is to simply omit dealing with boundary cases. Such

errors often eventually lead to erratic observed behavior.

Two different boundary schemes for grids were examined. The first scheme was strictly-

bounded: the grid simply “ends” at the boundary points. In this scheme, the assumption is

made that there is nothing beyond the last grid section on a grid. The east-most grid sections

have no eastern neighbors. Similarly for all extreme sections and directions possible in grid

layout. Consequently, the extreme points had fewer neighbors which causes some bias in the

calculations containing local property values. The effects of this bias on the random method of

terrain generation can be seen in in Figure 4.7: as a result of generating a random terrain, the

outer ridges have lower altitude than the rest of the grid.

The other boundary scheme is to have no boundaries at all. The east neighbor of the

eastern-most point on the grid is the western-most point in the same row. Similarly for west-

ern neighbors of western extremities, and for the north/south axis as well. This boundary

scheme corresponds to the torus mathematical topology. This scheme also removes the bias

on the edges. By default unless otherwise mentioned, this boundary condition was used in all

simulations.
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Figure 4.6: An example tornado.

Weather Events

Incorporating interesting weather events is also possible and likely desirable. Events can be

anything that affects the properties in the system such as earthquakes, tornadoes, tsunamis,

storms, etc..

We have modeled “tornadoes” as local, non-linear dynamical systems with the stable fixed

points at their centers. A 2-dimensional dynamical system [Str01] represents the wind flow

within a specified sub-grid such that the center point is fixed point in a stable spiral. Within

this sub-grid, the wind vectors are no longer influenced at all by outward sources; they are

only part of the tornado. The outer vectors are treated normally. As a result, the effect of the

tornado’s turbulence is spread with decreasing influence out to the surrounding grid sections

via angular propagation.

The tornado moves by slightly displacing the sub-grid (along with it, the fixed point) at

each iteration and reassigning the values in the sub-grid dynamical system around it. The

movement of the tornado is defined by some arbitrary function of timesteps and could be

randomly generated in the same way that path models are generated for mobile agents (see

Section 6.2). Figure 4.6 shows a screenshot of a tornado on a flat terrain. We will measure the

efficiency of the implementation of tornadoes in Section 6.3.
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Figure 4.7: An example hexagonal grid in the weather system.

Hexagonal Grid Representation

As stated in Section 3.2, since the adaptation process is based entirely on neighbors in some

metric space the theory extends to metric spaces other than a rectangular grid. A hexagonal

grid is a “nice” metric space because notion of neighborhood is particularly intuitive. Two cells

are neighbors in a hexagonal grid if they share an edge, or equivalently, if the distance between

them is 1. A neighborhood of a cell in the hexagonal grid is its 6 immediate neighbors.

The adaptation process here remains unchanged. The neighboring cells are equally distant

from a given cell, so the gradient calculation becomes even simpler because there are no special

case “corner-neighbors”. Six fuzzy actions instead of 4 need to be defined for the flow controllers

in the moisture spread procedures, but otherwise flow updates remain the same.

A capture of the hexagonal grid weather system is displayed in Figure 4.7.

Analysis of Weather System Behavior

All the major components of the weather system have now been described. The question still

remains: how does this system behave? The answer to this question is presented in detail here.

An important concern is the performance of the adaptive system; it must of course be at

least efficient enough to be usable. We will defer performance analysis until we describe the
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implementation in more detail, in Chapter 6. Another important concern is how well it achieves

its purpose: does it act in a stable, aesthetically appealing manner or does it produce completely

random and/or meaningless weather effects.

Moisture dispersal seems to happen as smoothly as expected. Areas of pure saturation

develop in the flatter regions, bits of moisture are carried around the edges of these areas and

in particularly windy areas. Playing with the values of the damping constants for the effect of

wind vs. rain produces the expected resulting behavior, which is reassuring.

As mentioned in the description of the gradDev procedure, there are several factors that

affect the wind’s change. A concern, then, is whether the combination of these influences

leads to the wind changing forever or does it instead approach convergence to a fixed state. If

the wind vector moves towards the gradient every iteration, it is certainly going to converge

eventually. However, the average wind vector might not necessarily remain the same and, in

particular, might move away from the gradient. In cases where the average wind moves away

from the gradient, ~vtarget also moves away from the gradient. As a result, the direction of wind

change will depend on which side of ~vtarget the wind vector is on, which depends on α.

If α = 1, then ~vtarget = ~vgrad so no matter how deviant the wind average is, the wind vector

will always approach ~vgrad and so is certain to converge. In contrast, if α = 0, the wind will

always approach the average. In our chosen starting state, this immediately converges as well

since the average wind vector for every grid cell is 50
9
î. What about convergence conditions

when 0 < α < 1 ? A closed-form expression for convergence conditions would be useful to have.

Assuming we ignore magnitude, in general the wind vector, ~vij,wind, on a given grid section

gij will undergo the following update at each iteration:

θij,wind ← θij,wind + γ · shift from(~vij,wind, ~vij,target)

= θij,wind + γ · cyclize(θij,target − θij,wind)

= θij,wind + γ · cyclize(θij,wind avg + α · cyclize(θij,grad − θij,wind avg)− θij,wind)

At first, the update rule looks like it takes the form of a one-dimensional iterated map [Str01]

Iterated maps are discrete-time dynamical systems in which a value xi+1 = f(xi) where i is an

iteration number. Research has been done on these systems; well-known techniques exist for

analyzing them. Unfortunately for us, not only do we actually have a set of these equations,

the function f is dependent on many of the set’s previous iteration values not just its own

previous value. If it were only for the former, then we could simply treat the wind-bending as a

collection of independent iterated maps and solve a general equation which would apply to all

of maps. The set of iterated values is {∀i, j|θij,wind} and θij,wind avg is actually a function of the
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Figure 4.8: ∆mask as a function of the timestep in a simulation run on the Pakistan terrain map.

neighborhood property values τ(gij[wind]). Therefore we have a (height · width)-dimensional

iterated map with equations of the form θij,wind = f(θi−1,j−1,wind, ..., θi+1,j+1,wind). This is a

complex system and hence it is difficult to solve analytically. It is also the case that components

of an adaptation system may be arbitrarily complex, and so proving convergence in general will

be difficult. Direct, practical techniques are more convincing.

We choose a quantitative approach to measure the convergence and effects of the damp-

ing parameters on the system’s behavior. In doing so, we define the overall change in wind-

deviations from one timestep to the next as the sum of a change in angles over all grid section.

Formally, this sum is:

∆mask =
∑

i,j

|θt
ij,wind − θt−1

ij,wind|

At a fixed point, the wind vectors don’t change at all so this sum will continually be equal to

0. Note that ∆mask is expressed in radians.

An experiment was conducted to measure the values of ∆mask over time, assuming default

values of α = 0.2 and γ = 0.1. The maps of Pakistan, North Korea, and a randomly generated

terrain were used, each of which had both heights and widths of at least 50 grid cells. Every

experiment converged to ∆mask < 1 in less than 3000 iterations and convergence graphs look

similar. Figure 4.8 shows the precise values as a function of timestep using the Pakistan map.

The experiment included dynamically adding altitude values at certain times, which will be

explained below.

In general, the function is not non-decreasing: there are iterations where the ∆mask actually

increases. Increases are usually small (< 1) but not always negligible which implies that it

is not necessarily only caused by numerical error. However, on all 3 tests, the ∆mask did

indeed converge to essentially 0 (≈ 10−13) after 7000-8000 iterations and remained at this value
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endlessly. In fact, the converged value never reached exactly 0 due to some minimum amount

of numerical error.

As mentioned above, patches of altitude were added to the map dynamically during its

evolution. The reason for this functionality is to see how the system reacts to sudden changes

once it has stabilized. A small patch of approximately 10-15 altitudes of ghigh were added at

t ≈ 1500 and a larger patch (20-30 altitudes of ghigh) at t ≈ 3000. Both patches of altitude

were added to completely flat areas. The system reacted to these “sudden growths” by slowly

bending the wind vectors around them, and returned to a stable/fixed state within at most

100-150 timesteps, as show in Figure 4.8.

The tests above assume specific values of α and γ. We have shown convergence and stable

behavior in a particular case. Above, it was implied that convergence is somewhat dependent

on the values of these damping parameters. Looking back at the equation for the update of

θij,wind we see that γ is just a proportion of the shift towards ~vtarget. So as long as γ > 0 then

convergence only depends on α. Therefore, simulations were run on the Pakistan map with

γ = 1 and α = {0.0, 0.05, 0.1, 0.15, ..., 0.95, 1.0}. The results of the simulations are displayed

in Figure 4.9. Note that not all values are present. Each simulation was stopped at 10000

iterations if it had not yet converged. Many had not converged.

The simulation runs for varying alpha values lead to a discovery of cyclic behavior in certain

cases. The corresponding representation in the convergence graph is a long stretch of non-

continuous periodic values. In every case, the cycles started at some point before the 10000th

timestep and continued well beyond that point. As well, the cycles only formed when ∆mask < 5,

meaning the system had almost converged but entered a cycle instead of continuing. Re-running

the tests using a graphical interface showed that in all cases, a cycle corresponded to 2-6

neighboring wind vectors alternately “flipping” from one orientation to the another and then

back, while the rest of the map remained fixed. Detecting these cycles is non-trivial but not

difficult, however it does add an extra consideration to remember when using the application.

Values between 0.1 and 0.6 do not converge, while α > 0.7 seem to take longer to converge.

This isn’t necessarily a critical issue since the cycles only occur at low levels of ∆mask. One

could simply stop adapting once a threshold point of ∆mask ≤ 1 is reached. The specific cause

of this strange behavior remains unknown.

The last interesting addition to the system was control points. It is possible that one may

want some of the wind vectors to be entirely immune to change; for instance, as a way of

ensuring boundary conditions. This was enabled both statically and dynamically, and was

tested on several maps. The results were as expected: the control points allow the modeler to

force certain shapes of flow by using control points.
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Figure 4.9: Maximum timestep until convergence as a function of α after many simulation runs on

the Pakistan terrain map.

4.2 Agent-based Applications

Agent-based applications differ fundamentally from environment-based applications in that

agents contribute directly to the adaptation process. In environment-based adaptation, an ap-

plication designer could define agents in the AVE to interact with its surroundings and somehow

allow them to modify an environmental value. However, the adaptation process still only adapts

to the actual changes in the environment. In agent-based adaptation, properties of the actual

agents themselves are used to influence the adaptation process. That is, the adaptation process

observes the agents and their actions in addition to the rest of the environment. The focus of

the process is on the behavior of the agents, but uses environmental properties as well. Note

that this model presumes only localized information propagation but global effects could be

easily incorporated.

As briefly mentioned earlier, agents are simply entities that can interact with the environ-

ment or other agents. This definition is generic enough to allow agents of all kinds, and indeed

the flexibility is desired. Player agents are agents that are controlled by players of the game.

Player agents are usually called characters. Non-player agents come in many forms: monsters

(“mobs”), player companions (“pets”), non-player characters (”NPCs”) which can be guards,
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merchants, mercenaries, enemies, peasants, etc.. Agents need not be restricted to living crea-

tures but commonly are in MMOGs. In typical (static) virtual environments, the agents are

the only dynamic aspects of the environment. Here, both the environment and the agents are

dynamic and capable of influencing each other.

4.2.1 An Adaptive Reputation System

A player character’s in-game reputation is often an important component of the game environ-

ment, particularly for persistent-state games in which the same character is re-used for long

periods of time. Player actions that harm or help non-player agents agents should result in

a logically consistent reaction to the player, giving a greater sense of reality to the game en-

vironment. This is necessarily a dynamic property: player reputations need to be constantly

updated, and should also ameliorate over time and distance.

In order to allow reputation to more realistically disperse, a word-of-mouth model is em-

ployed to flow the impact of events caused by the agents. A game character’s reputation is

built by the spread of hearsay amongst the populace; reputation flow vectors modeling the

communication patterns of the general populace in each grid section are used to describe the

direction in which word of a positive or negative action will spread.

For our example system we developed a virtual communication terrain which, as in the

weather example, is represented as a discrete vector field. The difference is that the vectors on

this vector field do not change with respect to a static value such as the gradient. These vectors

are influenced solely by the agents’ velocity vectors currently occupying the corresponding grid

cell and some of its surroundings as well. The same wind model used in the weather system

then traces out the flow of reputation information.

In our case we simulated route popularity by tracking movements of semi-randomized agents

moving between cities following smooth curved paths, choosing destinations probabilistically

based on distance and city size to discover trade routes. The basic movement model for sim-

ulations is described below. In Chapter 5, movement models for agents are examined in much

greater detail.

Reputation events are abstractly defined even in this application: they are events that all

agents can cause that can potentially modify their reputation. They are only slightly analogous

to the weather system events because in these cases, the players are free to generate occurrences

as well as computer-controlled entities. Rescuing the princess, killing a commoner, stealing from

tavern, etc.. These are all examples of reputation events.

Positive and negative reputation points (RPs) are created on a grid section when a reputation
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event occurs at that location. The amount of RPs is proportional to the severity of the event.

These points are displaced via the flow, and also dissipate at a slow rate. For each point that

dissipates on a grid section, the reputation of the player is altered at that location. This process

repeats until all the reputation points have dissipated, causing a local alteration in the player

character’s reputation. RP is one of the scalar grid properties.

The player character’s reputation value is another example of a scalar grid property. Whereas

the reputation points dissipate over time, they slowly modify the reputation value. Positive

reputation points will modify the reputation value to a higher value, representing an increase

in good reputation. Negative reputation points lower the reputation values.

Reputation Adaptation Procedures

The adaptation process in the weather system includes one cycle that iterates over all the grid

sections performing update calculations. In contrast, the adaptation process for the reputation

system is split into 2 parts: the agent update cycle, and the grid update cycle. The grid update

cycle is analogous to the weather system’s update cycle in that it performs calculations as an

iteration over all the grid sections. The agent cycle performs the agent-based update calculations

and their movement/interactivity simulation. Therefore, the reputation adaptation procedures

are split into two categories based on which update cycle they are contained in.

There are 3 main adaptation procedures: repEvent and agentBend, which are part of the

agents cycle and repwind, which is part of the grid cycle. The repEvent procedure generates

reputation events probabilistically depending on a few parameters. In the simulations, it is

assumed that agents provoke reputation events and so the reputation events only occur at the

current location of an agent. For each agent, that agent generates an event with a probability

of Pevent. If an event is generated by an agent, it is a good event with probability Pgood or

negative otherwise. A generated event has a severity proportional to its reputation points,

which is uniformly randomly generated between glow = −5000 and ghigh = +5000. When an

event is generated by an agent, the reputation points are deposited on the grid section the agent

is currently occupying.

The agentBend procedure modifies the values of the reputation flow vectors given the orien-

tation of the agents. In essence, an “aura” of vector influence is created by each of the agents.

The aura for a single agent is a small sub-grid surrounding the agent (centered on the agent) of

vectors. Each of the vectors have the same direction of the agent’s velocity and have magnitude

linearly inversely proportional to the Manhattan distance (in grid sections) away from the cen-

ter grid section, to a maximum of 3 grid sections away from the center. The idea is illustrated

in Figure 4.10. The resulting reputation flow vector for a grid section is the vector sum of all
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Figure 4.10: The aura of reputation flow vector influence created by one agent

the vectors induced by all the agents’ auras on that grid section. The reputation flow vectors

for all grid sections describe the flow of communication via agents throughout the grid.

The repEvent procedure spreads the reputation points using fuzzy flow-updates exactly

like moisture was spread by the wind in the weather system. The vectors in this case are

the reputation flow vectors. Here, however, reputation points are temporary. This procedure

also converts a number of reputation points to reputation value. Since this procedure is exe-

cuted repetitively, the reputation points will either be carried by the reputation flow vectors to

neighboring cells or converted to reputation values. When converted to reputation values, the

converted values are added to the reputation value on the current grid section.

The reputation value on a grid section corresponds to the value of a given player character’s

reputation at that location. Initially, the reputation is equal to gmid =
glow+ghigh

2
= 0, neutral.

The reputation value added (or subtracted, in the case of negative reputation points) to the grid

section converted from reputation points pertains to the player who caused the event. In our

simulations, there is only one player and the events are generated at random locations decided

by the paths of agents. The system is extended to groups of players in a following subsection.

A Movement Model for Mobile Agents

Despite the vastness of virtual environments in recent MMOGs, within them there seems to

exist a finite set of interest points placed by the game designers for the players to discover

and interact with. Examples of such interest points in existing games are: cities, settlements,
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borders, spawn points, cavern entrances, trade/merchant stations, meeting points, etc.. Non-

player agents often have reasons to visit these interest points as well as player agents. Over

time, these interest points become basins of player activity in the VE. It is clear that throughout

the course of game-playing, players do two things:

1. travel to and from interest points

2. remain at interest points for some period of time (presumably doing something interesting)

Our simple movement model is composed of 4 major components: the graph which dictates

which interest points are connected to (reachable by) which interest points, which interest point

is chosen to be the next agent’s destination, the shape of the path taken by the agent to reach

its destination, and how long the agent remains at the interest points. The simple version that

we present in this Chapter is completely random based on a few common sense assumptions.

More complex models for agent movement are investigated in Chapter 5.

Each interest point has a coordinate position in the continuous space which the grid is

approximating. The graph connecting some of the vertices is then a proximity graph [Tou91]:

the length of the edges correspond directly to distances between vertices (interest points).

Agents can only travel to an interest point sdest from ssource if the edge (ssource, sdest) is in the

edge set of the graph.

Interest points have a scalar significance, or size. The higher the value of the significance, the

more interesting this point is to visit. It is assumed as well that agents generally prefer shorter

distances than long ones, more so than how interesting a place is to visit. Therefore, when an

agent chooses a new destination, each neighbor of the current interest point is assigned a weight

value wneighbor = size/distance2. The neighbor is then chosen at random with a probability

proportional to its weight.

Agent paths are assumed to be slightly non-linear. A path model is derived from a contin-

uous function f(t) defined over t ∈ [0, 1] with the constraint that f(0) = f(1) = 0. The values

of this function at 0 ≤ t ≤ 1 are considered points on a 2D plane with Cartesian coordinates

(t, f(t)) and are then transformed to the path’s coordinates by using basic affine transforma-

tion methods [FvDFH95]. The transformation defines a parametric curve on the continuous

space with f(0) representing the starting interest point and f(1) representing the end-point.

The transformation is represented by Figure 6.3. Basic non-linear functions were used such as

sinusoids, quadratics, cubics, quadrics, conics, and compositions of these as well. To generate

a path, a random model was chosen along with random parameters (eg. amplitude) and the

agent followed the path outlined by the curve f([0, 1]).
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Finally, the time between interest points was not explicitly modeled. At each iteration of

the adaptation process, with a probability Pagent newdest a random agent was chosen among

the agents to choose a new destination. Once the agent reaches the destination, it “hovers”

around the destination choosing random straight paths and turning to remain within a given

radius of the interest point. When not following a path, the agents use a typical velocity-based

Newtonian physical model for movement. Shifts in direction and velocity are probabilistically

determined.

Faction versus Reputation

Faction is a system similar to reputation that is currently used in a number of modern persistent-

state games, notably EverQuest. Faction is a system that measures relationships between

individuals and/or groups and is at times misunderstood to be the equivalent of reputation

[Bro03]. The terminology used is as follows: “an individual’s faction with another group is

high” means that the other group has a good relationship with the individual. Factions are often

symmetrical, but the system allows uni-directional like/dislike relationships in general. The key

point here is that faction systems measure the status of relationships between individuals and

groups. Faction is used in games to decide on actions or general moods of NPC groups per

individual.

A player character’s reputation is really how well-respected he is in general amongst others;

it is about how others perceive him, not about how well they get along. Reputation is a more

general concept. Ideally every player has a place in the world. The player character’s reputation

is a way to quantify that notion: a high value means a good reputation, a low value means a bad

reputation. In this application, the value of reputation is not only quantified, it is localized and

presented as part of an automatic adaptation process in a dynamic environment. In general, a

player character’s reputation is a function of that player’s actions while playing the character.

Adding locality to an existing faction system has been investigated in a commercial setting,

as mentioned by the author of [Bro03]. The implementation details were difficult to deal with.

On the other hand, the system presented here has locality pre-built into the adaptation model.

The reputation system is just simply an instance; locality is provided implicitly as a natural

consequence of using the generic adaptation model described in Chapter 3.

Reputation Groups

The reputation simulator as described above manipulates the value of a single player character’s

reputation. The reputation value kept on the grid is the value of the single player character’s
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reputation at that location. In general, if there are N player characters in the game and each

had a reputation, this would require that each grid section have 2N integer variables (1 for

reputation points of reputation events caused by a player character, 1 for reputation value of

a player character). Typically, these games host hundreds of thousands of players [Com04].

Modeling reputation in EverQuest would require 430000 · 2 · 4 bytes= 3.36 MB per grid section!

This is clearly impractical.

The proposed technique to fix the practicality issues of the implementation would be to

conglomerate individual character’s reputations into groups. Player characters by default would

not be part of any group. Therefore, individual characters would only gain reputations when

associated with a group. The reputation of the group on the whole is what is represented in

the grid. Whenever a player character in the group causes a reputation event, the reputation

value for the whole group would be altered. Therefore, the reputation would be shared with

the group that player characters are associated with.

There are 2 ways to conquer the problem of a malicious player joining the group and

immediately ruining the group’s reputation. A membership value could be associated with each

member. The impact of the reputation events would be weighed by these membership values.

