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Abstract: Induction motor (IM) drives have tremendous applications as high-performance drives in 
things such as mine winders, machine tools, electric vehicles, and elevators. Usually, IM drives con-
trolled by direct torque control are preferred for these applications due to their fast torque control 
and simplicity compared with IM drives with field-oriented control. Proportional–integral–deriva-
tive (PID) controllers are commonly used to control IM drives using DTC. Though these controllers 
are simple and provide excellent response for linear systems with constant set points, they perform 
poorly with variable set points and IM motor parameter uncertainties. Hence, many control tech-
niques and optimization algorithms have been applied to improve IM drive performance. This pa-
per proposes an IM drive controlled using direct torque control principles, but with the power con-
verter operation optimized to give fast torque performance. The IM drive speed response is im-
proved using an optimized fuzzy PID (FPID). The FPID optimization is accomplished by the ant 
colony optimization (ACO) algorithm. All components of the IM drive with the optimized control 
system were simulated using the MATLAB/Simulink platform. The responses of the introduced 
drive using three different controllers—conventional PID, FPID, and optimized FPID—were com-
pared. The simulation results indicate that the optimized FPID controller provided the best perfor-
mance in terms of speed and torque. Additionally, the performance of the IM with the proposed 
optimized FPID under parameter uncertainties was studied. The simulation results indicated the 
robustness of the optimized FPID controller against parameter uncertainties. 

Keywords: ant colony optimization (ACO); fuzzy PID; induction motor (IM); direct torque control 
(DTC) 
 

1. Introduction 
Recently, high-performance IM drives have been widely utilized in modern indus-

trial applications such as mine winders, electric vehicles, elevators, and machine tools. 
Usually, high-performance drives are required to provide speed and accuracy, a wide 
speed control range, and a fast transient response [1–4]. These requirements of high-per-
formance IM drives can be met by improving the torque response of the drive. The dy-
namic torque control of an IM can be achieved using two famous techniques: field orien-
tation and DTC [5]. However, DTC has many advantages over field orientation, such as 
its simplicity, high accuracy, and fast torque response. In addition, the DTC procedure is 
considered to be robust against IM parameter uncertainties [6,7]. 

Traditional DTC has been implemented using hysteresis controllers, which cause a 
broad spectrum of inverter switching frequencies. This issue increases harmonics and 
complicates the filter design of the drive inverter [8]. Constantly sampled DTC has been 
proposed to alleviate the problems caused by hysteresis controllers in traditional DTC. A 
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great deal of research on constant frequency DTC has been proposed [9–13]. However, the 
torque response in DTC has been considered in only a few studies [14,15]. 

In the literature, there are many proposed strategies and improvements that have 
recently been directed toward the torque response of IM drives that utilize DTC. The prin-
ciples of model predictive control (MPC) have been implemented in DTC-controlled IM 
drives [16,17]. The goal of MPC is to calculate the best inverter state to achieve the control 
objectives using a predefined cost function. The method has the advantages of low torque 
and flux ripples as well as high efficiency. However, it is complex, requires many calcula-
tions, and has reduced parameter uncertainty. Sliding-mode control has been introduced 
for DTC-controlled IM drives using feedback linearization in [18]. Though the controller 
was simple, it had high torque ripples and made a lot of noise. Ref. [19] has proposed an 
SVM–DTC algorithm using a super twisting sliding mode controller to improve drive per-
formance. Ref. [20] has introduced and designed an optimal fuzzy controller for DTC-
controlled IM drives. A hybrid control system including a fuzzy controller and a vector-
control method has been developed for IMs in [21]. Ref. [22] has developed a model ref-
erence adaptive control that uses two speed estimators, one utilizing the back EMF and 
the other based on rotor flux. Adaptive neuro-fuzzy is one of the methods used for speed 
control in induction motors, e.g., in [23]. For induction motor drives and speed control, 
the brain emotional learning based on intelligent controller (BELBIC) has been developed 
[24]. Fuzzy and neural network techniques have been utilized for IM drives that use DTC 
[25–28]. Ref. [29] has proposed an implementation setup for a doubly fed IM controlled 
by DTC and optimized using ACO. The system, however, was complex and had to meet 
grid connection system standards. Ref. [30] introduces a new predictive DTC approach 
based on an optimized PWM. Although the idea is simple, the technique has been imple-
mented mainly for permanent magnet synchronous motors. 

Tuning of the proposed controller parameters can be accomplished using optimiza-
tion techniques [31–33]. The results and system responses with these techniques were bet-
ter than those achieved using conventional tuning methods. Nevertheless, these algo-
rithms differ in terms of the complexity of the objective functions and the convergence 
speed. Presently, ACO, which is a metaheuristic optimization algorithm, is applied for 
many optimization problems [34]. Thanks to its simplicity and flexibility in implementa-
tion, the ACO algorithm has many power system applications [35]. In comparison with 
earlier efforts, the speed and torque responses of the proposed IM drive are improved 
using two cascaded optimizations. The first optimization stage is the speed response op-
timization using an FPID controller that has been optimized by the ACO technique. The 
second optimization stage is the optimization of the power converter operation to give 
fast torque performance. Furthermore, the responses of three different controllers (con-
ventional PID, FPID, and optimized FPID) in conjunction with the introduced IM drive 
have been compared. The introduced drive has been tested using step and ramp speed 
disturbances. The IM drive response to model parameter uncertainties and variations in 
the IM parameters have also been studied. 

This paper proposes an IM drive that utilizes direct torque control principles. The 
power converter operation has been optimized for high torque performance. On the other 
hand, the IM drive speed response is optimized using an optimized FPID. The FPID opti-
mization is accomplished using the ACO algorithm. A constant sampling of the proposed 
drive has been implemented. All components of the IM drive with the optimized control 
system have been simulated using the MATLAB/Simulink platform. Comparisons of the 
responses of the introduced drive using three different controllers (conventional PID, 
FPID, and optimized FPID) have been carried out and the effects of the motor parameter 
variations on the optimization processes and drive performance have been studied. 

