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SUMMARY

Service-oriented architecture provides interoperability and weak coupling features for software development.
Representational state transfer (REST) is an architectural style that has attracted attention in the SOA domain
as it allows the development of Web services based on original principles of the World Wide Web. Unlike
Web service specifications, which are based on Simple Object Access Protocol and Web Services Description
Language, REST does not provide ‘official’ standards to address non-functional requirements of services,
such as security, reliability, and transaction control. The timestamp-based two-phase commit protocol for
RESTful service (TS2PC4RS) algorithm specifies concurrency control of RESTful services during a trans-
action. An extension of the TS2PC4RS specifies the concurrency control of the Web services considering
the update operation to meet some business rules. However, neither algorithm addresses transaction control
when failures occur. In long-term transactions, failures can occur and compromise the success of Web ser-
vice applications. Two common failures traditionally considered in the analysis of protocols are host and
connection failures. The aim of this paper is to address fault tolerance for TS2PC4RS and its extension. A
fault-tolerant protocol based on timeout and log records is proposed. The fault-tolerant protocol provides
support for the host and connection failures that may occur during a transaction execution. The fault-tolerant
mechanisms are used to meet the application domain business rules that guide the behavior of RESTful
services. We describe the protocol using scenarios when failures occur. Copyright © 2012 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Representational state transfer (REST) [1] is an emerging technology that has been gaining attention
in the SOA domain because its foundation lies in the original design principles of the World Wide
Web. REST provides a new abstraction for publishing information and giving remote access to
application systems. The usage of these original principles makes the consumption of the services
by clients easier, which allows service providers to attract a larger user community [2, 3].

Web service specifications (WS-*) are a set of specifications for the development of services
based on Simple Object Access Protocol (SOAP) [4] and Web Services Description Language [5].
WS-* provides support for non-functional requirements such as security, reliability, and transaction
control. The specifications include WS-Security [6], WS-Reliability [7], WS-Transaction [8], and
WS-Coordination [9]. One drawback of the WS-* standards is their level of complexity, which often
hinders their adoption in applications developed to operate on the Web.
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On the other hand, most of the non-functional requirements in RESTful Web services are not
addressed by an ‘official’ standard. The reason is that REST is an architecture style, so it is used
mainly to understand and design Web services [10].

There is still a gap for new proposals to deal with transactional control support ranging from
atomicity, consistency, isolation, durability to long-running transactions in the Web service
domain. So, to address Web service concurrency control, Maciel and Hirata [11] have proposed
the timestamp-based two-phase commit (2PC) protocol for RESTful services (TS2PC4RS). The
TS2PC4RS algorithm uses a timestamp-based technique [12] with the 2PC protocol [13] to control
concurrent accesses to REST resources.

Maciel and Hirata have also proposed an extension for TS2PC4RS [14] to improve the way
clients update their ‘reservations’, known as prewrites. The reason for opportunistic updates is the
possibility for clients in a long duration transaction to change their minds after starting the
transaction. To provide the ability to update the prewrites, the TS2PC4RS extension [14] considers
the application domain business rules to extend TS2PC4RS [11].

Web service transaction models [15] deal with the consistency and reliability of loosely coupled
Web service applications. The WS-Transaction effort is cited as the de facto standard for SOAP-
based Web service transactions [15]. TS2PC4WS and WS-Transaction can be applied in different
contexts. If the Web services can be abstracted as resources (data items), TS2PC4WS is more
appropriate. However, if the services are focused on specific actions of the application domain, the
WS-Transaction is more suitable. The decision on which approach to use must consider the busi-
ness requirements involved, as well as the non-functional requirements that must be met. A detailed
comparison between TS2PC4RS and WS-Transaction specification is described in [11].

Concurrency control is one of the key properties that transactions must follow. However, other
issues have to be addressed, such as atomicity, isolation, and durability. In TS2PC4RS, atomicity
and isolation are relaxed, and durability is not addressed. A fault-tolerant TS2PC4RS that considers
the relaxed form of atomicity and isolation and durability is essential to the success of long duration
Web service transactions.

In this paper, we propose procedures to deal with failures that may occur during a transaction exe-
cution using TS2PC4RS. The aim is to provide host and connection failure tolerance specifically for
TS2PC4RS. Despite the fact that our fault-tolerant approach is specific to TS2PC4RS, we believe
that the ideas and concepts can be adapted and applied to other protocols and algorithms used to
control Web service transactions.

There are two aspects of reliability that must be somehow considered—correctness and
availability [13]. It is important that a system behave correctly according to its specifications, and
the system is available when necessary. In certain cases, there is a trade-off between correctness
and availability [13] because it is possible to increase the availability by agreeing to continue the
transaction execution under circumstances that increase the risk of obtaining inconsistent results. On
the other hand, using a very cautious strategy, such as halting the transaction whenever anomalies
emerge, reduces availability.

In some applications, correctness is an absolute requirement, and information corruption caused
by errors is not tolerated (e.g., banking applications). Other applications may tolerate the risk of
inconsistencies to achieve greater availability.

In the TS2PC4RS fault-tolerant approach proposed in this paper, the trade-off is originated from
the possibility for a client, say client A, to have some period, which can be long, to decide about the
commitment or abortion of its transaction. The transaction uses records through read and write oper-
ations during its execution. However, because the transaction can be of a long duration, we allow
that the records are accessed by read operations of other transaction, for instance, initiated by client
B. This possibility increases availability (for read operation); however, it compromises correctness
because client B does not know whether client A will commit or abort.

The sections of this paper are organized as follows. Section 2 recalls some of the key aspects
of TS2PC4RS and its extension. The description of TS2PC4RS is illustrated through an example.
Section 3 describes the general model of the fault-tolerant protocol for TS2PC4RS. We describe
the assumptions to use the fault-tolerant TS2PC4RS. Section 4 describes the recovery procedures
of host and connection failures through scenarios in which these failures occur. In Section 5, we
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describe some implementation and a practical experience to show the feasibility of the fault-tolerant
TS2PC4RS. In Section 6, we describe how to make the extended version of fault-tolerant TS2PC4RS
using the same concepts discussed. The related work is described in Section 7. Section 8 presents a
discussion and the conclusions.

2. TS2PC4RS ALGORITHM

Clients are responsible for coordinating the transaction, which can involve various RESTful
services. The services must implement the TS2PC4RS algorithm to play the role of a transaction
participant/agent.

The client can send prewrite operations to the RESTful services, which, on the basis of their busi-
ness rules, analyze the accomplishment of the client’s request. Business rules dictate what the Web
services should implement to achieve the business goals. Business rules can be understood, from the
information system perspective, as statements that define or constrain aspects of the business. They
are intended to assert business structure or to control or influence the conduct of the business. Thus,
a business rule expresses specific constraints on the creation, update, and removal of persistent data
in an information system [16].

To deal with failures, we recall the main aspects of TS2PC4RS [11].
Section 2.1 recalls some of the key aspects of TS2PC4RS. Section 2.3 recalls the main aspects of

the extended algorithm.

2.1. Timestamp-based two-phase commit protocol for RESTful service algorithm

In this subsection, we describe our previous work, the TS2PC4RS algorithm for concurrency control
in the RESTful service domain [11].

The TS2PC4RS is a collection of procedures to deal with read, prewrite, and write operations on
data items. Every write operation W is preceded by a prewrite operation PW. A unique timestamp
is assigned to each transaction in its origin. Each read operation R, write operationW , and prewrite
operation PW has the transaction’s timestamp TS.

In the all-or-nothing decision, the client evaluates all the reply messages received from
the RESTful services and if they are all ready, the client commits the transaction by sending the
commit message to all the services. If the client receives a not-ready message, it aborts the
transaction, sending abort messages to all the services.

If the business rules allow, the client may want to partially commit the transaction. In this case,
even if they get some not-ready messages, the client may want to commit the requests that are ready
by sending the commit message to the corresponding RESTful services.

Figure 1 describes the exchange of messages between the coordinator and the Web services
when implementing TS2PC4RS. The client assumes the role of the 2PC coordinator responsible
for coordinating the transaction. It starts the transaction by sending requests through prewrites to
the RESTful services involved in the business process. The RESTful services assume the role of the
2PC agents. Thus, if the service can perform the operation requested, it replies with a ready message
to the coordinator-client. Otherwise, the service replies with a not-ready message.

