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This paper presents a survey of machine learning methods used in applications dedicated to building
and  construction  industry.  A BIM model  being a  database  system for  civil  engineering  data  is
presented. A representative selection of methods and applications is described. The aim of this paper
is  to  facilitate  the  continuation  of  research  efforts  and  to  encourage  bigger  participation  of
researchers in database systems in the field of civil engineering.

Keywords: BIM data, machine learning, civil engineering modelling.

1. Introduction

Building  Information  Modeling  (BIM)  is  nowadays  widely  used  in  architecture,
engineering  and  construction  industry (AEC).  The building and  construction  industry
employs currently about 7 percent of the world's working-age population and is one of
the world economy's largest sectors.  It is estimated that about $10 trillion is spent on
construction-related goods and services every year.  In the last decade, the acceptance
and actual use of BIM has increased significantly within the building community. It has
largely contributed to the process of eliminating faults in designs. BIM allows architects
and  engineers  to  create  3D  simulations  of  the  desired  structures  which  contain
significantly more  information on the actual  structures  than drawings produced using
traditional Computer Aided Drafting CAD systems. As a result, BIM has become more
and more present in the construction industry.

BIM technology enables to represent  syntactic and semantic building information
with respect to the entire life cycle of designed objects, from the design phase, through
construction  to  the  facility  management  phase.  BIM  includes  information  about  the
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elements  and  spaces  within  buildings,  their  constituting elements,  their  interrelations,
properties and performance. The project created in BIM technology can be treated as a
database that allows to record both technical information about building elements, and its
purpose and history. However, although BIM is information rich, not all knowledge is
explicitly stated. It seems that machine learning approaches suit well to deduce implicit
knowledge  from  BIM  models.  Contrary  to  querying  approaches  used  to  extract
knowledge  from  building  models1,2,3,which  are  tailored  to  specific  scenarios  with
predefined outcomes,  machine learning methods are able to detect  patterns  and make
predictions.

Using machine learning (ML) and artificial intelligence (AI) in AEC industry is a
promising research direction. It has to be noted that while both ML and AI are rapidly
developing across many other industries, the construction industry is lagging behind in
the rate by which improvements are introduced. The usage of BIM could be seen as a tool
to revert this trend, but software tools able to implement BIM still require quite laborious
routine tasks to properly execute BIM.

The structure of data in BIM, where knowledge is represented in an object oriented
way, is ideal for analytical purposes and the application of machine learning techniques4 .
ML is related to extrapolating object behaviours and generating logical responses from
information provided by examples, and enabling a computer to gradually learn. Various
classification  algorithms,  anomaly  detection,  and  time series  analysis  can  be  used  in
respect  to  BIM.  Classification  algorithms  can  be  used  for  example  to  predict
characteristics of flats and their sale demand, the likelihood of construction delays, or to
diagnose the assets in historic buildings. Anomaly detection is useful in assessment of
architectural  models,  discovering  modelling  errors,  while  time  series  analysis  can  be
applied  to  make  maintenance  predictions  or  renovations  planning.  In  order  to  make
predictions or detect patterns, metrics about buildings are to be specified. They serve as a
label to building models which allows for measuring their performance.

This paper is and extended version of the conference paper Ref. 5.. A significant
number of new papers have been carefully selected for this extension. The new paper add
both deeper analysis of previously presented somains of applications as well as reaching
to other applications withi the BIM methodology. 

The  objective  of  this  paper  is  to  present  highlights  of  references  pertaining  to
machine  learning  in  Building  Information  Modelling.  It  complements  previously
published literature survey articles in order to provide insight into the development of
artificial intelligence in BIM, underline the hotspots of current research in this domain,
and  facilitate  continued  research  efforts.  The  paper  summarizes  recently  developed
theories  and  methods  applied  in  BIM-based  knowledge  processing,  extraction,  and
semantic  enrichment  of  BIM  models.  They  include  neural  networks,  decision  trees,
logistic regression, affinity propagation clustering, term frequency, random forests, SVM,
as  well  as  Bayesian  networks.  The  paper  provides  an  overview  of  the  advances  of
machine learning methods applied in BIM.
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2. BIM data - IFC filess

The information about a building created in any software can be exported to different
formats. Each commercial application has its own file type to store building data, but all
of them can also export building information to an IFC file. The file format IFC  has
become  de  facto  standard  way  of  interchanging  and  storing  BIM  data6.  It  is  an
interoperable BIM standard for CAD applications, which supports a full range of data
exchange  among  different  disciplines  and  heterogeneous  applications.  Information
retrieved from IFC files can be used by many different applications.

Fig.1 An example of IFC data visualization

IFC specifies different types of building entities and their basic properties. It defines
an EXPRESS based entity-relationship model, which consists of several hundred entities
organized into an object-based inheritance hierarchy. All the entities in IFC are divided
into rooted and non-rooted ones. While the first ones are derived from IfcRoot and have
identity (a GUID), attributes for name, description, and revision control, the other ones
(non-rooted) do not have identity and their instances  exist only if they are referenced
from a rooted instance directly or indirectly. IfcRoot is subdivided into three concepts:
object definitions, relationships, and property sets:

 IfcObjectDefinition captures tangible object occurrences and types
 IfcRelationship captures relationships among objects
 IfcPropertyDefinition captures dynamically extensible properties of objects
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  In Fig. 1  a fragment of an example visualization of an IFC file representing a multi-
storey building is depicted. In the top left-hand side panel, the hierarchical structure of
the file is shown. The floor elements describe the storeys of the building. One of the floor
elements  is  developed to  show its  different  component  entities  of  the  type  IfcBeam,
IfcColumn and IfcWall  in  a  more  detail  way.  The component  entities  of  one  of  the
IfcWall elements are shown and their visualization is depicted by the darker colour in the
right-hand side panel in Fig. 1 .