The manuscript is prepared as follows. The IM modeling is described in Section 2. 
Section 3 explains the proposed DTC and optimum torque response of the IM. Section 4 
explains the ACO algorithm. The design and optimization of the controller using ACO is 
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described in Section 5. Section 6 discusses the results of the simulations. Finally, the re-
search conclusions are presented in Section 7. 

2. Induction Motor Model 
To understand vector control in IM drives and to achieve perfect control aspects, a 

dynamic model of the IM is very important. The two-axis theory of machines provides 
excellent versions of the IM dynamic model based on the reference frame used. A suitable 
reference frame for the DTC of the IM is the stator reference frame [36]. By neglecting the 
slotting effects, iron losses, and air gap nonlinearities and assuming the infinite permea-
bility of the iron parts, a dynamic model of the IM in the stator reference frame is given 
by [36]: 

�𝒗𝒗�𝑠𝑠𝒗𝒗�𝑟𝑟
� = �

𝑟𝑟𝑠𝑠 + 𝑝𝑝𝐿𝐿𝑠𝑠 𝑝𝑝𝐿𝐿𝑚𝑚
(𝑝𝑝−𝑗𝑗𝑗𝑗)𝐿𝐿𝑚𝑚 𝑟𝑟𝑟𝑟 + (𝑝𝑝−𝑗𝑗𝑗𝑗)𝐿𝐿𝑟𝑟

� �𝒊𝒊�̅�𝑠𝒊𝒊�̅�𝑟
�  (1) 

�𝝀𝝀
�𝑠𝑠
𝝀𝝀�𝑟𝑟
� = � 𝐿𝐿𝑠𝑠 𝐿𝐿𝑚𝑚

𝐿𝐿𝑚𝑚 𝐿𝐿𝑟𝑟
� �𝒊𝒊�̅�𝑠𝒊𝒊�̅�𝑟

�  (2) 

𝑇𝑇 = 𝑃𝑃
3𝐿𝐿𝑚𝑚

∙ 𝐼𝐼𝐼𝐼�𝝀𝝀�𝑠𝑠𝝀𝝀�𝑟𝑟∗�  (3) 

𝐽𝐽𝑚𝑚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑇𝑇 − 𝑇𝑇𝑙𝑙 − 𝛽𝛽𝑣𝑣𝑗𝑗  (4) 

where (𝒗𝒗�𝑟𝑟 ,𝒗𝒗�𝑠𝑠) are the rotor and stator voltage vectors, respectively, (𝒊𝒊�̅�𝑟  and 𝒊𝒊�̅�𝑠) are the rotor 
and stator current vectors, respectively, (𝝀𝝀�𝑠𝑠 and 𝝀𝝀�𝑟𝑟) are the stator and rotor flux linkage vec-
tors, respectively, (Lm, Lr, and Ls) are the mutual inductance, rotor, and stator inductances, 
respectively, (T) is the motor electromagnetic torque, (ω) is the motor speed, (βv) is the vis-
cous friction of the coupling, and (Jm) is the inertia of the IM rotor. Usually, the rotor wind-
ings are shorted in IMs. Hence, (𝒗𝒗�𝑟𝑟) will be set to zero in Equation (1). 

3. IM DTC and Optimal Torque Response 
IM drives controlled by DTC have the merits of premium dynamic performance and 

simple implementation. These merits make them attractive for high-performance applications 
that demand accurate torque control. Usually, hysteresis controllers are utilized with conven-
tional DTC. Unfortunately, hysteresis controllers select the voltage vectors in a manner that 
does not consider the optimum torque response of the IM [37]. Optimal torque or fast torque 
response may be realized by optimizing the inverter voltage vector. Hence, optimization will 
be adapted for the conventional DTC to achieve fast torque response. In the following para-
graphs, the conventional DTC is reviewed, and the torque response is optimized. 

3.1. DTC of IM 
The three IM principles of conventional DTC are well documented in the literature 

[8]. According to these, both the IM torque and the stator flux are controlled inde-
pendently. Torque control is achieved by regulating the angle between the rotor flux and 
the stator flux vectors. However, the stator flux is usually controlled to track its rated 
value. Regulation of the stator voltage vector selection has been the key to controlling both 
the torque and stator flux of the IM. The aim of DTC is to regulate both the torque and the 
flux inside a hysteresis band, as is shown in Figure 1. Hence, the rotation of the stator flux 
vector is regulated by the voltage vector selection. The traditional DTC rules for voltage 
vector selection are [10]: 
1. Active voltage vectors rotate the stator flux vector, and, thereby, the flux and the 

torque will be decreased or increased. 
2. Zero voltage vectors stop the motion of the stator flux vector, and, hence, the torque 

will be decreased and the flux will be fixed. 
3. For each sector in the voltage vector plane, presented in Figure 1, there are two adja-

cent active voltage vectors that may be used to increase the torque. However, one 
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increases the flux and the other decreases it. For instance, in sector (2), either vector 
V2 or V3 can be selected to increase the torque. On the other hand, V3 decreases the 
stator flux, and V2 increases the stator flux. 

 
Figure 1. The typical torque and flux (trajectory) responses of 3-Φ IM with DTC. 

Table 1 shows a summary of the DTC rules for selecting voltage vectors. 

Table 1. The DTC rules used for selecting inverter states. 