The reputation reflected upon the individual player character from the group could also be a

function of the membership value. In addition, membership values allow any player’s character

to be part of multiple reputation groups. In this case, the player character’s reputation could

be the average of both groups, or some other function of both groups’ reputation values, such

as a weighted (by membership) average of the reputation values.

The second method involves a screening process for joining groups. Essentially, this would

force some kind of initial requirements on the part of the player character before he/she could

join the reputation group. This method could be used in conjunction with membership values.

Players could decide which group to join and there could be a review process involved with

joining the group. The process could be automatic or based on the decisions of the more

important members of the group.

Analysis of the Reputation System’s Behavior

As expected, in general the reputation system was more dynamic in comparison to the weather

system. The agents movement was a very interesting part of the observations. In particular,

the spreading of reputation points across the grid was quite enjoyable to observe during the

simulations. A screenshot of the agents movement and the reputation point spread is seen in

Figure 4.11.

In the reputation simulations, the values of the parameters for probabilities were Pagent newdest =
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(a) (b)

Figure 4.11: The grid of agents (white triangles), positive (blue) reputation points, grey communica-

tion terrain, and orange interest points. The snapshot in (b) is was taken only a few iterations after

(a) to show the spread of the reputation points caused by a moving agent.

0.01, Pevent = 0.001 and Pgood = 0.7. Agents, on average, choose a new destination every 100 it-

erations. Events were generated on average every few seconds. The terrain was either “cloudy”

with spreading of reputation points via agents, or “spotty” for some time if the agents did not

frequent the area containing reputation points.

In practice, the dissipation rate of reputation points converting to reputation value seems

to work quite well at the value of 1 per grid section per iteration. The impact of an event has

the potential to spread out quite evenly if agents pass by to carry the reputation points but

otherwise the resulting reputation value is too local to be noticed.

The reputation value fields end up being smooth, with brighter peaks near the more signifi-

cant interest points. The reputation field is show in shown in Figure 4.12. Since the probability

of a good event is greater than a bad event, we expect the picture to be lighter than darker.

By construction of the movement model for these agents, most of the activity will be centered

around the larger interest points. The smoothness around the “blotches” of of reputation value

are due to agents moving out of or into the corresponding interesting regions.

The highly dynamic and non-deterministic nature of the reputation application makes it

somewhat difficult to analyze the behavior of the system. The application would need to be

tested in a real gaming environment. In the next chapter, We will partially apply the reputation

in a real game environment and see how the reputation fields look when applied to different
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Figure 4.12: The grid of reputation values. Bright values mean good reputation, darker values mean

bad reputation.

movement models for agent.

The weather system and reputation system applications are example systems that use the

model and fit into the adaptation process. The adaptation procedures used by each application,

as well as other related concepts are introduced. The behavior of the systems was described by

using data observations from the the simulation runs. As well, the major difference between

agent-based and purely environment-based applications is shown.

The systems presented here are 2 adaptive virtual environments that game designers could

have built to use in their games; both adhere to the generic adaptation model presented in

the previous chapter. This chapter demonstrated the design of these two systems by first

describing the application, relating the system to its real-world counterpart, and then breaking

down the system’s components into data a procedures that act on that data. By using the

generic adaptation model, locality is implicitly provided by construction.

Finally, the existence of a simulator that implements the 2 systems shows that such systems

are actually realizable. This proves that such systems could be functionally included in a

persistent-state game setting. We will investigate the implementation of the simulator and

discuss performance details in Chapter 6.
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Chapter 5

Movement Models for Mobile Agents

In a previous chapter (specifically, Section 4.2.1), we proposed an artificial model for agent

simulation between interest points for the purpose of generating input data. The model was

based on several assumptions and designed to be simple, but not necessarily realistic. As a re-

sult, the generated data may not be actually suitable to use because it may not be representative

of true player movement in MMOGs.

The purpose of this chapter is to describe a methods for building good, intuitive movement

models for agent simulation. We do so by analyzing real player movement data collected by

means of a game-playing experiment. We discuss the important elements of the construction of

an agent simulation model, describe the analyses performed on the collected data, discuss the

results of the analyzes, and conclude with some general remarks.

Note that this particular chapter should be considered a case study on movement models in

general. We will examine the effects of applying the results of this study back to the reputation

system simulations in Section 5.5. But, the overall goals in this chapter are focused more on

analyzing movement in a particular class of games (namely, persistent-state MMOGs) which

possibly exclude adaptation concepts altogether. That is, we are searching here for a good

movement model for agent movement in persistent-state MMOGs within all kinds of virtual

environments, not only adaptive virtual environments.

As in Section 4.2.1, we assume that player agents in virtual worlds travel to and from interest

points. There are three obvious questions one could ask about this travel:

1. How do players choose which interest points to travel to?

2. When do players decide to choose a new destination?

3. How do the players get to the target interest point?
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We are interested in finding answers to all such questions, but here we focus primarily on

the first and second. Answering the third question involves finding a function that generally

describes the path taken by agents in 2D space and justifying its correctness.

This chapter will first describe the game used in the game-playing experiment. Second,

the data gathering techniques that are applied are described. Then 4 movement models are

constructed based on reasoning about the data. The models are compared and validated, partly

by showing the effects when the models are used in agent-based adaptation simulations.

5.1 Conquero

Due to a lack of information data available from commercial persistent-state MMOGs, the

immaturity of free/open MMOG implementations, and the logistic complexity of implementing

data-collecting functionality in existing MMOG projects, we were unable to perform a large-

scale experiment. Here, we describe an experiment using a specially-made game to provide an

approximation to the real data.

The goals of the game-playing experiment are as follows:

1. Design a simple game that is complex enough to encourage interesting movement. A

simple game is easy for players to learn and is easier to implement. We take a high-level

approach to analyzing movement in MMOGs, therefore including many game details adds

unnecessary overhead to both the implementation and the experiment.

2. Player movement must be clearly related to points of interest. This is our basic assumption

about how players move in MMOGs, therefore it must be present in the game as well if

the collected data is to reflect real MMOG data.

3. Players must pause at interest points for some time. Again, this is to enforce our assump-

tions about player behavior in MMOGs. Often, the interest point will be a city, in which

case the player will spend some time navigating through it to find a particular person or

shop. In other cases, there will be other things to investigate, monsters to fight, people to

meet, or things to do. All these things require staying in close proximity of the interest

point for some time.

4. Incorporate collaboration and conflict. If people were completely alone in a persistent-

state environment they would likely move differently than in an environment full of other

players. For instance, players usually form groups and go visit interest points together.

Conflict is required for 2 reasons. If there is no conflict, players will soon get bored since
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Figure 5.1: Screenshot of Conquero

they would have no challenging objectives. Conflict in MMOGs also influence players’

movements. If a character dies from a fight or there is a rush to get a certain item, players

will move from place to place differently than if this conflict was resolved.

5. Ensure enjoyable gameplay. The game must be somewhat fun to play so that players play

the game seriously and somewhat competitively. If the players do not enjoy playing, they

will not play the game “correctly” (as would a real MMOG player), and hence would add

a bias to the collected data from the experiment.

To reach these goals, we implemented Conquero: a game of team capture.

Conquero is a multi-player network game consisting of players who each get to control one

agent in a continuous, rectangular 2D virtual terrain with no obstacles. The agents are free

to move in this terrain and movement is simulated using a basic Newtonian physical model

similar to the one described in [Rey94]. The virtual terrain contains a number of randomly

distributed command centers (interest points) which form the nodes of a graph. The edges of

the graph are obtained by applying a relative neighborhood graph [Tou80] algorithm on the set

of points in the planar terrain. The players are grouped by a pre-assigned team and allowed to

communicate throughout the game.

52



5.2. Game-playing Experiment

The goal of the game is to conquer all the command centers. To capture a command center,

an agent must move near and remain near a command center for a fixed interval of time (a few

seconds) as long as no other agent is also near the same command center. When a command

center is captured, it becomes owned by the team of the agent which captured it. A team

can conquer a command center on 2 conditions: (a) if the team currently does not control any

command centers, a member can attempt to capture any one in the graph, otherwise (b) a

team member can attempt to capture any command center which is directly connected to a

command center already owned by that team.

Each agent also has a level value which determines how strong it is. An agent gains levels

when any member of its team gains control of a command center. The agents lose levels

whenever their team loses control of command centers. Each command center has a size; the

levels gained and lost are proportional to the size of the command centers.

Agents are also allowed to engage in close-range combat. The agent’s current level deter-

mines how much damage it can endure before dying, how much damage potential it can incur

to opponents, its resistance to damage, its weapon range, and its stamina. A swing is an action

performed by the user which draws a line of a given length from the center of the agent’s avatar

straight forward: if the line intersects an opponent, then a damage potential dice-roll is com-

pared against the target opponent’s “armor resistance” dice-roll to determine the damage from

a hit. When an agent receives damage, its current live total (“hit points”) decreases. Once the

life total reaches 0 or below, the agent dies. Death causes a loss of 1 level and the agent to

respawn in a totally random location on the terrain.

One might ask why we let the players continue playing after death. The point here is to

make the game experience a continual never-ending struggle since the intent is to approximate

real behavior of persistent-state MMOGs. As such, we set the consequences of character death

in Conquero be similar to the case in real, persistent-state MMOGs.

5.2 Game-playing Experiment

The experiment consisted of 20 player subjects which were organized into the 5 teams of 4

players each. Teams were assembled by groups of friends so as to encourage collaboration and

communication between team members, mirroring the way people play real MMOGs.

Two games were played: a trial game, and a real game. The trial game was meant to

introduce the game to the players so they can get familiar with the movement, controls, captures,

combat, sounds, and general gameplay. The trial game lasted 22 minutes and the real game

lasted 68 minutes. Player movement updates were sent several times per second by the game
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Event Type Instances

Update 658303

Capture 820

Hurt 553

Kill 258

Event Type Instances

Update 2004607

Capture 1347

Hurt 2196

Kill 1143

(a) (b)

Table 5.1: Collected information for (a) trial game and (b) real game

clients and constituted by far the majority of the logged information. The event type statistics

for each game are summarized by the tables 5.1a and 5.1b.

A simple calculation shows that the average number of movement updates logged by the

server per second was approximately 500 in both cases: in the trial game 658303/(22 · 60) =

498.71 and the real game 2004607/(68·60) = 491.33. Clients were set to send updates 100 times

per second. The experiments consisted of 20 clients, which means many ((2000− 500)/2000 =

75%) packets were being dropped by the network, most likely due to overload. Luckily, after

using the simulator to replay the game based on the data collected, even at full speed the

game seemed to run in slow motion. This implies that the positions of the players were being

updated much more required. Evidently, 100 updates per second per client led to an overflow

of information sent out over the network. This makes sense because even with such a high

packet loss, the game applied movement updates quite smoothly during the experiment. This

was confirmed by everyone who took part in the experiment.

The virtual terrain had a width of 1200 pixels and height of 1000 pixels. Information about

each command center and the graph is contained in Table 5.2. A screenshot of the graph is

found in Figure 5.2.

5.3 Building a Movement Model

The main goal is to search for a probabilistic model whose parameter values are inspired by

collected statistics on observed data. Let us consider the answer to our first question: how do

players choose which interest points to travel to? We first have to find a way to formalize the

problem at hand. In this section, we formally define the model we seek to build. Note that

from this point on, we ignore the trial game because the data is biased by player. We deal only

with the real data set.

We define the movement model as a 5-tuple (A, S, T,PT ,PP ) where A is the set of agents, S

54



5.3. Building a Movement Model

Command Center x y Size Degree Neighbor Set

1 1023 393 10 3 { 2, 3, 23 }

2 1024 286 17 1 { 1 }

3 1112 380 13 3 { 1, 4, 5 }

4 1140 357 19 1 { 3 }

5 1148 777 11 2 { 3, 24 }

6 19 75 10 1 { 15 }

7 222 517 12 2 { 11, 15 }

8 232 130 22 3 { 10, 12, 15 }

9 254 890 11 1 { 17 }

10 332 56 25 2 { 8, 12}

11 341 512 10 3 { 7, 13, 17 }

12 346 81 13 3 { 8, 10, 16 }

13 358 399 11 3 { 11, 14, 18 }

14 426 333 25 3 { 6, 7, 8 }

15 43 234 11 3 { 11, 14, 18 }

16 450 278 19 2 { 12, 14 }

17 466 741 18 3 { 9, 11, 19 }

18 489 465 10 4 { 13, 14, 19, 20 }

19 618 557 11 3 { 17, 18, 22 }

20 629 354 10 3 { 18, 21, 23 }

21 658 127 11 1 { 20 }

22 839 859 12 2 { 19, 24 }

23 886 362 10 2 { 1, 20 }

24 886 870 14 2 { 5, 22 }

Table 5.2: Info about the Graph and Command Centers in the Conquero experiment
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Figure 5.2: Screenshot of the Graph used in the Conquero Experiment

is the set of interest points, T is a discrete timeline, PT and PP are families of independent and

identically-distributed probability distributions. PT,a(t, si|sj) ∈ PT is the probability that agent

a at time t will begin traveling to interest point si given that it is now near sj. PP,a(t, si|sj) ∈ PP

generates a path taken by agent a from si to sj. Here, near means within a small fixed distance

away from the point. We are interested in finding general closed form expressions for PP and

PT .

Before any research effort was spent on analyzing the movements of player agents, simula-

tions for the reputation system were based on a much simpler movement model, described in

Section 4.2.1. First of all, the graph was always a clique so that every point was a neighbor, and

agents chose a neighbor probabilistically where each neighbor had a probability proportional

to the value of size/distance2. We label this movement model MMrandom. For the remainder of

this chapter, we propose improvements on this basic model.

Initially, we make the assumption that every agent’s movement is independent of the other

agents’ movements. The reason to assume this is for simplicity: we would like to see how

agents move in general, not necessarily requiring other agents to be present. We also assume

that the next interest point traveled to is dependent only on the location of the current interest

point, and not on the locations of previously visited interest points. Again, this assumption
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might not necessarily be appropriate in this context: we are essentially assuming that players

are ahistorical. Our hope is that these assumptions are not too strong that they compromise

the value of the movement models built from this analysis. We expect the significance of any

correlation to be small enough to ignore. Ideally, however, correlation caused by movements of

other agents and previously visited destinations would be integrated into the model.

We consider a player’s entire movement as sequences of visits to and from interest points:

Movement(aname) = (s1, s2, ..., snname
), where nname is the number of interest points visited by

agent aname. Specifically, given the above assumptions, we define a discrete data instance as

simply a link in the chain: dname,i = (si, si+1). The list of all data instances forms the data set

which use as input to a classification system.

5.3.1 Classification and Statistical Learning

Classification problems have the following form: there exists a collection of data instances,

which is a known/sampled subset of a much larger set of real data Dreal, of the form xi =

[xi,1, xi,2, ..., xi,n] and a set of classes Y = {y|y is a simple (non-set) element}. Each instance is

accompanied by a class so that the data set can be seen as an augmented matrix:

Dsampled =

















x1,1 x1,2 ... x1,n y1

x2,1 x2,2 ... x2,n y2

... ... ... ... ...

xm,1 xm,2 ... xm,n ym

















Assuming that there is a classifier f that will satisfy f(x) = y for every possible instance

x ∈ Dreal, the goal is to use Dsampled to search for a good generic approximator (hypothesis), h,

to f .

The elements of the input vectors x are typically called features and the value of a given

feature j of instance i is xi,j. These features describe independent qualities of a system. For

example, weather features such as temperature, humidity, outlook (sunny, rainy, or overcast),

whether or not it is windy, could describe conditions that affect the outcome of a certain

decision. And, under a given set of weather conditions, it may or may not be desirable to play

golf. This is a concern for golfers and the decision problem is a typical example used when

introducing supervised learning techniques [Mit97]. The decision to be made is whether or

not to play golf on a given day. In this case, Y = {play, don′tplay}. Since |Y | = 2, the golf

example is a special case called a binary classification problem. Data was collected by observing

the weather conditions and the outcome of the golf-player’s decision every day for two weeks.
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Then, machine learning techniques were applied to build a hypothesis for determining whether

to play golf on a given day based on the weather conditions.

We build a program that analyses the data and uses classification to find a good approx-

imator for the true function PP based on collected data. In particular, we would like to find

a good feature or set of features that classifies the target interest point in a link, si+1, given

the source si. We propose intuitive heuristic functions for selecting the destination given the

feature values of the state at the source. We are also interested in general statistics such as the

proportion of destinations that are neighbors of the source and the proportions of classifications

correctly identified by our heuristics.

We define our 3 heuristics as follows:

• h1(sfrom, sto) = size(sto)
dist(sfrom,sto)

• h2(sfrom, sto) = size(sto)2

dist(sfrom,sto)

• h4(sfrom, sto) = size(sto)
dist(sfrom,sto)2

where dist(s1, s2) is the Euclidean distance between interest points s1 and s2. The decision

algorithm for a given heuristic simply calculates the heuristic value over all possible destination

points given the source point and chooses the one with the maximum.

We define the neighborhood feature as N(sfrom, sto) = 1 iff sfrom and sto are directly con-

nected, 0 otherwise. Finally, we describe the classes Y = {0, 1, ..., 7}. y = 0 corresponds to

the observed situation in which none of the hypotheses correctly chose the destination. y = 1

corresponds to the observation that heuristic 1 correctly classified the instance (ie. correctly

chose the destination). Similarly for classes y = 2 and y = 4 for heuristics 2 and 4. Cases

y ∈ {3, 5, 6, 7} represent bitwise OR combinations of the base cases. For instance, y = 6 means

heuristic h4 and h2 chose the correct destination, but h1 did not. Thus, the rows in our matrix

D have the form [N, h1, h2, h4, y].

Upon examining our empirical data, we noticed that self-loop links (sto = sfrom) occur more

often than initially expected. Upon reflection, this is due to the method used to detect links:

if an agent suddenly goes out of the reach of an interest point– even by just a single pixel– and

then comes back in reach of the same interest point, a self-loop link is inserted in the movement

chain. These are degenerate cases, so we exclude them altogether.

In our experiment, the number of rows m = 4457. Table 5.3 summarizes the collected

statistics on the whole data set. Immediately we notice that we never find the case where both

h2 and h4 predict correctly, which could be because each emphasize an opposing factor in the

ratio. Note that from these calculations it appears that the agent explores (visits a target node
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Statistic N = 1 y = 1 y = 2 y = 3 y = 4 y = 5 y = 6 y = 7 y > 0

Number of Total 2527 41 24 48 268 34 0 940 1355

Proportion of Total 0.567 0.009 0.005 0.011 0.060 0.008 0 0.211 0.304

Proportion of y > 0 0.91 0.030 0.018 0.035 0.198 0.025 0 0.694 1

Proportion of y = 7 0.947 0 0 0 0 0 0 1 –

Table 5.3: Statistics of collected data

that is not a direct neighbor) a little less than half of the time. On average, the heuristics

choose the correct destination 23.5% of the time. The first two h1 and h2 predict the correct

destination with approximately 22% while h4 chooses correctly 27% of the time, implying that

h4 is somewhat better for determining the destination. An interesting observation is that both

at least one and all heuristics choose the correct destination more than 90% of the time when

the destination and source are neighbors. The simplest intuitive construction then is a model

that chooses simply between exploring and not exploring. Basing the probabilities on these

calculated statistics leads to the following proposed agent behavior: explore 45% of the time

and choose a neighbour (via the heuristics) 55% of the time. These rules yield a decent, simple

movement model we shall call MMsimple. However, the accuracy of the heuristics for deciding

the next destination gives us incentive to search for other, possibly better, models.

We are also interested in the agents’ rest times: the time spent near a given command

center while the agent is not traveling between command centers. To measure this value, we

subtracted the last time the agent left a command center to the first time it reached the same

command center (effectively treating chains of self-loop links as just one link). The mean rest

time was computed to be 17.079 seconds, with a standard deviation of 25.958 seconds. To

model the rest times in our movement models, we simply observe the value of random variable

Y = Z−µ
σ

where Z is normally-distributed random variable with mean 0 and standard deviation

1, µ = 19.079, and σ = 25.958. Y then becomes a normally-distributed random variable with

the desired mean and standard deviation [WIS96]. We consider negative values of Y to give a

rest time of 0.

We now apply some learning techniques to see if a function can be learned to choose the

correct outcome based on the values of the heuristic. It may seem futile to do this with the

problem as we have stated it above. After all, the learned classifier will simply reiterate to us

what we already know since the classes are defined entirely on the heuristics we chose ourselves.

Therefore, the value of our function will simply determine which heuristics choose correctly

given a source and destination. So why not formulate the problem so that the source interest
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point is one of the input values and the destination is the output value? The answer is twofold:

i) we are interested in the threshold values that decide which heuristic to use and ii) we are

interested in the generic problem of movement between interest points on an arbitrary graph.

Solving the learning problem for this data set might give a good movement model for agents

in this particular graph layout, but will not be at all generic. However, we still investigate this

alternative formulation in Section 5.3.2 to see what kind of agents it generates.

We choose the C4.5 decision-tree learning software [Qui92] for several main reasons: it

finds threshold points for continuous features, it applies the information theory of entropy

and information gain to measure the most representative features, and it is efficient. As well,

decision trees make a natural choice for dictating NPC behavior. A typical implementation of

modern AI for NPCs is scripting [Toz02]; scripts are simply a list of rules that are executed

sequentially to evaluate the situation and decide how to react. Decision trees perform the same

function with the added value that there exist efficient, well-known algorithms for optimizing

behavior.

