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Abstract—SysML is considered as an emerging standard for
system engineering. Using SysML, the system engineer may study
alternative system configurations. However, in order to be able to
argue for or against a certain configuration, performance eval-
uation should be performed and SysML models should become
executable using a simulation environment. For the simulation
community, DEVS formalism provides a conceptual framework
for specifying discrete event simulation models in a modular and
hierarchical form. In addition DEVS is supported by a wide
variety of DEVS simulators built in numerous programming
environments. This paper illustrates and exploits the similarities
between SysML and DEVS conceptual model and proposes a
DEVS profile for SysML to make SysML models executable using
a DEVS simulator. Integrating simulation capabilities into SysML
models, automatic code generation for DEVS simulators may be
possible, facilitating simulation for models already defined in
SysML.

I. INTRODUCTION

The Systems Modeling Language (SysML) is a general-
purpose graphical modeling language for systems engineering.
It supports the specification, analysis, design, verification and
validation of a broad range of systems and systems-of-systems.
These systems may include hardware, software, information,
processes, personnel, and facilities. SysML v.1.0, adopted
by the OMG as a standard [1], is supported by the OMG
Systems Engineering Domain Special Interest Group and by
INCOSE (International Council on Systems Engineering). It is
expected that the language will become a de facto standard for
Systems Engineering, as UML has become one for software
engineering. UML tools provide for both software design and
corresponding software generation, contributing to the overall
software creation process. The same vision was embraced
for SysML regarding complex system composition. Though
SysML standard [1] and corresponding profiles, implemented
in popular UML modeling tools [2], provide the means for
defining a system structure and behavior, they do not directly
facilitate the evaluation of the designed system models.

Consequently, since SysML became a standard by OMG in
2006, it was clear that there was an urgent need to integrate
SysML and simulation environments, provided that SysML
models are defined in a way, which facilitates simulating
them [3]. Apparently SysML supports a variety of diagrams
describing system structure and states, necessary to perform

simulation, thus, there are a lot of efforts from both research
and industrial communities to simulate SysML models [4], [5].
SysML may be used for modeling a wide variety of systems,
exhibiting either continuous or discrete behavior. Depending
on the nature and specific characteristics of systems under
study, there is a diversity of approaches on simulating models
defined in SysML, which utilize different SysML diagrams.
In most cases, SysML models defined within a modeling tool
are extracted in XML format and, consequently transformed
in a simulator specific format and forwarded to the simulation
environment. In [6], a method for simulating the behavior of
systems using mathematical simulation is presented, utilizing
SysML parametric diagrams, which allow the description of
complex mathematical equations. System models are simu-
lated using COBs. A similar approach is presented in [7],
where simulation models could be executed using Modelica.
To ensure that a complete and accurate Modelica model is
constructed using SysML, a corresponding profile is proposed.
These approaches are better suited for systems with continuous
behavior.

Simulation of discrete event systems is utilized, based on
system behavior described in SysML activity, sequence or
state diagrams. In [8], system models defined in SysML are
translated to be simulated using Arena simulation software.
Though, emphasis is given to system structure rather than sys-
tem behavior. In [9], Colored Petri Nets are utilized to simulate
SysML models. System behavior is described using mainly
activity and sequence diagrams and may be consequently
simulated using discrete event simulation via Petri Nets. In the
following, we discuss how to embed discrete event simulation
capabilities within SysML models using DEVS formalism, and
ensure the construction of executable simulation code on a
variety of DEVS simulators.

DEVS (Discrete Event System Specification) formalism
[10] provides a conceptual framework for specifying discrete
event simulation models in a modular and hierarchical form.
Nowadays, a variety of software tools and simulators is
available as DEVJava [11],or DEVS-C++. Extensions of these
implementations operating in a distributed environment are
also available as DEVS/HLA [12], DEVS/CORBA [13], cell-
DEVS [14], DEVS/RMI [15] or even DEVS/SOA [16], which



offers DEVS simulators as web services. Since DEVS is
inherently based on object oriented methodology, C++ and
Java are the chosen programming languages. In any case,
models are coded either in C++ or Java. DEVS simulation
community is well established and very active, following
the latest technological standards and treads in developing
distributed application code.