Fig. 2 IfcWall and IfcDoor within IFC hierarchy 

The entities that can be used in IFC include building components like IfcWall, IfcDoor,
IfcWindow,  geometry  such  as  IfcExtrudedAreaSolid,  and  basic  constructs  such  as
IfcCartesianPoint.
    The most often used building elements are IfcSpace, IfcDoor, IfcWall, IfcStair and
IfcWindow. According to the IFC 2x Edition3 Model Implementation Guide6 and the IFC
specification6 the above mentioned classes can be described as follows:

1. IfcSpace is the instance used to represent a space as the area or volume of a
functional  region.  It  is  often  associated  with  the  class  IfcBuildingStorey
representing one floor (the building itself is an "aggregation" of several storeys)
or with IfcSite, which represents the construction site. A space in the building is
usually  associated  with  certain  functions  (e.g.,  kitchen,  bathroom).  These
functions are specified by attributes of the class IfcSpace (Name, LongName,
Description).

2. IfcWall is the instance used to represent a vertical element, which is to merge or
split the space. In IFC files two representations of a wall can be distinguished.
The subclass IfcWallStandardCase of IfcWall is used for all walls that do not
change their thickness (the thickness of a wall is the sum of the materials used).
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IfcWall  is  used  for  all  other  walls,  in  particular  for  constructs  of  varying
thickness and for the walls with non-rectangular cross-sections.

3. IfcStair represents a vertical passage allowing for moving from one floor to the
other. It can contain an intermediate landing. Instances of IfcStairs are treated as
containers,  by which we refer  to component  elements  as  IfcStairFlight using
IfcRelAggregates.

4. IfcDoor represents a building element used to provide access to a specific area
or room. Parameters of IfcDoors specify dimensions, an opening direction and a
style of the door (IfcDoorStyle).  IfcDoor is a subclass of IfcBuildingElement
and a superclass of IfcDoorStandardCase. Door instances are usually located in
a space IfcOpeningElement to which we refer by IfcRelFillsElement.

5. IfcWindow represents a building element used to fill  vertical or near-vertical
openings  in  walls  or  roofs.  It  provides  a  view,  light  and  fresh  air.  The
dimensions of the window and its shape can be found in IfcWindowStyle, to
which  we  refer  by  IfcRelDefinesByType.  IfcWindow  is  a  subclass  of
IfcBuildingElement  and  a  superclass  of  IfcWindowStandardCase.  Window
instances  are  placed  in  a  space  IfcOpeningElement  to  which  we  refer  by
IfcRelFillsElement. 

The  above  mentioned  instances  inherit  from  IfcProduct  class,  which  allows  for
determining  their  positions  using  geometrical  entities  like  IfcLocalPlacement  and
relationships like IfcPlacementRelTo. The place of IfcWall and IfcDoor within the IFC
hierarchy is depicted in Fig. 2 (from8 ).

3. Machine learning techniques for BIM 

Many recent  studies  address  the need  for  semantic  integrity  in BIM models  as it
allows  for  sharing  these  models  between  project  teams,  performing  domain-specific
analyses  on  BIM  model  data  and  checking  BIM  model  deliverables  by  owners.
Moreover,  information  important  from  the  point  of  view  of  many  applications  lies
implicit  in  the interrelation  between building elements.  Therefore,  several  approaches
directed  at  extracting  implicit  data  from building  models  have  been  presented.  They
explore mainly an inductive reasoning approach, which uses machine learning and deep
learning, where rules are learned and generalized from the data, to ensure the integrity of
BIM element  classifications.  Bloch and Sacks  showed that  a  machine learning-based
approach is more successful in automatically classifying spaces than deductive reasoning,
which is based on a rule-inferencing approach9.
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3.1.  Learning semantic information

3.1.1. Space classification

An unsupervised  learning  method  for  mining  the  IFC  based  BIM data  by  exploring
interrelations between building spaces is presented in10. A method of extracting features
which are then used in the affinity propagation clustering algorithm to get spaces with
similar  usage  functions,  is  proposed.  The  method  allows  for  automatic  learning  of
functional  knowledge from building space structures.  The physical  properties  of each
space and their boundary relationships in BIM model are extracted from the IFC file
based on BIM data.  Then boundary graphs with space boundary relationships,  where
properties of each space propagate along the edges, are built. Features of building spaces
are extracted from the space boundary graphs.  Based on these features and the graph
representation  of  the  building  structure,  the  adapted  affinity  propagation  algorithm
performs building space  clustering analysis,  in order  to  get  representative  samples  of
building  spaces.  The  experimental  results  performed  on  a  real-world  BIM  dataset
containing 595 spaces from a 20-storey building show that building spaces with typical
usage  functions,  like  senior  offices,  open  offices  and  circulation  spaces,  can  be
discovered by the unsupervised learning algorithm.

In Ref.4 rooms  in  a  housing  unit  were  named  according  to  their  use  (dining
room/lounge,  kitchen,  bedroom, etc.)  based on their  geometry.  The different  types of
rooms in BIM are usually labelled entirely by hand by the expert designer. Using ML
algorithms to automate this type of task considerably reduces the computational time.
Three different classification algorithms, namely decision trees, logistic regressions, and
neural networks, were used to solve the problem of labelling rooms according to their
function. The input data from which the algorithms are to learn, consist of rooms in the
housing unit whose function was labelled by hand previously. The data were obtained
from two models of housing developments created with Autodesk Revit, each consisting
of more than 200 housing units, from which some rooms were extracted. The algorithms
were trained with one project and evaluated with another, which ensures that the results
could be extrapolated to other projects. In order to compare the sensitivity of the amount
of information available, two different data sets were created for each model. The first
model only includes the information obtained directly (or via formulae) from the Revit
schedules.  The second model also includes information that  can only be extracted or
calculated  by  C#  programming  using  the  Revit  API.  Predictions  made  by  logistic
regression  or  neural  network  with  complete  data  were  about  80%–90%  accurate  in
predicting room use. The most common errors are mistaking kitchens for bedrooms and
classifying corridors or bedrooms as bathrooms.

