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Computer Graphics Section, Department of Computation and Computer Systems, Polytechnic University of Valencia,

Camino de Vera, s/n E-46022 Valencia, Spain

Received 28 July 2005; received in revised form 9 June 2006; accepted 19 July 2006
Available online 22 September 2006
Abstract

Simulation is often used to solve problems in many areas in the form of problem analysis. Real time graphic applica-
tions such as videogames typically use a continuous simulation scheme. This operating scheme has disadvantages that can
be avoided by using a discrete event simulator as the application kernel. This paper proposes the integration of a discrete
event simulator into a real time graphic application to control the kernel simulation. Using a discrete methodology avoids
disorderly event execution or the execution of cancelled events. The use of this methodology involves using events as the
method of modeling the system dynamics and the interaction and behavior of the objects.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Since the beginning of simulation [13], discrete event simulators [1] have been used to solve problems
involving systems analysis or system design. Simulators are in a state of continual evolution with new
characteristics appearing from time to time. Improvements have been made to simulation speed, result
analysis methods, graphic interfaces and graphic model description. Simulation is an appropriate tool for
solving problems in areas such as [10] military applications, science and engineering, training programs and
management. Simulation is frequently used in the field of computer graphics [11,24,17,21].

Both computer simulation and computer graphics employ numerical modeling methods to simulate the
behavior of world entities and mechanisms. The integration of computer simulation and computer graphics
presents many benefits [11]:

• Real time graphic applications (RTGA) use simulation techniques for animation (high level modeling
methods). The use of simulation techniques in computer graphics is restricted to modeling methods, such
as Petri nets or queues.
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• Simulators use graphic techniques for the visualization of the simulation process output. Some simulators
allow an animated graphic output (WITNESS [12], AutoMod [20], CINEMA [16], Simgraphics [22] or
PROOF ANIMATION [4]).

Although the dispute between discrete event simulators and continuous simulators has been going on for
some time, discrete RTGA techniques are not very widely used. RTGA use discrete simulation techniques to
manage the events belonging to a specific sequence. For instance, the use of discrete events to establish the
system sampling period in a character’s movement [15], or to define the character’s behavior as a state machine
using events [19] or to define a scheduler to manage game events belonging to different game technologies, such
as simulation of physical phenomena, character animation, collision detection, game AI or rendering [8].
However, the whole system still uses continuous simulation because it defines a sampling period and all the
RTGA active objects are sampled at each main loop step.
1.1. Real time graphic application simulation paradigm

RTGA has a wide range of applications, including virtual reality or videogames. We have selected video-
games as the study objective because:

• There are videogames with free source code available.
• The code complexity of these videogames is diverse.
• They usually run on a single PC.
• They are representative of the RTGA area.

Although the study was carried out on videogames, the conclusions can be generalized to RTGA. In
order to verify the use of simulation techniques, an events management study was performed on a variety
of videogames with free source codes. Some of these videogames were non-commercial games made by
enthusiasts [28]. These videogames lack internal organization and employ quite rudimentary simulation
techniques and so were not included explicitly in the present study. Only a few commercial videogames have
published their source code. Among these we considered DOOM v1.1 [9,3] or QUAKE v2.3 [18] and the
Fly3D kernel [26,27] because of their importance in the videogames area. Their working model may be seen
in Fig. 1.

Algorithm 1. Real time graphic applications main loop [14].

WHILE (true)

Get information from input devices

Compute a tick of the simulation

Update graphics to the user

ENDWHILE

The main loop of the preceding videogames has three main phases (Algorithm 1, Fig. 1):

1. The videogame gets the user events and process them.
2. Simulate (evolve the world). During the execution of a step of simulation (tick) all the videogame

objects (such as avatar, characters, stones or cars) are asked for pending simulation events (such as
movement or shooting) taking charge of the time elapsed since the last simulation step. Videogame
objects are usually included in the scene graph. The simulation phase travels through the scene graph
and asks each object if it has something to do. All the active objects are sampled in a world evolution.
This videogame object-sampling produces a continuous simulation scheme in the system. The simula-
tion cycle (time slot) is defined as the time elapsed in a run of the program main loop (continuous
simulator sampling period). All events are obliged to evolve at the highest speed the computer system
can supply.
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Fig. 1. DOOM, QUAKE and Fly3D working model.
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3. Render the current scene. The scene graph is used both to simulate and to render the scene. Some video-
games use the scene graph pass to select the objects that must be rendered, including them in some data
structure. In this way, the rendering only requires to travel the secondary data structure, diminishing the
cost of the rendering process.

