
SIMULATING SYSML MODELS: AUTOMATED CODE
GENERATION FOR DEVS SIMULATORS

Vassilis Dalakas
vdalakas@hua.gr

George-Dimitrios Kapos
gdkapos@hua.gr

Mara Nikolaidou
mara@hua.gr

Dimosthenis Anagnostopoulos
dimosthe@hua.gr

Dept. of Informatics and Telematics
Harokopio University of Athens

70, El. Venizelou Str., 17671, Athens, GREECE

ABSTRACT
SysML is considered as an emerging standard for model-
based system engineering where the system engineer should
perform all engineering activities based on a common mo-
del. The evaluation of system models designed by the sys-
tem engineer is one of the most common engineering activ-
ities, frequently performed using simulation. Thus, there
are numerous efforts to simulate SysML models using a va-
riety of simulation methodologies and tools. None of them
support the automated generation of executable simulation
code suitable of a specific tool or environment. DEVS for-
malism provides a conceptual framework for discrete event
simulation and is supported by a wide variety of simula-
tors built in numerous programming environments. Based
on the similarities between SysML and DEVS model struc-
ture, this paper presents a methodology and a set of tools
for constructing executable DEVS code for system models
already defined in SysML. To achieve this, a DEVS SysML
profile is proposed integrating simulation capabilities into
SysML, while MDA concepts are adopted to realize SysML
model transformation into DEVS executable code executed
in an XML-based DEVS simulation environment. To facil-
itate model transformation using QVT language, a DEVS
XMI metamodel is also introduced. The overall process is
discussed with the aid of a working example.

Keywords
MDA, Simulation Methodology, DEVS, Simulation Frame-
work, Automated Simulation Code Generation, SysML

1. INTRODUCTION
Model-based system engineering, as defined by Interna-

tional Council on Systems Engineering (INCOSE) [1], is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

utilized by a central system model, used to perform all en-
gineering activities in the specification, design, integration,
validation, and operation of a system. Systems Modeling
Language (SysML) [2] was proposed by the Object Man-
agement Group (OMG) as a general-purpose graphical mo-
deling language of describing such models of a broad range
of systems and systems-of-systems. SysML system models
should be defined independently of specific implementations
or tools. Specific activities may be accomplished either by
the system engineer using a SysML modeling tool (for ex-
ample system design) or by specific tools in an automated
fashion (for example system validation) or even by a com-
bination of both. In the case where specific tools are used,
SysML models should be transformed to tool specific mod-
els, serving the specific engineering activity.

Since SysML became a standard, the need to integrate
SysML modeling tools and simulation environments was ev-
ident. Apparently SysML supports a variety of diagrams de-
scribing system structure and states, necessary to perform
simulation, thus, there are a lot of efforts from both research
and industrial communities to simulate SysML models [3, 4].
In most cases, SysML models defined within a modeling tool
are exported in Extensible Markup Language (XML) for-
mat and, consequently, transformed into simulator specific
models and forwarded to the simulation environment. De-
pending on the nature and specific characteristics of systems
under study, there is a diversity of approaches on simulat-
ing models defined in SysML, which utilize different SysML
diagrams. In [5], a method for simulating the behavior of
continuous systems using mathematical simulation is pre-
sented, utilizing SysML parametric diagrams, which allow
the description of complex mathematical equations. System
models are simulated using composable objects (COBs) [6].
It should be noted that in any case SysML models should be
defined in a way, which facilitates simulating them [7]. In
[8], simulation is performed using Modelica. To ensure that
a complete and accurate Modelica model is constructed us-
ing SysML, a corresponding profile is proposed to enrich
SysML models with simulation-specific capabilities. These
approaches are better suited for system with continuous be-
havior.

Simulation of discrete event systems is utilized, based on
system behavior described in SysML activity, sequence or
state diagrams. In [9], system models defined in SysML are

translated to be simulated using Arena simulation software.
Model Driven Architecture (MDA) concepts are applied to
export SysML models from a SysML modeling tool and, con-
sequently, transformed into Arena simulation models, which
must be enriched with behavioral characteristics before be-
coming executable. In [10], the utilization of Colored Petri
Nets is proposed to simulate SysML models. If the system
behavior is described using activity and sequence diagrams
in SysML, it may be consequently simulated using discrete
event simulation via Petri Nets. In both cases, although
SysML system models are extracted and used, the system
engineer must write large parts of the simulation code, es-
pecially concerning system behavior.