In the all-or-nothing case, if the coordinator site receives a ready message from all the agents, the
transaction is committed. So the coordinator sends the commit message (the decision) to all agents.

Therefore, agents determine whether the prewrites are accepted on the basis of their application
business rules. Several prewrites may exist for the same data item. The prewrites may or may not
be completed—it is a coordinator decision. The agent, through its support application, ensures local
consistency of its resources (data items) and the prewrite conversion into write if the coordinator
decides to commit the transaction. Agents discard prewrites if the coordinator does not commit the
transaction, by sending abort messages.

The algorithm is reproduced in Listing 2.1. The LPW is a list of buffered prewrites on a data
item (x) arranged in a timestamp order. If LPW is not empty and an agent receives a read operation
R with TS.R/ > WTM and TS.R/ >D TS.first.LPW//, the read operation should not be allowed
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Figure 1. Exchange of messages in timestamp-based two-phase commit protocol for RESTful services.

because there are transactions in progress (not committed yet). The value of the data item being read
at TS.R/ cannot be accurately determined.

However, considering a Web service domain, it is worth being more responsive and returning
some information to the client, relaxing the isolation property. So, in this situation, TS2PC4RS is
more flexible because it allows the return of the data item updated view, which contains the data
item value in the last committed write operation, the WTM, and a LPW sub-list that contains all PWs
with timestamp less than or equal to TS.R/, that is, the ongoing PWs that may impact the read
at TS.R/.

It is also possible to return some computed value on the basis of the LPW sub-list. For example,
assuming that all pending prewrites commit, it may be of interest to return the presumable data item
value with the updates applied, which will have WTMD last.LPWsub-list/. The client must know that
it is a volatile read, as the value read can be changed by ongoing transactions.

Hence, the clients, on the basis of the data item updated view and their business rules, can decide
what they want to do. For example, depending on what the client is performing, it can abort the
transaction, it can try to predict the data item value at the TS.R/ (if it is not already calculated by
the agent), or it can wait some time and re-send R.

When the transaction is committed, the operationW is performed in the data item, its correspond-
ing PW is removed from the LPW, and WTM D TS.PWremoved /. If the transaction is aborted, the
PW is removed from the LPW.

When the coordinator sends write operations W to the participating agents, the W operation
must have an associate PW (with the same TS) previously sent to the agents. Listing 2.2 shows
the procedure that must be accomplished when the agents receive W , indicating the transaction
commitment.

A sequence of PW marked for update data means that there is an LPW sub-list that can be removed
from LPW if the corresponding updates are made in the data item.

If the transaction is aborted, the procedure in Listing 2.3 must be performed by the agents. In this
case, the PW is removed from the LPW, and if there is a sequence of PW marked for update data, the
sequence is executed and the WTM is updated with the timestamp of the last PW in that sequence.

For more details, the reader can refer to [11].

2.2. Purchase-of-tickets example

The transaction is made of two operations: an operation to purchase tickets for a basketball game
and an operation to purchase train tickets to go to the city the game is being played in. The client’s
objective is to buy a certain number of tickets for the game, together with the train tickets. Initially,
clients want to buy the same amount of tickets for the game and for train seats. Table I provides an
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Table I. The main resources, URIs, and operations for the purchasing of tickets example.

Resource URI Method Description

Tickets for game /ticketsforgame/TS GET Retrieve the representation within the
available ticket number.

Ticket booking /ticketsforgame/booking/TS PUT Create or update a booking at TS. Also
used to commit or abort the booking.

/ticketsforgame/booking/TS GET Retrieve the status of the booking created
at TS (e.g., pending, aborted, completed).

Source: [11].

overview of the main resources, uniform resource identifiers (URIs), and operations for the service
responsible for the game tickets. The train ticket service has similar resources.

As described [11], each REST resource that uses the timestamp concurrency control has the
following attributes within its representation.

� The largest write operation timestamp (WTM).
� The largest read operation timestamp (RTM).
� The list of buffered prewrites (LPW).

The RESTful services implement the 2PC agents that control access to the data items. The REST
clients implement the 2PC coordinator. In this paper, the terms Web service, RESTful service, and
service have the same meaning and play the role of the 2PC agent; the terms coordinator, client, and
coordinator-client have the same meaning and play the role of the 2PC coordinator.

The client sends read operations (R) through GET messages and prewrite (PW) and write (W )
operations through PUT messages. If the service executes R, a resource representation is returned
with the HTTP 200 status code (OK). Otherwise, if the service cannot process R, it returns a
message with the HTTP 409 status code (Conflict) and information about the conflict. For example,
if R is rejected because of the WTM, the value of WTM is added in the response message to allow
the client to increase its timestamp.

If the service successfully executes PW or W , a message with the HTTP 200 status code is
returned. Otherwise, if the service cannot process PW or W , it returns a message with the HTTP
409 status code and information for the client to decide on the transaction.

Figures 2–4 illustrate the purchase-of-tickets scenario described in [11]. The filled arrows
represent the requests made by clients. The dashed arrows represent the responses sent by the servers

Figure 2. (i) Each client retrieves the account representations. (ii) Only client 2 succeeds in sending
prewrites. Source: [11]. CID, coordinator identifier; TS, timestamp; URI, uniform resource identification.
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Figure 3. (i) Client 1 restarts and requests the resource representations again, but there are transactions in
progress. So some more information is sent back to client 1. (ii) Client 1 now succeeds in sending prewrites.

Source: [11]. CID, coordinator identifier; TS, timestamp; URI, uniform resource identification.

Figure 4. (i) Client 1 commits its transaction. (ii) Client 2 commits its transaction. Source: [11]. CID,
coordinator identifier; TS, timestamp; URI, uniform resource identification.

to clients. The requests are numbered to indicate the order of execution, and the responses indicate
whether the requests are successful or not. Client 1’s goal is to buy 400 tickets in both services; and
Client 2’s goal is to buy 300 tickets in both services.

Server A hosts the RESTful service responsible for the game tickets, and the initial values for
its attributes are tickets D 1000, WTM D .10, x/, RTM D .20, x/, and LPW D Œ �. Server B hosts
the RESTful service responsible for the train tickets, and the initial values for its attributes are
ticketsD 500, WTMD .15, x/, RTMD .30, x/, and LPWD Œ �.

The timestamp is a record composed of two values: a positive integer that represents the
timestamp (TS) and a coordinator identifier (CID), which is used to break ties when two trans-
actions have the same timestamp. Each coordinator has a unique ID, and a total order among all
CIDs is assured. Client 1’s initial timestamp is .32, a/, and client 2’s initial timestamp is .40, b/.

The first step for each client is to obtain the representation of resources involved by sending an
HTTP GET request to the servers. The request URI is ticketsforgame/timestamp to server
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A and ticketsfortrain/timestamp to server B. Both clients obtain the representations of
available game and train tickets (Figure 2i).

A possible HTTP request message to retrieve the available tickets for the game can be

A response to the preceding request is illustrated as follows:

Both clients, who have timestamps greater than the corresponding WTMs, receive the available
tickets for the game and for the train seats. LPW is empty; thus, read operations are executed, and
the RTM is updated with the value of the expression max.RTM, TS/.

With the representations, clients check if it is possible to book the desired number of tickets and
send the PW messages, using the HTTP PUT, to the corresponding URIs. As illustrated in Figure 2ii,
the URI ticketsforgame/booking/timestamp is used to send a prewrite to server A, and
the URI ticketsfortrain/booking/timestamp, to server B.

At the time of sending the prewrites to the servers, client 1 cannot achieve a successful prewrite
because the RTMs of both resources are greater than client 1’s timestamp. Client 1, therefore,
receives two not-ready messages in return to its prewrites, and client 1 must restart its transaction
with a higher timestamp (Figure 2ii). On the other hand, client 2 successfully books their tickets
and receives ready messages from the servers. So server A has its LPW updated by the insertion of
..40, b/I 300/. The RTM of the data item for game tickets contains .40, b/, and the WTM remains
unchanged. Server B has its LPW updated by the insertion of ..40, b/I 300/. The RTM of the data
item for train tickets is .40, b/, and the WTM remains unchanged.

A request content to book 300 tickets for the game may be as follows.