The conclusions obtained from the videogames main loop are:

• The simulation phase makes a continuous sampling of the videogame objects because all objects are sam-
pled at each main loop step. Therefore, the simulation techniques used in videogames in many cases involve
considering the videogames as continuous systems (in accordance with the systems classification based on
the way the system evolves in time [25]).

• The working model of videogames follows the typical scheme of RTGA (Algorithm 1) coupling the render-
ing phase and simulation phase (each world evolution always requires a full world rendering). The scene
could be shown on the screen or not depending on the next screen refresh. If the scene is not shown on
the screen, the time spent rendering the scene is wasted.

1.2. Criticism

A continuous simulation model has several disadvantages for RTGA:

• All the objects in the scene graph are checked, although many objects will never generate events. Some
RTGA only sample the active objects during the simulation phase. Objects that change from activity to
inactivity must always be checked in order to verify if they change their state. Access through the scene
graph when many objects will never generate events, is quite inefficient.
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• The simulation may be erroneous because the events execution could be disorderly. The objects events are
not ordered by time. The events priority for simulation depends on their situation in the scene graph. Fur-
thermore, some cancelled events could be executed. In a particular simulation cycle, an event could decide if
other events must be executed or not. If the object that has the associated event is situated further down the
scene graph the cancelled events are executed. For example, a missile must destroy a wall in the current
simulation cycle. In this cycle, the player pushes a button and deactivates the missile. When the missile
is checked its state is ‘‘destroy the wall’’. The wall is destroyed because the new missile state is not checked
until the next simulation cycle.

• The sampling frequency is common to all the RTGA objects, independently of their requirements (the sys-
tem sampling frequency must be high enough to simulate properly every object to match the Nyquist-Shan-
non theorem). An undersampled object could not be simulated properly (losing events or not detecting
collisions). Objects with very slow behavior may be oversampled, uselessly wasting CPU power.

• RTGA objects could have both continuous and discrete behaviors (the continuous system evolution in time
may be altered by events not associated to the sampling period). RTGA are therefore hybrid systems. Since
they are usually implemented as continuous coupled systems, they lose performance and may produce erro-
neous behaviors.

The system coupling also has disadvantages. The scene has to be rendered for every simulation cycle,
regardless of whether it is going to be shown on the screen or not. So, the system sampling frequency is highly
dependent on computer power and the simulation and rendering workload. Events are synchronized with the
sampling period, so the system is not sensitive to time intervals lower than the system sampling period.

2. Objectives

Videogames follow a scheme of continuous simulation although they could be considered as hybrid sys-
tems. Discrete event simulation allows the modeling of both continuous, discrete or hybrid systems [1]. The
aim of this paper is to show how the use of discrete event simulation techniques can improve RTGA simula-
tion. The proposal is to change the continuous simulation RTGA paradigm for the discrete paradigm to allow
a more accurate simulation than using the continuous paradigm. The objective is to integrate a discrete event
simulator into an RTGA in order to change the simulation paradigm.

The advantages of using a discrete event simulator as RTGA kernel are:

• Game quality is improved because the events are executed ordered in time and there is no disorderly events
execution. Each object defines its own sampling frequency. It is defined according to the behavior of each
object. The system is sensitive to times lower than the sampling period, because every object has its own
sampling period. The level of detail of simulation increases: unnoticed events are simulated. The sampling
period does not change depending on topics such as the system load or the scene complexity.
DESK

GDESK Fly3D

DFly3D

RTGA Adaptation

Fig. 2. Steps in the DFly3D creation.



I. Garcı́a, R. Mollá / Simulation Modelling Practice and Theory 14 (2006) 1043–1056 1047
• Game efficiency increases. Discrete systems make better use of computer power. The power thus released
can be used to better process other videogame parts (AI or kinematics). Only the objects that generate
events will be checked, avoiding access to the remaining objects. Videogames can thus be executed in
machines with lower power. Distributed RTGA can be run on machines with different computing power
showing the same behavior.

The discrete event simulator DESK is presented in the following sections. Section 3.2, contains a descrip-
tion of a modification for integration into a videogames kernel (GDESK). Section 3.3 describes how GDESK
was integrated into the Fly3D videogames kernel, while the resulting discrete videogames kernel was DFly3D,
which is analyzed in Section 3.4. Fly3D uses a scheme of continuous simulation and DFLy3D a discrete. Both
kernels are compared. The discrete event simulator GDESK manages the DFLy3D events. A scheme of the
relationships between all these kernels may be seen in Fig. 2.