Experimental approaches directed at  extracting implicit data from building models
were  also  researched11.  Both  unsupervised  and  supervised  machine  learning  of  BIM
models is considered. Supervised machine learning approach, which is based on a neural
network, is able to classify floor plans according to its intended function. By looking at
the spatial configurations of floor plans, a neural  network was trained to differentiate
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between residential  and institutional  facilities.  This approach can be used to complete
missing attributes in datasets, where information pertaining to intended function and use
is  fragmented  and incomplete.  Both supervised  and unsupervised learning  algorithms
assess  a  building,  by means  of  a  set  of  its  characteristic  features.  The IFC Machine
Learning platform presented in this paper is built on top of the DURAARK IFC metadata
extractor12. This tool is able to extract literal values, aggregates and derives values from
IFC SPF files.  In  Ref  13  a  dataset  of  IFC files  has  been  proposed  to  facilitate  the
comparison  of  the  classification  results  for  different  IFC  entities.  The  unsupervised
learning approach is used in Ref. 11 to show anomalies in building models. The obtained
results make it possible to flag uncommon situations (like unusual large overhangs or an
unusual confluence of several building elements) that might need additional checks or
coordination, and therefore reduce the failure costs in the construction industry.

In Ref. 9 machine learning algorithms are used to the problem of classification room
types  in  residential  apartments. Classification  of  room  types  and  space  labeling  are
important  for  the  design  process,  compliance  checking,  management  operations,  and
many building analysis tasks. The dataset used for supervised machine learning processes
contains 32 BIM apartment models. The classification and labeling of room types in this
work is based on their function, and assumes that spaces do not have dual function. A
multiclass  neural  network was used with a total  of 150 spaces  in the dataset  for  the
training process. The dataset was split to 70% for training and 30% for validation of the
trained model, which resulted in an 82% correctly classified validation set. The building
objects were classified based on the five local features, area, number of doors, number of
windows, number of room boundary lines,  and floor level  offset,  and one connecting
feature  being  a  direct  access.  The  obtained  results  showed  that  machine  learning  is
directly applicable to the space classification problem.

Four  different  machine  learning  methods  are  used  to  categorize  images  extracted
from BIM of building designs14. BIM data are separated into three categories: apartment
buildings, industrial building and others. The first method is based on classical machine
learning, where Histogram of Oriented Gradients (HOG) is used to extract features, and a
Support Vector Machine (SVM) is used for classification. The other three methods are
based on deep learning. The first two use pre-trained Convolutional Neural  Networks
(CNN)  (a  MobileNet15 and  a  Residual  Network16 ).  The  third  one  is  a  CNN with  a
randomly generated structure. A database of 240 images extracted from 60 BIM virtual
representations is used to validate the classification precision of the models. The accuracy
achieved by the HOG+SVM model is 57%, while for the neural  networks it  is above
89%. The approach shows that it is possible to automatically categorize a structure type
from a BIM representation.
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3.1.2. Object classification

In Ref. 17 a deep learning approach was proposed to classify 3D models in BIM
environments. A ray-based feature extraction algorithm was used to extract the features
of  3D models  and  form a  feature  matrix.  This  matrix  is  applied  by  the  deep  belief
network  (DBN)  constructed  by  restricted  Boltzmann  machines,  which  classifies  the
models. The database included 1,814 models, covering most types of models common in
daily life, which were divided into a training set and a testing set, each with 907 models.
The results show that the proposed approach achieves accuracy of 85.5%. 

Koo et al.  applied the SVM technique to classify building elements for checking the
semantic integrity of mappings between BIM elements and IFC classes18. The SVM was
trained to distinguish model elements from a dataset of 4187 unique elements collected
from six architectural BIM models, based on their geometric and relational features. In
the first stage, the SVM was tested to classify the elements with respect  to eight IFC
classes (wall, slab, beam, door, window, railing, covering, and column). The dataset was
divided into training and test sets by a ratio of eight to two resulting in a test set of 838
elements on which 10-fold cross validation was performed. In the second stage, the SVM
was further tested to distinguish between the element subtypes within three IFC classes,
IfcDoor  (single  and  double  door),  IfcWindow  (single  and  double  window),  and
IfcColumn (rectangular and non-rectangular shaped column). The same training to test
ratio was used and 10-fold cross validation was performed to optimize hyperparameters.
The approach showed 94.39% accuracy of classifying building elements in the first stage,
while 100% for the window and column types, and 96% for door types in the second
stage. 

As it is difficult to ensure the BIM data integrity due to errors, mistakes or omissions
of  object  information,  Kim et  al.  used  2D CNN to  recognize  and  classify  unknown
objects as BIM instances19.  The presented approach classifies basic architectural  BIM
elements,  as  well  as  furniture  entities  according  to  their  images  using  a  3D  object
recognition technique. In the first stage the class of an object is recognized (slab, wall,
ceiling, column, staircase, door, seating furniture and toilet fixture), while in the second
one,  subtypes  of  door,  seating  furniture  and  toilet  fixture  are  covered.  The  dataset
consists of 820 objects spanning 10 classes. The model input consists of multi-view 2D
rendering images of BIM objects. The training of the recognition models is processed by
fine-tuning the Inception-v3 model20 that trains the ImageNet21 dataset on TensorFlow
framework22. 80% of the data is used for training and 20% for validation. The accuracy of
training for  the classification of  building elements is  96%. The second stage training
results showed the average of 96.7% accuracy of classification of sub-types of doors,
seating and toilet fixture.  