Because client 1 receives the not-ready messages from both servers, they restart their transaction
with a higher timestamp, TSD .50, a/ and send HTTP GET requests to retrieve the resource repre-
sentations again. Now, however, as shown in Figure 3i, the LPWs are not empty, they contain one
prewrite with TS.PW/ D .40, b/. So neither server can execute the actual read and return the data
item updated view, which contains the data item value at WTM, the WTM, and the LPW sub-list with
the single element in LPW, which has a timestamp less than .50, a/. In this situation, the client must
decide what to do, considering that some transactions have not been committed yet.

Client 1, with the resource updated views, can decide on the basis of their business rules. Let
us assume client 1 notes that there are transactions in progress which, if they are committed, will
not allow the purchase of the 400 tickets. So client 1 decides to change its request, decreasing the
amount of tickets from 400 to 200.

Copyright © 2012 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2012)
DOI: 10.1002/spe



FAULT-TOLERANT TS2PC4RS

Thus, client 1 successfully books its 200 tickets and receives ready messages from the servers. As
illustrated in Figure 3ii, both servers have their LPW updated by the insertion of ..50, a/I 200/.

At this point, either client can commit its transaction. Assuming that client 1 sends the commit
message first. The resources receive the write messages from client 1 and must accomplish the pro-
cedure described in Listing 2.2. As, in servers A and B, the PWs to be committed are the second in
the LPWs, they are just marked for update data in each resource. In Figure 4i, the asterisk represents
the update data mark.

When client 2 commits, according to the commitment procedure (Listing 2.2), the resources
execute the write operation, remove the committed PW from LPW, and update WTM with
TS.PWremoved/. The resources also remove the sequence of PWs marked for update data, execute
the respective writes, and update WTM with TS.last PW of the removed sequence/. The values of
all attributes updated in this case are shown in Figure 4ii.

Up to this point, we described the interactions between the coordinator and the Web services as
proposed in our previous work—-TS2PC4RS [11]. This is necessary to clarify the context in which
we are proposing the fault-tolerant approach, which is the aim of this paper.

2.3. Timestamp-based two-phase commit protocol for RESTful services extended algorithm

During the transaction execution, the client may also want to change their request to increase
the chances of success with all the services, so the processing of prewrite is extended to accept
updates [14].

The extended TS2PC4RS algorithm [14] is a previous work of ours that allows the prewrite
updates on the basis of the application business rules. The business rules cover everything that the
business claims must be evaluated in data item manipulation, including the assurance of consistency
maintenance during the data item states transfer.

The term prewrite update refers to the second prewrite onwards sent using the same timestamp
TS to change the first accepted prewrite.

In this paper, we use TS2PC4RS without the waiting lists proposed in [14]. The update request
is analyzed by the Web service, and it is accepted or rejected. The reason for not addressing the
waiting lists is the difficulty in assuring consistency in the event of host failure for the service.

Thus, if the prewrite is being updated, but the update does not corrupt any business rule, the update
is made by replacing the prewrite in the LPW [14]. For more details about the extended TS2PC4RS,
the reader can refer to [14].

3. TIMESTAMP-BASED TWO-PHASE COMMIT PROTOCOL FOR RESTFUL SERVICE
FAULT TOLERANCE MODEL

In the timestamp 2PC protocol [13], the goal of the first phase is to reach a common decision, and
the goal of the second phase is to implement the decision. The basic idea is to determine a unique
decision for all agents with respect to committing or aborting all local sub-transactions.

In TS2PC4RS [11], the coordinator-client can partially commit the transaction, that is, the client
is able to commit only the accepted prewrites. The result of the transaction has other options besides
the 2PC all-or-nothing possibility in which either all the agents commit or all the agents abort.
In the extended TS2PC4RS [14], the client can make updates until they reach the decision for
the transaction.

Figure 1 illustrates an overview of the message exchange in TS2PC4RS. As described in
Section 2.1, the coordinator starts the transaction phase 1 by sending prewrite requests to the
RESTful services that the coordinator selects to participate in the transaction. A RESTful service
that accepts the prewrite replies with a ready message to the coordinator. The service replies with a
not-ready message if it cannot accept the prewrite. Once the coordinator receives the responses from
all the services and the coordinator takes the decision, phase 2 is started. Afterwards, the coordinator
sends the commit or abort messages to the corresponding services.
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Figure 5. Exchange of messages and log records in the fault-tolerant timestamp-based two-phase commit
protocol for RESTful services.

To deal with failures, we use a log file to record the TS2PC4RS main events. If an error occurs
during the transaction execution, the transaction can be recovered from the error by using the saved
information. Figure 5 complements Figure 1 with the main events that must be logged during the
execution of a transaction to allow recovery from failures. The main events of the coordinator and
Web services are represented by small circles and are detailed in Section 4. Briefly, the events that
must be logged are the start/end of the first phase, the start/end of the second-phase, and the indi-
vidual responses of the Web services in each phase. We assume that the end of the first phase and
the start of the second occur at the same time.

Some restrictions must be assumed to allow the use of log records to provide objective recovery
procedures. In this paper, we consider the following conditions to successfully finish a transaction.

c1. All the Web services accept the prewrites; otherwise, the transaction is aborted. If the coordi-
nator does not receive a ready message from all the Web services in the TS2PC4RS phase 1,
the coordinator decides to abort the transaction.

c2. The Web service is responsible for deciding when the timeout to receive the coordinator’s
decision is reached; however, it must inform the coordinator of the deadline (timeout). The
coordinator follows the Web service decision.

c3. The coordinator decides on the basis of its business rules before the earliest deadline
(the earliest Web service timeout). The Web service timeout should be long enough to allow
the coordinator to reach and transmit the decision to all the Web services. The timeout also
should enable the execution of a recovery procedure if an unexpected failure occurs.

Each Web service has a timeout mechanism to impose a time limit to receive the coordinator
decision. If the Web service does not receive the decision before the timeout expiration, the Web
service cancels the prewrite that has already been accepted. All the Web services that reach their
timeouts cancel the accepted prewrite.

Our proposed protocol is resilient to failures in which no log information is lost. Log information
is recorded in each Web service, as well as in the coordinator/client. The use of logs is the basic
technique for implementing transactions in the event of failures [13].

A log record contains information for undoing or redoing all the actions performed during a
transaction execution [13]. The undo actions must allow the reconstruction of the previous state of
the system, that is, before the transaction execution. The redo actions must perform the transaction
operations again.
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4. FAULT TOLERANCE FOR TIMESTAMP-BASED TWO-PHASE COMMIT PROTOCOL
FOR RESTFUL SERVICES

In this section, we describe the fault tolerance approach for TS2PC4RS. First, we describe the
structure and the information in the TS2PC4RS’ main events log records.

In our proposed protocol, the variables (RTM, WTM, LPW) controlled by the Web service
providers must be logged to reconstruct them in the event of failures. After the TS2PC4RS variables
during the restart are reconstructed, the recovery procedures in Sections 4.2 and 4.3 are executed.

The undo and redo operations must be idempotent [13]. Therefore, performing them several times
must be equivalent to performing them once. This is important because the recovery process might
fail and be restarted more than once. So the coordinator and the Web services must recognize and
correctly process the repetitions demanded by the recovery procedures.

On the coordinator-client side, a log record for TS2PC4RS is composed of the following
information:

1. the transaction timestamp and
2. the Web service uniform resource locators used in the transactions or some other Web service

identification.

The main events that the coordinator/client must log are as follows:

� GLOBAL-BEGIN: The start of the first phase, when the coordinator selects the Web services
to be used in the transaction.
� PREWRITE: The success in receiving a ready message from each Web service.
� ABORT: The decision to abort the transaction due to a not-ready message or an exception

during phase 1.
� GLOBAL-PREWRITE: The end of the first phase, when it successfully transmits the prewrites

to all participating Web services and receives the corresponding ready message.
� INTENDED DECISION: The start of the second phase, when the coordinator-client reaches

a transaction decision, indicating which Web services must commit and which must cancel
the prewrite.
� OK: Success in receiving the OK message from a Web service.
� TIMEOUT: Success in receiving a TIMEOUT message from a Web service.
� IMPLEMENTED DECISION: The end of the second phase, when the coordinator-client

terminates the transaction.