After running the C4.5 algorithm on the data set, we obtain the decision tree seen in

Figure 5.3. It is worth mentioning that the time taken to read all the data from file, compute

the decision tree, and output the tree to standard output took a total time of 0.151 seconds on a

PentiumIV 1.7Ghz machine with 512megs of RAM. These results imply that assembling small-

scale, simple classification problems and generating a decision tree from learning is feasible in

during actual game time.

Once the decision tree is obtained, the procedure for deciding which interest point to target

next is straight-forward and efficient. For each potential destination point: a) calculate the

value of the 3 heuristics once and b) navigate the decision tree to get a solution and record it.

Then, the probability of an action is the proportion of the number of repetitions of a solution

versus total solutions. For example, let us say a given interest point s1 has 3 neighbors: s2, s3,

and s4. Passing s2 through the tree requires calculating the values hk(s1, s2). Let us say the

decision tree outputs 7. Similarly, for the other neighbors it outputs 4 and 6. Then, h1 was

valid once, h2 twice, and h4 thrice. Therefore for this given situation, the heuristic chosen is

h1 with probability 1
1+2+3

, h2 with probability 2
1+2+3

, or h3 with probability 3
1+2+3

. Since both

the heuristics and a single decision tree navigation is computable in constant time (time taken

≈ log2N , where N is the number of tree nodes which is constant for a given tree), the time

taken for the decision still remains linear in the number of potential destinations. We shall

label this movement model MMchooser because it chooses a neighbor heuristically.
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Figure 5.3: Decision tree for heuristic selection in MMchooser learned by C4.5
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5.3.2 Learning How to Move in a Dynamic Environment

The previous section explained the basics of classification and proposed a particular formulation

for a classification problem. The resulting hypothesis function learned from the data chooses

between which of the proposed heuristics to use when deciding between neighbors. The results

of the analysis rely on one major assumption: that the heuristics {h1, h2, h4} are the only ones

that impact the decision of the agent.

In a dynamic environment such as Conquero, there are many factors other than the distance

and size of the next command center. For example, the position and strength of the enemies

are likely to affect how the agents move in such an environment. As such, while Conquero was

built solely to provide an experimental context for gathering data, it introduces other dynamic

factors to consider when analyzing player movement. These factors are particularly relevant in

the context of computer games which require some level of dynamic stimulation.

Our new classification problem consists of a data set M , where our class set Y = {1, 2, 3, ..., 24}

represents the next command centers an agent could visit. The feature set is the vector x which

somehow summarizes the current global state of the game at the time before the agent leaves

the current navigating command center. These features are each then a function of the state

of the graph and state of all the agents at that given time. Note that we still assume that only

the state at the given time affects the decision of the agent.

Now we are faced with a problem faced by many AI researchers: how to define the set of

features. The problem is somewhat easier in a discrete game such as Chess or Checkers where

it is certain that the state does not change before the final decision on a move made. That is

not the case in our formulation: for instance, an agent may start heading for Command Center

4 (CC4) from CC1 but then another agent will beat arrive at CC1 first, giving him reason

to change his mind and head towards CC22. In addition, we are dealing with a conceptually

continuous environment, so the features described will be continuous geometric measures.

Our motivation is to describe as many relevant features as possible and let the learning

algorithm decide on the best ones to use. To do so we define 16 global features and 9 features for

each command center. There are 24 command centers, which means |x| = n = 16+24 ·9 = 232.

The description of each feature follows. Note that the features described below are somewhat

rudimentary; it is out of the scope of this research to search for higher quality continuous

features, but one that would be interesting to measure in Conquero would be the dominant

regions [TiH00] of the agents.

All global features are described from the point-of-view of the currently traveling agent.

Unless otherwise noted, the features are continuous and in <+. The global features are:
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• oldCC ∈ {1, 2, ...24}: the source/current command center the agent is at

• mopx : the mean x position of the agent’s opponents

• mopy : the mean y position of the agent’s opponents

• mtpx : the mean x position of the agent’s teammates

• mtpy : the mean y position of the agent’s teammates

• coo : command centers owned by agent’s opponents

• cto : command centers owned by agent’s team

• dco : distance to closest opponent

• dct : distance to closest teammate

• dcc : distance to closest command center

• dcuc : distance to closest unowned command center

• dcoc : distance to closes owned command center

All command center specific features are described with respect to that command center

from the point-of-view of the currently traveling agent. The features associated to a particular

command center, CCi are:

• CCi[neighbor ] ∈ {0, 1}: the neighbor feature (1 if CCi is a neighbor of oldCC, 0 otherwise)

• CCi[own] ∈ {0, 1, 2}: the ownership feature (0 if unowned, 1 if owned by agent’s team, 2

if owned by opponents)

• CCi[size]: the size of the command center

• CCi[dist ]: the distance from the agent’s location to the command center

• CCi[h1 ]: the value of h1(oldCC, CCi)

• CCi[h2 ]: the value of h2(oldCC, CCi)

• CCi[h4 ]: the value of h4(oldCC, CCi)

• CCi[nop]: number of opponents close to the command center

63



5.3. Building a Movement Model

• CCi[nte]: number of teammates close to the command center

The data points were collected for each transition from command center to command center

over the course of the game-playing experiment for each agent in the game, as in the previous

classification task. The resulting decision tree has depth 52, and has 1809 nodes (904 decision

nodes, 905 leaf nodes). The algorithm took 10.953 seconds to compute the decision tree on the

same hardware used for the previous classification task. The tree is included in text form in

Appendix A.

To our surprise, the root decision node splits on feature CC4[h4]. We expected that oldCC

would be the most determining feature for choosing a new destination. Upon closer inspection,

it seems that after splitting on CC4[h4], the left subtree degenerates into cases specifically

concerned with neighborhood values CC4[neighborhood] and CC5[neighborhood]. The result

we expected starts on the second level, the top of the first right subtree, where oldCC is split

by values. CCi[nop] and CCi[nte] are often found near the top of the trees as well; they seem

to make good determining features.

The priority given to CC4[h4] remains somewhat unsettling. Referring back to Table 5.2

we recall that the degree of CC4 is 1, which is particularly bad in Conquero: if a team only

owns a command center of degree 1 then you are forced to conquer its only neighbor which

opponents can easily block by remaining near it. Still, why CC4 and not the others degree 1

command centers? Looking back at Figure 5.2 we notice that CC4 is the degree 1 command

center farthest from the higher-degree clusters.

In fact, the split on the first node is due to the number of cases collected which had CC4

as a target. It turns out that CC4 was the next target 13.8% of the time, 3 times larger than

the expected fair average of 4.16% (= 1
24

). This surplus in the data collected with CC4 as

a target justifies using it as a first criterion for decision-making because it provides the most

information.

The precise reason that CC4 was chosen particularly more than the others is not entirely

known. CC4 is a bit larger than other leaf nodes, and it is very close to CC3, which makes

it easy to gain control over 2 command centers very quickly. As well, the 2 close command

centers are in a relatively deserted area compared to the opposing side of the map and as such

was rarely guarded if they were already conquered along with the surroundings. This last fact

made these 2 close points a vulnerable break-in region during raid attacks from teams who had

suddenly lost all their command centers.
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5.4 Other Movement Models

In the previous section, we proposed two similar movement models, MMsimple and MMchooser.

The simple movement model just chooses randomly between exploring and visiting neighbors,

but then chooses a neighbor at random. When visiting a neighbor, the chooser calculates

the heuristic values for each neighbor, runs the decision tree to find the class associated with

that neighbor, and then uses the class info to choose a heuristic to use to determine the next

neighbor. We also presented MMlearned which uses a global decision tree learned from the

experiment to decide where to move.

The first two movement models were designed by reasoning about the statistics of the

observed data from the experiment. Up to now, the models that have been described are

entirely independent of the game-playing experiment explained in Section 5.2. That is, once

the data is processed and the model is built, the model no longer depends on the experiment

data. We describe one last movement model that is dependent on the data, MMexperiment: a

movement model that simply replays the recorded game movements. In this model, agents do

not choose between cities. Agents move exactly as they did in the game experiment. This

movement model is of no direct value to us, but it will be interesting to compare against the

other movement models.

5.5 Applying the Models to Agent-based Adaptation

We now recall our initial motivation for studying movement models: to provide slightly better

than random models for mobile agents. In this chapter we have described, in total, 5 movement

models: MMrandom, MMsimple, MMchooser, MMexperiment, and MMlearned, and how they were

obtained, but we have not shown how these movement models fit into our adaptation scheme.

Here, we show how well these movement models work in agent-based adaptation, specifically

as applied to the reputation simulation. We construct a reputation test that includes the graph

used in the game experiment (Figure 5.2) and the agents to be exactly those used in the

game. We run 5 different simulations: one for each movement model. In each simulation,

every agent uses the movement model specified by the simulation specifications. We run each

simulation with the same random seed so that every simulation produces the same sequence

of probabilistic choices; the differences in each simulation are therefore solely the cause of the

agents’ movements. Otherwise, we use the same constants that were described in the reputation

simulations in Section 4.2.1; that is Pagent newdest = 0.01, Pevent = 0.001 and Pgood = 0.7.

Therefore, the agents will produce the exact same sequence of reputation occurrences in all
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cases, and in particular an equal number of bad events and good events.

We run the simulations for 5000 iterations each and we save the state (and take a screenshot)

of the reputation field at iteration 500, 1000, 2000, and 5000. The saved state includes all the

reputation values for each grid section in the grid. We then measure the dissimilarity between

saved states at each iteration for each simulation. The distance metric used is intuitive: the sum

over all grid sections of the absolute value of the differences in reputation value. These values

are listed in tables 5.4a-d. Screenshots of the reputation field at iteration 1000 are displayed in

Figure 5.4.

From the screenshots, it is apparent that none of the reputation fields are unambiguously

similar. It was expected that the reputation fields for simulations involving the simple and

chooser models would be noticeably similar because they are the most similar movement models.

It was also expected that the experiment model and learned model would look somewhat similar.

However, these are only qualitative hypotheses.

Examination of the quantified dissimilarities also supports the general claim that the mod-

els produce radically different results. The quantitative results also reinforce the qualitative

hypotheses mentioned above. We notice expected results as well, such as the consistent large

dissimilarity between the random model and the learned and experiment models, especially in

the longer term (after 5000 iterations).

In the end, if we assume that the experiment model is the “correct values” then surprisingly

MMsimple seems to be the best approximation for it in every case. This is encouraging because

this model is efficient and easy to implement.

It remains, however, somewhat difficult to make claims about the quality of the proposed

movement models in a context outside of settings similar to Conquero. We believe that the

movement information obtained from a real persistent-state game would differ significantly

from the movement information we have collected for this experiment. As well, the online

modification of agents’ reputations would likely affect their movement, adding a feedback loop

into the system. To this end, we are currently investigating similar research potentialities in

larger open source games such as [Pan]. Of course, the validation used here is better than no

validation whatsoever. More importantly, this study exposes the complexity of trying to find

accurate, general and predictive models for agent movement in games.
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MMrandom MMsimple MMchooser MMexperiment MMlearned

MMrandom 0 8882 9777 8464 11518

MMsimple 8882 0 7401 6078 8318

MMchooser 9777 7401 0 7055 10065

MMexperiment 8464 6078 7055 0 7882

MMlearned 11518 8318 10065 7882 0

(a)

MMrandom MMsimple MMchooser MMexperiment MMlearned

MMrandom 0 18752 19729 17411 24366

MMsimple 18752 0 17635 13843 19994

MMchooser 19729 17635 0 16070 21687

MMexperiment 17411 13843 16070 0 17055

MMlearned 24366 19994 21687 17055 0

(b)

MMrandom MMsimple MMchooser MMexperiment MMlearned

MMrandom 0 30075 32230 32408 39132

MMsimple 30075 0 31823 31807 37293

MMchooser 32230 31823 0 32608 35550

MMexperiment 32408 31807 32608 0 35246

MMlearned 39132 37293 35550 35246 0

(c)

MMrandom MMsimple MMchooser MMexperiment MMlearned

MMrandom 0 57515 56635 86410 82102

MMsimple 57515 0 54052 82475 79589

MMchooser 56635 54052 0 84353 82713

MMexperiment 86410 82475 84353 0 98774

MMlearned 82102 79589 82713 98774 0

(d)

Table 5.4: Dissimilarity of reputation fields in simulations at iteration (a) 1000 (b) 2000 (c) 3000 and

(d) 5000. Smaller values mean more similar while larger values mean more dissimilar.
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(a) (b)

(c) (d)

(e)

Figure 5.4: Screenshots of the reputation field at iteration 1000 using (a) MMrandom (b) MMsimple

(c) MMchooser (d) MMexperiment and (e) MMlearned
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Chapter 6

An Implementation of the Adaptation Framework

This chapter describes in technical detail the design and implementation of the adaptation

simulator used in the experiments described in the previous chapters. We begin with a broad

overview of how adaptation fits into modern games, followed by an analytical breakdown of

the actual adaptation engine. We then describe some tests to evaluate the performance of the

implementation, describe a few optimizations, rerun the tests, and conclude on the quality of

the optimizations.

6.1 Adaptation in Modern Persistent-state Games

The design and implementation of modern multi-player online persistent-state games are heavily

influenced by both the efficiency of the network and efficiency of rendering graphics. Rendering

graphics is for the most part a client-side issue; that is, it depends mostly on the performance

of the computer running the game client. The efficiency of the network, however, is largely

dependent on the infrastructure and the architecture of the game’s network protocol. In these

types of games in particular there is an abundance of information being passed over the network,

and so optimal network performance is a high priority.

By far the most popular architecture in general is the client/server architecture because it

captures the nature of most network tasks and is widely-used. As well, the reliable connection-

oriented Transfer Control Protocol (TCP) fits quite well in the client/server architecture. Stud-

ies show however that the client/server architecture is inadequate for multi-player games because

the large load endured by the server makes the network unscalable. As such, there are current

research projects devoted to optimizing network performance in modern games. For the most

part, these projects stem from the existing algorithms studied in distributed simulation now
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Figure 6.1: The general layout of the adaptation architecture

evaluated in a game context. Of them, 2 generic alternative architectures have been proposed:

the clustered-server architecture, and the distributed architecture.

Clustered-server architectures try to keep the general layout of the client/server architecture

while trying to reduce the load on a single server. The idea is that there still exists a central

authority, but that central authority may be composed of many computers in a cluster which

are themselves distributed. Example implementations include the mirrored-server architecture

built on Quake in [CFK01], the proxied-server system in [MFW02] and the hierarchical server

architecture found in [Fun96].

Distributed implementations attempt to spread some of the previously server-side processing

computation across client machines. Note that this is fundamentally different than clustered-

server architectures because in this case we are allowing clients access to state information,

which is potentially sensitive. This solves the scalability problem but introduces other problems

such as state inconsistencies, cheating, and load-balancing. Examples include MIMAZE [DG99]

and EternaZ [Qua03].

We would like to extend these architectures now to include the process of adaptation in the

virtual environment. We first introduce a critical concept: the state history server (SHS). The

SHS acts as a global camera: it keeps track of the global state of the game by taking “snapshots”.

It is responsible for collecting state information from clients and/or servers periodically, possibly

re-assembling separated parts of the state to form the global state, storing the history of the

game state, and providing the history of the game state to the adaptation engine. The SHS is

also responsible for sending state updates back to the clients and/or servers as a result of the

adaptation. The general idea is illustrated in Figure 6.1. Note, in particular, that the proposed

logical concept fits into every one of the major network architectures currently used in MMOGs.
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In the next section, in fact in this entire chapter, we analyze in detail only the adaptation

engine component of the general architecture. We do not assume that it is trivial to implement

the SHS or the communication between the SHS and the clients and server, but it is outside of

the scope of this research. We focus mainly on proving that the implementation of a modular

and efficient adaptation engine is feasible.

6.2 Design and Implementation of the Adaptation Engine

The adaptation engine is written in Java. Some of the data-gathering and processing tasks where

handled by Perl and shell scripts, but they are not required components. In both languages,

prototyping is easy. Java inherently offers object-oriented principles and supports most popular

design patterns while Perl is superior for lower-level tasks such as parsing data in a particular

format and reporting analyses done on output data from program executions.

Most design concepts mentioned in this section, unless otherwise noted, were taken from

[LG01]. First, I will list the major modules and show the module dependency diagram. Then,

for each module a list of the major components is presented, as well as any non-trivial program-

matical challenges faced in the implementation, algorithms used, and design patterns used.

The engine relies on 2 packages provided externally: hexIT [Lan03] and Minueto [Den04].

hexIT is a Java package that provides an API for using and drawing 2D hexagonal grids.

Minueto is a reasonably efficient gaming and graphics framework for Java which is intuitive to

use.

The major modules are:

• Abstract Simulator

• Plug-in Adaptation Systems

• Abstract Fuzzy Controller

• Abstract Grid API

• Movement Modeling

• Core Utilities and Data Structures

• Conquero

• Game Data Analyzer
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Figure 6.2: The module dependency diagram of the implementation

The dependencies between each module and approximate relative size/significance of each

module are given in Figure 6.2.

Abstract Simulator

The abstract simulator module has two major components: the simulation engine, and the

Graphical User Interface (GUI). This module is the largest, most significant part of the entire

implementation. It is essentially the construction of the pseudo-code in Equation 3.1 with many

abstract helper functions.

The GUI component is solely responsible for graphical representation of and user interaction

with the behavior of the simulations. It is composed of 3 sub-components: the Control Panel,

Grid Panel, and Button Panel. The Control Panel allows the user to control the state of

the simulator. The button panel provides buttons that allow the user to dynamically enable

or disable features in the simulation. The grid panel shows the state of the grid during the

simulation and allows the user to inspect and modify the values on the grid dynamically.

The engine component has no subcomponents. It provides the tools which are independent

of the specific adaptation scheme used, such as vector propagation and fuzzy flow-updates.

The component specifies an abstract simloop() method which must be overridden by subclass

plug-ins. The plugins are adaptation systems which have access to the grid and implement

a particular adaptation scheme, as defined in Chapter 4. By keeping this base component

separate from the plugin systems, we allow it to be independently optimized.

One non-trivial challenge was finding the correct set of thread synchronization constraints

between the engine and the GUI: writing code free of non-deterministic behavior while keeping

a certain level of performance. It was also hard to decide what should be part of the abstraction
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and what part of the plugins.

Plugin Adaptation Systems

This module consists of 2 major components: the adaptive weather system and the adap-

tive reputation system. There is also a minor component called the aggregate system. Each

component has a separate simulation loop that modifies the grid as detailed in Chapter 4.

The plugin systems have a relatively straight-forward implementation. They each override

the simloop() method specified by the abstract simulator, contain specific code logic particular

to the adaptation system while using as many generic concepts (shared methods from the base

class) as possible to encourage code reuse.

The weather plugin defines 3 main grid-altering methods: moisturewind, gradDev, and

rain. The first displaces moisture between cells based on the current wind vectors. The second

bends the wind vectors towards the gradient vectors. The third displaces moisture directly

based on the gradients. There are 2 extra functions that clear and apply the calculated mask

(separate grid containing grid cell differences, see Section 3.2.1) to the current virtual terrain:

cMask and aMask. Recall from Section 3.2.1 that masks are used to emulate fair simultaneous

updates.

The reputation plugin also has 3 main grid-altering methods: repEvent, agentBend, and

repwind. The first method generates reputation events. The second method shapes the rep-

utation vector field based on the orientations of the agents. The third method spreads the

reputation points based on the values of the reputation vector field. This plugin has similar

mask functions.

The generic adaptation concepts were conceived during the implementation of these plu-

gin systems. The most challenging part of implementation of these components was code

maintenance. Throughout the course of the implementation, these components were the most

actively-modified. The volatility of the code made it somewhat difficult to keep track of the

current functionality.

Abstract Fuzzy Controller

The abstract fuzzy controller module is composed of a set of minor components for representing

arbitrary fuzzy sets and generic tools for operating on these abstractly-defined sets.

To define a particular fuzzy set, the implementor must extend the FuzzySet class and

override the membership(Object) method. The operations provided include those required to
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resolve a decision in a fuzzy control problem: conjunction, disjunction, negation, and centroid-

of-gravity calculation. Once these fuzzy sets are defined, the implementor creates an instance

of a FuzzyController, adds the conditions and consequences, and polls it for a decision.

Abstract Grid API

The abstract grid API module provides an interface to a grid whose layout and connectivity

is abstractly defined. That is, it is an API for accessing grid sections and neighborhoods,

computing distances between sections while hiding the actual grid being used. There are 3

main methods in an abstract grid:

/** Returns a set of all sections on the grid. */

public Set getGridSections()

/** Returns the set of all neighbors (of distance d away from gs) */

public Set getGridNeighbors(GridSection gs, double d)

There are 2 major components that extend the abstract API: the RectangularGrid, and the

HexGrid. The former is used to represent the virtual terrain as it is represented in Figure 3.5.

The latter is used as the hexagonal representation demonstrated in Figure 4.7.

Movement Modeling

The movement modeling module is composed of 2 major components that work together side-

by-side: the movement model API, and the path modeler. The movement model API consists

of an abstract base class, MovementModel, and 5 subclasses: one for each movement model

described in Chapter 5. The three important methods in the base class are as follows:

/** Returns the next point to be visit. */

public abstract Point getNextP(RepAgent a);

/** Generate a number of agents that will move in this model. */

public void generateAgents(int num)

/** Move the agents, given the currently specified time. */

public void move_agents(long time)
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x

y

Figure 6.3: An example conversion of a path model

The last 2 methods have a generic implementation that is only overridden by the implementation

of MMexperiment because it must move the agents directly. Otherwise, the movement models

use the generic implementation which chooses a path to take via the path modeler.