In this paper we propose an integrated approach to simu-
late SysML model by generating executable simulation mod-
els based Discrete Event System Specification (DEVS) for-
malism. The system engineer may enrich existing SysML
models with DEVS specific characteristics and, then, auto-
matically generate simulation code for specific DEVS sim-
ulators. Concepts of MDA, as in [9] and [4], are adopted
to form a methodology that transforms SysML models to
executable DEVS simulation models. To enable automated
simulation code generation, DEVS simulation capabilities
are embedded within SysML models using a profile mecha-
nism. There were two key reasons for selecting DEVS sim-
ulation formalism:

(i) DEVS formalism provides a conceptual framework for
specifying discrete event simulation models executed on a
variety of simulators [11], as DEVS-C++, DEVSJava [12],
cell-DEVS [13], DEVS/RMI [14] or even DEVS/SOA [15],
which offers DEVS simulators as web services, and

(ii) Both SysML and DEVS follow the same principles re-
garding model structure [16]. The main structural elements
in SysML are blocks with properties and ports, which are
very similar to DEVS components. Both support compos-
ite and simple models. Containment and interconnection of
SysML blocks through their ports is similar to composition
and coupling in DEVS coupled blocks. These similarities
facilitate the transformation of SysML models to valid ex-
ecutable DEVS simulation models. Embedding DEVS for-
malism detailed description within SysML models provides
the means to describe model behavior and enables the au-
tomated execution of these models on existing, popular and
effective simulation environments.

The rest of the paper is structured as follows: The pro-
posed methodology for automated DEVS simulation code
generation and execution from SysML system models is dis-
cussed in Section 2. Related steps and the way to imple-
ment them using standard tools based on the MDA appro-
ach are also discussed. In Section 3 SysML to DEVS mo-
del transformation is explored. Standard MDA languages
Query/View/Transformation (QVT) are utilized to describe
such transformation between SysML and DEVS metamod-
els. Then, in Section 5 the way such models may be executed
in an XML-based DEVS simulation environment, named
XLCS DEVS, is briefly presented. Conclusions and future
work are summarized in Section 6.

2. PROPOSED METHODOLOGY
Both SysML and DEVS are established and widely ac-

cepted in the areas of system modeling and simulation, re-
spectively. Furthermore, several approaches have been pro-
posed on the one hand for the simulation of SysML models

and on the other hand for the visual modeling of DEVS mod-
els. Utilizing the de-facto acceptance of SysML and DEVS,
a methodology is defined for simulating SysML models us-
ing DEVS simulators, provided that model are described in
a way compatible to DEVS formalism. The system engineer
specifies his/her system model using SysML via a modeling
tool and receives valid simulation results from the execution
of the corresponding DEVS model in an appropriate simu-
lation environment. An overall perspective of the proposed
approach is depicted in Fig. 1.

Simulation Model

(DEVS MOF Metamodel)

Model

Transformation

(QVT)

DEVS Simulation

Environment

Code Generation

XLSC

DEVS-XML

...

Visual Paradigm

...

MagicDraw

Modeling Tool

Model Specification (XMI)

System Model

(based on DEVS

and SysML Profiles)

Simulation ResultsVisual Model Definition

with Simulation Specs

PIM

PSM

Figure 1: Simulating SysML Models with DEVS

In order to provide such capabilities, the system engineer
should enrich system models with DEVS-compliant simula-
tion information. This is performed during system modeling,
within a SysML modeling tool. System model enrichment
is enabled by a proposed DEVS SysML profile. The pro-
file constraints and extends SysML models, so that they are
simulation enabled. The DEVS SysML profile consists of
a set of stereotypes and constraints. Stereotypes are used
to characterize specific SysML model elements, while con-
straints specify how models should be created.

DEVS enriched SysML models can be automatically trans-
formed to simulation code for specific DEVS simulators.
Since DEVS formalism is supported by numerous implemen-
tations, the transformation includes an intermediate, yet
autonomous and very important step, which is the gener-
ation of a pure DEVS representation of the system model,
based on a DEVS MOF 2.0 metamodel. The Meta-Object
Facility (MOF) is an OMG standard for model-driven en-
gineering that allows the definition of models representing
specific domains, like the DEVS simulation formalism us-
ing XML Metadata Interchange (XMI). The existence of
a DEVS metamodel independent of specific simulators en-
hances the usability of the proposed approach and facili-
tates simpler transformations for diverse simulation envi-
ronments, as DEVSJava, cellDEVS, etc.

Transformation of enriched SysML models to DEVS XMI
representations is specified and implemented using QVT,
a standard set of languages for model transformation de-
fined by the OMG. Specifically, QVT defines three transfor-
mation languages: QVT-Operational, QVT-Relations and
QVT-Core. In this case, QVT-Relations, a declarative lan-

guage for defining constraints on source and target model el-
ements, has been used. QVT transformations can be applied
on models that conform to MOF 2.0 metamodels (SysML
and DEVS metamodel in our case). Object Constraint Lan-
guage (OCL), another OMG standard language for defining
constraints, is integrated and also extended in QVT with
imperative features.