3D geometric deep neural networks were used for automatic classification of BIM
elements by Koo et al.23. Multi-view CNN (MVCNN) 24 and PointNet25 were investigated
to determine their applicability in extracting unique features of door (IfcDoor) and wall
(IfcWall)  element  subtypes.  MVCNN builds  classifiers  of  3D shapes from 2D image
renderings of these shapes, while PointNet is a deep neural network, which takes point
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clouds directly as input to classify and segment 3D artifacts. Firstly 478 door elements
and 364 wall elements were collected and divided into their respective subtypes as single,
double, sliding and revolving door, and a generic wall, wall with window opening, and
wall with door opening. The samples were divided using a 7:3 ratio to train and test the
learning  models.  Test  results  indicated  MVCNN  as  having  the  best  prediction
performance  with  accuracy  of  92%  and  95%  for  door  and  wall  element  subtypes,
respectively, while PointNet’s accuracy was hampered by resolution loss due to selective
use of point cloud data.

Geometric  deep  learning  models  were  also  used  to  classify  infrastructure  BIM
elements  for  checking  the  integrity  of  element-to-entity  mappings  in  BIM models26.
MVCNN and PointNet models were trained and tested to classify 10 types of commonly
used BIM elements in road infrastructure. They include columns, three types of culverts,
four types of  retaining  walls,  sumps and wing walls.  A dataset  consists  of  1496 3D
elements,  which  were  divided  into  training  and  test  sets,  using  a  7:3  ratio.  Results
revealed  MVCNN  as  the  superior  model  with  accuracy  98%,  compared  with  the
PointNet’s corresponding value of 83%.  

Collins et al.  encode BIM objects using two kinds of graph encodings and utilize a
graph convolutional network to perform classification based on the 3D shape only27. A
Graph Convolutional Network (GCN) uses the native triangle-mesh and automatically
creates  meaningful  local  features  for subsequent  classification. The data are extracted
from 22 IFC tagged files and divided into training and test sets, using an 8:2 ratio. The
dataset consists of structural elements (IfcWall, IfcSlab, IfcColumn, IfcWindow, IfcDoor,
IfcStair IfcRailing),  the equipment (IfcFlowTerminal,  IfcFlowSegment, IfcFlowFitting,
IfcDistributionControlElement,  IfcFlowController)  and  the  interior  furniture
(IfcFurnishingElements). The method reaches an accuracy of up to 85% on the dataset
collected by authors. 

Luo et al.  propose a geometric-relational deep learning framework for BIM object
classification28, which boosts the classification methods based on object geometry with
relational information. The proposed framework consists of three main modules, i.e., a
geometric feature extractor, relational feature extractor and feature fusion module. The
geometric  feature  extractor  learns  to  represent  a  BIM object’s  shape  as  a  geometric
descriptor. The relational feature extractor extracts relational features of different levels
and connects them to form the relational descriptor. The feature fusion module mixes the
two descriptors and outputs the final object descriptor. Three proposed relational models
RMVCNN RDGCNN RMVViT are based on MVCNN, DGCNN29 and MVViT (a 3D
deep  learning  model  adapted  from  Vision  Transformer30),  respectively,  which  act  as
geometric  feature  extractors.  The  IFCNet++  dataset,  where  selected  representative
relational features are attached to each BIM object,  was proposed and used in all the
experiments  for  training and testing the described  models.  The dataset  contains 9228
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Ślusarczyk, Strug

objects belonging to 11 types. Four subtypes of IfcRelationship that appear in most IFC
files  (IfcRelConnectsElement,  IfcRelFillsElement,  IfcRelAggregates  and
IfcRelVoidsElement)  were  selected.  The data were  divided into training and test  sets
using a 7:3 ratio. The results show that RMVCNN reaches an accuracy higher than 98%
on 9 of the 11 types, which means that it can effectively learn geometric and relational
features of most types. Accuracy on the other two models is slightly lower than 90%.
Experiments show that relational features are representative enough to help the geometric
methods achieve a performance gain.

3.2. Semantic enrichment of BIM models from point clouds

The  other  group  of  papers  considers  the  use  of  machine  learning  algorithms for
semantic  enrichment  of  BIM  models  obtained  from  point  cloud  data31.  Semantic
enrichment techniques solve the interoperability problem by exploiting existing numeric,
geometric, or relational information in the model to infer new semantic information. In
this  way  the  time-consuming  process  of  manually  creating  3D  models  useful  for
architectural  and  civil  engineering  applications  can  be  avoided.  Semantic  enrichment
encompasses  classification  of  building  objects,  aggregation  and  grouping  of  building
elements,  implementing  associations  to  reflect  connections  and  numbering32 ,  unique
identification,  completion  of  missing objects,  and  reconstruction  of  occluded  objects.
Then the classification of the model as a whole, or of particular assemblies or objects
within the model in respect to code compliance, can be performed. BIM objects derive
many of their properties from their class, making object classification crucial for reuse in
different analysis tasks, like spatial validation of a BIM model, quantity take-off and cost
estimation.

Xiong et al.  use machine learning for classifying and labeling surfaces obtained from
a laser scan, in order to semantically enrich a BIM model33.  They use both the shape
features, which are referred to as local features, and the spatial relationships (orthogonal,
parallel,  adjacent  and  coplanar)  referred  to  as  contextual  features.  A  context-based
machine learning algorithm, called stacked learning34, is used to label patches extracted
from a voxelized version of the input point cloud. The main constructive objects of a
building, i.e., walls, ceilings and floors, were classified, and separated from other objects
obtained from the scan that are considered clutter. The method achieved an average 85%
accuracy over 4 classes. Then the SVM algorithm is used to encode the characteristics of
an  opening  shape  and  location,  which  allows  the  algorithm to estimate  the  shape  of
window and doorway openings even when they are partially occluded. The method was
evaluated  on  a  large,  highly  cluttered  data  set  of  a  two-storey  schoolhouse  building
containing 40 rooms. The facility was scanned from 225 locations resulting in over 3
billion  3D measurements.  The  SVM algorithm was  able  to  detect  window and door
openings with 88% accuracy.