The path modeler component is used to design a precise path for the agents to follow when

they are traveling between specific locations in the virtual terrain. The path modeler is another

abstract API which encourages extensibility: the abstract base class PathModel allows for

the implementation of arbitrary two-dimensional parametric curves. It contains 3 important

methods:

/** Construct a path model with given source and destination coordinates. */

public PathModel(int startx, int starty, int endx, int endy)

/** Get the next point on the path at time t, 0 <= t <= 1 */

public Point val(double t)

/** An arbitrarily varying continuous function on the normal Cartesian

plane where val_y(0) = 0 and val_y(1) = 0. */

public abstract double val_y(double t);

The value returned by val(double t) is a point on the virtual terrain at time t assuming the

agent takes a path from its start position to its end position governed by the function val y().

To get this value, a simple change of coordinate systems calculation using affine transformations

is done (see Section 4.2.1). An example of a transformation is given in Figure 6.3.

To emphasize the applicability of the API, several types of path models are implemented:

parabolic, cubic, sinusoidal, quadric, generic polynomial, and composite paths. A PathChooser

object is constructed which generates specific paths needed by the agents. The PathChooser
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object follows the factory design pattern.

Core Utilities and Data Structures

This module exists mainly to act as a central resource for providing generally useful objects,

methods, and algorithms. It provides 6 major components: the Utils class, the Debug class,

the discrete probability distribution class, the agent classes, the proximity graph data structure,

and the decision tree data structure.

The Utils class is a collection of static helper methods and also provides the central random

number generator used by all other classes. This allows us to reproduce the exact outcome of

an experiment by simply reusing random seeds.

The debug class allows control of debug information to be printed and/or logged. The

scheme prints no debug information by default (debug level 0) and prints messages whose

detail depend on the debug level set by the programmer. This was particularly helpful when

searching for the cause of erroneous behavior in the implementation.

The discrete probability distribution class provided a means for non-uniform sampling from

a set of predefined objects. The class allows the programmer to add items, each with given

weights attached to them. Then, when drawing from the set, the probability of drawing an

item is equal to its weight divided by the total of all the weights.

The agent classes follow the linguistic relationship: GameAgent is a RepAgent is a SimpleAgent

is an Agent. The first and basic description of an agent is an entity that has a current position

and current velocity, implemented by Agent. When agents were used in more than one system,

SimpleAgent was constructed which contained an extra parameter to specify to which system

the agent belonged. A RepAgent is an agent that contains specific information relevant to

the reputation experiment (ie. its reputation value) and GameAgents contain Conquero-specific

information such as hit points, stamina, and current level.

The proximity graph data structure is an implementation of a regular graph with each vertex

having (x, y) coordinates in a two-dimensional space (in our case, the virtual terrain). A point

in the terrain is represented by the Point object. In the Conquero experiment, this object is

extended to City to represent a command center which has an extra size parameter value, the

Graph class is extended to DirectedGraph. Finally, the Graph object supports special graph

constructions. From just a set of points Graph.RNGize() will construct the graph as its relative

neighbourhood graph. Similarly for Graph.MSTize() and its minimum spanning tree.

The decision tree data structure is an implementation of a binary decision tree. The factory

pattern is used again here because decision trees are only imported via files: they are never

actually constructed by the programmer. This decision tree data structure is created by parsing
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the output generated by the C4.5 software [Qui92]. This became a tricky task when large trees

were split into collections of subtrees, because the software used does not represent the textual

output of the full tree. The output of large trees are decomposed into many smaller subtrees

while using annotations to indicate small subtrees. Each subtree is then listed separately.

The algorithm used to overcome this problem is as follows:

1. Collect all the lines of textual data and name for each subtree.

2. Parse each tree individually possibly marking some nodes as degenerate subtree reference

nodes, marking the name of the subtrees to which they should attach in the node. Add

the map (name, tree) to a global hash.

3. Recursively, traverse the base tree depth-first. When a subtree reference node is encoun-

tered, read the name marked on the node and retrieve the corresponding subtree. “Tie”

the subtree to the main tree by replacing the degenerate node by the root of the subtree.

Conquero

Conquero has 3 major components: Minueto, the game client, and the authority server. Minueto

is an external package that was used for its efficient graphics rendering. The game itself is

entirely network-based. It uses a mix of 2 commonly used network protocols: UDP for situations

where efficiency is critical, and TCP for situations where reliability is most critical.

The client first connects (over TCP) to an authority server to validate its requested player

name and IP address. If the IP address is new and the name is already taken by another player

then the connection is rejected. If the name is a duplicate but the IP addresses is the same

one that asked for that name, then the server assumed this is a reconnect and the connection

is accepted. After the server receives the number of players required, the games starts and the

main window spawns.

Critical information such as hits, kills, captures, etc. is passed through the server and

validated by TCP. The server is responsible for ensuring fairness and consistency by imple-

menting locking mechanisms to avoid concurrency problems. Non-critical position updates are

sent via multicast UDP. All clients subscribe to the same multicast IP address and all move

update packets are sent to that address. The result is intended to be a good use of the network

protocols given their advantages and disadvantages.

The authority server does 2 more things other than respond to TCP events. Before starting,

it opens a Java runtime environment and runs a shell script which checks the amount of space

left on the disk partition which used for logging. This ensures that a game experiment will not
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fail due lack of disk space for recording game data. Secondly, it also acts as a non-graphical

client. That is, it subscribes to the same multicast address that the clients are connected to

and just logs the packets it receives as well as the TCP packets.

A non-trivial part of the implementation was including dead-reckoning [SZ99]. To implement

dead-reckoning, two important things needed to be considered: a dynamic counter and accurate

synchronized time-stamping. Luckily, the environment used by the game-playing experiment

had synchronized clocks using NTP [Mil85] and hence we assumed an accurate global clock.

The dynamic counter consistently remeasured the rate of updates by averaging the number of

updates it processed in the last fixed interval of time. This provides a window of historical

data suitable for a simple dead-reckoning algorithm: to apply dead-reckoning, the client simply

applies, in one step, a number of updates to the agent which was equal to the update rate

multiplied by the difference between the current time and the timestamp. The resulting position

is the extrapolated position given the agent’s velocity and timestamp. If further updates are

received which contradict any predicted positions, the positions are immediately changed to

reflect the values by the new update, to ensure maximum consistency. Note that applying

immediate correction is the simplest way of dealing with the inconsistencies introduced by

dead-reckoning; researchers have proposed other means, such as Time Warp [Mau00] and linear

convergence [SKH02].

Game Data Analyzer

The game data analyzer module is itself a single component. It is independent of most of

the other logic used in the implementation. It has one general function: to process the data

collected during the game-playing experiment described in Section 5.2.

The data analyzer has 3 important analyses of the data: tofro-stats, tofro-shapes, and tofro-

data. The tofro-stats analysis processes an entire game log and computes overall statistics

above the game log such as the ones found in Table 5.1. This analysis also outputs the data

for the first classification problem explained in Section 5.3.1. The tofro-shapes analysis shows,

graphically, the paths taken by the agents between command centers. The tofro-data analysis

simulates the entire game from the game log for each agent. At every transition of command

centers it also measures the values of the features described in Section 5.3.2 and outputs the

data set for the second classification problem.
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Name HOME HUMAN TOFU MAGIC

CPUs 1 1 2 4

CPU model Pentium IV AMD Athlon AMD Athlon AMD Opteron

CPU bus width (bits) 32 32 32 64

CPU speed (MHz) 1716 1250 1667 1794

CPU cache size (kB) 256 256 256 1024

Total Memory (kB) 515484 516216 2069368 3613560

Operating System Debian2 Linux Debian2 Linux Debian2 Linux Gentoo Linux

Kernel Version 2.6.5 2.4.26 2.4.20 2.6.7

Table 6.1: Descriptions of the machines used to measure performance.

6.3 Performance Measurements

In this section, we will describe the test environments used for experiments that were run to

measure the performance of various parts of the implementation. The testing environment

includes specifications of hardware used to perform the tests, specification and layout of any

input data/files that were commonly-used, and any relevant miscellaneous information. Then,

each performance test is described individually.

We begin with a descriptions of the environments used to run each test, summarized in

Table 6.1. We will refer to these machines throughout the rest of the chapter.

Existing altitude maps of geographical regions were used as input data for the weather

simulations. The data was obtained using the DIVA-GIS software and information archive

[RHG03]. The number of points in the data set was enormous. This was a problem because

the simulations would span several hundred screens and so was not graphically representable.

The data was reduced by summarizing large portions of the actual data by the average of the

altitude values in the area, as as described in Section 4.1.1.

The first such altitude map to be used was prk alt.dat, a 48x40 altitude map of North

Korea. The other altitude map is pak alt.dat, a 63x51 altitude map of Pakistan. Larger

versions are pak alt2.dat (127x102), pak alt3.dat (255x204), and pak alt4.dat (1022x817).

The reputation simulations load settings from a configuration file called the repfile. Each

repfile contains the number of agents, the graph, the probability of causing events, vertex sizes,

etc. The probability that an event occurs on a given timestep is prEv. The probability that oc-

curred events are good is prEvGood, otherwise they are bad. All reputation simulations use prEv

= 0.001 and prEvGood = 0.7. These numbers were chosen arbitrarily. The test rep3 repfile

2Debian Sarge on HOME and HUMAN , Debian Woody on TOFU .
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Wtr+GUI Wtr+NOGUI Wtr GUI Rep+GUI Rep+NOGUI Rep GUI

Overhead Overhead

HOME 120.072 76.92 35.94% 40.17 9.92 75.3%

HUMAN 71.88 45.23 37.1% 18.46 7.43 59.75%

Averages 36.52 % 67.53 %

Table 6.2: Data obtained by running performance tests on the graphical interface

uses 20 agents, a random clique graph with 20 vertices of maximum size 12, and a virtual terrain

of 700x700 pixels (50x50 grid cells). test rep3-2 doubles those values: ie. 40 agents, a random

clique graph with 40 vertices of maximum size 24 and a virtual terrain of 1400x1400 (100x100).

Similarly, test rep3-3 doubles the values of test rep3-2 and test rep3-4 quadruples the

values of test rep3.

All performance tests were done on code compiled by Sun’s Java 1.5 compiler and run using

Sun’s Java 1.5 interpreter. All performance tests used the same random seed (= 290423987).

GUI Overhead

The purpose of this test is to measure the average overhead added by the GUI. TOFU and

MAGIC are server machines only accessible via network, and were therefore not used for this

test. This fact is important to know, especially since the machines presented below are more

similar than the server machines. The GUI overhead presented here might be much larger

than what would be observed on more powerful machines. The test runs for 10000 iterations

in the weather simulator with altitude map pak alt.dat and reputation simulator with repfile

test rep3.

The results of the tests are listed in Table 6.2. Based on the observed overheads, it is clearly

inappropriate to do server-side experimenting with the interface enabled. Thus, subsequent

tests do not include the interface components. The interface remains a tool mainly intended

for visually observing the effects of the adaptation process.

Weather Simulations

The purpose of this test is to measure the general performance of the weather simulations. The

weather simulation is run for 10000 iterations on all 4 machines, first on pak alt. Tests on the

larger maps pak alt2, pak alt3 are then run to get a sense of how well the algorithm scales.

The results of the tests are listed in Table 6.3.

Note that average times are calculated over only four and entirely different machines: this
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is intentional. We would like to summarize the results as to express them in the most general

context possible. That is, while the results per machine are still shown for the most part, we

rely on the average to give a good generic estimate for the results independent of the hardware

used.

If we assume that the time taken per iteration per grid section is constant, then we expect

that the total time taken in one iteration to be a linear function of the number of grid sections.

That is f(G) = k1 + k2 · |G|. Using 3 maps, we get 3 equations:

43.244 = k1 + (63 · 51)k2 (6.1)

177.564 = k1 + (127 · 102)k2 (6.2)

692.77 = k1 + (255 · 204)k2 (6.3)

Solving the system of linear equations 6.1 & 6.2 gives (k1, k2) = (−1.06, 0.013789). Similarly,

solving the system 6.2 & 6.3 gives (k1, k2) = (6.73, 0.0131881). So, it seems that constant

overhead is lost going from maps pak alt.dat to pak alt whereas overhead is added in the case

of going from maps pak alt2 to pak alt3. This could be due to thresholds of memory and cache

being crossed in the second transition, but unfortunately we do not have any memory usage

data to justify this. It is still reassuring that the constants k2 are approximately equal (error

of approximately 6.01 × 10−4) reinforcing the belief that the performance of the computation

grows linearly.

Tornadoes

The tornado effect is an optional effect included in the weather system. On HOME using

pak alt.dat after 10000 iterations the tornado calculations took on average 1.0389 ms. The

tests were repeated on HUMAN, TOFU, and MAGIC and the results were, respectively: 1.268,

1.188, and 1.185. This gives an average time of 1.17 ms/iteration. If this cost was added to the

current simulations, then it would take 1.17
43.244+1.17

= 2.6% of the current total time per iteration.

It is interesting that complex weather effects such as simple tornado simulations do not add

significantly to the overall cost.

Reputation Simulations

The purpose of this test is to measure the general performance of the reputation simulations.

The weather simulation is run for 10000 simulations on all 4 machines, first on repfile test rep3.
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Map Machine t/iter t[cMask] t[aMask] t[moisturewind] t[gradDev] t[rain]

1 HOME 65.734 0.044 6.32 14.89 38.60 5.88

1 HUMAN 45.226 0.046 4.89 9.72 27.75 2.82

1 TOFU 30.137 0.017 3.35 5.48 19.63 1.66

1 MAGIC 31.879 0.009 2.26 7.68 16.88 5.05

1 (averages) 43.244 0.029 4.21 9.44 25.72 3.85

1 (proportions) — 0.07% 9.7% 21.8% 59.5% 8.9%

2 HOME 261.312 0.177 27.54 59.73 151.26 22.61

2 HUMAN 182.775 0.275 20.45 38.82 112.07 11.16

2 TOFU 138.446 0.116 14.35 28.88 84.28 10.82

2 MAGIC 127.724 0.040 9.21 30.14 68.30 20.034

2 (averages) 177.564 0.152 17.89 39.39 103.98 16.16

2 (proportions) — 0.09% 10.1% 22.2% 58.6% 9.1%

3 HOME 1021.33 0.81 93.81 237.30 599.04 90.37

3 HUMAN 721.029 1.149 79.77 153.4 441.99 44.72

3 TOFU 527.22 0.71 54.24 119.60 338.48 44.19

3 MAGIC 501.498 0.238 36.82 119.30 267.28 77.86

3 (averages) 692.77 0.727 66.16 157.4 411.7 64.3

3 (proportions) — 0.1% 9.55% 22.72% 59.43% 9.28%

Table 6.3: Results of the performance measurements on the weather simulations. All listed times are

in milliseconds (10−3 seconds), and maps used are pak alt# .
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Map Machine t/iter t[cMask] t[aMask] t[MM] t[repwind] t[aBend] t[repEv]

1 HOME 9.747 0.304 0.686 0.162 8.351 0.196 0.464

1 HUMAN 7.433 0.405 0.883 0.116 5.872 0.139 0.18

1 TOFU 4.677 0.181 0.916 0.1 3.386 0.82 0.012

1 MAGIC 5.477 0.088 0.254 0.061 4.966 0.074 0.034

1 (averages) 6.834 0.245 0.457 0.11 5.644 0.31 0.173

1 (proportions) — 3.6% 6.68% 1.6% 82.6% 4.5% 2.5%

2 HOME 43.864 2.241 2.592 0.315 37.985 0.636 0.093

2 HUMAN 38.3 3.2 3.684 0.235 30.523 0.616 0.045

2 TOFU 18.31 0.728 3.88 0.205 13.292 0.17 0.038

2 MAGIC 23.23 0.335 2.05 0.138 20.492 0.149 0.061

2 (averages) 30.93 1.626 3.05 0.223 25.6 0.393 0.06

2 (proportions) — 5.26% 9.87% 0.7% 82.7% 1.27% 0.2%

3 HOME 158.588 7.366 10.115 0.94 138.75 1.235 0.176

3 HUMAN 134.06 10.184 14.695 0.737 107.271 1.077 0.96

3 TOFU 75.857 3.088 15.59 0.567 56.12 0.416 0.076

3 MAGIC 89.95 1.447 7.69 0.417 79.93 0.325 0.14

3 (averages) 114.6 5.52 12.02 0.665 95.52 0.63 0.34

3 (proportions) — 4.82% 10.5% 0.6% 83.35% 0.55% 0.3%

4 TOFU 1705.474 164.59 246.366 32.767 1257.501 3.954 0.295

4 MAGIC 1498.64 25.895 153.584 27.26 1289.595 1.751 0.554

Table 6.4: Results of the performance measurements on the reputation simulations. All listed times

are in milliseconds (10−3 seconds), and repfiles used are test rep3-# .

Then the test is rerun on the larger field in test rep3-2, test rep3-3 and test rep3-4. The

movement model used in these simulations was MMrandom. The results of the tests are listed

in Table 6.4.

Performing calculations analogous to the ones performed in the weather simulations, we ob-

serve values (k1, k2) = (27.7172, 0.00032128) from repfile test rep3.txt to test rep3-2.txt

and (k1, k2) = (3.04, 0.002789) from repfile test rep3-2 to test rep3-3. This is rather unex-

pected for two reasons. Firstly, the overhead is less in the second case. Secondly, the constant

k2 differs by an order of magnitude, implying either irregularities in the observations or a non-

linear relationship. However, since the values are so small, it is likely that the inaccuracy of

the observed readings are playing a role in the discrepancy.
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Machine t[MMrandom] t[MMsimple] t[MMchooser] t[MMexperiment] t[MMlearned]

HOME 0.174 0.156 0.201 0.458 1.817

HUMAN 0.122 0.102 0.154 0.444 1.765

TOFU 0.122 0.094 0.13 0.228 1.111

MAGIC 0.067 0.058 0.094 0.167 0.515

(averages) 0.121 0.103 0.145 0.324 1.302

(proportions3) 0.3% 1.12% 1.56% 3.41% 12.44%

Table 6.5: Results of the performance measurements on the different movement models in the rep-

utation simulations. All listed times are in milliseconds (10−3 seconds), and the repfile used was

test rep3 .

Movement Models

The movement model is an optional effect included in the reputation system. The processing

time taken up by the movement models was measured on each system listed and gave the

following averages: 0.121ms for MMrandom, 0.103ms for MMsimple, 0.145ms for MMchooser,

0.324ms for MMexperiment, and 1.302ms for MMlearned. Note that in MMexperiment, the moves

are drawn directly from large input files and not simply generated as the rest.

The tests on repfile test rep6.txt were run for 10000 iterations using MMrandom. test rep6.txt

is a repfile recreation of the terrain and graph used in the Conquero game-playing experiment.

This test was repeated on each machine but using different movement models. The results for

the movement models are summarized by Table 6.5.

As expected, the learned model takes the longest because it calculates the value of 232

features based on the current state, pass these through a decision tree, and then make a decision.

The random and simple models are low because they do not do any processing of the current

state. The chooser model only slightly less efficient than the simple model, which is encouraging

considering it is calculating the value of 3 heuristics and passing through a decision tree. The

inefficiency of the experiment model is due to the fact that it is reading its moves from a large

(83M) log file.

3of total average time taken per iteration taken from Table 6.4
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6.4 Optimizations

In this section, we will describe optimizations designed to improve the performance of the

implementation. Each optimization will then be evaluated by re-running tests with the opti-

mization enabled and compared to the values obtained in the previous section. First, minor

optimizations are suggested. Then the larger, more significant optimizations are described in

their own subsections.

One simple optimization is to use tabular look-up approximations for trigonometric functions

sine and cosine. The optimization upon startup inserts the values of sine and cosine in a table

for 1000 · 2π values (0.000 · 2π to 1.000 · 2π). In fact, only one table need be stored since

cos(x) = sin(x + π
2
). Larger angles are mapped by repeatedly adding or subtracting 2π until

the angle is in the desired interval. Then, the true values are linearly extrapolated between the

two approximate values contained in the lookup tables.

The first weather simulations we rerun using this optimization. An improvement was ex-

pected, especially since the weather simulations use trigonometric functions more than the

other two systems. The observed average times per iteration are: 63.667 ms, 43.93 ms, 37.116

ms, and 31.142. This gives an average of value of 43.964 ms, slightly (1.7%) higher than the

unoptimized result. Therefore, it is clear that Java must be doing something efficient in their

Math class to save on execution time.

6.4.1 Caching

Caching is a common optimization technique used throughout Computer Science. The general

idea is to remember a value once it is calculated so that future calculations need only read the

cached value rather than recompute the value repeatedly. Note that caching really just trades

space (memory) for time (performance). It is usually the case that the trade-off is worth doing

when the programmer expects a given calculation to be repeatedly calculated.

There is one obvious application of caching in the weather system: gradient-caching. The

gradient need not be re-calculated unless it changes. In fact, this is a general optimization

technique that can be applied to all environment-based adaptation schemes since the influence

of the adaptation is based on the environment which we expect to change little. However, this

optimization does add a bit of programmatical complexity. This is because the programmer is

forced to take care of the special case of when the gradient vectors change.

To measure the value of this optimization, the first set of weather simulations were once

again rerun. The average times per iteration observed is: 55.87, 36.53 ms, 25.86 ms, and 28.81

ms. This gives an average of 36.77 ms per iteration, corresponding to a 15% improvement. This
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is an encouraging, significant result.

6.4.2 Concurrency

A natural optimization for computations on discrete grid cells is parallelization. In our case, we

do not have access to powerful parallel machines, but we can emulate the idea of parallelization

through software and hardware using concurrency and multiple processors.