∆λ ∆T 
N 

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 

∆λ = 1 
∆T = 1 V2 V3 V4 V5 V6 V1 
∆T = 0 V7 V0 V7 V0 V7 V0 

∆λ = 0 
∆T = 1 V3 V4 V5 V6 V1 V2 
∆T = 0 V0 V7 V0 V7 V0 V7 

3.2. Optimization of the Inverter States for Maximum Torque Rate 
The optimization approach must concentrate on choosing the voltage vector that de-

livers the greatest torque rate in order to achieve a quick torque response from the IM. 
The creation of the torque rate equation as a function of the stator voltage vectors is the 
initial stage in the optimization process. Hence, the relationship between the torque rate 
of the IM and the applied voltage vector must be derived. Differentiating the IM devel-
oped torque (2) with reference to time gives: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑃𝑃
3𝐿𝐿𝑚𝑚

∙ 𝐼𝐼𝐼𝐼 �𝑑𝑑𝝀𝝀
�𝑠𝑠
𝑑𝑑𝑑𝑑
𝝀𝝀�𝑟𝑟∗ + 𝝀𝝀�𝑠𝑠

𝑑𝑑𝝀𝝀�𝑟𝑟∗

𝑑𝑑𝑑𝑑
�   (5) 

It is assumed that the rotor flux vector has steady rotation and a constant peak during 
the stator flux variations. The reason behind this is the large rotor time constant of the IM 
[36]. Therefore, the rotor flux vector may be written as: 

𝝀𝝀�𝑟𝑟 = 𝜆𝜆𝑟𝑟𝑒𝑒−𝑗𝑗(𝑑𝑑𝑑𝑑+𝜃𝜃𝑟𝑟𝑟𝑟)  (6) 

where (𝜆𝜆𝑟𝑟) is the magnitude of the stator flux vector, (𝑗𝑗) is the rotor flux angular speed, 
and (𝜃𝜃𝑟𝑟𝑟𝑟) is the initial rotor angle. Neglecting the stator resistance, the stator flux vector is 
related to the stator voltage vector by [8]: 

𝝀𝝀�𝑠𝑠 = 𝑽𝑽𝑛𝑛𝑡𝑡 + �̅�𝜆𝑟𝑟 (7) 

where (�̅�𝜆𝑟𝑟) is the initial stator flux and (𝑽𝑽�𝑛𝑛) is the inverter stator voltage vector of order 
(𝑛𝑛). Differentiating Equations (6) and (7) with reference to time, we obtain: 
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⎩
⎨

⎧𝑑𝑑𝝀𝝀
�𝑟𝑟∗

𝑑𝑑𝑡𝑡
= −𝑗𝑗𝑗𝑗𝝀𝝀�𝑟𝑟∗

𝑑𝑑𝝀𝝀�𝒔𝒔
𝑑𝑑𝑡𝑡

= 𝑽𝑽𝑛𝑛

 (8) 

Substituting Equations (6)–(8) into Equation (5) gives the following: 

𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

=
𝑃𝑃

3𝐿𝐿𝑚𝑚
∙ 𝐼𝐼𝐼𝐼�(𝑽𝑽𝑛𝑛 − 𝑗𝑗𝑗𝑗(𝑽𝑽𝑛𝑛𝑡𝑡 + 𝝀𝝀�𝑟𝑟))𝝀𝝀�𝒓𝒓∗� (9) 

If t = 0 (the time spent screening for the optimum state) and (9) is simplified, we ob-
tain: 

𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

=
𝑃𝑃

3𝐿𝐿𝑚𝑚
𝜆𝜆𝑟𝑟[𝑉𝑉𝑉𝑉𝑉𝑉𝑛𝑛(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑟𝑟𝑟𝑟) − 𝑗𝑗𝜆𝜆𝑟𝑟𝑐𝑐𝑐𝑐𝑉𝑉(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑟𝑟𝑟𝑟)] (10) 

Let  

𝜑𝜑 = 𝑡𝑡𝑡𝑡𝑛𝑛−1(𝑑𝑑𝜆𝜆𝑟𝑟
𝑉𝑉

)  (11) 

Hence, we obtain: 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐶𝐶 · 𝑉𝑉𝑉𝑉𝑛𝑛(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑟𝑟𝑟𝑟 − 𝜑𝜑)  (12) 

where (C) is constant. 
For maximum torque rate, i.e., quick torque response, Equation (12) should be opti-

mized for the available voltage vectors. The objective function (𝜉𝜉) is: 

𝜉𝜉 = max
𝑛𝑛

[𝑉𝑉𝑉𝑉𝑛𝑛(𝜃𝜃𝑛𝑛 − 𝜃𝜃𝑟𝑟𝑟𝑟 − 𝜑𝜑)] (13) 

To perform the optimization process, an observer should be utilized to obtain the 
stator flux, the rotor flux, and the motor speed. Regrettably, the observer uses the IM pa-
rameters, which are regarded as uncertain. The effects of the uncertainty of the IM param-
eters on the proposed drive performance are considered in Section 6. 

4. Ant Colony Optimization 
ACO is a population-based metaheuristic approach which may be utilized to obtain 

reasonably good solutions to complex optimization problems [8]. Ant activation is coor-
dinated through stimergy, which is an indirect communication method achieved by mod-
ifying the movement in their environment [38–43]. When ants move, they emit a trace of 
a chemical substance called a pheromone. When an isolated ant moving around randomly 
discovers a pheromone left by another ant, it may choose to follow that trace and 
strengthen it with its own pheromone. As more ants keep track of that trace, more phero-
mone is deposited, and the route becomes more attractive to future ants. The organiza-
tional process of an ant colony is considered an example of positive feedback. ACO is 
really driven by a group of software agents called “synthetic ants” which are looking for 
good solutions to a particular optimization problem. 

ACO improves solution optimization by obtaining an updated pheromone trace and 
moving these ants in the search space according to mathematical formulas based on the 
transition probability and the total pheromone in the area. At every iteration, ACO pro-
duces global ants and computes their fitness. Updating is performed for pheromones and 
edges of weak areas. Local ants will be moved to better areas when fitness improves, or 
when a new random direction is determined. Updates are performed for ant pheromone 
and evaporated ant pheromone. Both local and global searches are utilized for continuous 
ACO. 