3. Discrete application development

3.1. The discrete event simulator DESK

DESK [6,2] is a universal object oriented library developed using ANSI C++. It may be used both as a fast
prototyper and as a final model descriptor simultaneously. DESK can simulate any model without restric-
tions. Although it uses dynamic memory to avoid computer or compiler lags, no penalty in performance is
noticed due to a client pool that avoids unnecessary calls to the dynamic memory manager (DMM). It is
powerful enough to manage any system and flexible enough to allow fanciful behaviors. It allows easy model
definition and implementation. The system model definition must be carried out defining the simulation
components (service stations and clients) and their characteristics. DESK is based on two discrete event
simulators: SMPL [7] and QNAP [23]. Both philosophies were combined: the speed and freedom of old C
based packages like SMPL and the organization and simplicity of an object-oriented model description like
QNAP (fast and easy prototyping).

The DESK key structures are:

• Dispatcher: contains the events that are going to happen in the system ordered by time.
• Events pool: each time a new event is necessary in the system, the DMM must be called. When the event

finishes its function and leaves the system, the DMM must be called again to destroy it. This is inefficient,
because the DMM is constantly being called. In order to minimize DMM calls, an events pool is used. The
pool is a way to maintain the events that are not currently in the system. Events are being created during
simulation. In a given moment, they leave the system and they are inserted in the pool instead of being
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Fig. 3. SMPL and DESK simulation cost (closed system) increasing the number of clients.
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destroyed. When a new event is necessary in the system, the simulator verifies if there are events in the pool
and an event will be extracted from the pool if the pool is not empty. The DMM will be called if and only if
there are no available events in the pool.

In general, DESK is faster than SMPL for almost all simulated models in the laboratory (Figs. 3 and 4).
DESK allows simulation models that are impossible to simulate using SMPL due to the amount of clients or
service stations in the system or the model complexity. Figs. 3 and 4 show the simulation temporal cost com-
parison between SMPL and DESK. Fig. 3 is obtained simulating a closed system while changing the number
of clients. Fig. 4 shows an open system that is simulated increasing the simulation total time.

DESK is a discrete event simulator and it is not suitable for integration into an RTGA kernel in its current
form. Certain changes are therefore necessary for the integration. These changes are:

• Time management. The time evolution does not only depend on the events occurrence but must also follow
real time. An event happens when its time stamp is reached by the real time clock. The time management in
a discrete event simulator is not usually in agreement with the real time. The simulator has an internal clock
that evolves each time an event occurs. Event times in RTGA must match the real time. An event only hap-
pens if the event time stamp is reached by the real system time. At this moment, the simulator clock is mod-
ified with the event time.

• Events are simulation passive entities that travel from one service station to another. In a discrete RTGA,
the event must communicate objects (or model the object behavior). The event is produced by a videogame
object and it always has an object as destination. So, an event travels through the system objects. The event
must contain the information to change the destination object (event parameters). The destination object
changes its behavior or state depending on the event parameters. The events parameters must be defined
by the RTGA programmer, so the events management structure must be accessible by the programmer.

• Discrete events simulators usually finish the simulation defining the maximum simulation time or if the
events queue is empty. In an RTGA the user controls the end of the simulation. If the events queue is
empty, the RTGA execution is paused.

• DESK must be integrated into an RTGA and so must share the system dynamics with the RTGA.

3.2. The discrete event simulator DESK as RTGA kernel: GDESK

GDESK (Game Discrete Event Simulation Kernel) [5] is the adaptation of DESK to an RTGA kernel. It is
a simulation kernel that copes with the RTGA events handling. GDESK uses two basic entities to model the
events passing mechanism: objects and events. Events are messages sent from one object to another, GDESK
therefore controls the RTGA objects communication by message passing. GDESK maintains the events
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ordered by time until their time stamp is exceeded. The dispatcher is the GDESK basic structure. It supports
the messages passing process, it maintains the messages ordered by time until the message time stamp is
reached by the real time clock and it sends the messages to the target objects at the time specified by the time
stamp.

Objects are the dynamic system entities. Any videogame element must be a GDESK object. Events are the
passive elements that allow the objects communication. The system dynamic is modeled by message passing.
All RTGA objects must inherit from the GDESK basic object. The functions for receiving and sending mes-
sages are defined in this basic object. The message data structure contains two kinds of information:

• GDESK internal information: This contains the necessary parameters to control the messages sending and
receiving process: source object, destination object and message reception time.