In [17], DEVSXML, a platform-independent, XML-based
format, for describing DEVS executable code was proposed
independently of the underlying simulator. DEVSXML is con-
sequently transformed into executable code for existing DEVS
Simulators, using translators as the ones proposed in [17] for
DEVSJava simulators. DEVSXML was proposed to establish
DEVS model mobility and promote interoperability between
discrete DEVS simulators independently of the programming
language they are implemented in (either C++ or Java) and
the way they operate (either in a distributed or centralized
fashion). To achieve interoperability DEVSXML is used to
describe platform-independent DEVS models according to
Model Driven Architecture (MDA) concepts. Following MDA,
for each real-world domain, two discrete models should be
defined: a Platform-Independent Model (PIM), ensuring proper
domain representation and Platform-Specific Models (PSMs),
corresponding to one or more executable versions of PIM. In
the DEVS domain, DEVSXML is used to define PIM, conse-
quently translated into code executed on a variety of DEVS
simulators, as DEVSJAVA and DEVS/SOA, corresponding to
PSMs.

SysML and DEVS followed the same approach for system
representation, since they both facilitate the description of
systems as a hierarchy of interacting components. In practice,
both DEVS formalism and SysML metamodel adopt the same
concepts to describe system structure. These similarities could
be exploited in order to bridge the gap between them and
gain in functionality by offering a clear track from SysML
models to valid system evaluation results. Embedding DEVS
formalism and rules within SysML models may restrict the
modeler when defining system behavior, but at the same time
it also enables the straightforward execution of system models
on existing, popular and effective simulation environments.
The key advantage behind such an effort would be to enhance
system engineering capabilities and promote the credibility of
system analysis and design process. One way to accomplish
DEVS and SysML interoperability, is to create an alternative
platform independent model for DEVS using SysML concepts
(as a DEVS SysML profile) and provide bidirectional trans-
formation rules between the proposed model and DEVSXML.

The paper discusses SysML and DEVS similarities in Sec-
tion II and the reasoning behind such an effort in Section III.
Section IV gives some guidelines of how to build a simulation
model using the proposed DEVS profile and finally Section V
deals with issues relative to automated code generation.

II. SIMILARITIES OF DEVS AND SYSML

The DEVS formalism is a conceptual framework consisting
of mathematical sets to describe the structure and behavior

of a model. Simulation models are specified in a modular
and hierarchical form. Two types of models are defined:
atomic models (behavioral representation), which describe
basic system functionality and coupled models (structural
representation) expressing how basic models are connected in
a hierarchical form to built larger ones [10]. An atomic model
consists of inputs, outputs, state variables and functions. Each
model is described as:

• set of input ports for receiving external events
• set of output ports for sending external events
• set of state variables and parameters
• internal transition function (deltint), which specifies the

next state to which the system will transit
• external transition function (deltext), which specifies the

next system state when an input is received (the next state
is computed on the basis of the present state, the elapsed
time, and the content of the external input event)

• output function (lambda), which generates an external
output just before an internal transition occurs

• time advance function (ta), which controls the timing of
internal transitions

A coupled DEVS model contains the following information:

• set of components
• set of input and output ports
• external coupling, which connects the input/output ports

of the coupled model to one or more input/output ports
of the components

• internal coupling, which connects output ports of the
components to input ports of other components - when
an output is generated by a component it may be sent to
the input ports of designated components (in addition to
being sent to an output port of the coupled model).

In a DEVS model, system behavior is defined through the
functions of atomic models, which are usually coded by the
system designer using C++ or Java. Though, there are tools
supporting DEVS structure definition in a graphical fashion,
similar features are not supported for DEVS model behavior
definition.

SysML aims at modeling systems in a graphical fashion,
using discrete diagrams based on UML concepts. It supports
the description of a)the structure of the system, b)its behavior
and c)requirements imposed on its operation. System structure
is described using two types of block diagrams, a) Block Def-
inition Diagram (BDD) focusing on a hierarchical representa-
tion of system structure, where system components are defined
as blocks, and b) Internal Block Diagram (IBD) focusing on
composite block detail description, where component block
relations are explored. Blocks are described using properties
and constraints, while ports are defined to describe block
communication. Furthermore, the Parametric Diagram (PD) is
introduced to explore the relations between constraints. System
behavior is described using Activity, Sequence, State Machine
and Use Case diagrams, as defined in UML. The Requirement
Diagram (RD) is introduced to depict system requirements.



SysML BDDs provide the means to define system com-
position, thus the overall system model is described by a
corresponding BDD. Blocks, apart from value properties and
constraints, may contain (part property) or use (reference
property) other blocks, while they have ports used as the
endpoints of inter-block connections. Ports facilitate sending
or receiving events (standard ports) or data items (flow ports).
Although BDDs may represent which are the components of
each block, the way components are interconnected is defined
in IBDs.