The kth ant probability 𝑃𝑃𝑘𝑘(𝑉𝑉, 𝑗𝑗) is identified by the following equation: 
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𝑃𝑃𝑘𝑘(𝑉𝑉, 𝑗𝑗) = �

[𝜏𝜏(𝑖𝑖,𝑗𝑗)]𝛼𝛼[η(𝑖𝑖,𝑗𝑗)]𝛽𝛽

∑ [𝜏𝜏(𝑖𝑖,𝑗𝑗)]𝛼𝛼[η(𝑖𝑖,𝑗𝑗)]𝛽𝛽

(𝑖𝑖,𝑗𝑗)∉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘

 𝑉𝑉𝑖𝑖 (𝑉𝑉, 𝑗𝑗)∉𝑇𝑇𝑡𝑡𝑇𝑇𝑇𝑇𝑘𝑘

0 𝑉𝑉𝑖𝑖 (𝑉𝑉, 𝑗𝑗) ∈ 𝑇𝑇𝑡𝑡𝑇𝑇𝑇𝑇𝑘𝑘

  (14) 

Equation (14) calculates the probability that the ant will move from the current state 
i to another state j, considering the following: 
• The information about the problem is used to determine the attractiveness η of the 

move. 
• The level of the move’s pheromone is used to describe how the good move was used 

in the past. 
• The 𝑇𝑇𝑡𝑡𝑇𝑇𝑇𝑇𝑘𝑘 lists the forbidden moves. 

The parameters α and β are utilized to calculate the relative influence of η versus τ. 
When iteration t is finished, all the ants have finished their solutions, and the pheromone 
levels are updated according to the following equation: 

𝜏𝜏(𝑉𝑉, 𝑗𝑗) =  𝜑𝜑 · 𝜏𝜏(𝑉𝑉, 𝑗𝑗) + ∆𝜏𝜏(𝑉𝑉, 𝑗𝑗)  (15) 

where 𝜏𝜏(𝑉𝑉, 𝑗𝑗) is the amount of pheromone in a given state (𝑉𝑉, 𝑗𝑗), 𝜑𝜑 is a coefficient corre-
sponding to the level of pheromone persistence, and ∆𝜏𝜏(𝑉𝑉, 𝑗𝑗) stands for the pheromone 
deposited in a given state (𝑉𝑉, 𝑗𝑗), typically given by: 

∆𝜏𝜏(𝑖𝑖,𝑗𝑗)
𝑘𝑘 = �

1
𝐿𝐿𝑘𝑘 if ant 𝑘𝑘 travels on state (𝑉𝑉, 𝑗𝑗)�

0 else 
 (16) 

where 𝐿𝐿𝑘𝑘 is the cost of the kth ant’s round (usually longer). 
Figure 2 presents a flowchart for the ACO process. 
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Figure 2. The ACO process flowchart. 

The ACO operation sequence, shown in Figure 2, is as follows: 
Step 1: Set the ACO parameter values, such as α (parameter to control the influence of a 

pheromone trace), β (parameter to control the influence of a visibility value), number 
of iterations, and ρ (evaporation rate). 

Step 2: Set the pheromone concentration (τ) for each region of ants. 
Step 3: Generate the number of ants, place them at nodes that are selected probabilistically, 

and complete the tour as per the node selection. 
Step 4: Evaluate the fitness function value. 
Step 5: Check whether the region explored is better or not, update of region memory, and 

perform pheromone intensification. 
Step 6: Repete the process for all the ants. 
Step 7: Update the pheromone (evaporation and deposition) and generate new solutions. 
Step 8: Check whether or not the stopping criterion (number of iterations) is achieved. 
End 

5. Controller Design and Optimization 
A block diagram of the introduced IM drive with the optimized controller is pre-

sented in Figure 3. Two optimizations are implemented inside the proposed system. The 
first or outer loop optimization is the speed controller parameter optimization. It utilizes 
the ACO algorithm to optimize the performance of the speed controller. However, the 
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second optimization is implemented in the inner loop and optimizes the inverter states to 
achieve a fast torque performance according to Equation (13). The main controller is the 
speed controller that forms the outer loop in which the measured speed is compared with 
the commanded speed, producing the error that is considered the controller’s input. The 
controller is an optimized FPID controller. The controller optimization is accomplished 
using the ACO algorithm. The output of the speed controller is the reference torque for 
the IM and represents the set point for the torque loop. It constitutes the inner loop in 
which another optimization process is adapted for fast torque response. The controller 
outputs the optimum voltage vector for the IM voltage source inverter. The control system 
will be described in the next section. 

 
Figure 3. Block diagram of the proposed IM drive. 

5.1. IM Control System 
The proposed IM control system has digital controllers with a constant sampling pe-

riod. Estimators for (𝝀𝝀�𝑠𝑠, T, and θro) are implemented using the IM model equations and 
the measured currents and speed. The torque error (∆T) and the estimated parameters are 
the inputs to the optimization algorithm of Figure 3. The optimization algorithm is as fol-
lows: 
• If ∆T ≥ 0, then the optimum inverter state is (𝑽𝑽�0). 
• If ∆T < 0, then the optimum inverter state is obtained based on the flux error (∆λ). 

The controller provides the inverter state as the traditional DTC if |∆𝜆𝜆| > ℎ. 
• If |∆𝜆𝜆| ≤ ℎ, then Equation (13) is used to select the optimum inverter state that pro-

vides the maximum rate of IM torque. 
The outer loop is the speed controller loop. It has an optimized FPID controller that 

will be explained in the following section. 

5.2. The Proposed FPID Controller 
This controller is regarded as a fuzzy version of the conventional PID controller. 

Achieving fuzzy control of a system has four steps: fuzzification, rule base, fuzzy reason-
ing, and defuzzification. The fuzzification of the PID controller is accomplished using the 
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same input signals as the traditional PID, but the controller is implemented with fuzzy 
rules. 