• RTGA information: This part of the message structure is accessible to the RTGA programmer in order to
define the application parameters. So the programmer has freedom to define the messages structure avoid-
ing unnecessary data structures overloads. These parameters are managed directly by the programmer.
GDESK does not take these parameter structures into account.

3.3. The RTGA kernel FLY3D

Fly3D SDK is a software development kit for videogames and 3D RTGA. The Fly3D main loop follows a
typical scheme of continuous simulation that couples the simulation phase and rendering phase. Each RTGA
component is defined in Fly3D as an object. The object defines a rendering function and a simulation function.
The global simulation process calls each simulation object function following their order in the scene graph.
The simulation takes care of the time elapsed from the last simulation until now. The rendering process is
similar. For each main loop step a complete simulation and rendering is performed. Fly3D is plugins-oriented.
An RTGA created using Fly3D is a set of plugins. The plugins are completely separated from the Fly3D kernel.
All the applications have a common front-end that supports the user interface and the application main loop.

GDESK integration into Fly3D involves two levels of changes in Fly3D:

• Changes in the Fly3D kernel in order to isolate its functionality as objects. The new objects behavior is
defined by message passing. These objects are the DFly3D system objects. One of these objects is the render
object. That means the rendering process starts and continues by events.

• Changes in the games created using Fly3D to integrate the GDESK functionality into the videogame
objects. These objects are the DFLy3D world objects.

Using a discrete event simulator as a simulation engine for RTGA does not involve changing application
topics like the structure of the scenes description files or characters. It does not modify the file parser, the scene
graph, the rendering techniques applied or the RTGA style. It only modifies the system events management
and introduces a discrete event simulation scheme and only focuses on the events management.

The RTGA main loop shown in the Algorithm 1 must be changed. The new main loop is controlled by the
simulator.

3.4. The discrete RTGA kernel DFLY3D

DFly3D (Discrete Fly3D) is an RTGA kernel resulting from the integration of GDESK into Fly3D.
DFly3D is a toolkit to create discrete RTGA (discrete simulation paradigm). An RTGA created using
DFly3D is a set of objects generating events. Any DFly3D element must be a GDESK object. GDESK treats
all objects in the same way. There are two kinds of objects in DFly3D (Fig. 5):

• System objects: all application functional components must be modeled as objects generating events. They
are the objects that control the application. Examples of system objects are console, render unit, multi-user
control or server control.
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• World objects: they are the objects simulated and/or rendered, such as avatars, cars or walls. The objects
generate events that model their behavior and their interaction with other objects.

The DFly3D kernel has the following components (Fig. 5):

• User interaction events translator: the user events are converted to GDESK events. GDESK deals with all
events in the same way.

• Objects: system objects and world objects.
• GDESK: collects the events generated by the objects and maintains the events ordered by time.

Objects in an RTGA interact and evolve using the events generation mechanism. The system dynamics are
modeled by events. An object only acts when an event is produced and sent to it. That object may change its
behavior and it may generate other events. The change in the object behavior depends on topics such as the
event source object, the event type or the event parameters. Both object types use this mechanism. Events are
controlled by GDESK regardless of the kind of object that generates the event. The GDESK dispatcher main-
tains the events ordered by time. It executes events at the moment marked by the event time stamp. Events
ordered by time are executed regardless of the source event object, so the discrete event simulation avoids
an erroneous objects priority. Objects priority is defined by the event time stamp.
Player A 

Bullet

Player B 

Event 1

Event 4
Discrete Event  
Simulator

 Event 2

Gun

Event 3

Fig. 6. Events generation example.
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Events uses are:

• Objects communication: When object A needs to interact with object B, A generates an event (message
EAB) addressed to B. The object B acts or changes its behavior as a consequence of the event EAB arrival.
Only the object that receives an event may generate more events.

• Modeling the object behavior: An object only acts as an event arrival consequence. When an object A must
change its own behavior at a given moment, A generates an event addressed to itself (EAA). As a conse-
quence of the event from itself, object A modifies its state as required.

An event needs to include the following information:

• Source object: The object that generates the event.
• Destination object: The object receiving the event.
• Event time stamp: This is the given real time when the event must happen.
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Fig. 7. Discrete system dynamics.
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• Videogame information: the interaction between objects or the object behavior modeling needs certain
parameters to model this interaction. A destination object A may behave in different ways depending on
the information associated to the event sent by the source object B and the object B itself.