The coordinator-client events are shown in Figure 5 on the client side represented by small circles.
The TS2PC4RS protocol detailing the actions executed by the coordinator-client in phases 1 and 2
is described in Listing 4.1.

If the coordinator receives all the replies (ready or not ready messages), the coordinator intended
decision is reached on the basis of its business rule restrictions. As the business rules depend on
the application domain, it is not possible to predict the coordinator’s exact behavior to reach the
decision. The coordinator intended decision can be made on all-or-nothing or partial commitment
(or partial abortion) of Web services.

On the Web services side, a log record for TS2PC4RS is composed of the following information:

1. the transaction timestamp;
2. the TS2PC4RS variables that are being updated;
3. the type of operation being executed (read, prewrite, and write (commit or abort));
4. the old TS2PC4RS variable values; and
5. the new TS2PC4RS variable values.

The main events that each Web service must log are the following:

� READY or NOT-READY: The prewrite acceptance or rejection.
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� CANCEL: The prewrite autonomous cancel due a timeout or an exception.
� COMMIT or ABORT: The prewrite commit or abort, when it receives the coordinator

intended decision.

The Web service events are shown in Figure 5 on the Web service side represented by small
circles. The TS2PC4RS protocol detailing the actions executed by the Web services in phases 1 and
2 is described in Listing 4.2.

In this paper, we investigate procedures that allow the TS2PC4RS to deal with failures.
To support the fault recovery process, the access to remote recovery information can be used if

necessary. The faulty Web service in its restart procedure can ask the coordinator about the transac-
tion outcome. The access to remote recovery information is explained through the example scenarios
in Sections 4.2 and 4.3.
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The purchase example in Section 4.1 introduces the timeout mechanism used in the recovery
procedures proposed in this paper. In Section 4.2, the scenarios considering coordinator and Web
service faults are described. Section 4.3 describes the scenarios where communications problems
must be dealt with when using TS2PC4RS.

4.1. Reliability in purchase-of-tickets example

The purchase-of-tickets example described in Section 2.2 and originally proposed in our previous
works [11, 14] is used to facilitate the understanding of the issues about reliability.

To introduce the timeout mechanism in the example, let us consider the scenario with just one
client that has succeeded in sending its prewrites, as illustrated in Figure 6a. Client 1, whose
timestamp is .50, a/, has succeeded in sending its PW message to book 200 tickets. So the LPW
of both servers has one entry representing the prewrites for client 1.
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(a) initial scenario (b) timeout

Figure 6. (a) Client 1 succeeds in sending its prewrites. (b) Server B reaches and processes timeout.

Each service returns additional information, the timeout, that the service will wait for a message
from the client committing or aborting the accepted prewrite. In the example, server A declares a
timeout of 3 days (timeoutD 3d in Figure 6a), and server B declares a timeout of 4 h (timeoutD 4h
in Figure 6a).

In Figure 6a, the symbol used to represent service timeout control is an hourglass, and the symbol
used to represent the client timeout control is a clock. When a timeout is reached, the service is
authorized to cancel the associated prewrite. Thus, the client monitors all the timeouts informed by
the services to commit or abort the operations properly.

Starting from the described scenario and assuming that client 1 does not make a decision in 4 h,
server B reaches its timeout. So server B can cancel the client 1 prewrite. Figure 6b shows the
occurrence of timeout in server B. The symbol with an exclamation mark in Figure 6b identifies the
timeout occurrence.

Client 1, on the basis of its own control of the prewrite timeouts, autonomously processes the
server B timeout and gives up the train tickets for server B. Client 1 must exclude the server B
accepted prewrite from the transaction. However, if client 1 sends a commit message to server B
after the deadline (server B is timed out), server B returns a timeout message to client 1, as described
in the TS2PC4RS protocol of Listing 4.2 and illustrated in Figure 7.

At this point, client 1 can, for example, find another company to buy train tickets from, find
another way to go to the game, send another prewrite request to server B, or decide to buy only the
tickets for the game. If client 1 chooses to commit the purchase of game tickets, they just send a
commit message to server A, as shown in Figure 7.

4.2. Site failure scenarios

The site failures are coordinator-client failures and RESTful service failures. The recovery proce-
dures for client and Web service failures are described for each situation of the logs described in the
TS2PC4RS protocol for coordinator (Listing 4.1) and service (Listing 4.2).
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Figure 7. Client 1 decides to commit only the purchase of game tickets.

Figure 5 illustrates the interactions between coordinator/client and Web services/agents,
identifying the main log events that mark the progress of the TS2PC4RS protocol (represented by
small circles).

4.2.1. Coordinator crashes before GLOBAL-PREWRITE. As in the first scenario, we assume
that the coordinator-client fails after logging the GLOBAL-BEGIN, but before recording the
GLOBAL-PREWRITE. In this case, the following procedures are executed.

1. All the Web services that accepted the prewrites answering READY and that did not reach the
timeout wait for the recovery of the coordinator.

The restart procedure for the coordinator resumes the protocol from the beginning, reading
the identity of Web services from the GLOBAL-BEGIN record in the log and sending the
prewrite requests to them again. If the coordinator has logged some PREWRITEs, this infor-
mation can be used to identify the Web services that already answered ready, excluding
them from the restart procedure. In this case, the corresponding timeouts must be computed
considering the period that the coordinator failed.

Each Web service that still has the prewrite in LPW must recognize that the prewrite message
is a repetition. The Web service replies with the remaining timeout to the coordinator.

2. The Web services that reach their timeout cancel the accepted prewrites. As the coordinator
does not make a decision, no service receives the coordinator commit or abort, so the Web
services can cancel without corrupting the transaction progress. The coordinator restarts as
described in the previous item (1). Each Web service that cancels the accepted prewrite
processes the re-sent prewrite as a new one.

3. If the coordinator logs ABORT, the restart procedure is not necessary. The coordinator does
not need to re-send any message. The Web services cancel by timeout.
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4.2.2. Coordinator crashes after the GLOBAL-PREWRITE and before the INTENDED DECI-
SION. After the coordinator-client logs the GLOBAL-PREWRITE, indicating that all Web services
returned the ready message, the coordinator can take some time to reach a decision. The period is
demanded by the application business rules. The period necessary for the coordinator to take a
decision must be short enough to commit the Web services before the earliest timeout.

In this situation, in the restart procedure, the coordinator resumes the protocol from the
GLOBAL-PREWRITE, restarting the process to reach the intended decision as described in
Listing 4.1.

4.2.3. Service crashes before recording READY. Following the sequence of TS2PC4RS protocol,
the Web service fails before recording READY (or NOT-READY) in the log. There are two situ-
ations: the service crashes before receiving the prewrite and the services crash after receiving the
prewrite and before logging READY.

In the first situation, the coordinator catches the corresponding exception and aborts the transac-
tion. The service does not keep any information on the prewrite. On restart, the service proceeds
without the prewrite.

In the second situation, the prewrite may be processed and inserted in LPW or not. However,
because the LPW is not saved in the log because of the crash, the prewrite is lost. On restart, the ser-
vice proceeds without the prewrite. Therefore, the consistency between the coordinator and service
is kept in both situations.

The coordinator catches a service exception when the service starts to process the prewrite but
crashes before finishing and before recording READY (or NOT-READY) in the log. The coordinator
catches an exception if the service is not operational before the coordinator sends the prewrite.

As the condition (c1.) states that the coordinator must receive ready from all the services to start
the TS2PC4RS phase 2, the coordinator approach is to ABORT the transaction. The coordinator can
choose to send an abort message to the accepted prewrites, despite the Web services that accepted
the prewrite cancel due to a timeout. See the catch clause for phase 1 in Listing 4.1. The coordinator
does not need to start phase 2.

4.2.4. Service crashes after recording READY in the log. This subsection describes the failure of
service after recording READY in the log. In this situation, we assume that the corresponding
prewrite is in the LPW.

The operational Web services proceed to obey the coordinator. They correctly terminate the
transaction (commit or abort), after receiving the coordinator intended decision in the TS2PC4RS
phase 2.

The coordinator catches a service exception when it tries to send the intended decision to the
failed Web service and records this fact in the log. The coordinator tries to send the decision until
the Web service successfully recovers.