The transformation of DEVS MOF models to executable
code for specific DEVS simulation environments is feasible,
since all DEVS related information is clearly contained in the
DEVS MOF models. However, the transformation depends
on the target simulation environment. In our current im-
plementation, the XML-based language for simulation com-
ponents (XLSC) DEVS [17] was used as the simulation en-
vironment. The simulator accepts as input DEVS models
described in XML and simulates them in a Java environ-
ment.

From a software engineering perspective, according to con-
cepts of MDA [18], for each real-world domain, two kinds of
discrete models should be defined: a Platform Independent
Model (PIM), ensuring proper domain representation, and
Platform Specific Models (PSMs), corresponding to one or
more executable versions of the PIM. In the DEVS simu-
lation domain, the DEVS MOF metamodel is used to de-
fine a PIM, and consequently translated into code executed
on a variety of DEVS simulators, as XLSC DEVSJava and
DEVS/SOA, corresponding to PSMs. In the SysML model-
ing domain, DEVS SysML profile is used to define SysML
models enriched with simulation capabilities. The SysML
metamodel and the DEVS profile is used to define a PIM,
while discrete Unified Modeling Language (UML)/SysML
modeling tools correspond to PSMs.

From an implementation perspective, the DEVS SysML
profile and a corresponding application programming inter-
face (API) is implemented for MagicDraw [19], which is a
widely used UML modeling tool supporting SysML with a
user-friendly programming interface. SysML models con-
structed using the DEVS SysML profile and exported in
XMI format are transformed into DEVS models (conform-
ing to the DEVS MOF metamodel) via a QVT model trans-
formation, that has been defined for that purpose. As a
proof of concept, the last part of the transformation (code
generation) has been implemented for XLSC DEVS execu-
tion environment [17]. This has been implemented in terms
of EXtensible Stylesheet Language Transformations (XSLT)
[20].

Within the proposed methodology, our main contribution
relates to the definition of the DEVS-SysML profile and
the corresponding implementation for MagicDraw model-
ing tool, the definition of the DEVS MOF 2.0 metamodel
and the definition and implementation of the QVT transfor-
mation of DEVS enriched SysML PIMs to DEVS PIMs. An
XSLT transformation of DEVS PIMs to XLSC DEVS PSMs
has also been implemented as a proof of concept. Specifica-
tion and implementation of the above-mentioned elements
are described in the following sections.

To explore all the steps of the proposed methodology, a
simple example often used in DEVS literature is employed
and discussed in the following sections. It consists of a sim-
ple processor model and its experimental frame (EF), indi-
cating the conditions under which the processor operates.
The overall system is called EFP and is described in Fig. 2.
The system consists of a processor, which is an atomic DEVS

model and the EF, coupled DEVS model, consisting of a gen-
erator generating requests directed to the processor and a
transducer collecting statistics.

generator

transducer

ef

processor
in outoutin

out

arrived

processed

efp

in

out

Figure 2: EFP DEVS model

3. DEVS SYSML PROFILE
As indicated in Fig. 1, system modelers initiate the pro-

cess of simulating SysML models through enriching with
DEVS simulation properties. Using DEVS specific stereo-
types, SysML block functionality can be restricted to con-
form to DEVS formalism, while SysML behavior diagrams
(e.g. state machine and activity) may be restricted to de-
scribe DEVS model behavior (e.g. the description of DEVS
atomic model functions) [16]. The DEVS SysML profile
has been implemented in MagicDraw modeling tool. Pro-
posed stereotypes are defined using standard tool interface,
while constraints are implemented using OCL [21], model
customization, and the provided API.

Any SysML system model described using a BDD is con-
sidered as a DEVS model. System blocks (with unidirec-
tional ports) are identified as DEVS blocks and categorized
as either DEVS Coupled or DEVS Atomic blocks. A DEVS
Coupled block consists of a set of other blocks (atomic or
coupled) and a Coupling element, expressed as an Internal
Block Diagram (IBD). The coupling of a DEVS Coupled
block defines the interconnections between (a) the ports of
part blocks (internal connections) and (b) the ports of the
container DEVS Coupled block and its parts (external con-
nections). All this information is included in any SysML
IBD corresponding to a complex SysML block. When the
SysML block is characterized as a DEVS Coupled block, by
using the corresponding stereotype, related DEVS structural
constraints are applied to ensure that all couplings between
container and part block port are properly defined. So far,
no specific DEVS-related entities are defined. The IBD of
the EF composite block described in Fig. 2 is depicted in
Fig. 3, as an example.