The tuning of the FPID controller parameters is no longer an expert-based or pure 
knowledge process. Hence, it has the potential to be more convenient to execute. Reason-
ing and fuzzy rules are exploited here to produce the parameters of the controller. The 
parameters of the PID controller (𝐾𝐾𝑝𝑝,𝐾𝐾𝑖𝑖,𝐾𝐾𝑑𝑑) are specified using the speed error 𝑒𝑒(𝑡𝑡) and 
error difference 𝛥𝛥𝑒𝑒(𝑡𝑡), where: 

𝑒𝑒(𝑡𝑡) = 𝑟𝑟(𝑡𝑡) − 𝑦𝑦𝑟𝑟𝑜𝑜𝑑𝑑(𝑡𝑡) (17) 

𝛥𝛥𝑒𝑒(𝑡𝑡) = 𝑒𝑒(𝑡𝑡) − 𝑒𝑒(𝑡𝑡 − 𝜏𝜏)  (18) 

where 𝜏𝜏 is the sampling time. 

5.2.1. Fuzzification of E and Δ𝑒𝑒 
It is assumed that 𝑒𝑒  and Δ𝑒𝑒  have the specified ranges [DK’p,min, DK’p,max] , 

[DK’i,min, DK’i,max], and [DK’d,min, DK’d,max], respectively. It is suitable to normalize (𝑒𝑒 and 
Δ𝑒𝑒) by using the scaling factors 𝐾𝐾𝑒𝑒 and 𝐾𝐾𝑑𝑑𝑒𝑒 using the following linear transformation: 

𝑒𝑒𝑛𝑛(𝐼𝐼) = 𝐾𝐾𝑒𝑒 ∗ 𝑒𝑒(𝐼𝐼) (19) 

𝛥𝛥𝑒𝑒𝑛𝑛(𝐼𝐼) = 𝐾𝐾𝑑𝑑𝑒𝑒 ∗ 𝑒𝑒(𝐼𝐼)  (20) 

where 𝐾𝐾𝑒𝑒 and 𝐾𝐾𝑑𝑑𝑒𝑒 are the scaling factors for the fuzzy inputs (𝑒𝑒 and Δ𝑒𝑒). 
The ambit of each linguistic value will be specified by a finer fuzzy partition with 

seven terms [44]. The linguistic values of the finer fuzzy partition are: 
PS: Positive Small. 
PM: Positive Medium. 
PB: Positive Big. 
Z: Zero. 
NB: Negative Big. 
NM: Negative Medium. 
NS: Negative Small. 

Each linguistic value is represented by a triangular membership function. The do-
main of each linguistic value determines the base of each triangle. The antecedent 
membership functions for 𝑒𝑒𝑛𝑛 and Δ𝑒𝑒𝑛𝑛 are presented in Figure 4. 

 
Figure 4. The membership functions for 𝑒𝑒𝑛𝑛 and Δ𝑒𝑒𝑛𝑛. 
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5.2.2. Fuzzification of the Controller Parameters 
It is assumed that 𝐷𝐷𝐾𝐾𝑝𝑝′ ,𝐷𝐷𝐾𝐾𝑖𝑖′, and 𝐷𝐷𝐾𝐾𝑑𝑑′  are in the prescribed ranges [𝐷𝐷𝐾𝐾𝑝𝑝,𝑚𝑚𝑖𝑖𝑛𝑛

′ ,𝐷𝐷𝐾𝐾𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚
′  ], 

[𝐷𝐷𝐾𝐾𝑖𝑖,𝑚𝑚𝑖𝑖𝑛𝑛′ ,𝐷𝐷𝐾𝐾𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚′  ], and [𝐷𝐷𝐾𝐾𝑑𝑑,𝑚𝑚𝑖𝑖𝑛𝑛
′ ,𝐷𝐷𝐾𝐾𝑑𝑑,𝑚𝑚𝑚𝑚𝑚𝑚

′  ], respectively, where 𝐷𝐷𝐾𝐾𝑝𝑝′ , 𝐷𝐷𝐾𝐾𝑖𝑖′, and 𝐷𝐷𝐾𝐾𝑑𝑑′  are 
the outputs of a fuzzy control system. 

In the proposed scheme, the PID parameters are set based on the current error 𝑒𝑒𝑛𝑛(𝑡𝑡) 
and its first difference Δ𝑒𝑒𝑛𝑛(𝑡𝑡) . The resultant membership functions for 
𝐷𝐷𝐾𝐾𝑝𝑝′ ,𝐷𝐷𝐾𝐾𝑖𝑖′, and 𝐷𝐷𝐾𝐾𝑑𝑑′  are presented in Figure 5. 

 
Figure 5. The membership functions for 𝐷𝐷𝐾𝐾𝑝𝑝′ ,𝐷𝐷𝐾𝐾𝑖𝑖′, and 𝐷𝐷𝐾𝐾𝑑𝑑′ . 

5.2.3. Rule Base, Fuzzy Reasoning, and Defuzzification 
The fuzzy output parameters 𝐷𝐷𝐾𝐾𝑝𝑝′ , 𝐷𝐷𝐾𝐾𝑖𝑖′, and 𝐷𝐷𝐾𝐾𝑑𝑑′  are assigned based on the follow-

ing group of fuzzy rules: 
If 𝑒𝑒𝑛𝑛(𝑉𝑉)  is 𝐴𝐴1𝑙𝑙  and 𝛥𝛥𝑒𝑒𝑛𝑛(𝑉𝑉)  is 𝐴𝐴2𝑙𝑙 , then 𝐷𝐷𝐾𝐾𝑝𝑝′  is 𝐵𝐵1𝑙𝑙 ,  𝐷𝐷𝐾𝐾𝑖𝑖′  is  𝐵𝐵2𝑙𝑙 , and 𝐷𝐷𝐾𝐾𝑑𝑑′  is 𝐵𝐵3𝑙𝑙 , 

where 𝛥𝛥𝑒𝑒𝑛𝑛(𝑉𝑉) is the 𝑉𝑉𝑑𝑑ℎ observation for normalized error-difference,  𝑒𝑒𝑛𝑛(𝑉𝑉) is the 𝑉𝑉𝑑𝑑ℎ ob-
servation for normalized error, 𝐵𝐵1𝑙𝑙 is a fuzzy set for output (1) and the 𝑙𝑙𝑑𝑑ℎ rule, 𝐴𝐴1𝑙𝑙 is 
the fuzzy set for input (1) and the 𝑙𝑙𝑑𝑑ℎ rule, and 𝑙𝑙 corresponds to 1, 2, 3, … and is the rules 
order. 