The failed Web service, through the restart procedure, asks the coordinator about the outcome of
the transaction and performs the corresponding commit or abort.

When a failure occurs after the log is recorded and before the READY message is sent, the coor-
dinator and all other operational Web services behave as described in Section 4.2.3—the transaction
is aborted. The failed Web service performs the restart as described earlier.

Considering the initial scenario in Figure 8, where both clients succeed in sending their prewrites
(200 tickets for client 1 and 300 tickets for client 2), a scenario in which the server B fails is
described.

Server B crashes after logging READY, so afterwards, it accepts the prewrites. Figure 9a illus-
trates client 2, timestamp .40, b/, committing its transaction. Server A commits the corresponding
prewrite, updating its WTM, LPW, and the available quantity of tickets. On the other hand, client 2
receives a server exception when it tries to send the commit message to server B. Then, client 2 logs
the exception and keeps trying to send the decision to server B. Server B, in its restart procedure,
resets the corresponding timeouts and asks client 2 about the decision. Client 2 resets the timeout.
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Figure 8. Clients 1 and 2 have succeed in sending their prewrites.

(a) Server crash after READY (b) Server restart procedure

Figure 9. (a) Server B crashes after logging ready. Client 2 tries to commit but catches an exception because
Server B is not operational. (b) Server B restarts and asks client about the decision.
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Figure 9b shows server B’s message exchange in the restart procedure. At restart, server B asks
client 2 about the decision, and it accomplishes client 2’s decision, in this case, committing the
corresponding prewrite, updating its WTM, LPW and the available quantity of tickets. At this point,
client 2 successfully commits its transaction with timestamp .40, b/ and logs the IMPLEMENTED
DECISION.

Server B also asks client 1 about the decision. However, as client 1 did not send its decision,
server B rebuilds the client 1 prewrites in the LPW and restarts the corresponding timeout.

4.2.5. Coordinator crashes after logging the INTENDED DECISION. Following the coordinator
protocol in Listing 4.1, we analyze a coordinator failure after logging the INTENDED DECISION,
but before logging the IMPLEMENTED DECISION (in TS2PC4RS phase 2). In this case, the
following procedures are executed.

1. If the coordinator successfully recovers itself before the Web services’ timeout expirations,
the coordinator, at restart, sends the intended decision to the Web services again. The Web
services that have not received the coordinator decision and have not reached their timeouts
wait for the coordinator recovery. The Web services must recognize that the decision message
is a repetition.

2. On the other hand, if the coordinator cannot recover itself before some Web services’ timeout
expirations, the Web services that have accepted the prewrite and not reached their timeouts
stay in a state where they are uncertain about the coordinator decision.

On the server side, as availability is desirable, it is not of interest to keep the prewrites for
too long in the LPW, as the WTM updates progress too slowly and LPW may become too large
to be effectively maintained.

In this situation, the services that have reached their timeouts cancel the corresponding
prewrites and execute the TS2PC4RS abort procedure [11]. The service logs the cancellation
due to the timeout. See the TS2PC4RS protocol for the Web service described in phase 2
(thread 1) of Listing 4.2.

When the coordinator finally recovers from the failure, it sends the intended decision to
the Web services again. The Web services that have canceled the prewrites because of time-
out return a TIMEOUT message to the coordinator. The coordinator logs the Web service
TIMEOUT message, and after receiving the responses (OK or TIMEOUT) from all the Web
services, the coordinator logs the IMPLEMENTED DECISION.

If the coordinator has logged some responses (OK or TIMEOUT) before it crashes, this
information can be used to identify the Web services that have already replied, excluding them
from the restart procedure. The coordinator does not need to re-send the decision to the Web
services that have logged answers (OK or TIMEOUT).

We think that the situation described earlier barely occurs. However, the proposed solutions
are acceptable, taking into account that the transactions are executed in a Web service domain
that demands implicit service autonomy and availability.

4.2.6. Coordinator crashes after logging the IMPLEMENTED DECISION. Finally, following the
TS2PC4RS protocol described in Listings 4.1 and 4.2, the scenario where the coordinator fails
after recording the IMPLEMENTED DECISION is described. This is a simple situation, as the
transaction is already concluded, and no action is required at restart.

Next, the failures related to communication problems are described.

4.3. Connection failures scenarios

Connection failures that may occur during a transaction execution are described in this subsection.
We consider that TS2PC4RS executes over a connection-oriented transport layer protocol, and
some connection problems may occur. So, in Figure 5, every request–response message uses a
synchronous connection. The request messages are illustrated with solid lines, and the response
messages are illustrated with broken lines.
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We assume that failures of connection are detected by both client and server. See the exception
handling described in the TS2PC4RS protocol of Listings 4.1 and 4.2. This way, both can execute
the recovery procedures described in the following subsections.

As with the coordinator-client and Web service failures discussed in Section 4.2, the procedures
for connection failure recovery are described from log information.

4.3.1. Web service cannot receive the prewrite. As in the first scenario to deal with communication
failure, we assume that a prewrite message cannot be received by a Web service.

The result is the same as the situation described in Subsection 4.2.3, where a prewrite answer
message (READY or NOT-READY) is not received by the coordinator because the service crashes
before processing the prewrite. Thus, the coordinator adopts a similar behavior to that described in
Section 4.2.3.

The coordinator catches a connection exception when it tries to send the prewrite message. In
this case, the coordinator decides to abort the transaction because it does not succeed in sending
a prewrite to all the Web services. The coordinator has two options: (i) send the abort message to
the Web services that have accepted the prewrite; and (ii) choose not to send the abort message
because the operational Web services will cancel the accepted prewrite by timeout. In either case,
the transaction is aborted.

No Web-service-specific procedure is necessary in this case as the Web service that could not be
reached may not even know of the communication failure. The Web service remains waiting for
prewrite messages.

4.3.2. Coordinator cannot receive the prewrite answer message. The scenario where a prewrite
answer message (READY or NOT-READY) from a Web service cannot be received by the
coordinator-client because of communication problem is analyzed.

The coordinator-client catches the connection failure and proceeds as described in the previous
item (4.3.1)—-the transaction is aborted. From the coordinator’s viewpoint, this situation is similar
to a Web service’s failure before processing the prewrite (Section 4.2.3).

On the service side, if the service has logged READY, but it cannot send the answer-message
to the coordinator, an exception is caught by the service. In this situation, the service has two
options: (i) cancel the corresponding prewrite and log cancel because of exception; (ii) choose to do
nothing, as the prewrite will be canceled by timeout. In both options, the Web service cancels the
corresponding prewrite.

If the service has logged NOT-READY, it does not have to do anything because the prewrite was
not accepted.

4.3.3. Web service cannot receive the INTENDED DECISION. This situation is similar to the one
presented in Section 4.2.5. The destination Web service remains uncertain about the decision.

The coordinator logs the INTENDED DECISION and catches a communication exception when
it tries to send the commit or abort message to one or more Web services. Thus, the connection
failure occurs after the coordinator logs the INTENDED DECISION and before it logs the
IMPLEMENTED DECISION (Figure 5).

In this case, the coordinator logs the caught exception and tries to re-send the decision later. On
the service side, the connection failure occurs before the service logs the decision received from
the coordinator. The Web service does not receive the decision message. Thus, it keeps waiting for
the coordinator decision, until the service reaches its timeout. The services that have reached their
time limits cancel the corresponding prewrite and log CANCEL DUE TIMEOUT, as described in
TS2PC4RS protocol (Listing 4.2).

In this case, it is assumed that the communication channel will eventually be restored, allowing
the coordinator to send the intended decision to the remaining Web services. When the coordinator
logs all the Web service responses (OK or TIMEOUT), it logs the IMPLEMENTED DECISION,
completing the transaction. The coordinator behavior is described in TS2PC4RS protocol of
Listing 4.1 (phase 2).
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4.3.4. Coordinator cannot receive the service answer message. The procedure to deal with the
scenario where an answer message confirming the commit/abort or informing about the timeout
cannot be received by the coordinator is described.

The Web service successfully receives the coordinator intended decision and does the following:
(i) commits or aborts the accepted prewrite accordingly; or (ii) verifies that the accepted prewrite
was canceled due to timeout. The failure occurs when the service sends the reply message back to
the coordinator because of a connection problem.