DEVS-related entities should be defined for any SysML
block characterized as DEVS Atomic block, by applying
the corresponding stereotype, in order to describe simula-
tion model behavior. To describe atomic model behavior,
system states and the four related functions, namely deltint,
deltext, lambda and ta should be defined. DEVS Atomic mo-
del behavior is defined as transitions between discrete model
states [11]. Thus, a set of states and simulation model be-
havior must be described for any DEVS Atomic block, using
a series of diagrams and the corresponding DEVS stereo-
types. When the DEVS Atomic stereotype is applied on
a system block in a BDD diagram, DEVS structural con-
straints are also applied to the specific block to ensure the
definition of DEVS ports and state variables. For this pur-

[DEVS Coupled] ibd ef [ef]

in : Integer

out : Integer

 : transducer
arrived : Integer

processed : Integer

 : generator

out : Integer

Figure 3: EF Internal Block Diagram

pose, four SysML diagrams must be related to each Atomic
DEVS Block. Two of them facilitate state definition and the
other two function definition.

• DEVS State Definition Model: A SysML constraint
Block Definition Diagram (BDD) defining constraints,
each of them denoting a possible system state.

• DEVS State Association Model: A Parametric Dia-
gram (PD) that facilitates state definition based on
the constraints of the previous DEVS State Definition
Model. The states (constraints) are formed from their
association with the states variables (value properties).

• DEVS Atomic Internal Model: A State Machine Dia-
gram (SMD) facilitating the definition of internal tran-
sition function, output function and time advance func-
tion.

• DEVS Atomic External Model: An Activity Diagram
(AD) facilitating the definition of external transition
function.

The DEVS Atomic Internal Model of a DEVS Atomic
block specifies the behavior of the atomic DEVS model in
case of internal state transition. Therefore, it is declared
as a stereotype of SMD, where DEVS Internal Transitions
between the DEVS States, already defined in DEVS State
Definition Model, occur at predefined Time Advances and
may produce DEVS Output to some of the output ports of
the atomic block. Table 1 includes the stereotypes defined
for DEVS Atomic Internal Model. It contains SysML stereo-
types, SysML/UML entities on which they are applied, and
constraints, regarding internal model specification.

In DEVS, an internal transition function specifies the next
state to which the system will transit. DEVS states are com-
puted based on DEVS State Definition Model and automat-
ically inserted in DEVS Atomic Internal Model. The sys-
tem modeler specifies DEVS Internal Transitions by insert-
ing DEVS State Transitions between DEVS States. Output
function generates an external output just before an inter-
nal transition occurs and Time Advance function controls
the timing of internal transitions. The initial state is de-
termined by the initial values of each state variable. The
DEVS Atomic Internal Model for processor block, marked
as a DEVS Atomic block, is depicted in Fig. 4, as an ex-
ample. Processor system changes its state from busy to

idle (as defined by DEVS Internal Transition represented
as a state transition) after 3.5 seconds (as defined by Time
Advance represented as Timing Condition of corresponding
transition). It also produces output, as indicated by tran-
sition effect representing DEVS Output. Specifically, a job
number is assigned to out output port. Fig. 4 also depicts
a snapshot of MagicDraw modeling tool, supporting DEVS
SysML profile, where corresponding stereotypes can be used
from the palette.

Having defined the DEVS SysML profile, construction of
SysML system models with DEVS simulation characteris-
tics is feasible, and in an intuitive manner. As described
in Fig. 1, the next step toward DEVS simulation code gen-
eration is the creation of the corresponding DEVS model
representation in a standard common format as XML, that
can be further transformed into DEVS executable code for
specific simulators. This XML representation of DEVS mo-
del should be generated as the result of a transformation of
the SysML system model.

4. MODEL TRANSFORMATION
DEVS SysML models comply to the UML2 MOF meta-

model, which is a quite general metamodel that can be used
for modeling a variety of artifacts, systems, processes, etc.
This means that although we focus on DEVS related infor-
mation with the DEVS SysML profile, the entities of the
models contain large amounts of information that is irrel-
evant to DEVS-oriented simulation. Therefore, XMI rep-
resentations of SysML models, exported from MagicDraw
tool, are very large and cumbersome to be used for DEVS
simulation code generation. Additionally, in the sense of
standardizing the way DEVS models should be specified in
an XMI representation, independently of how they were con-
structed (e.g., DEVS SysML models, DEVS visual tools),
there is a need to define the DEVS metamodel in terms of
a standard metamodeling facility. Such a facility is MOF,
which is provided as a standard by the OMG.