In a similar fashion using DEVS the overall system model
is described using a coupled model, further decomposed to
simpler models (either coupled or atomic) in a hierarchical
fashion. Atomic models are used to depict system functional-
ity, which can not be further analyzed. They are responsible
to depict the behavior of the system. All models, both coupled
and atomic are communicating via input and output ports
defined for each model. DEVS ports are based on the same
concept as SysML BDD ports. Thus, the structure of a system
in both SysML and DEVS is defined in a similar fashion,
allowing the bidirectional mapping between SysML and DEVS
models [18].

To enable system simulation, the behavior of DEVS atomic
models must be described through SysML. According to
DEVS formalism, the atomic model behavior may be de-
scribed using state charts, already supported in SysML to
describe system behavior. Thus, SysML system blocks not
further decomposed, should be characterized as atomic DEVS
models and associate to DEVS atomic model behavior descrip-
tion, described using SysML behavior diagrams by restricting
their functionality to conform to DEVS formalism. Based on
these remarks, a DEVS profile for SysML was proposed, to
provide DEVS behavior diagrams by restricting corresponding
existing SysML diagrams and to facilitate the creation of
DEVS simulation models for systems already modeled in
SysML.

III. SCOPE OF DEVS SYSML PROFILE

The SysML Profile should provide the means to integrate
on SysML models the definition of DEVS Simulation models,
emphasizing DEVS atomic model behavior. The profile must
facilitate the following:

• Ensure that the structure of system models defined is
BDDs and IBDS contain all necessary information to
simulate them using DEVS. This may be accomplished
by specific constraints checking the ports and properties
defined for system blocks participating in BDDs and
IBDs to ensure that all DEVS related information is
provided by system designer.

• Facilitate the means to characterize specific blocks as
DEVS atomic models and provide DEVS Simulation
SysML Diagrams to describe DEVS functions used to
define the behavior of atomic simulation models.

• Define the experimentation environment.
• Create DEVS simulation code based on SysML diagrams.

The proposed profile is implemented in a standard UML
modelling tool that supports a SysML profile, named Magic
Draw [2]. The modeler could define his/her system model
using SysML, add simulation properties using the DEVS
profile and generate code for DEVS models. Code generation
is completed in two phases:

1) A transformation between two different platform inde-
pendent models (PIMs) according to MDA is performed
to translate DEVS SysML entities, defined according to
DEVS SysML profile) into of DEVS models defined in
DEVSXML [17] and

2) A transformation of DEVS PIM defined in DEVSXML
into executable DEVS platform specific models (PSMs)
is performed. DEVSXML code is automatically trans-
lated into corresponding code in C++ or java (platform
specific model – PSM) and executed in corresponding
DEVS simulator. Such a translator for DEVSJava can
be built, as described in [19].

The overall process is depicted in Fig. 1.

Fig. 1. Proposed Simulation Environment

IV. DEFINING SIMULATION MODELS WITH DEVS SYSML
PROFILE

The formal method proposed by OMG of extending or re-
stricting UML/SysML to effectively model a specific domain,
as DEVS formalism, is the definition of stereotypes grouped
by means of a profile [20].

In the following, we focus on SysML stereotypes used for
the definition of DEVS Atomic model behavior. It consists of
two stages:

• Model description, e.g. the definition of static character-
istics, such as states and input and output ports.

• Behavior definition in response to input messages or time
advancement.

A. DEVS Atomic Model Definition

DEVS Atomic models (DEVS AM) are defined as stereo-
types of blocks in BDD diagrams. For each DEVS AM input



and output ports are defined. Atomic models behavior is
defined as transitions between discrete model states [10]. In
practice, states are described by corresponding state variables.
For each DEVS AM, state variables are described as SysML
block values, while constraints may also be defined to restrict
the value range of a specific state variable. When the DEVS
AM stereotype is applied on a system block in a BDD diagram,
DEVS structural constraints are applied to the specific block
to ensure the definition of DEVS ports and state variables [18].

B. DEVS Atomic Model Behavior

To describe atomic model behavior, system states and the
four related functions, namely delint, delext, lambda and ta
(see Section II) should be defined. For this purpose, four sub-
diagrams must be related to each DEVS AM. Two of them
facilitate state definition and the other two function definition.

• DEVS States Definition Diagram: A SysML constraint
BDD defining constraints, each denoting a possible sys-
tem state.