Tables 2–4 show the fuzzy output parameters rule base of (𝐷𝐷𝐾𝐾𝑝𝑝′ , 𝐷𝐷𝐾𝐾𝑖𝑖′, and 𝐷𝐷𝐾𝐾𝑑𝑑′ ). 

Table 2. Fuzzy tuning rules for 𝐷𝐷𝐾𝐾𝑝𝑝′ . 
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Table 3. Fuzzy tuning rules for 𝐷𝐷𝐾𝐾𝑉𝑉′ . 
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NM NB NB NM NS Z Z NB 
NS NB NM NS NS Z PS PS 
ZE NM NM NS Z PS PM PM 
PS NM NS Z PS PS PM PB 
PM Z Z PS PS PM PB PB 
PB Z Z PS PM PM PB PB 

Table 4. Fuzzy tuning rules for 𝐷𝐷𝐾𝐾𝑑𝑑′ . 

 
𝚫𝚫𝒆𝒆𝒏𝒏(𝒊𝒊) 

NB  NM NS ZE PS PM PB 

𝑒𝑒𝑛𝑛(𝑉𝑉) 

NB PS NS NB NB NB NM PS 
NM PS NS NB NM NM NS Z 
NS Z NS NM NM NS NS Z 
ZE Z NS NS NS NS NS Z 
PS Z Z Z Z Z Z Z 
PM PB NS PS PS PS PS PB 
PB PB PM PM PM PS PS PB 

The t-norm is used to calculate the truth-value of the rule as the end connector to the 
antecedent part according to the following equation: 

𝜇𝜇𝛢𝛢𝑙𝑙(𝑥𝑥) = 𝜇𝜇𝐴𝐴1𝑙𝑙 (𝑥𝑥𝑖𝑖1) ⊗𝜇𝜇𝐴𝐴2𝑙𝑙 (𝑥𝑥𝑖𝑖2) (21) 

where 𝜇𝜇𝛢𝛢𝑙𝑙(𝑥𝑥) is the membership function resulting from the t-norm, 𝑥𝑥𝑖𝑖1 is the 𝑉𝑉𝑑𝑑ℎ obser-
vation of entry number 1 is and identical to 𝑒𝑒𝑛𝑛(𝑉𝑉),  𝑥𝑥𝑖𝑖2 is the 𝑉𝑉𝑑𝑑ℎ observation for entry 
number 2 and is identical to Δ𝑒𝑒𝑛𝑛(𝑉𝑉), 𝐴𝐴1𝑙𝑙  is the entry number 1 and the 𝑙𝑙𝑑𝑑ℎ rule of the fuzzy 
set, and 𝐴𝐴2𝑙𝑙  is the entry number 2 and the 𝑙𝑙𝑑𝑑ℎ rule of the fuzzy set. 

Thus, when an engineering application agent is utilized, the membership function of 
the 𝑙𝑙𝑑𝑑ℎ fuzzy rule will be as follows: 

𝜇𝜇𝛣𝛣𝑙𝑙∗(𝑦𝑦) = 𝜇𝜇𝛣𝛣𝑙𝑙(𝑦𝑦) ⊗ [𝜇𝜇𝐴𝐴1𝑙𝑙 (𝑥𝑥𝑖𝑖1) ⊗𝜇𝜇𝐴𝐴2𝑙𝑙 (𝑥𝑥𝑖𝑖2)] (22) 

Where 𝑦𝑦 is the normalized output 𝐷𝐷𝐾𝐾𝑝𝑝′ ,𝐷𝐷𝐾𝐾𝑖𝑖′, or 𝐷𝐷𝐾𝐾𝑑𝑑′ , 𝜇𝜇𝛣𝛣𝑙𝑙(𝑦𝑦) is the membership function 
for the specific output in the resultant and 𝑙𝑙𝑑𝑑ℎ rule, 𝜇𝜇𝛣𝛣𝑙𝑙∗(𝑦𝑦) is the membership function 
resultant from the inclusion of the specific output in the resultant and 𝑙𝑙𝑑𝑑ℎ rule. 

An output fuzzy set for every one of the rules is introduced by applying Equation 
(22) to every rule in the rule base. The generation of total output fuzzy set 𝜇𝜇𝑌𝑌(𝑦𝑦) is deter-
mined by connecting these R fuzzy sets (𝜇𝜇𝐵𝐵𝑙𝑙∗). A t-conorm is used reasonably to connect 
the rules of the output fuzzy sets by yielding the union operator of the output fuzzy sets. 
The defuzzifier operation is used to interface the fuzzy output with the crisp domain. 

𝛿𝛿𝑙𝑙 is the center of gravity of the fuzzy set 𝛣𝛣𝑙𝑙∗ output of the 𝑙𝑙𝑑𝑑ℎ rule, and the output 
of the center of the defuzzifier area is given by the following equation: 

𝑦𝑦𝑑𝑑𝑛𝑛 =
∑ 𝛿𝛿𝑙𝑙𝜇𝜇𝛣𝛣𝑙𝑙∗(𝛿𝛿𝑙𝑙)
𝑅𝑅
𝑙𝑙=1

∑ 𝜇𝜇𝛣𝛣𝑙𝑙∗(𝛿𝛿𝑙𝑙)𝑅𝑅
𝑙𝑙=1

 (23) 

where; 𝑦𝑦𝑑𝑑𝑛𝑛 is either 𝐷𝐷𝐾𝐾𝑝𝑝′ ,𝐷𝐷𝐾𝐾𝑖𝑖′ or 𝐷𝐷𝐾𝐾𝑑𝑑′ . 
Thus, we can rewrite Equation (22) as follows: 
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𝑦𝑦𝑑𝑑𝑛𝑛(𝑥𝑥𝑖𝑖) = 𝑦𝑦(𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2) =