In Ref. 35 Emunds et al. propose an efficient neural network to learn from point cloud
representation of BIM objects. Sparse Residual CNN for Semantic Enrichment of BIM
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models (SpaRSE-BIM), a neural network model based on sparse convolutions, is used for
the  classification  of  IFC-based  geometry  and  semantic  enrichment  of  BIM  models.
Sparse convolutions only store the non-empty parts of the space and compute outputs for
predefined  coordinates,  making  them  more  efficient  and  faster  than  regular  3D
convolutions on sparse data. The structure of SpaRSE-BIM is made up of three building
blocks, the Sparse Conv Block, the MLP Block, and the Sparse Residual Block, which is
the  main  building  block  of  the  network.  SpaRSE-BIM  processes  point  clouds.  The
experiments  were  performed  on  the  IFCNetCore  and  BIMGEOM  datasets.  IFCNet
provides a dataset of 19,613 individual IFC objects from 65 IFC classes, while its subset,
called  IFCNetCore,  provides  7,930  objects  from  20  classes.  BIMGEOM  consists  of
10,146 objects  of  structural  elements,  technical  equipment  and  interior  furniture  and
contains 13 IFC classes. The results indicate that SpaRSE-BIM achieves overall accuracy
of 81.59% on IFCNetCore and 90.47% on BIMGEOM.

The machine learning methods for both semantic enrichment and automating design
review using BIM models is proposed36 . The approach was applied to identify security
rooms and their walls within the BIM model created in the design process. A two-class
decision  forest  classification  algorithm  was  chosen  for  this  experiment37.  It  was
implemented on a data set of models with 642 security rooms with non-regular complex
geometry, arranged in 64 shafts. The dataset for training contained 448 spaces, 278 of
which were security rooms compliant to the described code clause and the remaining 170
were other rooms or open spaces. The spaces were organized in 64 vertical shafts, each of
which  was  comprised  of  security  rooms  and  other  spaces.  Running  a  10-fold  cross
validation algorithm achieved 88% accuracy. Now the authors explore the possibility of
developing a deep neural network to classify the rooms when the only input data are a
wall schedule, a room schedule and a table of the relationships between them.

3.3. Supporting building design

Different  types of  data available in BIM models can be used to support  the building
design phase  in  the AEC industry.  They help to  optimize  the  design,  detect  clashes,
determine  the  building  energy  consumption in  order  to  improve sustainability  of  the
construction, better understand client’s needs, and make better informed decisions.  

Chen et  al.  proposed  a  framework  combining BIM with  the  least  square  support
vector machine (LSSVM) and non-dominated sorting genetic algorithm-II (NSGA-II) to
study the influence of building envelope parameters on building energy consumption38.
The LSSVM is utilized to learn the data set to establish a prediction model between the
building envelope and energy consumption, which is used as the fitness function of the
building  energy  consumption  in  NSGA-II.  An  NSGA-II  multi-objective  optimization
model with the objective of minimizing building energy consumption and maximizing
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Ślusarczyk, Strug

indoor thermal comfort is established. The proposed framework was used to optimize the
design of a school building. The results show that the LSSVM has great ability to predict
building energy consumption, achieving a prediction accuracy of 95.49%. The developed
LSSVM-NSGA  II  hybrid  approach  can  effectively  improve  the  building’s  energy
consumption  and  thermal  comfort  with  the  building  energy  consumption  reduced  by
10.6%  and  the  thermal  comfort  increased  by  32.2%  compared  to  the  initial  values,
respectively. A unified framework for the extraction and integration of BIM models and
building energy consumption monitoring data has been proposed39 . The energy usage
anomaly diagnosis methods have been devised using integrated static and dynamic data,
which employ density-based clustering and artificial neural network regression using the
integrated data. The multi-layered backpropagation neural network model regressing over
input  data  from  a  multitude  of  buildings,  with  building  static  data  treated  as  input
parameters, is used to identify implicit anomalies that are beyond the scope of clustering
methods. 

In Ref. 40  machine learning is used to predict building thermal energy performance.
A component-based approach that develops machine learning models for a parameterized
whole building design and for parameterized components of the design is described. ML
components have been developed at two levels of decomposition, namely construction-
level components (wall, window, floor, roof, etc.) with a static prediction of total yearly
heating and cooling energy consumption as response, and zone-level components with
dynamic  monthly  consumption  as  a  response. The  development  of  ML  components
representing  construction  elements  uses  neural  networks  with  one  hidden  layer  per
component. Training  data  were  split  into  a  training  set  (85%)  and  a  set  used  for
independent cross validation of components after  testing (15%). Two algorithms were
used  for  training,  namely  the  Levenberg-Marquardt  algorithm  and
Bayesian regularization. Results  in  test  cases  show  that  high  prediction  quality  is
achieved with errors of 3.7% for cooling and 3.9% for heating. In Ref. 41 the component-
based ML using artificial neural networks is used for energy performance prediction in
early stages of building design. As the application of BIM in early design phases requires
the support of different levels of detail, the approach links multiLOD building models
with ML components. This approach was illustrated and validated by a test case with a
medium-sized office building. For validation purposes, the results of the ML predictions
for 60 different design configurations were considered, showing that the average error
was no higher than 3.5% for cooling and 3.8% for heating.