A multi-threaded version of the weather simulation loop is implemented. The multi-threaded

version simply partitions the grid into independent portions, and assigns the responsibility of

carrying out the calculations for that portion to each thread independently of the other threads.

At every iteration, the threads perform the grid-base calculations concurrently and then wait

while a central thread applies global duties such as clearing and applying the mask.

The threads were synchronized by using a typical n-process barrier mechanism, where n ∈

{1, 2, 3, 4}. The synchronization code is outlined in Figure 6.4. Two counting semaphores and

2 boolean condition variables were used in the n worker threads and single main thread. The

workers performed the adaptation procedures on the a section of the grid while the main thread

performed the global procedure and thread management. One important note is that Java’s

built-in concurrency features such as monitors and object locks were used.

The purpose here is to find a partition of the terrain that is intuitive, easy to compute, and

splits the region into subregions of equal area. If 2 (or 3) threads were invoked, then the terrain

was split into 2 (or 3) rectangular regions by taking the longest side and finding the midpoint

(or the one third and two third points) and then using the perpendicular bisector of the edge

at that point as a new boundary between split regions. The 4-thread version split the region

into 4 quadrants similarly, but uses the midpoints of each side inside of just the longest side.

The weather tests were rerun on the multi-processor machines TOFU and MAGIC. In this

case, all the tests were rerun so that the effect of larger maps on the concurrent implementation

could be found. The results of the simulations are listed in Table 6.6.

There are some comments to make on these observations. Firstly, it seems odd that dual-

processor (TOFU) performs better than quad-processor (MAGIC) when using 4 threads on 2

out of the 3 maps. From Table 6.1, we notice that the speeds of the processors are approximately

equal, and that MAGIC has twice the amount of memory that TOFU has. Therefore, it seems

likely that the different major versions of the Linux kernel (2.6.x vs 2.4.x) could be the culprit.

It would be interesting to investigate this further.

4compared to the single-thread version.
5the value of

tsinglethread

tmultithread
or simply proportion−1

86



6.4. Optimizations

Worker Threads Main Thread

Figure 6.4: Java code for thread synchronization in the concurrent weather simulation
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Map Machine # of threads t/iter Improvement4 Proportion4 Speed-up5

1 TOFU 2 18.94 11.197 63% 1.59

1 TOFU 3 14.76 15.377 49% 2.042

1 TOFU 4 12.37 17.767 41% 2.4363

1 MAGIC 2 19.964 11.92 63% 1.597

1 MAGIC 3 17.462 14.417 55% 1.826

1 MAGIC 4 16.9 14.979 53% 1.89

2 TOFU 2 79.623 58.823 58% 1.74

2 TOFU 3 62.706 75.74 45% 2.21

2 TOFU 4 55.175 83.271 40% 2.51

2 MAGIC 2 83.027 43.973 65% 1.54

2 MAGIC 3 72.803 54.921 57% 1.7544

2 MAGIC 4 66.53 61.194 52% 1.92

3 TOFU 2 315.843 211.377 60% 1.67

3 TOFU 3 316.693 210.527 60% 1.665

3 TOFU 4 332.908 194.312 63% 1.584

4 MAGIC 2 325.13 176.368 65% 1.54

4 MAGIC 3 273.93 227.568 55% 1.83

4 MAGIC 4 271.09 230.408 54% 1.85

Table 6.6: Results of the concurrent weather simulation tests. All listed times are in milliseconds

(10−3 seconds), and the altitude maps used were pak alt#.
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Secondly, when running the weather simulation test on pak alt3.dat adding threads on

TOFU seems to slow down the process instead of speed it up, but this does not happen on

MAGIC. This implies that TOFU has reached some kind of threshold: either concurrent mem-

ory access is slowed down due to the fact that there is a lot of information being stored in

memory and the cache memory becomes filled too quickly, or the amount of memory is too

much to hold in RAM so virtual memory is used in which case a lot of overhead is added for

swapping information in and out from secondary memory.

We now use these observed values to approximate how much of the weather simulation

computation is due to sequential (single-threaded) computation versus parallel (multi-threaded)

computation. As a tool to help us measure the influence of these two separate values, we use

Amdahl’s Law [Amd67]:

speedup =
1

(1− p) + p
n

(6.4)

where speedup is the best possible attained speedup, p is the proportion of time spent in the

parallel part of the program, n is the number of processors, s is the proportion of time spent

in the sequential part of the program, and s + p = 1.

Using 2.51 as the best speedup attained on 2 processors, we get p = 1.2032. There are

other instances for which TOFU beats its theoretical maximum: both when using more than

2 threads on the first 2 maps. This means that on TOFU we are experiencing superlinear

speedup [HM89]; it is sometimes when multiple CPUs are used and is typically due to the

effects of processor caches. In these cases, so we cannot use these exceptional cases to find the

values we are interested in.

In the case of the third map, the max speedup obtained by TOFU is 1.67. In this case, we

obtain (p, s) = (0.8, 0.2). The same calculations are repeated for MAGIC in all 3 cases and the

values obtained are: p = 0.63, p = 0.64, and p = 0.613. This gives an average of p̄ = 0.67 and

s̄ = 0.33. Therefore, roughly one third of the time in the concurrent implementation is spent

doing sequential computation.

6.4.3 Buffering

The buffering technique proposed here is similar to the double-buffering [FvDFH95] technique

that has been widely-applied in the domain of Computer Graphics. The core concept involves

holding two objects (buffers) in memory: a scrap buffer and a display buffer. The application

works on the scrap buffer while displaying the display buffer to the user. When the application

has done the work it needs, the roles of the 2 buffers are interchanged. Typically, switching

the roles of these 2 buffers is a very efficient process, more efficient than working on the same
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buffer that is being displayed. As a result, a performance improvement is generally observed.

Here, a similar strategy is used. There are 2 buffers: one called the write buffer and the

other called the read buffer. The write buffer is never displayed, only modified. The read buffer

displayed and inspected by the main algorithms. Both buffers hold a single independent grid.

Initially, the two buffers are created and are identical. Each iteration, the algorithms inspect

the read buffer and calculate all changed needed to be done, but instead apply the changes to

the write buffer directly instead of temporarily storing the values in a mask and applying the

mask later. Before the next iteration begins, the roles of the two buffers are switched so that

the read buffer then contains the grid with recently-modified values.

When the simulations enable buffering, the methods that modify the values of the state

do so directly to the write buffer. Therefore, Buffering effectively allows the removal of the

applyMask and clearMask functions and so should have an effect on the performance.

The obtained results for average time per iteration on the weather simulations were 69.96ms,

47.72ms, 33.32ms, 32.01ms, giving an average of 45.75 ms/iteration. The time taken per iter-

ation including buffering takes 2.5ms longer. These results clearly conclude that the memory

requirements added to help gain performance have slowed down the implementation enough to

make the optimization not worth including.

6.4.4 Aggregation

Two major application systems have been implemented (weather and reputation) that are

somewhat similar in that they are based on the the same iterative adaptation scheme and data

representation (grid layout). The performance of each individual system has been measured

independently and in several different environments. As well, all optimizations have focused

on improving performance of an individual system or part of a system. All performance com-

parisons have been done on the previous recorded results of the simulations runs using those

systems.

A simple optimization is proposed to combine the simulations to create an aggregate sim-

ulation which uses the same grid and a merged simulation loop which uses algorithms from

both systems separately but on a shared grid. Since the plugin-systems have a simple interface,

integrating many of them in a single simulation engine is quite easy. The interface for each al-

gorithm in a plugin-system is just a method that takes the coordinate positions to be updated

and performs the computation. All that is required by the aggregate simulator is to create

an object of the plugin-system’s type, and to include invocations of the required algorithms

provided by the plugin-system on the plugin object.
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Once again simulations were run and performance data collected from them. Map 1 was

used for weather and test rep3.txt for reputation. The average time per iteration on the 4

different machines was: 72.94ms, 53.18ms, 35.08ms, and 31.17ms. The average value is 48.08

ms/iteration. The sum of the averages that were done independently is 43.244+6.834 = 50.078.

This corresponds roughly to a 4% improvement.

The improvement offered by aggregating the two systems is rather small, but not negligible.

This might be due to the fact that we are only combining the iterative process and the grid

not the actual data nor the procedures themselves. Combining the data and procedures would

be removing in part from the usefulness of the plug-in abstraction. In a commercial game,

sharing a grid between multiple systems is a must. This aggregate model proves that multiple

adaptation schemes can easily be contained in the same virtual environment.

We introduced this chapter with an explanation and demonstration of the integration of

the general adaptation scheme into the context of modern persistent-state computer games.

Adaptation of weather and reputation are examples of adaptation schemes that we might find

in such games. The integration of adaptation in the software design sense gives a practical

justification for the usefulness of these schemes.

The basic structure of the plug-in systems and logical control flow were described in Chap-

ter 4. Here, we extended these ideas by a thoroughly detailed breakdown of the actual im-

plementation of the simulator. Since the implementation is modular, creating new modules is

straight-forward.

Performance was measured by running the simulator and tracking the times spent in certain

methods. The two major systems’ performances were analyzed in detail on several different

testing environments. The average was used to reduce and local error or bias cause by a

particular testing environment.

Several optimizations were proposed. The simulations were rerun with these optimization

enabled so as to allow us to quantify the value of an optimization. Some of the optimizations

failed (enabling the optimization lead to slower simulations) and some succeeded. In particular,

concurrency and caching seemed to help out a lot (45% and 15% improvement repsectively) and

system aggregation helps out a small amount (4%). Buffering and simple tabular trigonometric

functions proved to be not worthwhile.

The implementation here is generic enough that any plug-in system could literally be

dropped in to the framework and used. To summarize, the adaptation framework used here is

versatile, robust, and extendible.
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Chapter 7

Future Work and Conclusions

In this thesis, we have described a generic adaptation scheme for modeling and designing

adaptive virtual environments in persistent-state computer games. Our adaptation model is

composed of several familiar computational formalisms such as data flow and cellular automata.

The model implicitly provides the notion of locality for large-scale environments.

The model enforces a discrete timeline upon which the iterative update cycle is built. This

update cycle defines generic adaption process because it contains a list of abstractly-defined

adaptation procedures. This procedural abstraction allows for specific functional adaptation al-

gorithms to be separately implemented and maintained. Specific adaptive virtual environments

are simply defined by the cellular properties and adaptation algorithms. The simulator can be

used to test each adaptive virtual environment completely independently. Merging adaptive

virtual environments in one aggregate adaptive virtual environment is as simple as including

all the specific procedures in the list to be run by the update cycle.

The model described is generic and intuitive. It is meant to be used by game designers

who are interested in building an adaptive virtual environment in their game. Two adaptation

systems are explained in detail, which serve as a good stepping stones for a designer who would

like to model his/her own different adaptive virtual environment.

The two example systems use some generic adaptation concepts that would likely be re-

used in future systems as well. Local averaging helps distribute the impact of sharp changes

to surrounding neighbors. Using flow as a means for quantified information dispersal is also

a good way to spread the influence of events to surrounding neighbors. Both were used and

demonstrated to work in the example systems.

The entities inside of a virtual environment are really what make the environment react

since entities are allowed to interact in the system. The evolution of the adaptive virtual

environment is then non-deterministic because the entities here will be mostly player characters.
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The interaction with an adaptive environment adds a significant importance to the player

characters’ actions because they can cause an event that can change the environment forever.

As such, this encourages a real history of the world to develop over time, and players to be part

of a dynamic, realistic world.

As an extension to agent-based adaptation, movement models for mobile agents in game

environment simulations were investigated. The aim was to build a probabilistic model for

agent movement behavior. Specifically, a multi-player network computer game was designed

for a game-playing experiment which collected data to analyze.

The game, called Conquero, involved short range combat and team capture of command

centers. Simple heuristics for movement information were proposed solely based on size of

the next command center and distance from the next command center. The values of the

heuristics were placed into a classification system to see if they were sufficient for deciding

which command center to visit next. The heuristics were extended to include many other kinds

of data prominent in Conquero, such as data that is dynamic like properties of other agents.

Dynamic agents were built by providing the agents with decision trees that were learned from

the dynamic features. Since the computation of these dynamic features was very efficient,

incorporating learning features based on decision-tree classification is likely feasible. In the

context of Conquero, five movement models were described after analyses were performed.

The movement models proposed were re-applied to the reputation system to see what kind

of reputation fields they would give. Interesting results appeared. Using the same seed for the

central random number generator, the 5 models produced quite different results, as confirmed

by Figure 5.4 and Table 5.4.

The performance of the movement models was generally quite good. In particular, the

decision-tree learning method seems to be computationally efficient and serves as a structure for

agent decision-making quite well. However, domain-specific heuristics are required to transform

observed sensory data into something meaningful, implying that some form of knowledge will

have to be pre-programmed even into learning agents.

Finally, we have shown that the use of the adaptation scheme is feasible and suggested an

architecture for applying the the process in modern computer game projects. We have showed

that all the concepts given fit easily into the object-oriented paradigm, allowing for modular

design, code reuse, and easy future modification.

Both the efficiency and performance of the simulations are encouraging. Even at the worse

case scenario, the iterations never took longer than 1 second in total. Considering that adap-

tation is a long-term effect, this level of performance is quite acceptable. We have further give
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experimental evidence of the effect of some simple optimizations. In fact, some of the perfor-

mance improvements are impressive and encouraging. Other than the caching of the gradient,

the optimizations were independent of the application system.

After all is considered, it seems that adaptive virtual environments are interesting to study

and would add an entertaining new element to a game-player’s gaming experience. It remains

to be seen if players themselves would enjoy playing their character in such environments. We

suspect this new feature would be enjoyable for the most part, since it has been proven in the

game development industry that players enjoy new content. We are hoping, if not expecting,

to soon see adaptive virtual environments in commercial persistent-state games.

7.1 Future Work

There is a good amount of potential for future work on adaptive virtual environments. We will

list the most interesting here and describe each briefly.

Improved Adaptation Systems

The 2 systems proposed in Chapter 4 are quite basic systems. For instance, the weather system

is missing some key elements for it to be realistic, such as temperature, evaporation, growth of

vegetation, atmospheric pressure and so on. Implementing some of the weather events suggested

in the chapter on these applications, such as tsunamis, earthquakes, floods, etc. would also be

another way of improving the existing implementation. Although, adding such feature would

also add complexity and cost.

In the reputation system, it would be nice to implement support for the reputation groups

and membership values. A better movement model is needed than the random one supplied.

Ultimately, it needs to have a movement model that corresponds to real movements of players

in persistent-state games.

Other Adaptation Applications

We have proposed and analyzed two adaptation applications that could be applied in modern

games. There are, of course, many other possibilities for applying adaptation in computer

games.

One rather obvious application is an adaptive economy. An adaptive economy based on

supply and demand could be implemented by flowing information and resource availability

through the grid. Values of items would adapt over time and location, which would change

94



7.1. Future Work

the prices of items sold by vendors. Events in this system could be inflation, theft, or sudden

loss/gain of resources. For example, a forest fire causes a drop in wood supply.

It would also be beneficial if social aspects of environments such as law, politics, etc. could

be quantified. For example, one could envision an adaptive law enforcement system. Crime

would be a measurable scalar property. The amount of law enforcement per region would also

be a scalar property that would adapt to the crime rate of the region. As a result, in the long

run more law enforcers would surround the areas with higher crime, causing the crime rate to

go back down.

Grid Partitioning

In large-scale environments, the virtual environment terrains might not necessarily be rectangu-

lar. Most of these games in fact are using the notion of “zones,” arbitrary but strict partitions

of some larger world. These often correspond to management by separate servers, and so there

can be significant inter-zone communication costs. Arbitrary decomposition into zones can also

of course produce an overall world shape that may not easily map to a regular grid.

Zones, however, are still typically quite large and can contain up to 1000 characters. This

may make it reasonable to adapt zones separately, perhaps with a relaxed consistency model

between zone borders.

Integration of Adaptation Architecture in a Large Persistent-state Computer Game

In Chapter 6, the implementation of the adaptation engine part of the entire adaptation archi-

tecture was shown in detail. The simulators show the adaptation engine running the adaptation

process on the example systems. However, the state history server was not implemented and

remains a future project.

Ideally, an existing game project that is somewhat well-known could be modified so that

it would simply dump information to the state history server and accept modifications from

the state history server. This server would be responsible for collecting data and storing it

in an efficient way, communicating with the adaptation server, and assigning changes back to

the game servers and/or clients. The important part of this future consideration is to have a

sufficiently large player base for the game.
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The Conquero Experiment, Revisited

Due to resource constraints, Conquero was intended to be an approximate microscopic version

of the events that happened over longer periods of time in a larger persistent-state multi-

player game. However, the game is small, simple and dynamic. As well, its overhead view

allows players to see the entire state of the game at all times. It forces players to remain near

command centers instead of accurately modeling behavior based on player interest. Movement

models could also be improved.

An interesting venture would be to recreate the Conquero experiment using an existing

multi-player game, or even better an existing persistent state game. The benefits of this would

be that the data would reflect the actual constraints of a more representative game interface.

A Generic Model for Adaptive Agents

The movement model learning done in Chapter 5 could also be applied to agents online, during

the game. The decision tree construction was computationally efficient, and so this makes it

possible to implement a movement model where the decision tree is built and used incremen-

tally and dynamically. In fact, we need not restrict the learning agents to decisions based on

movement. Agents could collect a set of data via predefined sensors, calculate the value of

predefined heuristic functions, build a classification problem, solve it, and then use the solution

to make a decision from a set of predefined actions. The adaptation process here would be to

simply recreate the decision tree every so often as to keep it up-to-date from new observations.
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Learned Decision Tree

The following is a text representation of the decision tree learned from the second classifi-

cation problem described in Chapter 5:

C4h3 <= 4.36315E-5 :
| oldCity = 1.0 : 14 (0.0)
| oldCity != 1.0 :
| | oldCity = 2.0 : 14 (0.0)
| | oldCity != 2.0 :
| | | oldCity = 3.0 : 14 (0.0)
| | | oldCity != 3.0 :
| | | | oldCity = 4.0 : 14 (0.0)
| | | | oldCity != 4.0 :
| | | | | oldCity = 5.0 : 14 (0.0)
| | | | | oldCity != 5.0 :
| | | | | | oldCity = 19.0 : 14 (0.0)
| | | | | | oldCity != 19.0 :
| | | | | | | oldCity = 20.0 : 14 (0.0)
| | | | | | | oldCity != 20.0 :
| | | | | | | | oldCity = 21.0 : 14 (0.0)
| | | | | | | | oldCity != 21.0 :
| | | | | | | | | oldCity = 22.0 : 14 (0.0)
| | | | | | | | | oldCity != 22.0 :
| | | | | | | | | | oldCity = 23.0 : 14 (0.0)
| | | | | | | | | | oldCity != 23.0 :
| | | | | | | | | | | oldCity = 24.0 : 14 (0.0)
| | | | | | | | | | | oldCity != 24.0 :
| | | | | | | | | | | | oldCity = 6.0 :
| | | | | | | | | | | | | C18nop > 23.0 : 7 (3.0)
| | | | | | | | | | | | | C18nop !> 23.0 :
| | | | | | | | | | | | | | C11nte > 3.0 : 8 (3.0)
| | | | | | | | | | | | | | C11nte !> 3.0 :
| | | | | | | | | | | | | | | C10nop > 23.0 : 8 (3.0)
| | | | | | | | | | | | | | | C10nop !> 23.0 :
| | | | | | | | | | | | | | | | C14nop <= 24.0 :
| | | | | | | | | | | | | | | | | C16nop > 0.0 : 8 (2.0)
| | | | | | | | | | | | | | | | | C16nop !> 0.0 :
| | | | | | | | | | | | | | | | | | mopx <= 699.231 :
| | | | | | | | | | | | | | | | | | | C13nop > 24.0 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | C13nop !> 24.0 :
| | | | | | | | | | | | | | | | | | | | vy <= -0.011 :
| | | | | | | | | | | | | | | | | | | | | mopx <= 658.923 : 8 (4.0)
| | | | | | | | | | | | | | | | | | | | | mopx !<= 658.923 : 15 (2.0)
| | | | | | | | | | | | | | | | | | | | vy !<= -0.011 :
| | | | | | | | | | | | | | | | | | | | | cto <= 7.0 : 15 (14.0)
| | | | | | | | | | | | | | | | | | | | | cto !<= 7.0 :
| | | | | | | | | | | | | | | | | | | | | | C17dist <= 365.121 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | C17dist !<= 365.121 : 15 (3.0)
| | | | | | | | | | | | | | | | | | mopx !<= 699.231 :
| | | | | | | | | | | | | | | | | | | mopx <= 736.87 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | mopx !<= 736.87 : 8 (2.0)
| | | | | | | | | | | | | | | | C14nop !<= 24.0 :
| | | | | | | | | | | | | | | | | mopx <= 658.923 : 10 (2.0)
| | | | | | | | | | | | | | | | | mopx !<= 658.923 : 8 (2.0)
| | | | | | | | | | | | oldCity != 6.0 :
| | | | | | | | | | | | | oldCity = 7.0 :
| | | | | | | | | | | | | | C17nop <= 0.0 :
| | | | | | | | | | | | | | | C24nop > 21.0 : 5 (3.0)
| | | | | | | | | | | | | | | C24nop !> 21.0 :
| | | | | | | | | | | | | | | | C10nop <= 24.0 :
| | | | | | | | | | | | | | | | | C11dist <= 430.094 :
| | | | | | | | | | | | | | | | | | C8nte > 3.0 : 15 (3.0)
| | | | | | | | | | | | | | | | | | C8nte !> 3.0 :
| | | | | | | | | | | | | | | | | | | C15nte > 3.0 : 15 (2.0)
| | | | | | | | | | | | | | | | | | | C15nte !> 3.0 :
| | | | | | | | | | | | | | | | | | | | C16nte > 6.0 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | C16nte !> 6.0 :
| | | | | | | | | | | | | | | | | | | | | mtpx <= 672.667 :
| | | | | | | | | | | | | | | | | | | | | | C12nop > 0.0 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | C12nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | C9nop > 24.0 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | C9nop !> 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | dco <= 5.0 : 8 (3.0)
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| | | | | | | | | | | | | | | | | | | | | | | | dco !<= 5.0 : 11 (65.0)
| | | | | | | | | | | | | | | | | | | | | mtpx !<= 672.667 :
| | | | | | | | | | | | | | | | | | | | | | C12dist <= 439.15 : 13 (3.0)
| | | | | | | | | | | | | | | | | | | | | | C12dist !<= 439.15 : 15 (2.0)
| | | | | | | | | | | | | | | | | C11dist !<= 430.094 :
| | | | | | | | | | | | | | | | | | mtpy <= 487.375 : 15 (11.0)
| | | | | | | | | | | | | | | | | | mtpy !<= 487.375 :
| | | | | | | | | | | | | | | | | | | mopy <= 452.429 : 17 (4.0)
| | | | | | | | | | | | | | | | | | | mopy !<= 452.429 : 18 (2.0)
| | | | | | | | | | | | | | | | C10nop !<= 24.0 :
| | | | | | | | | | | | | | | | | mopx <= 635.083 : 9 (2.0)
| | | | | | | | | | | | | | | | | mopx !<= 635.083 : 11 (2.0)
| | | | | | | | | | | | | | C17nop !<= 0.0 :
| | | | | | | | | | | | | | | C17nte <= 3.0 : 18 (2.0)
| | | | | | | | | | | | | | | C17nte !<= 3.0 :
| | | | | | | | | | | | | | | | dcc <= 13.4536 : 15 (2.0)
| | | | | | | | | | | | | | | | dcc !<= 13.4536 : 17 (3.0)
| | | | | | | | | | | | | oldCity != 7.0 :
| | | | | | | | | | | | | | oldCity = 8.0 :
| | | | | | | | | | | | | | | C1nte > 0.0 : 1 (3.0)
| | | | | | | | | | | | | | | C1nte !> 0.0 :
| | | | | | | | | | | | | | | | C18nop <= 0.0 :
| | | | | | | | | | | | | | | | | C24nop > 0.0 : 20 (2.0)
| | | | | | | | | | | | | | | | | C24nop !> 0.0 :
| | | | | | | | | | | | | | | | | | C12nop <= 23.0 :
| | | | | | | | | | | | | | | | | | | C20nte > 0.0 : 9 (2.0)
| | | | | | | | | | | | | | | | | | | C20nte !> 0.0 :
| | | | | | | | | | | | | | | | | | | | C4nte > 0.0 : 2 (2.0)
| | | | | | | | | | | | | | | | | | | | C4nte !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | C12nte <= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | C15nop <= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | C7nop > 23.0 : 7 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | C7nop !> 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | C6own = 0.0 : 6 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | C6own != 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | C6own = 2.0 : 15 (0.0)
| | | | | | | | | | | | | | | | | | | | | | | | | C6own != 2.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C19nop > 0.0 : 6 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C19nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop <= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nop <= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nte <= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 3.0 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 147.078 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 19.0 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 19.0 : 15 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 147.078 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte > 0.0 : 6 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop > 697.874 : 11 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !> 697.874 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop <= 528.348 : 16 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop !<= 528.348 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 234.344 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop > 5.0 : 15 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop !> 5.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop > 0.0 : 6 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy > 519.667 : 12 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !> 519.667 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto <= 853.366 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx > 17.8885 : 10 (7.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !> 17.8885 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist <= 432.0 : 10 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist !<= 432.0 : 15 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !<= 853.366 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto > 1083.21 : 10 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !> 1083.21 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy > 361.0 : 15 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !> 361.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop <= 14.5602 : 6 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop !<= 14.5602 : 12 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 234.344 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24nop <= 349.092 : 15 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24nop !<= 349.092 : 16 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop > 14.1421 : 10 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !> 14.1421 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 20.2237 : 12 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 20.2237 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nte !<= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 17.0 : 14 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 17.0 : 15 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nop !<= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 657.423 : 10 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 657.423 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop !<= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy <= 511.958 : 7 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy !<= 511.958 : 16 (3.0)
| | | | | | | | | | | | | | | | | | | | | | C15nop !<= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | dct <= 137.033 :
| | | | | | | | | | | | | | | | | | | | | | | | mopx <= 608.038 : 6 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 608.038 : 16 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | dct !<= 137.033 :
| | | | | | | | | | | | | | | | | | | | | | | | ply <= 222.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | ply !<= 222.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | ply <= 234.0 : 15 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | ply !<= 234.0 : 11 (3.0)
| | | | | | | | | | | | | | | | | | | | | C12nte !<= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | plx <= 338.0 : 15 (3.0)
| | | | | | | | | | | | | | | | | | | | | | plx !<= 338.0 : 12 (3.0)
| | | | | | | | | | | | | | | | | | C12nop !<= 23.0 :
| | | | | | | | | | | | | | | | | | | C7dist <= 443.128 :
| | | | | | | | | | | | | | | | | | | | plx <= 338.0 : 15 (3.0)
| | | | | | | | | | | | | | | | | | | | plx !<= 338.0 : 12 (2.0)
| | | | | | | | | | | | | | | | | | | C7dist !<= 443.128 :
| | | | | | | | | | | | | | | | | | | | vy <= 0.023 : 10 (6.0)
| | | | | | | | | | | | | | | | | | | | vy !<= 0.023 : 18 (2.0)
| | | | | | | | | | | | | | | | C18nop !<= 0.0 :
| | | | | | | | | | | | | | | | | cto <= 3.0 :
| | | | | | | | | | | | | | | | | | mopx <= 566.261 : 14 (2.0)
| | | | | | | | | | | | | | | | | | mopx !<= 566.261 : 12 (2.0)
| | | | | | | | | | | | | | | | | cto !<= 3.0 :
| | | | | | | | | | | | | | | | | | C24dist <= 559.99 : 10 (2.0)
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| | | | | | | | | | | | | | | | | | C24dist !<= 559.99 : 15 (3.0)
| | | | | | | | | | | | | | oldCity != 8.0 :
| | | | | | | | | | | | | | | oldCity = 9.0 :
| | | | | | | | | | | | | | | | C9nop > 21.0 : 15 (2.0)
| | | | | | | | | | | | | | | | C9nop !> 21.0 :
| | | | | | | | | | | | | | | | | C14nte > 3.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | C14nte !> 3.0 :
| | | | | | | | | | | | | | | | | | C13own = 0.0 : 17 (2.0)
| | | | | | | | | | | | | | | | | | C13own != 0.0 :
| | | | | | | | | | | | | | | | | | | C13own = 2.0 : 17 (0.0)
| | | | | | | | | | | | | | | | | | | C13own != 2.0 :
| | | | | | | | | | | | | | | | | | | | C21nte > 3.0 : 19 (2.0)
| | | | | | | | | | | | | | | | | | | | C21nte !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | C2nop > 0.0 : 5 (2.0)
| | | | | | | | | | | | | | | | | | | | | C2nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | C8nop > 23.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | C8nop !> 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | C11dist <= 13.4536 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | C11dist !<= 13.4536 :
| | | | | | | | | | | | | | | | | | | | | | | | C4nte > 0.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | C4nte !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | C17nop <= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C7nop > 23.0 : 19 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C7nop !> 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | C19nop > 24.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C19nop !> 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy > 525.385 : 7 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy !> 525.385 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy <= 671.667 : 17 (38.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy !<= 671.667 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 445.01 : 17 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 445.01 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 712.8 : 19 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 712.8 : 11 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | C17nop !<= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | dco <= 158.862 : 17 (7.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | dco !<= 158.862 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | mopy <= 464.783 : 19 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | mopy !<= 464.783 : 7 (2.0)
| | | | | | | | | | | | | | | oldCity != 9.0 :
| | | | | | | | | | | | | | | | oldCity = 10.0 :
| | | | | | | | | | | | | | | | | C17nte <= 0.0 :
| | | | | | | | | | | | | | | | | | C14dist <= 606.981 :
| | | | | | | | | | | | | | | | | | | C18nte > 3.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | C18nte !> 3.0 :
| | | | | | | | | | | | | | | | | | | | C13nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | C11nte > 6.0 : 14 (2.0)
| | | | | | | | | | | | | | | | | | | | | C11nte !> 6.0 :
| | | | | | | | | | | | | | | | | | | | | | C12nop <= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | C15nte > 5.0 : 15 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | C15nte !> 5.0 :
| | | | | | | | | | | | | | | | | | | | | | | | C8nte > 0.0 : 8 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | C8nte !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | C7nte > 0.0 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | C7nte !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C14nop <= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | C10dist <= 13.1529 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | coo <= 22.0 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | coo !<= 22.0 : 15 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C10dist !<= 13.1529 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C6nop > 24.0 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C6nop !> 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo <= 19.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 189.667 : 16 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 189.667 : 12 (14.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo !<= 19.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 3.0 : 12 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity > 14.4222 : 12 (7.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !> 14.4222 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 269.082 : 12 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 269.082 : 8 (7.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !<= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist <= 398.898 : 7 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist !<= 398.898 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C24dist <= 712.037 : 8 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C24dist !<= 712.037 : 12 (2.0)
| | | | | | | | | | | | | | | | | | | | | | C12nop !<= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | cto <= 1.0 : 11 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | cto !<= 1.0 :
| | | | | | | | | | | | | | | | | | | | | | | | mtpx <= 251.0 : 6 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | mtpx !<= 251.0 : 12 (5.0)
| | | | | | | | | | | | | | | | | | | | C13nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | plx <= 358.0 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | plx !<= 358.0 :
| | | | | | | | | | | | | | | | | | | | | | mtpy <= 282.667 : 6 (2.0)
| | | | | | | | | | | | | | | | | | | | | | mtpy !<= 282.667 : 8 (2.0)
| | | | | | | | | | | | | | | | | | C14dist !<= 606.981 :
| | | | | | | | | | | | | | | | | | | C22nop <= 0.0 : 1 (3.0)
| | | | | | | | | | | | | | | | | | | C22nop !<= 0.0 : 9 (2.0)
| | | | | | | | | | | | | | | | | C17nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | mopy <= 495.385 : 3 (2.0)
| | | | | | | | | | | | | | | | | | mopy !<= 495.385 : 17 (2.0)
| | | | | | | | | | | | | | | | oldCity != 10.0 :
| | | | | | | | | | | | | | | | | oldCity = 11.0 :
| | | | | | | | | | | | | | | | | | C16dist <= 689.536 :
| | | | | | | | | | | | | | | | | | | C23nop <= 24.0 :
| | | | | | | | | | | | | | | | | | | | C18nop <= 21.0 :
| | | | | | | | | | | | | | | | | | | | | C14nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | C1nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | cto <= 7.0 :
| | | | | | | | | | | | | | | | | | | | | | | | C9nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | C16nop > 0.0 : 13 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | C16nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C8nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | plx <= 234.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | dco <= 12.3693 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | dco !<= 12.3693 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy <= 0.023 : 7 (14.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= 0.023 : 15 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | plx !<= 234.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C3nte > 0.0 : 13 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C3nte !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C20nop > 24.0 : 19 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C20nop !> 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte <= 0.0 :
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| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 617.667 : 18 (7.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 617.667 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 427.308 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 20.0 : 14 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 20.0 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 427.308 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte <= 247.649 : 13 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !<= 247.649 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity > 499.038 : 17 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !> 499.038 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop > 648.584 : 13 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !> 648.584 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop <= 656.269 : 14 (7.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !<= 656.269 : 17 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 180.413 : 14 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 180.413 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 206.828 : 7 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 206.828 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 681.333 : 7 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 681.333 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 386.374 : 4 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 386.374 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 19.0 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 19.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= -0.048 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= -0.048 : 7 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C8nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | mopy <= 475.808 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 541.286 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 541.286 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | mopy !<= 475.808 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 624.619 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 624.619 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | C9nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | C9nop > 24.0 : 7 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | C9nop !> 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | mtpy <= 596.667 : 9 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | mtpy !<= 596.667 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | cto !<= 7.0 :
| | | | | | | | | | | | | | | | | | | | | | | | C11dist <= 12.2066 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | C11dist !<= 12.2066 :
| | | | | | | | | | | | | | | | | | | | | | | | | C16nte > 3.0 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | C16nte !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C15nop <= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | C7nop > 21.0 : 18 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C7nop !> 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C18dist <= 141.039 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop <= 21.0 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop !<= 21.0 : 13 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C18dist !<= 141.039 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nop > 24.0 : 15 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nop !> 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nte > 0.0 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nte !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy > 0.113 : 7 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !> 0.113 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 423.001 : 13 (9.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 423.001 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 122.674 : 17 (8.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 122.674 : 13 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C15nop !<= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy <= 418.5 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy !<= 418.5 : 10 (2.0)
| | | | | | | | | | | | | | | | | | | | | | C1nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | mopy <= 505.952 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | mopy !<= 505.952 : 15 (2.0)
| | | | | | | | | | | | | | | | | | | | | C14nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | dcoc <= 13.6015 :
| | | | | | | | | | | | | | | | | | | | | | | mopx <= 651.75 : 2 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | mopx !<= 651.75 : 9 (2.0)
| | | | | | | | | | | | | | | | | | | | | | dcoc !<= 13.6015 :
| | | | | | | | | | | | | | | | | | | | | | | dcuc <= 14.5602 :
| | | | | | | | | | | | | | | | | | | | | | | | C16dist <= 52.6973 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | C16dist !<= 52.6973 :
| | | | | | | | | | | | | | | | | | | | | | | | | dct <= 133.462 : 13 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | dct !<= 133.462 : 14 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | dcuc !<= 14.5602 :
| | | | | | | | | | | | | | | | | | | | | | | | cto <= 4.0 : 14 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | cto !<= 4.0 : 18 (3.0)
| | | | | | | | | | | | | | | | | | | | C18nop !<= 21.0 :
| | | | | | | | | | | | | | | | | | | | | cto <= 3.0 : 19 (3.0)
| | | | | | | | | | | | | | | | | | | | | cto !<= 3.0 : 18 (6.0)
| | | | | | | | | | | | | | | | | | | C23nop !<= 24.0 :
| | | | | | | | | | | | | | | | | | | | dcoc <= 14.2127 : 9 (2.0)
| | | | | | | | | | | | | | | | | | | | dcoc !<= 14.2127 : 19 (3.0)
| | | | | | | | | | | | | | | | | | C16dist !<= 689.536 :
| | | | | | | | | | | | | | | | | | | C5nop > 0.0 : 22 (3.0)
| | | | | | | | | | | | | | | | | | | C5nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | dct <= 358.286 :
| | | | | | | | | | | | | | | | | | | | | mtpy > 741.0 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | mtpy !> 741.0 :
| | | | | | | | | | | | | | | | | | | | | | dcc <= 13.3417 : 19 (4.0)
| | | | | | | | | | | | | | | | | | | | | | dcc !<= 13.3417 : 24 (3.0)
| | | | | | | | | | | | | | | | | | | | dct !<= 358.286 :
| | | | | | | | | | | | | | | | | | | | | mtpx <= 460.375 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | mtpx !<= 460.375 : 1 (2.0)
| | | | | | | | | | | | | | | | | oldCity != 11.0 :
| | | | | | | | | | | | | | | | | | oldCity = 12.0 :
| | | | | | | | | | | | | | | | | | | C11nop > 21.0 : 4 (3.0)
| | | | | | | | | | | | | | | | | | | C11nop !> 21.0 :
| | | | | | | | | | | | | | | | | | | | dcuc <= 993.413 :
| | | | | | | | | | | | | | | | | | | | | C22nop > 0.0 : 10 (2.0)
| | | | | | | | | | | | | | | | | | | | | C22nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | C12nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | C6nte > 0.0 : 16 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | C6nte !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | C16nop > 24.0 : 16 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | C16nop !> 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | C13nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C11nop > 0.0 : 8 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C11nop !> 0.0 :
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| | | | | | | | | | | | | | | | | | | | | | | | | | | C15nop > 23.0 : 16 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C15nop !> 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C14dist > 295.007 : 8 (8.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C14dist !> 295.007 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | dct > 300.832 : 16 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | dct !> 300.832 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop <= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nte > 5.0 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nte !> 5.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nop <= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 292.333 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 292.333 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 17.0 : 16 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 17.0 : 10 (15.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nop !<= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 954.713 : 8 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 954.713 : 10 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !<= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C23dist <= 450.948 : 15 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C23dist !<= 450.948 : 8 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | C13nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | vy <= 0.021 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= 0.021 : 16 (9.0)
| | | | | | | | | | | | | | | | | | | | | | C12nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | mopy <= 475.808 : 14 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | mopy !<= 475.808 : 6 (2.0)
| | | | | | | | | | | | | | | | | | | | dcuc !<= 993.413 :
| | | | | | | | | | | | | | | | | | | | | mopx <= 631.0 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | mopx !<= 631.0 : 13 (2.0)
| | | | | | | | | | | | | | | | | | oldCity != 12.0 :
| | | | | | | | | | | | | | | | | | | oldCity = 13.0 :
| | | | | | | | | | | | | | | | | | | | C9nop <= 21.0 :
| | | | | | | | | | | | | | | | | | | | | C1nop <= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | C10nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | C15nop <= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | C14nop <= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | C22nop > 0.0 : 5 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | C22nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C23nop > 21.0 : 19 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C23nop !> 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop > 24.0 : 18 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !> 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nte <= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C12nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte > 3.0 : 11 (11.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy <= 0.125 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C20nte > 6.0 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C20nte !> 6.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop <= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto <= 2.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 672.0 : 11 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 672.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 591.769 : 14 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 591.769 : 16 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !<= 2.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 21.0 : 11 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity > 0.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 5.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte > 5.0 : 18 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !> 5.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop > 3.0 : 14 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop > 24.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !> 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop <= 12.53 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop !<= 12.53 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= -0.056 : 14 (7.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= -0.056 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop > 21.0 : 11 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop !> 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy > 6.0 : 11 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !> 6.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto > 14.5602 : 14 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !> 14.5602 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist <= 17.4929 : 11 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist !<= 17.4929 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto <= 13.6015 : 14 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !<= 13.6015 : 11 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop <= 362.0 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop !<= 362.0 : 14 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 5.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 0.0040 : 11 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 0.0040 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop !<= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 702.769 : 14 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 702.769 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= 0.125 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo <= 20.0 : 6 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo !<= 20.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 574.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 574.0 : 5 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C12nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy <= 435.154 : 8 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy !<= 435.154 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C15dist <= 342.584 : 14 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C15dist !<= 342.584 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nte !<= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo > 19.0 : 19 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo !> 19.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc <= 13.4536 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc !<= 13.4536 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | C14nop !<= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | dcc <= 12.2066 : 10 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | dcc !<= 12.2066 : 14 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | C15nop !<= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | C22dist <= 1003.89 : 11 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | C22dist !<= 1003.89 :
| | | | | | | | | | | | | | | | | | | | | | | | | vx <= -0.017 : 7 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | vx !<= -0.017 : 15 (3.0)
| | | | | | | | | | | | | | | | | | | | | | C10nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | coo <= 20.0 : 10 (2.0)
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| | | | | | | | | | | | | | | | | | | | | | | coo !<= 20.0 : 14 (2.0)
| | | | | | | | | | | | | | | | | | | | | C1nop !<= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | C1nop <= 23.0 : 18 (3.0)
| | | | | | | | | | | | | | | | | | | | | | C1nop !<= 23.0 : 4 (2.0)
| | | | | | | | | | | | | | | | | | | | C9nop !<= 21.0 :
| | | | | | | | | | | | | | | | | | | | | ply <= 891.0 : 12 (2.0)
| | | | | | | | | | | | | | | | | | | | | ply !<= 891.0 : 3 (3.0)
| | | | | | | | | | | | | | | | | | | oldCity != 13.0 :
| | | | | | | | | | | | | | | | | | | | oldCity = 14.0 :
| | | | | | | | | | | | | | | | | | | | | plx <= 1021.0 :
| | | | | | | | | | | | | | | | | | | | | | C10nop <= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | C17nte <= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | C23nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | C15nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C7nop <= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | C12nop <= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop <= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nop <= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C1nop > 23.0 : 16 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C1nop !> 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nte > 6.0 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nte !> 6.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C2nop > 0.0 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C2nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 23.0 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte > 21.0 : 16 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !> 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop <= 522.462 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop > 0.0 : 16 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop > 0.0 : 16 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop <= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy <= 13.6015 : 13 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= 13.6015 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto <= 6.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist > 347.96 : 13 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist !> 347.96 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop <= 0.0010 : 16 (29.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop !<= 0.0010 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24nop <= 14.1421 : 13 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24nop !<= 14.1421 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11dist <= 9.0 : 16 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11dist !<= 9.0 : 13 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !<= 6.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop > -0.017 : 13 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop !> -0.017 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop <= 429.577 : 16 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !<= 429.577 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop !<= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11dist <= 6.0 : 18 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11dist !<= 6.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist <= 33.2866 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist !<= 33.2866 : 16 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nte <= 473.25 : 13 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nte !<= 473.25 : 16 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C15nte <= 571.008 : 16 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C15nte !<= 571.008 : 13 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !<= 522.462 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist <= 117.209 : 18 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist !<= 117.209 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nte <= 15.0 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nte !<= 15.0 : 13 (9.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx <= 555.739 : 18 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx !<= 555.739 : 13 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx > 667.381 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx !> 667.381 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C12nop > 21.0 : 18 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C12nop !> 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx <= 562.261 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx !<= 562.261 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nop !<= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 677.731 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 677.731 : 9 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcuc <= 14.2127 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto <= 6.0 : 9 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !<= 6.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcuc !<= 14.2127 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto <= 2.0 : 11 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !<= 2.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nop > 24.0 : 18 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nop !> 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc <= 14.4222 : 18 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc !<= 14.4222 : 16 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !<= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto <= 6.0 : 16 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !<= 6.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 708.038 : 7 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 708.038 : 13 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C12nop !<= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc <= 14.0357 : 8 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc !<= 14.0357 : 16 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C7nop !<= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 639.5 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 639.5 : 15 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | C15nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | dcc <= 12.2066 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy <= 341.6 : 15 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy !<= 341.6 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | dcc !<= 12.2066 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 643.269 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 643.269 : 20 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | C23nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | C20dist <= 255.947 : 20 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | C20dist !<= 255.947 : 12 (3.0)