∑ 𝛿𝛿𝑙𝑙[𝜇𝜇𝛣𝛣𝑙𝑙(𝛿𝛿𝑙𝑙)
𝑅𝑅
𝑙𝑙=1

2
⊗
𝑗𝑗 = 1

𝜇𝜇𝛢𝛢𝑗𝑗𝑙𝑙(𝑥𝑥𝑖𝑖𝑗𝑗)]

∑ [𝜇𝜇𝛣𝛣𝑙𝑙(𝛿𝛿𝑙𝑙)
2
⊗
𝑗𝑗 = 1

𝜇𝜇𝛢𝛢𝑗𝑗𝑙𝑙(𝑥𝑥𝑖𝑖𝑗𝑗)]𝑅𝑅
𝑙𝑙=1

 (24) 

The fuzzy set related to the 𝑗𝑗𝑑𝑑ℎ input variable and for the 𝑙𝑙𝑑𝑑ℎ rule is 𝛢𝛢𝑗𝑗𝑙𝑙. The system 
inputs are partitioned into fuzzy sets that correspond to numeric indices (e.g., 1 to 7, re-
spectively). The second index is 𝑙𝑙, whose values contain the set of numbers defining the 
partition of the input space. If the 𝑗𝑗𝑑𝑑ℎ input is partitioned into 𝑘𝑘𝑗𝑗 membership functions 
where each one is specified by an integer between 1 and 𝑘𝑘𝑗𝑗, then the fuzzy set correspond-
ing to the 𝑗𝑗𝑑𝑑ℎ  input in the 𝑙𝑙𝑑𝑑ℎ  rule should be 𝛢𝛢𝑗𝑗𝑘𝑘(𝑗𝑗,𝑙𝑙) , where 𝑘𝑘(𝑗𝑗, 𝑙𝑙)  is the function 
𝑘𝑘: {1,2} × {1,2,3, . . . ,𝑅𝑅} → 𝑁𝑁, where 𝑁𝑁 is considered as a set of integer numbers. More pre-
cisely, 1 ≤ 𝑘𝑘(𝑗𝑗, 𝑙𝑙) ≤ 𝑘𝑘𝑗𝑗. Further, the notation can be made easily by denoting 𝜇𝜇𝑖𝑖𝑗𝑗(𝑥𝑥) as the 
membership function for 𝛢𝛢𝑖𝑖𝑗𝑗. The consequent part of the FLS will be determined by the 
same antecedent procedure. In this state, ℎ(𝑙𝑙),ℎ: {1,2,3, . . . ,𝑅𝑅} → {1,2, . . . ,𝐻𝐻} will be speci-
fied, where 𝐻𝐻 is considered the number of membership functions assigned. The rule base 
is defined univocally by the functions 𝑘𝑘(𝑗𝑗, 𝑙𝑙) and ℎ(𝑙𝑙). By this modification and more pre-
cise notation, Equation (24) will be: 

𝑦𝑦𝑑𝑑𝑛𝑛(𝑥𝑥𝑖𝑖) = 𝑦𝑦(𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2) =

∑ 𝛿𝛿ℎ(𝑙𝑙)[𝜇𝜇𝛣𝛣ℎ(𝑙𝑙)(𝛿𝛿ℎ(𝑙𝑙))𝑅𝑅
𝑙𝑙=1

2
⊗
𝑗𝑗 = 1

𝜇𝜇𝛢𝛢𝑗𝑗𝑘𝑘(𝑗𝑗,𝑙𝑙)(𝑥𝑥𝑖𝑖𝑗𝑗)

∑ [𝜇𝜇𝛣𝛣ℎ(𝑙𝑙)(𝛿𝛿ℎ(𝑙𝑙))
2
⊗
𝑗𝑗 = 1

𝜇𝜇𝛢𝛢𝑗𝑗𝑘𝑘(𝑗𝑗,𝑙𝑙)(𝑥𝑥𝑖𝑖𝑗𝑗)]𝑅𝑅
𝑙𝑙=1

 (25) 

Equation (25) is a mathematical formula used to calculate the single numerical value 
obtained from the output of the fuzzy inference system. 

If the values of 𝐷𝐷𝐾𝐾𝑝𝑝′ , 𝐷𝐷𝐾𝐾𝑖𝑖′, and 𝐷𝐷𝐾𝐾𝑑𝑑′  are obtained, the parameters of the PID control-
ler will be calculated from the following equations: 

𝐾𝐾𝑝𝑝 = 𝐾𝐾𝑝𝑝𝑟𝑟 + 𝐾𝐾𝑝𝑝𝑝𝑝 ∗ 𝐷𝐷𝐾𝐾𝑝𝑝′ (26) 

𝐾𝐾𝑑𝑑 = 𝐾𝐾𝑑𝑑𝑟𝑟 + 𝐾𝐾𝑑𝑑𝑝𝑝 ∗ 𝐷𝐷𝐾𝐾𝑑𝑑′ (27) 

𝐾𝐾𝑖𝑖 = 𝐾𝐾𝑖𝑖𝑟𝑟 + 𝐾𝐾𝑖𝑖𝑝𝑝 ∗ 𝐷𝐷𝐾𝐾𝑖𝑖′ (28) 

where Kpo, Kdo, and Kio are the initial values of Kp, Kd, and Ki, respectively, and Kpo, Kdf, and 
Kif are the scaling factors for fuzzy outputs DKp, DKi, and DKde, respectively. The scaling 
factors Kpf, Kdf, Kif, Ke, and Kde are optimized by the ant colony algorithm. The optimal pa-
rameters of the ACO controller are introduced in Table 5. 

Table 5. Optimal ACO controller parameters. 