Fig. 6 shows an example of events generation. Player A decides to shoot at player B. Player A generates an
event (event 1) that has the object gun as destination, to indicate the gun that shoots a bullet at player B. When
the gun receives the event, it generates another event telling the bullet to go to player B (event 2). The bullet
starts on its trajectory according to its characteristics (mass, weight or gravity). To model the trajectory
situation during its journey, the bullet generates several events (event 3) directed to itself. When the bullet hits
player B, the bullet generates an event (event 4) telling player B ‘‘I have hit you’’. Depending on the state of
player B, the bullet impact may have different consequences (player B dies or is only hurt).

Fig. 7 shows the DFly3D system dynamics. The whole system is controlled by GDESK. Initially, only the
user generates events (the exception is the system objects that need initial events to arrange their behavior,
such as the render object).

The simulator dispatcher stores events ordered by time. The dispatcher checks if there is a pending event
(whose time has been accomplished). The pending event execution involves sending the event to the destina-
tion object. The destination object takes control of the simulation and it may change its state and/or generate
events as a response.

4. Results: Fly3d and DFLy3d comparison

4.1. Simulation quality

Fig. 8 shows the trajectory of a ball. There are three trajectory intervals with different behaviors. The ball
changes its position more quickly during interval A than in the other intervals. Fig. 8 shows the ball samples
for both the continuous system and the discrete system. Traditional RTGA samples the ball with a period T

that could be constant or variable depending on topics such as the current system load, the current scene
complexity or the network overload. The ball simulation in a continuous system takes charge of elapsed time
since last simulation step and evolves the object. Every object is sampled for each main loop step (continuous
simulation), so the sampling period is not adaptable to the ball behavior. The discrete system (DFLy3D)
changes the ball sampling period according to the object trajectory requirements, using the events generation
mechanism (discrete simulation). Therefore, the sampling period in the first trajectory interval A must be lower
than the sampling period in the other trajectory intervals B and C. The ball remains in the same position
during interval B, so it does not need to be sampled. The ball knows its trajectory and adapts the next event
generation to it. The ball generates an event to be executed the next time its state must change. If the ball
behavior is discrete, the event must be in accordance with the next ball evolution.

If the behavior of an object in a discrete system is continuous, the events must be generated and executed at
a previously defined fixed rate. The events rate depends only on the object behavior and state. Objects with a
Ball Object 
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Fig. 8. Events sampling with a discrete and continuous simulator.
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slow behavior generate fewer events than objects with a fast behavior. Events generation is adapted to the
object behavior because the simulation is discrete. Using a discrete simulator such as the RTGA kernel adapts
the objects sampling to the objects behavior, so the computer power used by the RTGA is only that necessary
to simulate the objects properly. The computer power is distributed between the objects according to the
object simulation requirements.

4.2. Computer power

The discrete simulation paradigm not only improves the simulation because the object sampling is adapted
to the object instantaneous behavior, but also saves computer power due to this adaptation.

Let us suppose a tank that is filling with water. The water tank faucet must be turned off in ten seconds.
Fig. 9 shows the samples of the object faucet in a continuous and in a discrete system. The continuous system
samples the faucet at each main loop step. The continuous system asks the faucet at each sample if it must be
turned off now. The discrete system plans a discrete event for the given moment the faucet must be turned off.
The continuous system thus wastes computer power by sampling the object unnecessarily. The discrete system
uses only the minimum computer power to simulate the object properly. The saving in computer power can be
used to improve other RTGA processes such as rendering. The time spent in the continuous system sampling
the faucet during this interval is saved in the discrete system.

The object implementation in a discrete videogame generates as many events as necessary to model its
behavior and only the number of events strictly necessary, so that computer power is adjusted to the current
object behavior and waste is thus avoided.

The continuous system couples the rendering process and the simulation process, so that each time the
world objects are sampled the current scene is rendered. The frame frequency is usually too high if the system
load is not high. Computer power is wasted rendering scenes that will never be shown on the screen. In the
discrete system the render process is controlled by the render object. Each time an event is generated by
the render object, the current scene is rendered. The programmer defines the frame frequency according to
the number of messages generated by the render object. This rendering rate can be set according to the RTGA
needs and the rendering device performance. It may be constant during the execution or it may be dynamically
adapted to the system needs. The rendering process is defined and controlled by the programmer. The pro-
grammer may define the frame frequency to render the scene only once for each screen refresh. In this way
computer power is saved.