In  Ref.  42  a  system based  on  BIM  and  ANN,  which  evaluates  indoor  personal
thermal comfort and energy of the interior space design, is proposed. It integrates thermal
information  and  a  building  model.  The  back  propagation  ANN  predictive  model  of
thermal comfort takes three environment parameters (air temperature, air humidity, and
wind speed around the person), three human state parameters (human metabolism rate,
clothing thermal resistance, and the body position) and four body parameters (gender,
age, height, and weight) as inputs. The proposed plugin of BIM provides thermal comfort
evaluation results and energy saving optimization suggestions for interior space design by
simulating the energy consumption index of different design schemes. In the data test, the
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Mean Squared Error of the established ANN model was equal to 0.39. In Ref. 43  a
framework  based  on  BIM and  machine  learning  data-driven  models,  with  a  goal  to
analyze the optimum thermal comfort for indoor environments with the effect of natural
ventilation,  is  proposed.  Sufficient  natural  ventilation  in  buildings  is  important  for
reducing  the  energy  consumption  of  mechanical  ventilation  while  maintaining  a
comfortable indoor environment for occupants. BIM provides geometrical and semantic
information  of  the  built  environment,  which  are  needed  for  specifying  boundary
conditions  of  computational  fluid  dynamics  (CFD)  simulation.  This  simulation  is
conducted  to  obtain  the  flow field  and  temperature  distribution,  the  results  of  which
determine the thermal comfort  index in a ventilated environment.  BIM-CFD provides
spatial  data,  boundary  conditions,  indoor  environmental  parameters,  and  the  thermal
comfort index for machine learning to construct robust data-driven models to empower
the predictive analysis. In the neural network, the spatial features such as zone adjacency
and connectivity, and the impact of airflow between zones are represented in the form of
the adjacency matrix. 

A system which aims to assist architects in designing buildings with minimal energy
costs while meeting the functional purpose of the designed facility, is proposed in Ref.
44. It  integrates  BIM and ANN to predict  energy  cost  of  residential  buildings at  the
conceptual stage of architectural design. BIM enables the designer to produce different
scenarios of architectural design, while the ANN model is used to predict the energy cost
of  the  designs  defined  in  BIM.  Data  sets  used  for  developing  the  prediction  model
contain factors influencing the cost of energy such as the age of the existing residential
building,  location,  building  area,  number  of  occupants,  glazing  type,  insulation,  a
building envelope system and air conditioner type. 186 data sets were used to build the
model,  144  data  sets  were  utilised  for  training,  16  data  sets  were  used  testing  the
model and 26 data sets were used for validation. The results show that the developed
ANN-based  model  provides  accuracy  of  78%  in  estimating  the  energy  cost  of  the
residential buildings. A method which integrates Building Information Modelling with
artificial neural network model for limiting the deviation between predicted and actual
energy consumption rates is proposed in Ref. 45. This deviation is due to the fact that
energy performance tools, which are used to simulate the expected energy consumption
of a  given  building do not  take into account  the occupants’  behaviour.  In  this  study
optimum occupant behaviour profiles that are generated via the ANNs are inputted into
the BIM file in order to run necessary energy simulations to validate the estimates of
energy use of the building system. The results show that the heating and cooling energy
consumption  can  be  predicted  with  an  average  of  10.4%  deviation  from  the  actual
performance measured in the buildings.

Automatically  detecting  clashes  in  designs  by  merging  different  BIM  models
supports the building design stage. In Ref. 46  six kinds of supervised machine learning
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Ślusarczyk, Strug

algorithms  (decision  tree,  random  forest,  Jrip-based  rule  methods,  binary  logistic
regression,  naïve Bayes,  and Bayesian network) are used to automatically distinguish
relevant and irrelevant clashes. Ref. 47 develops a method that automatically filters out
irrelevant clashes from the BIM-generated clash detection reports by combining the two
techniques of rule-based reasoning and supervised machine learning. BIM software  is
used for clash detection and rule-based reasoning is used to preliminarily determine the
type of clashes. The results of this classification are added into the dataset of machine
learning for training and testing classifiers (k-NN, SVM, DT, random forest, bagging).
The average predictive performance accuracy obtained by using the hybrid method is up
to  96%.  In  Ref.  48  an  artificial  intelligence  system for  design  clash  resolution  was
developed with machine learning and heuristic optimizing techniques. A parallel back-
propagation neural network was employed as a learning procedure to extract the clash
resolution knowledge patterns. Based on these patterns, simulated annealing was adopted
to develop a system for  automatically resolving design clashes  from the constructor's
perspective.  To  achieve  this  in  BIM  models,  the  proposed  system  utilizes  the  API
provided by the BIM software as the portal to detect clashes, retrieve the geometric and
spatial profiles of elements, and revise the elements.

In  Ref.  49  a  natural  language  processing  and  deep  learning-based  approach  for
supporting  a  BIM-based  automated  rule  checking  system is  described.  The  semantic
analysis for building regulations is performed in two steps: first the meaning of words
and the topic of sentences are learned by the neural net-based word embedding technique
(word2vec  model) and then sentence  classification is conducted with a  deep learning
model.

3.4. Building condition diagnosis

Semantically enriched BIM models are often used in the heritage industry to manage,
analyse and diagnose the assets at varying stages of the conservation process. Authors of
Ref. 50 uses machine learning techniques to automatically classify heritage buildings.
SVM are proposed to extract  the main structural  components such as floors,  ceilings,
roofs,  walls  and  beams.  The  proposed  semantic  labelling  of  the  objects  is  based  on
features, which encode both local (surface area, orientation, dimensions) and contextual
information  (normal  similarity,  coplanarity,  paralellity,  proximity,  topology)  are
extracted form training data sets. The proposed automated feature extraction algorithm
combined  with  an  SVM classifier  takes  the  preprocessed  data  in  the  form of  planar
triangular meshes and outputs the classified objects. The algorithm was trained and tested
using real data of a variety of existing buildings, like houses, offices, industrial buildings
and churches. 10 structures representing different types of buildings were selected for the
evaluation. The average accuracy of the model is 81%. The experiments prove that the
approach reliably labels entire point cloud data sets and can effectively support experts in
documenting and processing heritage assets.
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Machine learning methods are also used for defect classification in masonry walls of
historic  buildings51.  First,  the  process  of  Scan-to-BIM,  which  automatically  segments
point clouds of ashlar masonry walls into their constitutive elements, is presented. Then
the machine learning based approach to classification of common types of wall defects,
that considers both the geometry and colour information of the acquired point clouds, is
described. The found defects are recorded in a structured manner within the BIM model,
which allows for monitoring the effects of deterioration. A supervised logistic regression
algorithm has been employed to classify different  types of decay using parameters of
roughness of stones and dispersion of colour in stones. Stones labelled as 'defective' by
experts are used for training the classifier, which is subsequently employed to label new
data. The proposed approach has been tested on data from the main façade of the Royal
Chapel in Stirling Castle, Scotland. For the training process samples of three classes of
decay (erosion, mechanical damage and discolouration) were used. 15 samples (5 of each
class)  were  included  in  the  test  set,  obtaining  a  global  accuracy  of  93.3%  in  the
classification.