In this situation, the coordinator catches the connection failure when it transmits the message
containing the intended decision. Thus, the coordinator logs the caught exception and tries to
re-send the decision later to receive the OK or TIMEOUT message from all the services. When
the coordinator receives all the Web service answers, it logs the IMPLEMENTED DECISION
(see phase 2 of Listing 4.1).

The Web service also catches the connection failure when answering the coordinator; however, it
does not need to execute a specific procedure. As described in the TS2PC4RS protocol of Listing 4.2
(phase 2), in this case, the Web service site just waits for the coordinator retry message. The service
then identifies the repetition and answers with the corresponding message (OK or TIMEOUT).

5. PRACTICAL EXPERIENCE

In this section, a practical experience is described to verify the fault tolerance approach proposed
for TS2PC4RS. We show, through the experiments, that the connection and host exceptions can be
caught by the coordinator and the Web services allowing them to recover from failures using the
procedures described in Sections 4.2 and 4.3.

The experiments were implemented using Java version 1.6.0, the Jersey [17] version 1.0.3. Jersey
is the open-source reference implementation of the JAX-RS—-Java API for RESTful Web Services
(JSR 311). The Web server—servlet container—used is the Grizzly version 1.9.15b [18].

We chose two scenarios of host failure and one of connection failure to illustrate the behavior
of the proposed protocol. The two host failure scenarios are described in Sections 4.2.3 and 4.2.4.
The connection failure scenario is described in Section 4.3.2. Other scenarios are very close to the
chosen scenarios, and they are not described here because of lack of space. They differ only in the
procedures that must be executed after the detection of an exception.

The execution results of the scenario in which the service crashes before recording READY
(Section 4.2.3) are summarized in Table II.

Listing 5.1 shows the logs recorded by the coordinator and by the game ticket server. The logs
are numbered in the sequence in which they are recorded. The coordinator logs the GLOBAL-
BEGIN within its timestamp and the selected Web service uniform resource locators. After
receiving ready from the game ticket server, the coordinator logs the corresponding PREWRITE.
When the coordinator tries to send the prewrite to train ticket server B, it catches an exception
with a java.net.ConnectException: Connection refused. So the coordinator logs
CANCEL DUE EXCEPTION.

The game ticket server logs READY when it accepts the prewrite, but as it does not receive a
commit or abort decision in the defined time limit, the game ticket server logs cancel by timeout.

The execution results for the scenario in which the service crashes after recording READY
(Section 4.2.4) are summarized in Table III. In the experiment, the train ticket server fails after it

Table II. Results for the scenario: service crashes before recording READY.

Host Status Verified behavior

Coordinator Operational Caught a java.net.ConnectException
and aborts the transaction

Server A (Game) Operational Cancels the accepted prewrite by timeout
Server B (Train) Not operational —
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Table III. Results for the scenario: service crashes after recording READY.

Host Status Verified behavior

Coordinator Operational Caught a java.net.ConnectException
and keeps retrying to send the commit message

Server A (Game) Operational Commits the prewrite
Server B (Train) Operational, After accepting the prewrite, server B

Not-Operational (fail) fails, but it recovers and successfully accepts
Operational (recovered) a coordinator commit retry-message.

has accepted the prewrite. The train ticket server is restarted in time to receive a coordinator commit
retry message. So the train ticket server recovers from the recorded logs and commits the prewrite.

Listing 5.2 shows the logs recorded by the coordinator and game and train ticket servers. The
logs are numbered in the sequence in which they are recorded. The coordinator logs the GLOBAL-
BEGIN, one PREWRITE for each service, GLOBAL-PREWRITE, INTENDED-DECISION, and
the commit confirmation (OK) received from the game server. Then, the coordinator tries to send
the commit to the train ticket server; it catches a java.net.ConnectException and keeps
trying to send the commit message. On the fourth attempt, the coordinator receives the OK from the
train ticket server, and so it records the IMPLEMENTED-DECISION.

The game ticket server logs READY when it accepts the prewrite and COMMIT when it receives
and processes the decision message sent by the coordinator. The train ticket server has similar logs.
The difference is that the train server fails after it logs READY. However, it successfully restarts
from the READY log information and records COMMIT after it receives and processes the retry
decision message sent by the coordinator.
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Table IV. Results for the scenario: coordinator cannot receive the prewrite answer message.

Host Status Verified behavior

Coordinator Operational Caught a java.net.NoRouteToHostException
and aborts the transaction.

Server A (Game) Operational Cancels the accepted prewrite by timeout
Server B (Train) Operational After accepting the prewrite, server B

cannot send the ready message because of a connection failure Server B
caught a java.io.IOException and cancels the
accepted prewrite.

The execution results for the scenario in which the coordinator cannot receive a prewrite answer
because of a connection failure (Section 4.3.2) are summarized in Table IV. In the experiment,
we use two computers connected by an Ethernet network cable. One computer executes the
client/coordinator, and the other executes the game and train ticket servers. When the train ticket
server is processing the prewrite, we disconnect the cable to insert a connection failure. The coordi-
nator/client caught a java.net.NoRouteToHostException and aborts the transaction. The
train ticket server caught a java.io.IOException with the message ‘An existing connection
was forcibly closed by the remote host’. So the train server cancels the corresponding prewrite.

Listing 5.3 shows the logs recorded by the coordinator and game and train ticket servers. The
logs are numbered in the sequence in which they are recorded. Records with the same sequence
number indicate that the events occur at the same time. The coordinator logs the GLOBAL-BEGIN,
PREWRITE (of the game server), and ABORT DUE EXCEPTION.

The game ticket server logs READY when it accepts the prewrite, but as it does not receive a
commit or abort decision in the defined time limit, the game ticket server logs CANCEL due to
timeout.

The train ticket server also logs READY when it accepts the prewrite. However, the train server
logs CANCEL due to a connection exception when it tries to send the ready message to the
coordinator, canceling the just-accepted prewrite.

6. FAULT TOLERANCE FOR THE EXTENDED TIMESTAMP-BASED TWO-PHASE
COMMIT PROTOCOL FOR RESTFUL SERVICES

In this section, we describe the fault-tolerant protocol for the extended TS2PC4RS [14]. As men-
tioned, the extended TS2PC4RS algorithm allows prewrite updates on the basis of the application
business rules.

Phase 2 is the same as the TS2PC4RS protocol described in Listings 4.1 and 4.2. Phase 1
is extended to consider the update messages. Phase 1 has two sub-phases: phase 1 described in
Section 4 (Listings 4.1 and 4.2) and a new sub-phase to deal with updates.
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Figure 10. Exchange of messages and log records in the fault-tolerant protocol for the extended timestamp-
based two-phase commit protocol for RESTful services.

The new sub-phase is called phase 1 extension and is only executed if the coordinator, after
logging the GLOBAL-PREWRITE, has to update a prewrite. The phase 1 extension is optional. The
two-phase adapted protocol is shown in Figure 10.

The additional events that the coordinator/client must log are described below. The new coordi-
nator records are shown in Listing 6.1 and in Figure 10 (the additional log events are in bold).

� GLOBAL-UPDATE-BEGIN: The start of the phase 1 extension, when the coordinator selects
the Web services (prewrites) to be updated.
� UPDATED: The success in updating the prewrite on the selected Web service.
� NOT-UPDATED: The failure in updating the prewrite on the selected Web service;
� GLOBAL-UPDATE-END: The end of the phase 1 extension, when the coordinator knows the

successful updates.

There is only one additional event that each Web service must log, the UPDATE READY or
UPDATE NOT-READY, indicating the prewrite update acceptance or rejection. The new Web
service records are shown in Listing 6.2 and in Figure 10 (the additional log events are in bold).

The failure recovery procedures for phase 1 and phase 2 are the same as those described in the
procedures for site failures (Section 4.2) and connection failures (Section 4.3). The failure recovery
procedures for phase 1 extension are described in what follows.

On the coordinator side, the service or connection failures are detected in the phase 1 extension.
The coordinator logs NOT-UPDATED, stating that the corresponding update has not been processed.
The coordinator considers the previous accepted prewrite, sent before the update attempt. Thus, the
intended decision must be based on the GLOBAL-PREWRITE and GLOBAL-UPDATE-END.