Parameter Value 
No. of Ants 10 

Max iterations 100 
Number of parameters 5 

Number of nodes for each parameter 1000 
Evaporation rate 0.7 

6. Results 
The proposed IM drive system with the optimized controller, shown in Figure 3., is 

simulated using Matlab. The IM rating is (10 KW, 6 poles, 220V, 60 Hz) and it has the 
parameters presented in Table 6. 
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Table 6. The proposed IM drive data. 

 Parameters 
Ls = 0.0424 H Rr = 0.156 Ω Lr = 0.0417 H J = 0.4 kgm2 
Lm = 0.041 H  Rs = 0.294 Ω λs = 0.454 Wb  

Three controllers have been compared: the conventional PID, the FPID controller, 
and the ACO-optimized FPID controller. However, the internal optimization loop, used 
for the fast torque response, has been kept constant for the three controllers. The results 
were obtained under step and ramp variations in the set speed. In addition, there were 
load torque disturbances, as shown in Figure 6a,b. The IM speed responses with the three 
controllers are compared in Figure 6b. The ACO-optimized FPID controller clearly has the 
best speed response. It has the lowest settling time and steady-state error without over-
shooting. The worst response came with the classical PID controller. It has the largest set-
tling time, overshoot, and steady-state error at all disturbances. The steady-state error 
value is not constant with the classical PID and FPID controllers; however, it varies with 
the disturbances. Additionally, it is observed that the step changes in the load torque at 
the times (1 s, 3 s, and 5 s) barely affect the IM speed with the proposed controller. On the 
other hand, these load torque disturbances produce small transients and slightly higher 
steady state errors with the classical PID and FPID controllers. Figure 6c shows profiles of 
the percentage speed errors for the three controllers. The ACO-optimized FPID controller 
has the lowest speed error profile. 

The torque and stator flux responses for the same set speed and load torque disturb-
ances using the ACO-optimized FPID controller are presented in Figure 7. It is observed 
that the stator flux is kept constant at its rated value within a hysteresis band. This is im-
portant for the IM drive to possess its maximum torque in all circumstances. The profile 
of the IM torque compared with the commanded torque generated by the speed controller 
is also illustrated in Figure 7. During the transient periods corresponding to step changes 
in the load torque, at the times (1 s, 3 s, and 5 s), the IM produces a torque that is greater 
than the load torque to accelerate the motor and reach the set speed. However, at steady 
state, the IM produces a torque equal to the load torque to keep the speed constant at the 
prescribed set value. During the ramp set speed interval, i.e., when the IM speed acceler-
ates while the load torque is constant, the IM produces a torque that is greater than the 
load torque. The torque response of the IM is very fast and tracks the reference torque 
very well. 

The IM currents and phase voltage are shown in Figure 8. It has been indicated in the 
figure that the fundamental frequency of operation varies with IM speed. This is expected 
for DTC IM drives, which are equivalent to the voltage to frequency scalar control at 
steady state [8]. The stator direct and quadrature currents are AC, but their waveforms 
have some distortions in addition to the ideal sinusoidal waveforms. The reason behind 
this distortion is the high harmonic content of the inverter output voltage and the high 
complexity of the system. Because of the low impedance characteristics of the IM at low 
speeds, there is an initial inrush current when the IM motor starts. 

To check the robust stability of the proposed ACO-optimized FPID controller against 
the IM parameter uncertainties, some of the IM variables are varied. The IM rotor re-
sistance is increased by 10% and the IM rotor leakage reactance is increased by 5%. Figure 
9 presents the speed response of the IM under parameter uncertainties. It is observed that 
the proposed controller can stabilize the speed response with high accuracy despite the 
modelling errors. 

The percentage speed errors of the IM drive in the case of the three controllers have 
been listed in Table 7. The errors are determined using integral absolute error (IAE), inte-
gral square error (ISE), sum squared error (SSE), and time absolute error (TAE). It can be 
seen that the developed controller (the ACO-optimized FPID) is the best compared with 
the conventional and fuzzy PID controllers. In the case of the proposed controller, the 
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percentage speed errors, e.g., the IAE, of the IM drive have dropped by about 4% and 7% 
compared with those of the FPID controller and the conventional PID, respectively. 

Table 7. Comparison of the percentage speed errors for the three controllers. 

 Conventional PID FPID ACO-Optimized FPID  
%IAE  23.25 20.489 16.4 
%ISE 2.963 × 103 3.135 × 103 2.89 × 103 
%SSE 6.368 1.2176 0.0238 
%TAE 54.88 38.436 23.28 
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(c) 

Figure 6. (a) Load torque profile, (b), comparison of the speed response of the IM drive, and (c) 
speed errors for three different controllers. 

 
Figure 7. The optimized IM drive torque and stator flux responses. 
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Figure 8. The optimized IM drive stator current and voltage responses. 

 
Figure 9. The speed response of the optimized IM drive under parameter uncertainties. 

7. Conclusions 
This paper has proposed an IM drive controlled using direct torque control princi-

ples, but with the power converter operation optimized to give fast torque performance. 
Optimization analysis and design for the inverter operation were undertaken to achieve 
fast torque response. The IM drive speed response was improved by using optimized 
FPID. The FPID optimization was accomplished using the ACO algorithm. The proposed 
IM drive with the optimized control system was modelled and simulated using 
MATLAB/Simulink, and the responses of the introduced drive using three different con-
trollers (conventional PID, FPID, and optimized FPID) were compared. The simulation 
results indicated that the optimized FPID controller provides the best speed and torque 
performances. In the case of the proposed controller, the percentage speed errors, e.g., 
IAE, of the IM drive dropped by about 4% and 7% compared with those of the FPID con-
troller and the conventional PID, respectively. In addition, the IM performances under 
parameter uncertainties with the proposed optimized FPID were studied. The results in-
dicated that under 10% variations in the rotor resistance and rotor leakage inductance, the 
system provides robust performance. Future research relating to this topic will examine 
IM drive position control using the optimization methods adopted in this study. Moreo-
ver, the experimental validation of the proposed drive with the optimized FPID controller 
will be an important future consideration. 
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