4.1 The DEVS MOF Metamodel
After the evaluation of several proposed DEVS-XML rep-

resentations, we have defined the DEVS MOF metamodel,
based on the version of DEVS-XML proposed in [22]. DEVS
MOF metamodel is schematically presented in the UML
Class Diagram of Fig. 5(right part), but has also been de-
fined in terms of MOF elements. Thus, it can be used
within model manipulation tools (i.e., for model transforma-
tion), as MediniQVT. DEVS MOF metamodel defines ele-
ments defining structural and behavioural aspects of DEVS
atomic (ports, states, internal transition, output, time ad-
vance, and external transition functions) and coupled com-
ponents (ports and coupling).

Compared to DEVS-XML [22], the DEVS MOF meta-
model incorporates the relation between state variable val-
ues and states. This is feature enabling the execution of
corresponding XMI DEVS model using a wider variety of
DEVS simulators, either implemented in C++ or Java. It
also handles complex expression values and provides sim-
pler structure and conceptual coherence. Therefore, DEVS
MOF metamodel establishes a standard, solid foundation
for defining DEVS models.

Regarding Fig. 5, it should be noted that the definition
of CONDITION and VALUE classes is recursive. For ex-

Table 1: DEVS Atomic Internal Stereotypes
DEVS Stereotype SysML Entity Constraints

DEVS Atomic Internal Model State Machine Diagram The diagram must be associated to a DEVS Atomic Block.
The diagram contains an initial node, the DEVS States as de-
rived from DEVS State Definition Diagram, transitions from
state to state and notes indicating Time Advance.

DEVS State State Each state must be defined a state constraint in the DEVS
State Definition Diagram of the same DEVS AM.

DEVS Internal Transition State transition Only one transition may start from any single state node.
The transitions from state to state occurs at time Ta (time
trigger event) that is identified with a note.

DEVS OutFn DEVS Internal Transition The action body of the transition has value assignments to
the output flow ports of the DEVS Atomic Block.

DEVS Ta Note The DEVS Ta note is associated to a DEVS Internal Tran-
sition state transition
The note contains the mathematical function describing ad-
vancement of time describing Ta.

Figure 4: Processor DEVS Atomic Internal model

ample, a VALUE entity may be composed of one or more
other VALUE entities. This is useful and allowed only when
an operation is specified, so that a complex expression may
be declared (e.g., V1+V2). In the case of CONDITION,
AND or OR sub-conditions are allowed, to declare complex
conditions (e.g., C1 AND C2).

4.2 Model Transformation with QVT
Models defined using the DEVS SysML profile may be rep-

resented in XMI format, according to the UML2 MOF meta-
model. Since a compatible MOF metamodel has been de-
fined for DEVS, an appropriate transformation from UML2
to DEVS MOF is required. A set of QVT relations between
the stereotypes of DEVS SysML profile included in UML2
MOF and DEVS MOF metamodels, that implement a trans-
formation of models from the first to the second, have been
defined. An Eclipse-based QVT tool (MediniQVT) has been
successfully used for the execution of the QVT transforma-
tion for various DEVS SysML models.

The transformation is shortly described in Fig. 5, illustrat-
ing both UML2 DEVS SysML (left side) and DEVS (right
side) MOF entities. It also provides a schematical represen-
tation of the transformation, by indicating the correspon-
dence between parts of the two metamodels. The numbered
arrows, denoting several parts of the transformation, are de-
scribed in the following:

1. The topmost part of the transformation: The DEVS
Model Block Definition Diagram (UML2 entity) con-
tains all DEVS Atomic and DEVS Coupled blocks to
be transformed into DEVS entities DEVS ATOMIC
and DEVS COUPLED . It is implemented by a QVT
relation, which finds all DEVS Model Block Definition
Diagram entities in the UML2 XMI (normally there
will be only one) and creates a DEVS MODEL for
each one.

2. DEVS common elements transformation: This part
transforms elements that are common in atomic and
coupled DEVS models, i.e., model name and input /
output ports.

3. DEVS atomic state definition transformation: Trans-
forms the DEVS State Constraint blocks that define
the state set.

4. DEVS atomic state variable definition transformation:
Transforms the DEVS State Variable value properties
to DEVS State Variables.

5. DEVS atomic state association transformation: Trans-
forms the DEVS State Association Model to conditions
attached to state set values.

6. DEVS atomic internal model transformation: Trans-
forms the DEVS Atomic Internal Model (State Ma-

Figure 5: DEVS-SysML to DEVS Transformation (QVT)

chine Diagram) to Internal Transition Function, Out-
put Function and Time Advance Function.