On the service side, when a coordinator-client or connection failure is detected during sending of
the ready message in the phase 1 extension, the service cancels the corresponding update and records
this fact in the log. We can note that procedures to address failures for the extended TS2PC4RS are
straightforward and the prewrite updates do not significantly affect the proposed protocol.
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7. RELATED WORK

Buys et al. [19] proposed a context-aware fault tolerance for SOA applications to improve
approaches based on redundancy strategies. The redundancy-based fault-tolerant strategies are used
as a means to avoid disruptions in services despite of the occurrence of failures in the underlying
components. The redundancy-based strategies are usually static predefined and immutable; they do
not necessarily result in improvement in application dependability when they are applied in highly
dynamic, distributed computing systems such as Web services executing over the Internet. SOA sys-
tems exhibit highly dynamic characteristics, and changes in the operational status of Web services,
in particular their availability and response time, are likely to occur frequently. In this scenario, Buys
et al. [19] proposed a dependability strategy for supporting a redundancy management that allows
the autonomous tuning of its configuration in view of changes in the operational status of any of the
components involved, that is, the context.

Avizienis [20] proposed using replicas to implement fault tolerance for Web services based on the
n-version programming (NVP). The NVP approach uses the independent generation of n > 1 func-
tionally equivalent programs from the same initial specification. The idea is for the NVP to function
as a client-transparent replication layer in which all n programs (versions or replicas) receive a copy
of the user input and are orchestrated to independently perform their computations in parallel. Then,
NVP uses a decision algorithm to determine a result from the individual outputs of the employed
versions. Examples of decision algorithms include majority, plurality, and consensus voting [21].

Buys et al. [19] proposed improvements for NVP by adding a dynamic perspective through pro-
viding a context-aware fault-tolerant strategy. However, their proposal has to deal with the task to
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collect information about the context, the environment in which the Web services operate. Some
examples of contextual information are the amount of redundancy (the number of versions) cur-
rently employed, the evolution of voting outcomes (which versions can be rewarded and which can
be penalized), and the operational status of each of the available resource versions (or replicas), such
as dependability, load, and execution time. Thus, a continuous monitoring of changes in the opera-
tional status of any replica is necessary. The monitoring demands the definition of a protocol among
all the replicas used in the fault tolerance strategy. Suitable monitoring for all kind of domains in
which the fault tolerance is necessary cannot be guaranteed.

In TS2PC4RS, the Web services of different providers can be used as a kind of ‘replica’. However,
the client knows about them and can adopt the strategy to send concurrent prewrite requests to all
providers of the same resource (data item). However, in the second phase, the client must send the
commit to each provider in sequence and conclude the transaction when it receives the first commit
confirmation. The other prewrites for the same resource (data item) must be aborted.

In this way, different decision algorithms (for approaches such as NVP) must be defined for the
first and second phases of TS2PC4RS. In the first phase, the prewrite requests can be sent concur-
rently for the selected replicas; however, in the second phase, the commit request must be sent in
sequence for each replica. The TS2PC4RS’s second phase finishes when the first commit confirma-
tion is received by the decision algorithm from each different Web service used in the transaction.
Each Web service used in the transaction must have its own set of replicas.

However, Buys et al. [19] did not address the use of transactions or how to apply the proposed
context-aware fault tolerance strategy within a Web service transaction. A transaction usually uses
multiple Web services to achieve the transaction objective. The transaction must be executed as a
unique overall activity.
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Zheng and Lyu [22] proposed an adaptive QoS-aware fault tolerance strategy for Web services.
The idea is to improve service reliability using subjective user requirements and objective system
performance. The proposed fault tolerance strategy is context aware and aims to be dynamically
and automatically reconfigured to meet different user requirements and changes in the environment
status. QoS-aware middleware is required to promote user participation and collaboration through
the sharing of user’s individually obtained QoS information of the invoked Web services.

To identify Web services with similar or identical functionalities developed independently by dif-
ferent organizations, Zheng and Lyu [22] used a service community to define a common terminology
that must be followed by all participants. The idea is that the Web services, which are developed
by different organizations, can be described in the same interface, following common terminology.
Before joining the community, a Web service has to follow the interface definition requirements
of the community and register with the community coordinator. The use of the service community
concept imposes interfaces for the organizations’ Web services, which can make the use of the pro-
posed adaptive QoS-aware fault tolerance strategy difficult. Another drawback is that the users need
to contribute their own individually collected Web service QoS information via a service community
coordinator. The sharing of information imposed cannot be reached in all Web service applications
as the user organization may have some policies involving security or confidential restrictions, which
avoid information sharing with other users or organizations.

Zheng and Lyu’s work [22] does not address the use of transactions or how to apply the pro-
posed adaptive QoS-aware fault tolerance strategy within a Web service transaction. However, we
believe that QoS-aware fault tolerance can be used jointly with our fault tolerance proposal, in a
similar manner already explained earlier. For the replicas managed by the QoS-aware middleware
to be used in a TS2PC4RS transaction, the first phase of TS2PC4RS can use a parallel fault toler-
ance strategy (sending the prewrite requests at the same time), and the TS2PC4RS second phase
must use a sequential fault tolerance strategy (the next replica is invoked only if the primary Web
service fails) because the commit must be executed by only one replica. It is necessary because the
user/client wants to commit only once. For example, in the ticket-purchase example, the client wants
to buy the amount of tickets for the game only once, despite the prewrite request (reservation) being
sent to all the replicas at the same time.

There is another approach that uses replication, such as smart proxies [23], which proposes that
a middleware run the client side, providing replication transparency for client applications. The
middleware is responsible for selecting the best replica and invoking the selected replica provider
from the client side. The middleware must adapt the replica provider interface considering the inter-
face required by the client. The concepts of this client-side middleware can also be used with our
TS2PC4RS fault tolerance approach to avoid interweaving between the functional code of the client
and the control code necessary to implement the fault-tolerant TS2PC4RS.

Another approach that can contribute to implementing client-side middleware is taken by the
guidelines proposed by Mendonça et al. [24] to help application developers in identifying a replica-
tion server selection policy that best suits a particular Web service replication scenario. In this way,
the middleware that runs on the client side can transparently and automatically select the best Web
service—from the perspective of a particular client application—from a collection of functionally
equivalent Web service instances.

In both approaches [23, 24], it is necessary to evaluate the use of such client-side middleware
when the client application assumes the role of a coordinator of a Web service transaction as is the
case for TS2PC4RS.

A replication framework for SOAP-based Web services is proposed by Salas et al. [25]. The
framework allows the deployment of a Web service in a set of sites to increase its availability. The
replication is made exclusively using SOAP to interact across sites. As TS2PC4RS uses RESTful
Web services, the replication framework cannot be directly applied in TS2PC4RS. Although, the
proposed concepts such as the use of multicast to communicate with the replicas of a Web service
can be used in a replication framework for TS2PC4RS.

In general, the frameworks based on Web service replication can be used with the TS2PC4RS
fault tolerance approach proposed in this paper. However, for the replication in Web service appli-
cations using TS2PC4RS to be used, it is necessary to correctly choose the RESTful service
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invocation mode, that is, if the framework can concurrently invoke the replicas or not. For example,
in the purchase-of-tickets scenario, if the client wants to buy tickets for a game only once, that is,
the client does not want to buy the amount of tickets asked in all the replicas applied in the fault
tolerance strategy, only one service must effectively process the request to sell the game tickets. In
this case, despite the replicas (similar Web services) being considered to be functionally equivalent
programs, they can be provided by different organizations, which have their own stock of tickets to
sell. Each organization may have its own market strategies, logistics, and interests.

The TS2PC4RS fault tolerance approach can be used jointly with approaches for other areas, such
as testing. Chakrabarti and Kumar [26] proposed an approach to test RESTful Web services for a
large information technology organization infrastructure. The testing approach can help to discover
failures originating from system faults or connection failures over the Internet [26]. So the testing
proposal can be used by the developers of RESTful services that implement TS2PC4RS with our
fault tolerance proposal to execute functional and non-functional tests.

The relaxed atomicity and isolation proposed by TS2PC4RS [11] is a specific extended transac-
tion model based on timestamp and 2PC. So our proposal in [11] is different from the one proposed
by Houston et al. [27] who have described a general-purpose event-signaling mechanism to support
various extended transaction models. Despite this difference, we think that the TS2PC4RS model
can be analyzed to adapt it to the general-purpose event-signaling mechanism.