• DEVS States Association Diagram: A Parametric Di-
agram (PD) facilitating state definition based on the
constraints of the previous BDD. The states (constraints)
are formed from their association with the states variables
(value properties).

• A DEVS Atomic Internal Diagram: A state machine
diagram (SMD) facilitating the definition of internal
transition function, output function and time advance
function.

• A DEVS Atomic External Diagram: An activity diagram
(AD) facilitating the definition of external transition func-
tion.

These diagrams are briefly discussed in the following.
1) States Definition: DEVS atomic model behavior is de-

scribed as transitions between valid states. State are defined
based on state variables define in SysML as block values. The
valid set of states for each atomic model is defined as indepen-
dent constraints based on corresponding state variables. Thus,
SysML constraint BDD and corresponding SysML parametric
diagram are utilized for the definition of DEVS atomic model
states.

A simple example on state definition is presented in Fig. 2,
where the states of an atomic model representing a Teller in a
bank are defined. The Teller is either idle or busy performing
two typical operations, a withdrawal and a deposit. These three
states are defined as constraints based on the values of two
Teller block properties, s indicating Teller Status (either busy
or idle) and j indicating Job Description containing the specific
jobs a Teller may perform.

As shown in Fig. 2, state variables are represented as
constraint blocks in DEVS States Definition diagram. Each
state variable is associated with one or more parameters (s
and j).

The corresponding SysML PD, indicating the exact manner
these parameters are associated with corresponding block
values is named DEVS State Association diagram. Fig. 3
illustrates the DEVS State Association diagram of Teller

Fig. 2. Teller DEVS States Definition model

Fig. 3. Teller DEVS States Association model

atomic model. As shown in the figure, the s parameter of
constraint Deposit is associated to the Status block value of
Teller block.

Using those two diagram, discrete model states can be
defined by combining discrete values of the state variables de-
fined in associated DEVS AM blocks. Consequently, discrete
model states can be automatically inserted in DEVS Atomic
Internal and DEVS Atomic External diagrams used to define
DEVS atomic model functions.

2) DEVS Atomic Internal Diagram: This diagram, corre-
sponds to Internal Transition, Output and Time Advancement
functions. In DEVS an internal transition function specifies
the next state to which the system will transit. Output function
generates an external output just before an internal transition
occurs and Time Advance function controls the timing of
internal transitions. State diagrams are used for the definition
of the internal transition function. DEVS states are computed
based on State Definition diagram and can be automatically
inserted in the diagram. The modeler specifies internal transi-
tions by inserting simple transitions between states. According
to DEVS formalism, time is advanced every time a state transi-



Fig. 4. Teller DEVS Atomic Internal model

tion occurs. The Time Advancement function is represented by
a corresponding note associated to each DEVS state transition.
The initial state is determined by the initial values of each state
variable. It was decided to include Output Function within
the diagram rather than define a discrete one for each output
port, since output generation is strictly related to internal state
transition.

The diagram for Teller DEVS AM is depicted in Fig. 4,
as an example. Teller atomic model changes its status from
Withdraw state to Idle or from Deposit to Idle. Service time is
an exponentially distributed random variable that is depicted
with a note. When the service is finished, value assignment
is taking place. Values are assigned to the output flow ports
depicted in Fig. 3 as ServiceInfo and IDLE. This is depicted
in Fig. 4 with the action body of a transition.

To provide an example of the way DEVS SysML stereo-
types were defined, Atomic Internal model stereotypes are
briefly presented in Table I. DEVS SYSML profile has been
implemented using Magic Draw [2] modeling tool, which
fully supports SysML and provides a rather friendly API.
Proposed stereotypes are defined using standard interface,
while constraints are implemented using the provided API or
OCL.

3) DEVS Atomic External Diagram: DEVS Atomic Ex-
ternal Diagrams are used to define DEVS external transition
function. This function is executed whenever an input event
arrives at the atomic DEVS model. Therefore, there is a
parameter (of stereotype DEVS In Port) for every input flow
port of the atomic DEVS model. The effect of this function
(state modification) is also determined by the state of the
atomic DEVS model at the time of the arrival of the input
event. Thus, initially there is a decision node checking current
state variable values and creating different control flows.