7. DEVS atomic external model transformation: Trans-
forms the DEVS Atomic External Model (Activity Di-

agram) to External Transition Function.

8. DEVS coupled components transformation: Transforms
the Component composition associations to the com-
ponent reference list.

9. DEVS coupled coupling transformation: Transforms
the port connections of the Internal Block Diagram to
External Input Coupling, External Output Coupling
and Internal Coupling.

The XMI code generated by the transformation of the
Processor DEVS Atomic Internal model presented in Fig.
4 based on the DEVS MOF metamodel is presented in the
following. According to Fig. 5 (arrow 6), the DEVS Atomic
Internal Model defined as a stereotype of a State Machine di-
agram included in UML2 MOF is transformed to entities IN-
TERNAL TRANSITION FUNCTION, OUTPUT FUNC-
TION and TIME ADVANCE FUNCTION of the DEVS
MOF, representing related DEVS functions. Each of them
is constructed using information included in the correspond-
ing State Machine diagram. Transitions are used to define
all functions. CONDITIONAL FUNCTION elements are
described by the origin state, while TRANSITION FUNC-
TIONS corresponding to a CONDITIONAL FUNCTION
are described by the destination state.

In the case of INTERNAL TRANSITION FUNCTION
element, a STATE VARIABLE UPDATES element is also
added to indicate state variable modification, as indicated
by DEVS Var Modification Action associated to the Tran-
sition. In the case of Processor system (Fig. 4) the state
variable Job, of type integer, is decreased by 1.

<INTERNAL_TRANSITION_FUNCTION>

<CONDITIONAL_FUNCTION>

<STATE_CONDITION text="busy"/>

<TRANSITION_FUNCTION>

<NEW_STATE text="idle"/>

<STATE_VARIABLE_UPDATES>

<STATE_VARIABLE_UPDATE name="job">

<VALUE value="Integer(-1)"/>

</STATE_VARIABLE_UPDATE>

</STATE_VARIABLE_UPDATES>

</TRANSITION_FUNCTION>

</CONDITIONAL_FUNCTION>

</INTERNAL_TRANSITION_FUNCTION>

<OUTPUT_FUNCTION>

<CONDITIONAL_OUTPUT_FUNCTION>

<STATE_CONDITION text="busy">

<SEND port="out">

<STATE_VARIABLE_VALUE name="job"/>

</SEND>

</STATE_CONDITION>

</CONDITIONAL_OUTPUT_FUNCTION>

</OUTPUT_FUNCTION>

<TIME_ADVANCE_FUNCTION>

<CONDITIONAL_TIME_ADVANCE>

<STATE_CONDITION text="busy"/>

<TIME_ADVANCE>

<VALUE type="Real" value="3.5"/>

</TIME_ADVANCE>

</CONDITIONAL_TIME_ADVANCE>

<CONDITIONAL_TIME_ADVANCE>

<STATE_CONDITION text="idle"/>

<TIME_ADVANCE>

<VALUE type="Real" value="Infinity"/>

</TIME_ADVANCE>

</CONDITIONAL_TIME_ADVANCE>

</TIME_ADVANCE_FUNCTION>

Fig. 6 illustrates a screenshot of the MediniQVT trans-
formation tool, used for the execution of the QVT transfor-
mation. The first transformation part is illustrated (arrow
1).

Figure 6: UML2 to DEVS MOF transformation with
MediniQVT

5. EXECUTING GENERATED CODE WITH
XSLC SIMULATION ENVIRONMENT

Following the steps presented so far, DEVS models are
automatically generated from SysML system models. Based
on the proposed methodology (Fig. 1), DEVS XMI models
should be transformed to be executed in specific DEVS sim-
ulation environment in the appropriate target format (XML,
Java code, etc.).

Many DEVS simulation environments aim at XML-based
DEVS modeling and interpretation in different program-
ming languages ([23], [22], [17], [24], [25]). An XML data
encapsulation is accomplished in [23], within the DEVS en-
vironment, as a unifying communication method among the
entities in any Systems-of-Systems (SoS) architecture. In
[24] the problem of model interoperability is addressed, with
a novel approach of developing DEVSML as the transforma-
tion medium towards composability and dynamic scenario
construction. The composed coupled models are then vali-
dated using atomic and coupled Document Type Definitions
(DTDs). In this case, model behavior is not emphasized. In
[17] an XML Schema is introduced for XLSC, a language for
modeling atomic and coupled DEVS models. It was shown
that a) XLSC can express a model’s behavior as well as its
structure, and b) was shown how an XLSC model can be
simulated. An interpreter was prototypically implemented
in Java and employed to directly execute the model’s func-
tions and update the model’s state. In this case, atomic
model behavior can be described in XML using a series of
actions depicting specific instructions included in the simu-
lation code.