102



| | | | | | | | | | | | | | | | | | | | | | | C17nte !<= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | C24dist <= 438.926 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | C24dist !<= 438.926 : 5 (3.0)
| | | | | | | | | | | | | | | | | | | | | | C10nop !<= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | mopx <= 572.87 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | mopx !<= 572.87 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | plx !<= 1021.0 :
| | | | | | | | | | | | | | | | | | | | | | C5nop > 0.0 : 3 (2.0)
| | | | | | | | | | | | | | | | | | | | | | C5nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | C3nte > 3.0 : 10 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | C3nte !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | coo <= 17.0 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | coo !<= 17.0 : 1 (3.0)
| | | | | | | | | | | | | | | | | | | | oldCity != 14.0 :
| | | | | | | | | | | | | | | | | | | | | oldCity = 15.0 :
| | | | | | | | | | | | | | | | | | | | | | C18nte <= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | C16nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | C6nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | C11nop <= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C17nop <= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | dct <= 9.05539 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nop <= 0.0 : 11 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nop !<= 0.0 : 12 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | dct !<= 9.05539 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop <= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy <= 540.043 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C2nop > 0.0 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C2nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte > 3.0 : 8 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13dist <= 13.4536 : 7 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13dist !<= 13.4536 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 659.333 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nop > 21.0 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nop !> 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | plx <= 33.0 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | plx !<= 33.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 15.0 : 7 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 15.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 302.552 : 7 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 302.552 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 356.679 : 8 (19.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 356.679 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte <= 570.909 : 8 (7.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !<= 570.909 : 7 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 659.333 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dco <= 89.2749 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 512.191 : 7 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 512.191 : 8 (7.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dco !<= 89.2749 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vx > 0.011 : 6 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vx !> 0.011 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 484.423 : 12 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 484.423 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 307.875 : 6 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 307.875 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy !<= 540.043 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C12dist <= 393.406 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc <= 14.0357 : 14 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc !<= 14.0357 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx <= 453.667 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx !<= 453.667 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C12dist !<= 393.406 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy <= 0.038 : 6 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= 0.038 : 9 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !<= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop <= 24.0 : 6 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !<= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc <= 14.1421 : 12 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc !<= 14.1421 : 7 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C17nop !<= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx <= 417.0 : 13 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx !<= 417.0 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | C11nop !<= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C11dist <= 12.7279 : 6 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C11dist !<= 12.7279 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | vx <= 0.021 : 13 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | vx !<= 0.021 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | C6nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | C24dist <= 1173.69 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | C24dist !<= 1173.69 : 6 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | C16nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | mtpy <= 419.0 : 16 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | mtpy !<= 419.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | mopy <= 501.577 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | mopy !<= 501.577 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | C18nte !<= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | dco <= 52.3927 : 18 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | dco !<= 52.3927 : 19 (2.0)
| | | | | | | | | | | | | | | | | | | | | oldCity != 15.0 :
| | | | | | | | | | | | | | | | | | | | | | oldCity = 16.0 :
| | | | | | | | | | | | | | | | | | | | | | | C1nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | C17nop > 23.0 : 6 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | C17nop !> 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | vx <= 0.154 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C2nop > 0.0 : 12 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C2nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | C6nop > 0.0 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C6nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C12nop <= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C7nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C12nte > 3.0 : 14 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C12nte !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16dist <= 12.3693 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16dist !<= 12.3693 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte <= 5.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nte > 5.0 : 12 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nte !> 5.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nte > 3.0 : 14 (9.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nte !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 0.0 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 19.4165 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 19.4165 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop > 0.0 : 14 (6.0)
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| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte <= 13.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop <= 197.709 : 11 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !<= 197.709 : 14 (10.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !<= 13.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop > 18.0 : 14 (25.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop !> 18.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte <= 14.2127 : 12 (7.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !<= 14.2127 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 628.304 : 12 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 628.304 : 14 (7.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop > 369.333 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop !> 369.333 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy <= 101.203 : 14 (9.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= 101.203 : 12 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !<= 5.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 526.231 : 14 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 526.231 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C7nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc <= 14.1421 : 13 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc !<= 14.1421 : 14 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dct > 208.082 : 12 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dct !> 208.082 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24dist <= 986.071 : 10 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24dist !<= 986.071 : 8 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C12nop !<= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C12nop <= 24.0 : 10 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C12nop !<= 24.0 : 14 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | vx !<= 0.154 :
| | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 664.333 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 664.333 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | C1nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | mopy <= 445.609 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | mopy !<= 445.609 : 14 (2.0)
| | | | | | | | | | | | | | | | | | | | | | oldCity != 16.0 :
| | | | | | | | | | | | | | | | | | | | | | | oldCity = 17.0 :
| | | | | | | | | | | | | | | | | | | | | | | | C15nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | C12nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C8nte <= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | dcuc <= 666.325 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop <= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C2nop > 0.0 : 2 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C2nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C9nop <= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy <= -0.148 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8dist <= 409.941 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy <= -0.153 : 19 (8.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= -0.153 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8dist !<= 409.941 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 574.417 : 14 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 574.417 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= -0.148 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop > 24.0 : 8 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !> 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ply <= 335.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5dist <= 858.242 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy <= 438.792 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy !<= 438.792 : 20 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5dist !<= 858.242 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dco <= 130.138 : 9 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dco !<= 130.138 : 16 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ply !<= 335.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | plx <= 884.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C7nop > 24.0 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C7nop !> 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nop <= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 3.0 : 9 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 11.7047 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 586.609 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 586.609 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 11.7047 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte <= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop <= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop > 0.0 : 9 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop > 6.0 : 9 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !> 6.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop > 6.0 : 9 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop !> 6.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx > 411.539 : 3 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !> 411.539 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop > 0.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy > 0.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto <= 14.0 : 11 (8.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !<= 14.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist > 3.0 : 9 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop > 6.0 : 19 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop !> 6.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop > 5.0 : 9 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop !> 5.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24nop <= 12.6491 : 9 (10.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24nop !<= 12.6491 : 19 (27.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !<= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11dist <= 49.1935 : 19 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11dist !<= 49.1935 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 581.385 : 14 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 581.385 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !<= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist > 5.0 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist !> 5.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nte > -0.05 : 11 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nte !> -0.05 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C15nte <= 470.696 : 19 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C15nte !<= 470.696 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nop !<= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 624.333 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 624.333 : 9 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | plx !<= 884.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo <= 18.0 : 1 (2.0)
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| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo !<= 18.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy <= 0.0010 : 22 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= 0.0010 : 19 (9.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C9nop !<= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ply <= 884.0 : 9 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ply !<= 884.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 655.125 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 655.125 : 5 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop !<= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop <= 24.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop !<= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dct <= 71.0634 : 2 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dct !<= 71.0634 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | dcuc !<= 666.325 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C3dist <= 238.355 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C23nop > 0.0 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C23nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vx <= -0.103 : 4 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vx !<= -0.103 : 23 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C3dist !<= 238.355 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5nop > 0.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc <= 12.7279 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc !<= 12.7279 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ply <= 233.0 : 10 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ply !<= 233.0 : 20 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C8nte !<= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | cto <= 1.0 : 12 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | cto !<= 1.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | ply <= 133.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | ply !<= 133.0 : 7 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | C12nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | plx <= 344.0 : 8 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | plx !<= 344.0 : 3 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | C15nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 618.609 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 618.609 : 15 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | oldCity != 17.0 :
| | | | | | | | | | | | | | | | | | | | | | | | C3nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | C1nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C15nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | C24nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C9nte > 3.0 : 19 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C9nte !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop <= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto <= 1.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto <= 0.0 : 9 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nop > 0.0 : 16 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 461.707 : 20 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 461.707 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !<= 1.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C22nte > 6.0 : 19 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C22nte !> 6.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop > 0.0 : 13 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C20nte <= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 21.0 : 16 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 0.131 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte > 3.0 : 14 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop > 23.0 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !> 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop <= 6.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop > 3.0 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx > 0.0 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop > 0.0 : 14 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= -0.0040 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy <= 269.833 : 16 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= 269.833 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto > 28.8444 : 14 (24.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !> 28.8444 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist <= 692.385 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17dist !<= 692.385 : 14 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= -0.0040 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop > 3.0 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nop !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24nop <= 374.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11dist <= 16.0 : 14 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11dist !<= 16.0 : 20 (7.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24nop !<= 374.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nte <= 654.378 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nte !<= 654.378 : 14 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !<= 6.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C15nte <= 518.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C15nte !<= 518.0 : 14 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 0.131 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx > 0.0 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C15nte <= 474.231 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C15nte !<= 474.231 : 23 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nte <= 13.6015 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nte !<= 13.6015 : 19 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C20nte !<= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 886.5 : 19 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 886.5 : 20 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | plx <= 451.0 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | plx !<= 451.0 : 7 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop !<= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 646.792 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 646.792 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C21dist <= 424.924 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx <= 535.0 : 15 (2.0)
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| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx !<= 535.0 : 22 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C21dist !<= 424.924 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo <= 19.0 : 19 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo !<= 19.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto <= 2.0 : 3 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !<= 2.0 : 14 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nte <= 3.0 : 20 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nte !<= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy <= 0.011 : 16 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= 0.011 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nte <= 3.0 : 13 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nte !<= 3.0 : 11 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C24nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | vx <= -0.025 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | ply <= 870.0 : 24 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | ply !<= 870.0 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | vx !<= -0.025 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 590.5 : 20 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 590.5 : 19 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C15nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | cto <= 3.0 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | cto !<= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | coo <= 13.0 : 10 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | coo !<= 13.0 : 13 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | C1nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C1nte <= 3.0 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C1nte !<= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | C21dist <= 455.439 : 20 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C21dist !<= 455.439 : 4 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | C3nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | C3nop <= 23.0 : 3 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | C3nop !<= 23.0 : 5 (2.0)
C4h3 !<= 4.36315E-5 :
| C4N = 0.0 :
| | C5N = 0.0 :
| | | C4h3 <= 0.00102719 :
| | | | C19N = 0.0 :
| | | | | oldCity = 1.0 : 1 (0.0)
| | | | | oldCity != 1.0 :
| | | | | | oldCity = 3.0 : 1 (0.0)
| | | | | | oldCity != 3.0 :
| | | | | | | oldCity = 4.0 : 1 (0.0)
| | | | | | | oldCity != 4.0 :
| | | | | | | | oldCity = 6.0 : 1 (0.0)
| | | | | | | | oldCity != 6.0 :
| | | | | | | | | oldCity = 7.0 : 1 (0.0)
| | | | | | | | | oldCity != 7.0 :
| | | | | | | | | | oldCity = 8.0 : 1 (0.0)
| | | | | | | | | | oldCity != 8.0 :
| | | | | | | | | | | oldCity = 9.0 : 1 (0.0)
| | | | | | | | | | | oldCity != 9.0 :
| | | | | | | | | | | | oldCity = 10.0 : 1 (0.0)
| | | | | | | | | | | | oldCity != 10.0 :
| | | | | | | | | | | | | oldCity = 11.0 : 1 (0.0)
| | | | | | | | | | | | | oldCity != 11.0 :
| | | | | | | | | | | | | | oldCity = 12.0 : 1 (0.0)
| | | | | | | | | | | | | | oldCity != 12.0 :
| | | | | | | | | | | | | | | oldCity = 13.0 : 1 (0.0)
| | | | | | | | | | | | | | | oldCity != 13.0 :
| | | | | | | | | | | | | | | | oldCity = 14.0 : 1 (0.0)
| | | | | | | | | | | | | | | | oldCity != 14.0 :
| | | | | | | | | | | | | | | | | oldCity = 15.0 : 1 (0.0)
| | | | | | | | | | | | | | | | | oldCity != 15.0 :
| | | | | | | | | | | | | | | | | | oldCity = 16.0 : 1 (0.0)
| | | | | | | | | | | | | | | | | | oldCity != 16.0 :
| | | | | | | | | | | | | | | | | | | oldCity = 17.0 : 1 (0.0)
| | | | | | | | | | | | | | | | | | | oldCity != 17.0 :
| | | | | | | | | | | | | | | | | | | | oldCity = 18.0 : 1 (0.0)
| | | | | | | | | | | | | | | | | | | | oldCity != 18.0 :
| | | | | | | | | | | | | | | | | | | | | oldCity = 22.0 : 1 (0.0)
| | | | | | | | | | | | | | | | | | | | | oldCity != 22.0 :
| | | | | | | | | | | | | | | | | | | | | | oldCity = 24.0 : 1 (0.0)
| | | | | | | | | | | | | | | | | | | | | | oldCity != 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | oldCity = 2.0 :
| | | | | | | | | | | | | | | | | | | | | | | | C9dist <= 476.319 :
| | | | | | | | | | | | | | | | | | | | | | | | | dcc <= 14.0 : 20 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | dcc !<= 14.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | mopy <= 481.231 : 1 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | mopy !<= 481.231 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | C9dist !<= 476.319 :
| | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C22nte > 3.0 : 5 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C22nte !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | C21nte > 0.0 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C21nte !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C24nop > 24.0 : 23 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C24nop !> 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop > 0.0 : 23 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy <= 595.8 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto > 7.0 : 3 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !> 7.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C3nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 206.247 : 23 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 206.247 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity > 0.0 : 23 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop > 513.701 : 3 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !> 513.701 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte <= -0.039 : 3 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !<= -0.039 : 1 (20.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C3nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | plx <= 1102.0 : 23 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | plx !<= 1102.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 69.6419 : 4 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 69.6419 : 1 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy !<= 595.8 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C23dist <= 346.217 : 3 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C23dist !<= 346.217 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C21dist <= 376.809 : 9 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C21dist !<= 376.809 : 3 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | oldCity != 2.0 :
| | | | | | | | | | | | | | | | | | | | | | | | oldCity = 5.0 :
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| | | | | | | | | | | | | | | | | | | | | | | | | C10nop <= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C5nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | C3nop > 23.0 : 3 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C3nop !> 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx <= 545.167 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | dco > 247.194 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | dco !> 247.194 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nte > 0.0 : 6 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nte !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto <= 3.0 : 11 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !<= 3.0 : 24 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx !<= 545.167 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte > 0.0 : 14 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C21nop > 0.0 : 4 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C21nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nte > 0.0 : 3 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nte !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C2nop > 0.0 : 3 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C2nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy <= 567.8 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 24.0 : 3 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 702.375 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 1.0 : 20 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 1.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte <= 410.67 : 23 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !<= 410.67 : 1 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 702.375 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop > 0.0 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop <= 192.271 : 1 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !<= 192.271 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop <= 13.8924 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= -0.037 : 1 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= -0.037 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop <= 419.609 : 24 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop !<= 419.609 : 19 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop !<= 13.8924 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop > 3.0 : 24 (21.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop <= 192.762 : 2 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop !<= 192.762 : 24 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy !<= 567.8 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc <= 14.2127 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 0.0 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity > 1020.29 : 18 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !> 1020.29 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 433.714 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 433.714 : 24 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc !<= 14.2127 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 487.111 : 4 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 487.111 : 3 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C5nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | vy <= 0.012 : 22 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= 0.012 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx <= 861.667 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx !<= 861.667 : 3 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | C10nop !<= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | coo <= 22.0 : 6 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | coo !<= 22.0 : 4 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | oldCity != 5.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | oldCity = 19.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | C16nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | C13nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nte <= 5.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo <= 16.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dco <= 12.083 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24dist <= 540.72 : 9 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24dist !<= 540.72 : 3 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dco !<= 12.083 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C3nte <= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C22nop > 0.0 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C22nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13dist <= 110.164 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13dist !<= 110.164 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 21.0 : 18 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= -0.011 : 17 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= -0.011 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop > 21.0 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !> 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte <= 453.282 : 18 (11.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !<= 453.282 : 1 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C3nte !<= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy <= 483.5 : 18 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy !<= 483.5 : 23 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo !<= 16.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C2nop > 0.0 : 4 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C2nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5dist <= 672.507 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C3nop <= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C23nte <= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 0.0 : 5 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 528.692 : 23 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 528.692 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 594.5 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte > 2.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !> 2.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop <= 326.956 : 24 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !<= 326.956 : 5 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 594.5 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop > 0.0 : 1 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop <= 543.659 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 13.9284 : 17 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 13.9284 : 22 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop !<= 543.659 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop <= 485.167 : 17 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop !<= 485.167 : 1 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nop !<= 0.0 :