3.5. BIM enhancement in the facility management context 

Semantic enrichment  by integrating facility management (FM) information with a
Building Information Model is presented in Ref. 52. At first, various machine learning
algorithms, which analyse the unstructured text from occupant-generated work orders and
classify it by category and subcategory with high accuracy, have been investigated. Then,
three  learning  methods,  Term  Frequency  (TF),  Term  Frequency-Inverse  Document
Frequency  (TF-IDF),  and  Random  Forest  classifier,  were  applied  to  perform  this
classification.  A set  of  155.00  historical  WOs was  used  for  model  development  and
testing  textual  classification.  Classifier  prediction  accuracies  ranged  from  46.6%  to
81.3% for classification by detailed subcategory. It increased to 68% for simple TF and
to  90%  for  Random  Forest  when  the  dataset  included  only  the  ten  most  common
subcategories.  An  FM-BIM  integration  provides  FM  teams  with  spatio-temporal
visualization of the work order categories across a series of buildings and helps prioritize
maintenance tasks. The paper shows that machine learning can be applied to support FM
activities and can enhance BIM use in the FM context.

To provide a good maintenance strategy for building facilities Cheng et al.  developed
a  data-driven  predictive  maintenance  planning  framework  based  on  BIM  and  IoT
technologies53. Data collection and data integration among the BIM models, FM system,
and IoT network are undertaken in the information layer, while ANN and SVM, are used
in  the  application  layer  to  predict  the  future  condition  of  mechanical,  electrical  and
plumbing (MEP) components. BIM models provide accurate and complete information
for predictive maintenance, including component type, dimensions, materials, capacity,

15

AC
CE

PT
ED

M
AN

US
CR

IP
TAccepted manuscript to appear in VJCS

V
ie

tn
am

 J
. C

om
p.

 S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
95

.7
6.

19
6.

16
6 

on
 1

0/
26

/2
3.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Ślusarczyk, Strug

location, and installation year. An IoT sensor network was established to gather sensor
data from building facilities and environment during the operation period. The prediction
models  are  trained  based  on  the  continuously  updated  real-time  sensor  data  and  the
accumulated maintenance record. The input datasets are randomly divided into three sets:
80%  for  model  training,  10%  for  cross  validation,  and  10%  for  model  testing. The
accuracy of prediction of MEP components condition is equal to 96.547% for SVM and
96.422% for ANN. The results show that the constantly updated data obtained from the
information layer together with the machine learning algorithms in the application layer
can efficiently predict the future condition of MEP components, prevent the failure and
extend  the  lifetime  of  these  components.   In  Ref.  54  a  decision  support  system for
assessing the quality of a large building stock is proposed. The system is meant to help
owners of large building stocks in managing a huge number and variety of buildings,
taking into consideration a lot of aspects  related to different  technical  issues,  such as
accessibility, energy efficiency, life safety,  fire protection and seismic vulnerability. It
can extract relevant information from a BIM database and evaluate the compliance of
existing buildings with a set of rules by means of the application of Bayesian Networks. 

A knowledge-based intelligent Building Energy Management System is considered in
Ref. 55 . To support the integration of multiple data sources and improve interoperability,
the solution makes use of BIM principles and semantic web technologies in the form of a
holistic knowledge base, into which the rules are integrated.  The developed ontology is
based upon the Industry Foundation Classes (IFC). The populated rules are a mix of an
intelligent  rule  generation  approach  using  Artificial  Neural  Network  and  Genetic
Algorithms, and also data mining rules using Decision Tree techniques on historical data.
The rules are queried by the fuzzy reasoner together with the currently monitored state of
the building to generate suggestions for the FM. 

3.6. Knowledge extraction from BIM

Methods of extracting knowledge from existing BIM models with the use of machine
learning are also considered. In Ref. 2 the notion of the building fingerprint is used to
capture the main characteristics of a building design. It serves as a measure of similarity
which allows for  finding a suitable reference for a given problem. The fingerprint  is
based on accessibility and adjacency relationships among spaces within a building model.
Therefore,  the authors retrieve accessibility and adjacency relationships among spaces
encoded  in  IFC  models,  and  build  accessibility  and  adjacency  graphs.  Building
fingerprints are automatically generated based on a spatial semantic query language for
BIM and applied as indexes of the building model repository.

In Ref. 56 the ensembles of artificial neural networks are used for cost estimation
based on building information models. Building information model serves as a repository
of data. A regression model for cost estimation of building floor structural  frames, as
higher-level elements, was created. This approach was continued in Ref. 57 , where a
model  based  on  the  support  vector  regression  and  radial  basis  kernel  functions  was
developed and proposed to predict construction costs of building floor structural frames.
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The ability to extract certain information about the building and structural members of
the floor frames from BIM was combined with the capabilities of machine learning. The
training  data  for  machine  learning  included  inputs  that  represented  features  of  the
building and structural members’ belonging to the floor structural frames and outputs that
represented  corresponding  real  life  cost  estimates  of  the  floor  structural  frames.  The
obtained results show that the proposed model allows predicting costs with satisfactory
accuracy.