The TS2PC4RS can be adapted to be used in other application domains, such as mobile database
systems. To use a minimum number of wireless messages, Kummar et al. [28] proposed a transac-
tion commit protocol based on timeout, that is, if the coordinator does not receive a failure message
from a participant node within a predefined timeout period, then the coordinator commits the trans-
action. One of the drawbacks of the protocol is to find the most appropriate value of a timeout. This
is not easy because it depends on a number of system variables. It is possible to adapt TS2PC4RS
to use the timeout commit protocol proposed by Kummar et al. We can change the protocol of
the TS2PC4RS timeout mechanism described through the scenarios (Sections 4.2 and 4.3) in a
way that if the service does not receive the coordinator decision within a predefined timeout, the
service commits the prewrite instead of canceling it. However, a detailed analysis of fault tolerance
is required.

Reinke et al. [29] proposed a transaction model for sensor networks. They applied standard
commit protocols such as 2PC [13] and transaction commit on timeout [28] to analyze the feasibility
of the usage of the protocols in wireless sensor network domains. As the fault-tolerant TS2PC4RS
is based on 2PC protocol and timestamp, we believe that some ideas of the fault-tolerant TS2PC4RS
can be used in the wireless sensor networks. However, some investigation is also required to evaluate
its applicability.

The Paxos algorithm [30] is by definition a fault-tolerant distributed system. In this way, Paxos
algorithm does not need extensions to deal with failures. Paxos uses different roles. The agents are
responsible to execute client, acceptor, proposer, learner, and leader roles [30]. The fault-tolerant
TS2PC4RS uses two roles: client-coordinator and Web services-agents. Paxos assumes the use of a
asynchronous communication [30] to exchange messages, and TS2PC4RS assumes a synchronous
communication as it uses Web services available through the HTTP over a transport layer protocol/
Internet Protocol network protocol. Despite the differences, both approaches use durable logs to
record main events for recovery.

8. ANALYSIS AND CONCLUSIONS

As mentioned, TS2PC4RS [11] provides concurrency control for applications that involve various
RESTful services based on the timestamp and 2PC protocol. An extension to TS2PC4RS was
proposed to improve business rule support through the usage of prewrite updates [14]. However,
neither TS2PC4RS nor its extension addresses failures that may occur during a distributed trans-
action executing over a Web service infrastructure. In this paper, we present failure recovery
procedures to improve the reliability of TS2PC4RS and its extension. The reliability provided by the
fault tolerance mechanism is essential to the successful implementation of Web service transactions,
which can take a long time and are subject to failures.
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The timeout mechanism is used in the management of the list of prewrites (LPW) whose transac-
tions can take too long. In this situation, the updates of WTM may progress slowly and LPW may
get large. The timeout mechanism can be used to address this problem. If the coordinator-client
neither commits nor aborts the transaction within a period, then the Web services cancel the accepted
prewrites by timeout. It is an important feature, as it allows the clearing of the prewrites that are
not valid.

The reliability leveraged by the fault tolerance mechanism improves business rule support on the
server side. The timeout mechanism allows the providers to maintain a level of concurrent accesses.
The servers are able to concurrently serve a high number of clients through better control of the
quantity of prewrites being processed.

It is worthy to note some of the best practices recommended for the fault tolerance mechanism.
The coordinator/client has to follow the time limit imposed by the Web services to reach a decision
in due time. The coordinator computes the earliest timeout from the Web services and tries to send
the intended decision before the earliest timeout.

However, if the coordinator cannot reach an intended decision before a Web service timeout, this
should be detected by the coordinator’s own timeout control, and the coordinator then disregards
such a service from the transaction in progress and considers this fact in the decision. If the coor-
dinator does not detect the timeout and sends a commit message to a Web service that has already
reached its time limit, the service replies with a timeout message, as described in the TS2PC4RS
protocol of Listing 4.2.

On the service side, it is recommended that the effective timeout implemented by the Web ser-
vices be longer than the timeout returned to the coordinator-client. In this way, if the coordinator
encounters difficulties related to connection or site failures, it has some additional time to execute
the recovery procedures, as described in Sections 4.2 and 4.3.

A best practice in using the timeouts is illustrated through a brief example: a Web service informs
a client of a timeout of 4 h. The client must decide within 4 h; otherwise, the service cancels the
client’s request. However, in fact, the Web service waits for 5 h, although it states a timeout of
4 h. Therefore, the service waits longer than the agreed period. Using this recommendation, we can
mitigate the risk of an unexpected failure causing a negative impact for the client expectation.

We can note that relaxed atomicity and isolation of TS2PC4RS and durability are dealt in the
proposed protocol. The proposed fault-tolerant protocol preserves the relaxed atomicity and
isolation of TS2PC4RS, and durability is achieved by the use of logs.

The scenarios in which TS2PC4RS must deal with failures that emerge during a transaction execu-
tion have been described. Host and connection failures are addressed by the proposed fault-tolerant
protocol. The log records are the milestones that allow the execution of recovery procedures. So the
main events of TS2PC4RS must be recorded in a stable storage system to allow effective recovery.

The use of TS2PC4RS needs some form of contract, which might consider the necessary condi-
tions to make the interactions between clients and RESTful services clear and unambiguous [11].
Thus, services and client behaviors in the event of failures must also be stated in contracts. The dead-
lines due to a timeout mechanism must likewise be described in the contract, stating that the service
is canceled if the timeout is reached. The coordinator-client must consider the risks of executing a
transaction in the event of site and connection failures.

In general, RESTful services are well suited for basic, tactical, and ad hoc integration over the
Web, and SOAP-based services are preferred for professional enterprise application integration
scenarios with a longer life span and advanced non-functional requirements, such as transactions,
security, and reliability [31]. In spite of such suggestions for use, both approaches have advantages
and disadvantages, so it is up to the developer to make the decision on which approach is more suit-
able for each particular case. In this way, although TS2PC4RS was proposed to work with RESTful
services, it can also be implemented using the SOAP-based Web services. The exposed SOAP ser-
vices must obey some restrictions. The fundamental restriction is that the Web services must be
exposed using a standard interface with at least three operations: create, update, and retrieve. So,
create and update are used to support the prewrite and write TS2PC4RS operations, and retrieve is
used to support the read TS2PC4RS operation. The Web services must implement the TS2PC4RS
algorithm to correctly deal with the variables RTM, WTM, and LPW. The REST architectural style
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better fits in TS2PC4RS, as REST has a uniform interface as one of its architectural restrictions.
This restriction is usually implemented using the HTTP methods: PUT, POST, GET, DELETE. So
the REST uniform interface restriction maps directly to the interface needs of TS2PC4RS.

The comparison between ‘big’ Web services (WS-*) and RESTful Web services described in [31]
can help the objective assessment of the two integration styles to select the one that best fits the
application needs in the implementation of TS2PC4RS.

The fault-tolerant TS2PC4RS can be used in other approaches, such as distributed simulation
implemented using RESTful services [32], which propose general middleware to expose ser-
vices as URIs to the external world using the REST architectural style to make the middleware
independent of the simulation formalism or a specific simulation engine [32]. To use the fault-
tolerant TS2PC4RS, the middleware architecture must be analyzed to verify where the use of Web
service transactions is necessary. TS2PC4RS [11] can contribute better in approaches that need the
execution of Web service transactions and not in isolated Web services.

Currently, the fault-tolerant TS2PC4RS has the following limitations: (i) the definition of an
appropriate value for the Web service timeout. This can be difficult as it should consider the commu-
nication delay, processing power of client hosts and service hosts, and the workload on the client’s
side. (ii) The proposed procedures address single failures only. The result of a scenario in which
multiple host and connections failures occur is unpredictable. (iii) The log records of TS2PC4RS
must be recorded in a stable storage to allow an effective recovery. The fault-tolerant TS2PC4RS
works only if no log information is lost. The lost of log information is catastrophic.

As future work, we consider two alternatives, which are both based on contracts. The first is
the drawing up of a specification language that describes the contracts that implement the business
rules. The second is to include security requirements in the contracts. The idea is that both busi-
ness rules and security requirements be mapped onto components that implement the fault-tolerant
TS2PC4RS.
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