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| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 437.423 : 3 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 437.423 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 537.375 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 537.375 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 490.522 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 490.522 : 22 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C23nte !<= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 21.0 : 24 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 474.308 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 474.308 : 2 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C3nop !<= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 232.573 : 18 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 232.573 : 2 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5dist !<= 672.507 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19dist <= 224.849 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo <= 20.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 223.652 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 223.652 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 622.81 : 22 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 622.81 : 20 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo !<= 20.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 21.0 : 18 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 21.0 : 9 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19dist !<= 224.849 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 0.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity > 21.0 : 5 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !> 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 10.2956 : 5 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 10.2956 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte <= 499.385 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop > 191.638 : 17 (11.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !> 191.638 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop <= 13.6015 : 17 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !<= 13.6015 : 11 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !<= 499.385 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop <= 451.367 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !<= 451.367 : 9 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nop <= 23.0 : 4 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nop !<= 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13dist > 114.726 : 24 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13dist !> 114.726 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy <= 0.075 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= 0.075 : 18 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcoc > 340.852 : 20 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcoc !> 340.852 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | plx <= 1149.0 : 22 (9.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | plx !<= 1149.0 : 9 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nte !<= 5.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy <= 395.524 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy !<= 395.524 : 23 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C13nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | dcuc > 430.298 : 7 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | dcuc !> 430.298 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5dist > 876.097 : 11 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5dist !> 876.097 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 558.13 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 558.13 : 18 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | C16nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | C24dist <= 732.446 : 18 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C24dist !<= 732.446 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | oldCity != 19.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | oldCity = 20.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | C19nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C9dist <= 858.597 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C22nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C15nte <= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | plx <= 354.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C20dist <= 435.58 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy <= 0.048 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop > 0.0 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy <= 0.036 : 16 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= 0.036 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= 0.048 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 584.5 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 584.5 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C20dist !<= 435.58 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C23dist <= 810.987 : 21 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C23dist !<= 810.987 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | plx !<= 354.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy <= 528.087 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24nte > 3.0 : 18 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24nte !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5dist <= 853.663 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 422.143 : 13 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 422.143 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy > 521.115 : 9 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy !> 521.115 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 23.0 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity > 6.0 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !> 6.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 249.0 : 18 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 249.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte > 23.0 : 21 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !> 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop <= 151.212 : 3 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !<= 151.212 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop <= 458.0 : 21 (11.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !<= 458.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop <= 0.069 : 23 (13.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop !<= 0.069 : 21 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 14.0357 : 3 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 14.0357 : 23 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5dist !<= 853.663 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcoc <= 14.4222 : 14 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcoc !<= 14.4222 : 18 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy !<= 528.087 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcuc <= 14.7648 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcuc !<= 14.7648 :
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| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy <= 575.538 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dco <= 13.6015 : 13 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dco !<= 13.6015 : 18 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy !<= 575.538 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5dist <= 677.956 : 18 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5dist !<= 677.956 : 23 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C15nte !<= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 698.038 : 14 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 698.038 : 12 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C22nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24dist <= 50.5371 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C23dist <= 502.594 : 23 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C23dist !<= 502.594 : 19 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24dist !<= 50.5371 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy <= 510.25 : 24 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy !<= 510.25 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C9dist !<= 858.597 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo <= 19.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcuc <= 14.2127 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C1nop > 21.0 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C1nop !> 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dct <= 232.034 : 19 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dct !<= 232.034 : 23 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcuc !<= 14.2127 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc <= 14.4222 : 3 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc !<= 14.4222 : 2 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy <= 475.154 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy !<= 475.154 : 23 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo !<= 19.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5nte > 3.0 : 3 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5nte !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C21dist <= 463.039 : 2 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C21dist !<= 463.039 : 13 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C19nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | cto <= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 606.667 : 2 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 606.667 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !<= 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C23dist <= 321.204 : 24 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C23dist !<= 321.204 : 19 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | oldCity != 20.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity = 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C23nop > 24.0 : 5 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | C23nop !> 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8dist <= 386.374 : 12 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8dist !<= 386.374 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nte > 0.0 : 17 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C17nte !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4nop > 0.0 : 3 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C20dist > 565.836 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C20dist !> 565.836 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy <= -0.011 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vx > 0.044 : 23 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vx !> 0.044 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy <= 445.042 : 20 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy !<= 445.042 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= -0.011 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24dist <= 606.36 : 20 (17.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C24dist !<= 606.36 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity != 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | vx <= 0.192 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 520.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C3nop > 0.0 : 16 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C3nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C1nte > 0.0 : 19 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C1nte !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19dist <= 239.708 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vx <= 0.021 : 21 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vx !<= 0.021 : 14 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19dist !<= 239.708 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy > 0.048 : 18 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !> 0.048 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy <= -0.035 : 17 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= -0.035 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc <= 14.1421 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc !<= 14.1421 : 20 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 520.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nop > 0.0 : 15 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C8nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C9nop > 24.0 : 20 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C9nop !> 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5nte > 3.0 : 2 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5nte !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C2dist <= 14.1421 : 3 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C2dist !<= 14.1421 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C3nop <= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nte > 6.0 : 1 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nte !> 6.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy <= -0.146 : 5 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vy !<= -0.146 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C20nte <= 6.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 365.059 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 365.059 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 16.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop > 0.0 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte > 22.6274 : 5 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !> 22.6274 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop <= 507.0 : 19 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !<= 507.0 : 20 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 16.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop > 3.0 : 20 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity > 21.0 : 20 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !> 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 8.06226 : 20 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 8.06226 : 1 (34.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop <= 509.538 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop !<= 509.538 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C20nte !<= 6.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 572.375 : 18 (2.0)
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| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 572.375 : 20 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C3nop !<= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | plx <= 1106.0 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | plx !<= 1106.0 : 3 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | vx !<= 0.192 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo <= 18.0 : 21 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo !<= 18.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 614.783 : 13 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 614.783 : 16 (2.0)
| | | | C19N != 0.0 :
| | | | | C23nte > 3.0 : 23 (3.0)
| | | | | C23nte !> 3.0 :
| | | | | | C13nte > 0.0 : 3 (2.0)
| | | | | | C13nte !> 0.0 :
| | | | | | | C20nte <= 0.0 :
| | | | | | | | C10nop > 0.0 : 12 (2.0)
| | | | | | | | C10nop !> 0.0 :
| | | | | | | | | C14nop <= 0.0 :
| | | | | | | | | | C11nop > 24.0 : 5 (2.0)
| | | | | | | | | | C11nop !> 24.0 :
| | | | | | | | | | | C5nop <= 23.0 :
| | | | | | | | | | | | C22nop > 24.0 : 11 (2.0)
| | | | | | | | | | | | C22nop !> 24.0 :
| | | | | | | | | | | | | C15nte <= 0.0 :
| | | | | | | | | | | | | | C5nop > 21.0 : 3 (2.0)
| | | | | | | | | | | | | | C5nop !> 21.0 :
| | | | | | | | | | | | | | | C4h3 > 0.0 : 5 (2.0)
| | | | | | | | | | | | | | | C4h3 !> 0.0 :
| | | | | | | | | | | | | | | | oldCity > 24.0 : 17 (3.0)
| | | | | | | | | | | | | | | | oldCity !> 24.0 :
| | | | | | | | | | | | | | | | | C18nop > 909.555 : 17 (6.0)
| | | | | | | | | | | | | | | | | C18nop !> 909.555 :
| | | | | | | | | | | | | | | | | | C11nte <= 0.0 :
| | | | | | | | | | | | | | | | | | | C10nop <= 14.0357 : 24 (8.0)
| | | | | | | | | | | | | | | | | | | C10nop !<= 14.0357 :
| | | | | | | | | | | | | | | | | | | | C14nop <= 6.0 :
| | | | | | | | | | | | | | | | | | | | | C16nop <= -0.05 : 19 (13.0)
| | | | | | | | | | | | | | | | | | | | | C16nop !<= -0.05 :
| | | | | | | | | | | | | | | | | | | | | | C10nop <= 14.3178 : 19 (5.0)
| | | | | | | | | | | | | | | | | | | | | | C10nop !<= 14.3178 : 24 (37.0)
| | | | | | | | | | | | | | | | | | | | C14nop !<= 6.0 :
| | | | | | | | | | | | | | | | | | | | | C10nop <= 418.862 : 24 (2.0)
| | | | | | | | | | | | | | | | | | | | | C10nop !<= 418.862 : 19 (3.0)
| | | | | | | | | | | | | | | | | | C11nte !<= 0.0 :
| | | | | | | | | | | | | | | | | | | mopx > 5.0 : 11 (2.0)
| | | | | | | | | | | | | | | | | | | mopx !> 5.0 :
| | | | | | | | | | | | | | | | | | | | C13nop <= 595.957 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | C13nop !<= 595.957 : 24 (4.0)
| | | | | | | | | | | | | C15nte !<= 0.0 :
| | | | | | | | | | | | | | mtpy <= 559.333 : 15 (2.0)
| | | | | | | | | | | | | | mtpy !<= 559.333 : 19 (2.0)
| | | | | | | | | | | C5nop !<= 23.0 :
| | | | | | | | | | | | C5nop <= 24.0 : 5 (2.0)
| | | | | | | | | | | | C5nop !<= 24.0 :
| | | | | | | | | | | | | dco <= 272.391 : 1 (2.0)
| | | | | | | | | | | | | dco !<= 272.391 : 24 (2.0)
| | | | | | | | | C14nop !<= 0.0 :
| | | | | | | | | | mopx <= 545.308 : 18 (2.0)
| | | | | | | | | | mopx !<= 545.308 : 11 (2.0)
| | | | | | | C20nte !<= 0.0 :
| | | | | | | | ply <= 355.0 :
| | | | | | | | | mtpy <= 581.6 : 24 (2.0)
| | | | | | | | | mtpy !<= 581.6 : 7 (2.0)
| | | | | | | | ply !<= 355.0 :
| | | | | | | | | C24dist <= 575.243 : 20 (3.0)
| | | | | | | | | C24dist !<= 575.243 : 18 (2.0)
| | | C4h3 !<= 0.00102719 :
| | | | oldCity = 2.0 : 3 (0.0)
| | | | oldCity != 2.0 :
| | | | | oldCity = 3.0 : 3 (0.0)
| | | | | oldCity != 3.0 :
| | | | | | oldCity = 5.0 : 3 (0.0)
| | | | | | oldCity != 5.0 :
| | | | | | | oldCity = 6.0 : 3 (0.0)
| | | | | | | oldCity != 6.0 :
| | | | | | | | oldCity = 7.0 : 3 (0.0)
| | | | | | | | oldCity != 7.0 :
| | | | | | | | | oldCity = 8.0 : 3 (0.0)
| | | | | | | | | oldCity != 8.0 :
| | | | | | | | | | oldCity = 9.0 : 3 (0.0)
| | | | | | | | | | oldCity != 9.0 :
| | | | | | | | | | | oldCity = 10.0 : 3 (0.0)
| | | | | | | | | | | oldCity != 10.0 :
| | | | | | | | | | | | oldCity = 11.0 : 3 (0.0)
| | | | | | | | | | | | oldCity != 11.0 :
| | | | | | | | | | | | | oldCity = 12.0 : 3 (0.0)
| | | | | | | | | | | | | oldCity != 12.0 :
| | | | | | | | | | | | | | oldCity = 13.0 : 3 (0.0)
| | | | | | | | | | | | | | oldCity != 13.0 :
| | | | | | | | | | | | | | | oldCity = 14.0 : 3 (0.0)
| | | | | | | | | | | | | | | oldCity != 14.0 :
| | | | | | | | | | | | | | | | oldCity = 15.0 : 3 (0.0)
| | | | | | | | | | | | | | | | oldCity != 15.0 :
| | | | | | | | | | | | | | | | | oldCity = 16.0 : 3 (0.0)
| | | | | | | | | | | | | | | | | oldCity != 16.0 :
| | | | | | | | | | | | | | | | | | oldCity = 17.0 : 3 (0.0)
| | | | | | | | | | | | | | | | | | oldCity != 17.0 :
| | | | | | | | | | | | | | | | | | | oldCity = 18.0 : 3 (0.0)
| | | | | | | | | | | | | | | | | | | oldCity != 18.0 :
| | | | | | | | | | | | | | | | | | | | oldCity = 19.0 : 3 (0.0)
| | | | | | | | | | | | | | | | | | | | oldCity != 19.0 :
| | | | | | | | | | | | | | | | | | | | | oldCity = 20.0 : 3 (0.0)
| | | | | | | | | | | | | | | | | | | | | oldCity != 20.0 :
| | | | | | | | | | | | | | | | | | | | | | oldCity = 21.0 : 3 (0.0)
| | | | | | | | | | | | | | | | | | | | | | oldCity != 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | oldCity = 22.0 : 3 (0.0)
| | | | | | | | | | | | | | | | | | | | | | | oldCity != 22.0 :
| | | | | | | | | | | | | | | | | | | | | | | | oldCity = 23.0 : 3 (0.0)
| | | | | | | | | | | | | | | | | | | | | | | | oldCity != 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | oldCity = 24.0 : 3 (0.0)
| | | | | | | | | | | | | | | | | | | | | | | | | oldCity != 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | oldCity = 1.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop > 0.0 : 17 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | ply <= 279.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo <= 20.0 : 5 (4.0)
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| | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo !<= 20.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy <= 427.167 : 18 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy !<= 427.167 : 4 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | ply !<= 279.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C20nop <= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto <= 1.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc > 14.2127 : 2 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc !> 14.2127 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc <= 11.4018 : 5 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc !<= 11.4018 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx <= 690.0 : 19 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpx !<= 690.0 : 3 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cto !<= 1.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nte > 3.0 : 2 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C19nte !> 3.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcoc <= 397.554 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C22nop <= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C1nop <= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dct <= 10.2956 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 683.762 : 23 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 683.762 : 5 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dct !<= 10.2956 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx > 609.231 : 3 (22.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !> 609.231 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 77.9295 : 2 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 77.9295 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity <= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop <= 382.167 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte > 23.0 : 3 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C11nte !> 23.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop <= 558.323 : 2 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C10nop !<= 558.323 : 3 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C18nop !<= 382.167 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop > 513.696 : 2 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C14nop !> 513.696 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop <= 49.6488 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 > 134.213 : 23 (7.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !> 134.213 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 6.0 : 2 (7.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 6.0 : 23 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop !<= 49.6488 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop <= 114.543 : 3 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C16nop !<= 114.543 : 23 (8.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | oldCity !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop <= 520.827 : 23 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop !<= 520.827 : 3 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C1nop !<= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vx <= -0.048 : 4 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vx !<= -0.048 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C1nop <= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 14.3178 : 2 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 14.3178 : 3 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C1nop !<= 24.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 <= 143.837 : 5 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C4h3 !<= 143.837 : 3 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C22nop !<= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vx <= -0.048 : 5 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | vx !<= -0.048 : 23 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dcoc !<= 397.554 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy <= 495.75 : 18 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mtpy !<= 495.75 : 23 (5.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C13nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ply <= 401.0 : 23 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ply !<= 401.0 : 2 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | C20nop !<= 21.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx <= 533.5 : 23 (6.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !<= 533.5 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx > 576.962 : 2 (4.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopx !> 576.962 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy <= 433.808 : 9 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | mopy !<= 433.808 : 8 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | oldCity != 1.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | C16nte > 0.0 : 10 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | C16nte !> 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc <= 4.47214 : 14 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | dcc !<= 4.47214 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo <= 13.0 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | coo !<= 13.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5nop <= 0.0 : 3 (84.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | C5nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ply <= 765.0 : 2 (3.0)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ply !<= 765.0 : 3 (3.0)
| | C5N != 0.0 :
| | | C19nop <= 23.0 :
| | | | C20nop <= 0.0 :
| | | | | coo <= 22.0 :
| | | | | | C19dist <= 569.088 :
| | | | | | | C4nte > 5.0 : 19 (2.0)
| | | | | | | C4nte !> 5.0 :
| | | | | | | | C4nte > 0.0 : 5 (2.0)
| | | | | | | | C4nte !> 0.0 :
| | | | | | | | | C17nte <= 0.0 :
| | | | | | | | | | C24nte <= 0.0 :
| | | | | | | | | | | vy <= 0.029 :
| | | | | | | | | | | | coo > 20.0 : 22 (13.0)
| | | | | | | | | | | | coo !> 20.0 :
| | | | | | | | | | | | | mtpy > 701.8 : 5 (4.0)
| | | | | | | | | | | | | mtpy !> 701.8 :
| | | | | | | | | | | | | | mopx > 655.0 : 5 (4.0)
| | | | | | | | | | | | | | mopx !> 655.0 :
| | | | | | | | | | | | | | | C4h3 <= 0.0 : 22 (23.0)
| | | | | | | | | | | | | | | C4h3 !<= 0.0 :
| | | | | | | | | | | | | | | | oldCity <= -0.0070 : 5 (4.0)
| | | | | | | | | | | | | | | | oldCity !<= -0.0070 : 22 (4.0)
| | | | | | | | | | | vy !<= 0.029 :
| | | | | | | | | | | | vy > 0.099 : 22 (4.0)
| | | | | | | | | | | | vy !> 0.099 :
| | | | | | | | | | | | | ply <= 456.0 : 21 (4.0)
| | | | | | | | | | | | | ply !<= 456.0 : 5 (6.0)
| | | | | | | | | | C24nte !<= 0.0 :
| | | | | | | | | | | ply <= 859.0 : 5 (2.0)
| | | | | | | | | | | ply !<= 859.0 : 22 (5.0)
| | | | | | | | | C17nte !<= 0.0 :
| | | | | | | | | | dct <= 221.576 : 17 (3.0)
| | | | | | | | | | dct !<= 221.576 : 22 (7.0)
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| | | | | | C19dist !<= 569.088 :
| | | | | | | mtpy <= 567.2 : 4 (3.0)
| | | | | | | mtpy !<= 567.2 : 22 (3.0)
| | | | | coo !<= 22.0 :
| | | | | | C17nte > 3.0 : 16 (2.0)
| | | | | | C17nte !> 3.0 :
| | | | | | | mopx <= 641.308 : 22 (7.0)
| | | | | | | mopx !<= 641.308 : 7 (3.0)
| | | | C20nop !<= 0.0 :
| | | | | coo <= 18.0 : 19 (3.0)
| | | | | coo !<= 18.0 : 14 (3.0)
| | | C19nop !<= 23.0 :
| | | | coo <= 20.0 : 1 (3.0)
| | | | coo !<= 20.0 : 7 (2.0)
| C4N != 0.0 :
| | C11nop <= 0.0 :
| | | C16nop <= 0.0 :
| | | | C24nop <= 24.0 :
| | | | | cto <= 1.0 :
| | | | | | C5dist <= 673.933 :
| | | | | | | C20nop > 0.0 : 4 (3.0)
| | | | | | | C20nop !> 0.0 :
| | | | | | | | C2dist <= 128.6 : 2 (3.0)
| | | | | | | | C2dist !<= 128.6 : 5 (4.0)
| | | | | | C5dist !<= 673.933 :
| | | | | | | mopy <= 515.538 : 17 (2.0)
| | | | | | | mopy !<= 515.538 : 1 (2.0)
| | | | | cto !<= 1.0 :
| | | | | | C13nte > 0.0 : 4 (2.0)
| | | | | | C13nte !> 0.0 :
| | | | | | | C14nte <= 3.0 :
| | | | | | | | C19nte <= 0.0 :
| | | | | | | | | C8dist <= 391.261 :
| | | | | | | | | | mtpy <= 495.75 : 5 (2.0)
| | | | | | | | | | mtpy !<= 495.75 : 15 (2.0)
| | | | | | | | | C8dist !<= 391.261 :
| | | | | | | | | | C3nop <= 23.0 :
| | | | | | | | | | | C1nop <= 24.0 :
| | | | | | | | | | | | C24nte <= 0.0 :
| | | | | | | | | | | | | dcoc <= 167.61 :
| | | | | | | | | | | | | | C20nte <= 3.0 :
| | | | | | | | | | | | | | | C4h3 > 0.0 : 1 (2.0)
| | | | | | | | | | | | | | | C4h3 !> 0.0 :
| | | | | | | | | | | | | | | | oldCity > 23.0 : 1 (4.0)
| | | | | | | | | | | | | | | | oldCity !> 23.0 :
| | | | | | | | | | | | | | | | | C18nop > 3.0 : 4 (2.0)
| | | | | | | | | | | | | | | | | C18nop !> 3.0 :
| | | | | | | | | | | | | | | | | | C11nte <= 3.0 :
| | | | | | | | | | | | | | | | | | | C10nop <= 0.0 :
| | | | | | | | | | | | | | | | | | | | C14nop <= 113.071 :
| | | | | | | | | | | | | | | | | | | | | C16nop > 23.0 : 4 (6.0)
| | | | | | | | | | | | | | | | | | | | | C16nop !> 23.0 :
| | | | | | | | | | | | | | | | | | | | | | mopx <= 16.0 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | | | mopx !<= 16.0 :
| | | | | | | | | | | | | | | | | | | | | | | C13nop <= 14.7648 : 4 (27.0)
| | | | | | | | | | | | | | | | | | | | | | | C13nop !<= 14.7648 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | C14nop !<= 113.071 :
| | | | | | | | | | | | | | | | | | | | | vy <= -0.197 : 4 (2.0)
| | | | | | | | | | | | | | | | | | | | | vy !<= -0.197 : 1 (9.0)
| | | | | | | | | | | | | | | | | | | C10nop !<= 0.0 :
| | | | | | | | | | | | | | | | | | | | cto <= 501.0 : 1 (2.0)
| | | | | | | | | | | | | | | | | | | | cto !<= 501.0 : 4 (2.0)
| | | | | | | | | | | | | | | | | | C11nte !<= 3.0 :
| | | | | | | | | | | | | | | | | | | C17dist <= 446.75 : 4 (2.0)
| | | | | | | | | | | | | | | | | | | C17dist !<= 446.75 : 5 (2.0)
| | | | | | | | | | | | | | C20nte !<= 3.0 :
| | | | | | | | | | | | | | | C4h3 <= 540.333 : 23 (2.0)
| | | | | | | | | | | | | | | C4h3 !<= 540.333 :
| | | | | | | | | | | | | | | | oldCity <= 938.667 : 4 (4.0)
| | | | | | | | | | | | | | | | oldCity !<= 938.667 : 2 (2.0)
| | | | | | | | | | | | | dcoc !<= 167.61 :
| | | | | | | | | | | | | | C5nop > 24.0 : 4 (2.0)
| | | | | | | | | | | | | | C5nop !> 24.0 :
| | | | | | | | | | | | | | | dco <= 6.08276 :
| | | | | | | | | | | | | | | | C4h3 <= 490.609 : 2 (2.0)
| | | | | | | | | | | | | | | | C4h3 !<= 490.609 : 1 (2.0)
| | | | | | | | | | | | | | | dco !<= 6.08276 :
| | | | | | | | | | | | | | | | C4h3 <= 485.923 : 1 (14.0)
| | | | | | | | | | | | | | | | C4h3 !<= 485.923 : 5 (9.0)
| | | | | | | | | | | | C24nte !<= 0.0 :
| | | | | | | | | | | | | mopx <= 579.885 : 2 (2.0)
| | | | | | | | | | | | | mopx !<= 579.885 : 4 (2.0)
| | | | | | | | | | | C1nop !<= 24.0 :
| | | | | | | | | | | | dcuc > 14.2127 : 1 (6.0)
| | | | | | | | | | | | dcuc !> 14.2127 :
| | | | | | | | | | | | | coo <= 19.0 : 4 (3.0)
| | | | | | | | | | | | | coo !<= 19.0 : 1 (2.0)
| | | | | | | | | | C3nop !<= 23.0 :
| | | | | | | | | | | C3nop <= 24.0 : 23 (2.0)
| | | | | | | | | | | C3nop !<= 24.0 :
| | | | | | | | | | | | dco <= 11.0 : 5 (2.0)
| | | | | | | | | | | | dco !<= 11.0 :
| | | | | | | | | | | | | vx <= 0.087 : 1 (4.0)
| | | | | | | | | | | | | vx !<= 0.087 : 2 (2.0)
| | | | | | | | C19nte !<= 0.0 :
| | | | | | | | | vx <= -0.051 : 24 (3.0)
| | | | | | | | | vx !<= -0.051 :
| | | | | | | | | | ply > 568.0 : 1 (3.0)
| | | | | | | | | | ply !> 568.0 :
| | | | | | | | | | | mopy <= 465.208 : 2 (2.0)
| | | | | | | | | | | mopy !<= 465.208 : 5 (2.0)
| | | | | | | C14nte !<= 3.0 :
| | | | | | | | mtpy <= 409.667 : 1 (2.0)
| | | | | | | | mtpy !<= 409.667 : 17 (2.0)
| | | | C24nop !<= 24.0 :
| | | | | coo <= 19.0 : 5 (3.0)
| | | | | coo !<= 19.0 : 22 (2.0)
| | | C16nop !<= 0.0 :
| | | | coo > 22.0 : 4 (2.0)
| | | | coo !> 22.0 :
| | | | | mopx <= 609.833 : 14 (2.0)
| | | | | mopx !<= 609.833 : 15 (2.0)
| | C11nop !<= 0.0 :
| | | mopx <= 611.571 : 9 (2.0)
| | | mopx !<= 611.571 : 17 (2.0)
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