A  BIM  and  ML  integration  framework  for  automated  property  valuation  was
proposed58 . It contains a fundamental database interpretation, an IFC-based information
extraction  and  an  automated  valuation  model  based  on genetic  algorithm optimized
machine  learning  (the  gradient  boosting  regression-  GA-GBR). The  value-relevant
attributes  or  properties  for  property  valuation  were  achieved  through quantitative
analysis of 174 archival documents. The required value-specific design information was
extracted  automatically  from  an  IFC-based  BIM instance  model  to  support  property
valuation. The GA-GBR model  was used to  evaluate  property data in American  real
estate market.  The experimental dataset was divided into 20 groups with 1000 houses
data in each of them and randomly split into training set (70%) and testing set (30%). The
56  input  features  were  further  used  for  problem  encoding  in  the  GA-GBR  training
section. The results indicate that GA-GBR model achieves accuracy of 89.4%. 

In Ref. 59 a Bayesian network is used to gain knowledge about existing bridges by
the use of data in the bridge management system in order to support bridge engineering
design. Two variants for the generation of the Bayesian network were considered: the
Tree  Augmented Naive Bayesian  Network  Algorithm and the manual  creation of the
network  by  a  knowledge  engineer.  Both  variants  permit  the  determination  of  design
bridge parameters on the basis of given boundary conditions. The first variant fits better
to  the  generated  training data  sets,  while  the  manually  created  network  supports  the
bridge design process in a more intuitive way. The extracted knowledge is used for new
bridge design problems to generate BIM models for possible bridge variants.

4. Discussion

In this paper a significant number of recent paper related to the application of different AI
methods in BIM has been prresnted. As the papaers have been carefully selected by the
authors rather then obtain via a keyword search the present state-of-the art results. Theere
are several important obsarvations as well as lessens that can be drawn from this analysis.
The most important one is that the majority of the best results are obtained not by using
one methos but rather by combining different approaches. The methods most often used
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are summarized in the table below. It can be observed that different variants of neural
network and convolution neural networks are the method of choice for the majority of the
researchers.  Neverthe  less  other  methods  like  Bayesyan  classifier,  decision  trees  or
genetic  algorithms wers  also used  with success  either  on its  own or,  more  often,  in
combination with other methods,

Method Domain of application Papers

Neural networks Semantic classification
supporting design
facility management
knowledge extraction

4,9,10,11
39,40,41,42,43,44,45,48
53,55
56

Convolution neural 
networks

Semantic classification
semantic enrichment

14,19,23,26,28
35,

Graph neural networks semantic classification 27

Decision trees/forests Semantic classification
semantic enrichment
supporting design
facility management

11
36
46,47
52

SVM Semantic classification
semantic enrichment
supporting design
building condition
facility management
knowledge extraction

14,18.
33
38
50
53
57

Deep belief networks 3D model classification 17

Bayesian networks supporting design
facility management
knowledge extraction

46
54
59

Genetic algorithms supporting design
facility management
knowledge extraction

38
55
58

Rule based methods supporting design 46,47

 Table 1. Methods of Ai used for different domains of applications in BIM.
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5. Conclusions

Traditional methods for modeling and optimizing complex structure systems require huge
amounts of computing resources. Artificial-intelligence-based methods can often provide
valuable  alternatives  for  efficiently  solving problems in architectural  and  engineering
design, construction and manufacturing.

Machine learning techniques have considerable potential in the development of BIM.
The application of classification algorithms would enable machines to do tasks usually
done by hand. Results from machine learning on architectural datasets provide a relevant
alternative view to explicit querying mechanisms and provide useful insights for more
informed decisions in the design and management of buildings. Machine learning might
facilitate  less  experienced  users  to  query  complex  BIM  datasets  for  project  specific
insights.

It  was  shown  that  machine  learning  algorithms  can  learn  the  key  features  of  a
building belonging to a certain category, and this acquired knowledge could be used in
the future when designing the methods to automatically design other structure based on
BIM historical data. The described techniques can be applied for retrieval, reference, and
evaluation of  designing, as  well  as generative  design. The presence of  historical  data
combined with the acquired knowledge of the building type key features could help in
developing  methods  for  automatically  designing  building  structures  with  required
characteristics.  The presented  methods can be extended to further  subdivide the BIM
main categories into sub-categories that could represent different areas of interest in these
structures.

Many problems in architectural  and engineering design, construction management,
and  program  decision-making,  are  influenced  by  many uncertainties,  incomplete  and
imprecise knowledge. It seems that machine learning techniques should be able to fill
knowledge  gaps  in  the  knowledge  bases  and  therefore  they  have  broad  application
prospects in the practice of design, construction, manufacturing and management. Object
classification integrity is a fundamental requirement that needs to be satisfied in order to
ensure effectiveness  of using BIM applications. Successful  semantic enrichment  tools
would  infer  any  missing  information  required  by  the  receiving  application,  thus
alleviating the need for the domain expert to preprocess the building model. They can
help inexperienced users to solve complex problems, and can also help experienced users
to improve their work efficiency, and share experience.

The authors believe that the widespread use of machine learning methods in BIM
community would require a  more probabilistic and less deterministic  approach to the
parameters  in  the  models,  and/or  the  implementation  of  correction  and  post-process
measures. Such measures could include automatic revision based on criteria established
using  traditional  programming,  to  pinpoint  the  elements  where  ML algorithms make
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mistakes. In order to obtain consistent results with sufficient predictive potential, not only
the choice of the right ML algorithms is important,  but  also the choice,  quantity and
quality of the data used to train the algorithms.
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