Hence, XLSC DEVS ([17]) was selected as the DEVS Sim-
ulator and DEVS XMI to XLSC XML transformation, as a

proof of concept. XLSC simulation environment requires an
XML document of a specific structure for each DEVS com-
ponent of the model. Therefore, the DEVS model (XMI for-
mat) is syntactically transformed to XLSC XML by XSLT.
Since the two formats have small syntactical differences, the
XLSC XML file is constructed with the help of a set of XSLT
templates that match DEVS XMI elements, from which the
needed values are taken and placed in the XLSC elements.

In general, DEVS XMI elements are transformed to simi-
lar XLSC elements. However, one should note the following
issues:

• In XLSC there is no definition of the state set. Only
state variables are defined.

• In XLSC all DEVS atomic functions (internal tran-
sition, output, time advance, external transition) are
defined in a low level, procedural manner. In the cor-
responding XSLT we basically build the procedural
XLSC elements that implement the behavior, declared
in the respective DEVS model elements.

• Coupling is represented in a more simple and flat way,
in XLSC. Couplings are not distinguished in internal
or external (input and output). For each coupling, a
source (component, port) and a target (component,
port) are specified. When the source or target compo-
nent is a DEVS coupled model, then the component
attribute is set to ”this”. Otherwise, the name of the
(component) DEVS model is used.

EditX is the XML tool that has been used for transfor-
mation of DEVS XMI models to XLSC code. It provides
XSLT execution capabilities and is available in a free edi-
tion for non-commercial use. The defined XSLT transfor-
mations are rather simple. The generated XLSC code is
passed to the XLSC interpretation environment, which dy-
namically creates DEVSJava classes for the atomic and cou-
pled DEVS models. The simulation model can be executed
in DEVSJava simulation environments. Fig. 7 shows simu-
lation execution of the EFP system, defined using SysML in
the MagicDraw tool, in the SimView DEVSJava component
of the XLSC environment.

6. CONCLUSIONS
This paper presented a methodology that transforms sys-

tem models already defined in SysML to DEVS executable
models in a fully automated fashion. The properties of
SysML system models have been enriched with simulation
specific capabilities in order to generate executable discrete
event simulation models based on DEVS formalism. The
proposed methodology was tested to provide automated gen-
eration of DEVS executable code for the XLSC DEVS sim-
ulator. Each required step was defined, implemented and
tested as well. The presented methodology is based on MDA
concepts, implemented in an open, standard based and ex-
tensible framework.

Future work involves testing the profile and transforma-
tion code in real-world case studies involving complex system
models, integrate additional DEVS simulators and provide
additional capabilities within DEVS profile to enable the
system engineer to integrate simulation results within the
SysML system model.

7. ACKNOWLEDGEMENTS

Figure 7: EFP simulation execution in XLSC DE-
VSJava

The authors would like to thank Nicolas Meseth, Patrick
Kirchhof, and Thomas Witte for their valuable help. Not
only they provided us with their XLSC prototype inter-
preter, but also they eagerly answered every question we
posed.

8. REFERENCES
[1] Loyd Baker, Paul Clemente, Bob Cohen, Larry

Permenter, Byron Purves, and Pete Salmon.
Foundational Concepts for Model Driven System
Design. INCOSE Model Driven System Design
Interest Group, International Council on Systems
Engineering, July 2000.

[2] OMG. Systems Modeling Language (SYSML)
Specification. Version 1.0. September 2007.

[3] Edward Huang, Randeep Ramamurthy, and Leon F.
McGinnis. System and simulation modeling using
sysml. In WSC ’07: Proceedings of the 39th conference
on Winter simulation, pages 796–803, Piscataway, NJ,
USA, 2007. IEEE Press.

[4] Oliver Schonherr and Oliver Rose. First steps towards
a general SysML model for discrete processes in
production systems. In Proceedings of the 2009 Winter
Simulation Conference, pages 1711–1718, Austin, TE,
USA, December 2009.

[5] R.S. Peak, R.M. Burkhart, S.A. Friedenthal, M.W.
Wilson, M. Bajaj, and I. Kim. Simulation-based
design using sysml part 1: A parametrics primer. In
INCOSE Intl. Symposium, pages 1–20, San Diego, CA,
USA, 2007.

[6] Russell Peak, Christiaan J.J. Paredis, and Diego R.
Tamburini. The composable object (cob) knowledge
representation: Enabling advanced collaborative
engineering environments (cees), cob requirements &
objectives (v1.0). Technical report, Georgia Institute
of Technology, Atlanta, GA, Oct. 2005.