V. TRANSFORMING DEVS MODELS TO DEVSXML

As the main goal of integrating DEVS modeling capabil-
ities into SysML is automated simulation code generation,
transforming models defined with DEVS SysML profile into
DEVSXML is essential. Modeling tools, as Magic Draw used
for implementing DEVS SysML profile, provide the capability
of exporting SysML models in XMI [1]. Both XMI and
DEVSXML are used to define models represented in XML

Fig. 5. Proposed XML Atomic Internal Function Representation

format. Thus, a conversion program should implement the
automated transformation of DEVS SysML profile entities into
DEVSXML entities and vise versa.

DEVSXML is currently used to transform DEVSJava code
into XML and vice versa [19], while there are several versions
under consideration, each focusing on different DEVS versions
[21] [19]. All of them provide similar representation schemes
for DEVS models structural part. Though, there are different
approaches on how to represent DEVS atomic model behavior
functions. In the version presented in [21], called DEVSML,
behavior functions are simply represented in Java. The authors
dealt with this and propose a format to represent behavior
function code in DEVXML having in mind Java or C++
commands used to write corresponding function code. As
an example, DEVS atomic internal function (delint) XML
representation is presented in Fig. 5. The diagram describes
the code representation corresponding to delint function, as a
set of tests, which test the state value of a parameter and in
case that the test result is true set the state value for another
parameter.

Based on DEVSXML version presented in [17], as utilized
in [19], both structural and behavioral DEVS characteris-
tics are supported. In this case, atomic model functions are
represented as state machine transitions. The transformation
of DEVS SysML profile entities into DEVSXML entities
is briefly presented in Table II, emphasizing DEVS Atomic
model behavior functions. The transformation is straight-
forward and bi-directional.

The transformation of DEVS SysML profile entities em-
phasizing DEVS Atomic model behavior functions into the
XML format presented in Fig. 5, is also straight-forward
and bi-directional. The authors feel that the choice of which
DEVSXML version to use should be based on the actual
code generation capabilities provided. Thus, existing tools and
corresponding code generation process performance should be
explored. In any case, the concept of adopting DEVSXML as
a discrete stage in constructing DEVS simulation code from
SysML models may contribute to the efficient implementation
of the overall process.



TABLE I
DEVS ATOMIC INTERNAL STEREOTYPES

DEVS Stereotype SysML Entity Constraints
DEVS Atomic Internal Diagram State Machine Diagram The diagram must be associated to a DEVS Atomic Block.

The diagram contains an initial node, the DEVS States as derived from DEVS State Definition Diagram,
transitions from state to state and notes indicating Time Advance.

DEVS State State Each state must be defined a state constraint in the DEVS State Definition Diagram of the same DEVS AM.

DEVS InTrans State transition Only one transition may start from any single state node. The transitions from state to state occurs at time Ta
(time trigger event) that is identified with a note.

DEVS OutFn DEVS InTrans The action body of the transition has value assignments to the output flow ports of the DEVS Atomic Block.
DEVS Ta Note The DEVS Ta note is associated to a DEVS InTrans state transition

The note contains the mathematical function describing advancement of time describing Ta.

TABLE II
DEVSXML – SYSML (BEHAVIORAL PART)

SysML DEVSXML
<!ELEMENT Internal transition function

<DEVS Atomic Internal Diagram>.<DEVS InTrans>.<where DEVS State is source> <Conditional function>
<DEVS Atomic Internal Diagram>.<DEVS InTrans>.<where DEVS State is target> <State variable update>

<!ELEMENT Output function
<DEVS Atomic Internal Diagram>.<DEVS InTrans>.<where DEVS State is source> <Conditional output function>
<DEVS Atomic Internal Diagram>.<DEVS InTrans>.<Action body> <Send>

<!ELEMENT Time advance function
<DEVS Atomic Internal Diagram>.<DEVS InTrans>.<where DEVS State is source> <Conditional time advance>
<DEVS Atomic Internal Diagram>.<DEVS InTrans>.<Note> <Time advance>

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the similarities between SysML and DEVS
conceptual model were exploited and a systematic method
to create DEVS simulation code based on existing SysML
models were explored. The proposed DEVS SysML profile
focusing on the definition of DEVS simulation models con-
tributes toward this direction. Using SysML models defined
using DEVS profile, DEVS executable code may be auto-
matically constructed based on MDA concepts. DEVSXML
format, consequently transformed in specific DEVS Simulator
code, may serve as platform independent model describing
DEVS executable models.

Currently, we are exploring DEVSXML versions and cor-
responding translation tools. We also focus on the implemen-
tation of the transformation between DEVS SysML model in
XMI and DEVSXML.
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