4.3. Simulation correctness

Fly3D samples the objects traveling the scene graph in the order they are situated in it. This may imply an
erroneous objects priority.

Let us consider the situation shown in Fig. 10. A ball and a missile are going to impact with a wall. They
travel in opposite directions. At time t0, the ball B is in position BP0 and the missile M in position MP0.
According to the velocities of both projectiles, the missile will hit the wall at time tM and the ball at tB. Let
us assume the difference between the times tB and tM is small enough to simulate both impact processes in
Faucet turn off

t Real timet+10s

Sampling: Must turn off the faucet?

Continuous (Fly3D) 

Faucet turn off

t t+10s

Event: the faucet is turned off
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Fig. 9. Example of scheduled event.
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the same sample interval in Fly3D (simulation cycle). According to the values of tB and tM the simulation
result must be different. If the ball impacts with the wall first (tB < tM), the ball must rebound and the missile
must destroy the wall later. If the missile impacts with the wall first (tB > tM), the missile destroys the wall and
the ball continues on its trajectory through the hole in the wall. In Fly3D the simulation will be right or wrong
depending on the situation of the objects in the scene graph. Let OB be the position of the object ball in the
scene graph and OM the position of the object missile. Table 1 shows the different situations of wrong or right
simulations produced in Fly3D dependent on the values of tB and tM and the objects’ situation in the scene
graph. The Fly3D simulation may therefore be correct or incorrect, depending on the situation of the objects
in the scene graph.

DFly3D executes the events ordered by time, so the possible situations are shown in Table 2. Both situa-
tions produce a correct simulation.

4.4. Temporal cost

Fig. 11 show the percentage of simulation time used by Fly3D and DFly3D to simulate, render and remain
idle while increasing the simulation and rendering load (increasing the number of objects).

The application time in the continuous system is shared by the simulation and the rendering processes. The
system uses nearly 100% of the time rendering and simulating. For each main loop step each object is simu-
lated once and the scene is rendered. There is no free time. An increase in the simulation load means a decrease
in the rendering process and an increase in the rendering load means a decrease in simulation time. In a con-
tinuous system there is no released computer power. The system is continuously simulating and rendering at
the maximum speed.
Table 2
Order of events execution in Fly3D

Arrival time Order of actions Correct simulation

tB < tM Stone rebounds missile destroys the wall Yes
tB > tM Missile destroy the wall stone goes through Yes

Table 1
Order of events execution in Fly3D

Arrival time Scene graph position Order of actions Correct simulation

tB < tM OB < OM Ball rebounds missile destroys the wall Yes
tB < tM OB > OM Missile destroys the wall ball rebounds No
tB > tM OB < OM Ball goes through missile destroys the wall No
tB > tM OB > OM Missile destroys the wall ball goes through Yes
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Fig. 11. Fly3D and Dfly3D simulation times.
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In the discrete system the rendering process and the simulation process are not dependent (decoupled). So
the system time is not shared by the rendering process and simulation process. The system uses only the min-
imum computer power necessary to simulate each object behavior. The system uses nearly 100% of CPU time
if the system is collapsed (the system load is greater than computer power). The discrete system always freed
more time than the continuous system. The resources consumed by a discrete videogame are always lower than
the resources consumed by a continuous videogame. If the computer power is enough to simulate the system
objects properly, the released computer power may be used by other system applications. The discrete system
uses only the necessary computer power to correctly simulate the system objects. Dfly3D allows an RTGA to
be executed using less computer power or in less powerful computers.

5. Conclusions

Discrete events simulation has been used in RTGA to deal with specific parts of the application, but the
RTGA general simulation model remains continuous. This mode of operation has disadvantages that can
be avoided using a discrete event simulator as the RTGA kernel. If the RTGA simulation paradigm is changed
from continuous to discrete, the system simulation improves. The simulation is more accurate because it
avoids disordered execution of events. Each object is simulated using a specific sampling period to adapt
its sampling to the object behavior. The object sampling may change dynamically to adapt the sampling to
its current behavior. Discrete simulation avoids sampling the objects unnecessarily when a discrete event is
scheduled (the continuous system samples the scheduled event until the condition is reached). Discrete RTGA
uses only the computer power strictly necessary to simulate the objects’ behavior, so the released computer
power can be used to improve the simulation of other application elements or to run the simulation in
machines with less computer power. The use of the discrete methodology in RTGA involves using events
as the method of modeling the system dynamics, interaction of objects and the modeling of objects’ behavior.
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