[7] Diego R. Tamburini. Defining Executable Design &

Simulation Models using SysML. Available online via
http://www.pslm.gatech.edu/topics/sysml/, March
2006.

[8] Christiaan J. J. Paredis and Thomas Johnson. Using
omg’s sysml to support simulation. In WSC ’08:
Proceedings of the 40th Conference on Winter
Simulation, pages 2350–2352. Winter Simulation
Conference, 2008.

[9] Leon McGinnis and Volkan Ustun. A simple example
of SysML-driven simulation. In Proceedings of the
2009 Winter Simulation Conference, pages 1703–1710,
Austin, TE, USA, December 2009.

[10] Renzhong Wang and C.H. Dagli. An executable
system architecture approach to discrete events system
modeling using SysML in conjunction with colored
petri nets. In IEEE Systems Conference 2008, pages
1–8, Montreal, April 2008. IEEE Computer Press.

[11] Bernard P. Zeigler, H. Praehofer, and T. Kim. Theory
of Modeling and Simulation. Academic Press, 2nd
edition, 2000.

[12] Bernard P. Zeigler and Hessam S. Sarjoughian.
Introduction to DEVS Modeling and Simulation with
JAVA. DEVSJAVA Manual, 2003.

[13] Gabriel A. Wainer and Norbert Giambiasi. Timed
Cell-DEVS: modelling and simulation of cell spaces,
chapter 10. H. Sarjoughian, F. Cellier Eds.,
Springer-Verlag, 2001.

[14] Ming Zhang, Bernard P. Zeigler, and Phillip
Hammonds. Devs/rmi-an auto-adaptive and
reconfigurable distributed simulation environment for
engineering studies. International Test and Evaluation
Association Journal, 27(1):49–60, 2005.

[15] Saurabh Mittal, José L. Risco-Mart́ın, and Bernard P.
Zeigler. Devs/soa: A cross-platform framework for
net-centric modeling and simulation in devs unified
process. Simulation, 85(7):419–450, 2009.

[16] Mara Nikolaidou, Vassilis Dalakas, Loreta Mitsi,
Georgios-Dimitrios Kapos, and Dimosthenis
Anagnostopoulos. A sysml profile for classical devs
simulators. In Proceedings of the Third International
Conference on Software Engineering Advances
(ICSEA 2008), pages 445–450, Malta, October 2008.
IEEE Computer Society.

[17] Nicolas Meseth, Patrick Kirchhof, and Thomas Witte.
Xml-based devs modeling and interpretation. In
SpringSim ’09: Proceedings of the 2009 Spring
Simulation Multiconference, pages 1–9, San Diego,
CA, USA, 2009. Society for Computer Simulation
International.

[18] OMG. Model Driven Architecture. Version 1.0.1.
Available online via
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf,
June 2003.

[19] MG. SysML Plugin for Magic Draw, 2007.

[20] World Wide Web Consortium (W3C). Extensible
stylesheet language transformations (xslt). Available
online via http://www.w3.org/TR/xslt20, 2007.

[21] OMG. UML 2.0 OCL Specification. Available online
via http://www.omg.org/docs/ptc/03-10-14.pdf,
October 2003.

[22] José Luis Risco-Mart́ın, Saurabh Mittal, M. A.
López-Peña, and Jesús Manuel de la Cruz. A w3c xml

schema for devs scenarios. In SpringSim ’07:
Proceedings of the 2007 spring simulation
multiconference, pages 279–286, San Diego, CA, USA,
2007. Society for Computer Simulation International.

[23] Matthew Hosking and Ferat Sahin. An xml based
system of systems discrete event simulation
communications framework. In SpringSim ’09:
Proceedings of the 2009 Spring Simulation
Multiconference, pages 1–9, San Diego, CA, USA,
2009. Society for Computer Simulation International.

[24] Saurabh Mittal, José L. Risco-Mart́ın, and Bernard P.
Zeigler. Devsml: Automating devs execution over soa
towards transparent simulators. In DEVS Symposium,
Spring Simulation Multiconference, pages 287–295.
ACIMS Publications, March 2007.

[25] José L. Risco-Mart́ın, Jesús M. De La Cruz, Saurabh
Mittal, and Bernard P. Zeigler. eudevs: Executable
uml with devs theory of modeling and simulation.
Simulation, 85(11-12):750–777, 2009.

	Introduction
	Proposed Methodology
	DEVS SysML profile
	Model Transformation
	The DEVS MOF Metamodel
	Model Transformation with QVT

	Executing Generated Code with XSLC Simulation Environment
	Conclusions
	Acknowledgements
	References

