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Particle systems are used for simulating non-linear dynamics of complex systems. They are
computationally attractive, because the models are simple difference equations. The differ-
ence equations, however, constitute a closed system lacking scalability and intentionality;
it is hard to ‘‘reverse engineer” the equations, to understand the relations of the variables
and coefficients to the dynamics displayed by the simulation. Consequently, much of the
modeling work goes into finding workarounds. In this paper, we study a potential solution.
As the main contribution, we formalize particle system computations as mathematical
operator networks, to gain intentionality and modularity. Operators also support the inclu-
sion of processes outside the mathematical domain of difference equations. We illustrate
the use of operator networks by simulating the construction and dynamics of an hourglass.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Particle systems are used for simulating non-linear dynamics of complex systems that are hard or impossible to capture
by using any other means. Particle systems are typically used for simulating fluids and gasses [4,21,22]. Recently, particle
systems have also been used for simulating non-linear dynamics of non-rigid bodies [3,5,7,12,16], and motion of biological
entities [6,16]. There have even been attempts [15] to simulate the entire spectrum of dynamics arising in an artificial eco-
system using particle systems only.

Particle based modeling is a complementary method to other existing methods, such as bond graphs [2] and FFT based
methods [19]. Particle systems are also closely related to finite element methods [8,18] and spring-mass models [23].

Particle systems are found computationally attractive, because the models are mere difference equations over matrices
[15,22], independently of the underlying complexity of the simulated object. Consequently, the models are compact and
computed easily. Furthermore, the simulations often exhibit emergent dynamics [9,15], delivering a level of realism [12] that
is otherwise hard or impossible to capture. By emergent dynamics, we mean here dynamics of the whole that is not evident
or predictable from the dynamics of the components. More specifically, particle systems reveal basic emergence [9], which
means behavior that is reducible to particle-to-particle interactions without any evolutionary processes involved. The dis-
played emergent dynamics varies from model to model, and may be anything from simple friction [5] to complex hunting
behavior [15]. Because of this, when simulating with particle systems, the goal is to develop as simple model as possible,
where the desired properties emerge. In this way, the model not only gains more predictive power, but also delivers a higher
level of realism. The use of difference equations as the model is, however, also the major source of problems when modeling
with particle systems; the difference equations constitute an inherently closed system. This manifests in many ways. The
models are hardly reusable either in parts or as a whole. Also, a significant amount of work time is invested in finding
appropriate variable values for the equations as well as in finding workarounds to capture specifics and exceptions. Most
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importantly, however, the difference equations lack intentionality, that is, it is hard to ‘‘reverse engineer” the completed
equations, to understand the relations of the variables and coefficients to the dynamics displayed by the simulation. Because
of this, validation is problematic; it is hard to ensure that the equations describe the very aspects that they are believed to
describe. Consequently, adding new components to an existing model may result in abandoning the model altogether and
starting from scratch. This is a significant drawback, especially when modeling systems with several components, such as for
instance in [15].

In this paper, we study a potential solution to ‘‘open up” the difference equations. As the main contribution, inspired by
graph models of computation [10] and category theory [11], we formalize particle systems using mathematical operators.
The operators form together a network that collectively represents the difference equation used for the computation. Then,
rather than using a fixed set of difference equations as the model, the model is defined as an operator network. In this way,
the model remains open to new operators, and the operators remain independent and reusable. Furthermore, as the oper-
ators speak only of some isolated computations, the model becomes modular and readable, bringing in the much needed
intentionality.

Formally, as discussed in Section 2, an operator is expressed as a higher-order function. It returns a set of difference equa-
tions based on given parameters. The difference equations are then used in the simulation, to compute the particle system
dynamics. Moreover, as we formalize the operator connections using the standard forward composition, even the entire
operator network remains also as an operator.

The use of operators and networks is illustrated in Sections 3 and 4, when we model the construction and the Newtonian
dynamics of a simple hourglass. Then, in Section 5, we present the simulation results for the hourglass example, and discuss
what is emergent in the dynamics. Finally, in Section 6, follows the conclusion.
2. Formalization

We start by formalizing particles, operators, and operator networks. We formalize particles as vectors over 4-tuples. We
then formalize operators as higher-order functions and operator networks as forward compositions of operators. We also
formalize the repeated application of an operator as an operator network.

2.1. Particles

In general, a particle may be of any shape [22]; however, we assume throughout this paper that a particle is a sphere with
a varying radius, but with a constant and uniformly distributed mass. Consequently, we model particles using only four vari-
ables: position, velocity, acceleration, and radius. From these variables, only the radius is a positive real-valued number, Rþ,
whereas, all the other variables are three-dimensional vectors, R3. As R3 refers here to a subspace of Euclidean space, we
shall denote the components of R3 by x, y, and z, respectively.

Formally, a particle type P is a 4-tuple:
P,ðR3;R3;R3;RþÞ ð1Þ
In P, the components represent in the given order the position, the velocity, the acceleration, and the radius. We shall denote
these components in the sequel by p, v, a, and r, respectively. Then, for instance, the velocity of a particle p along the y-axis
is referred to as pvy

. A set of particles is expressed as a particle vector; thus, for instance, P10 captures 10 particles.

2.2. Operators

An operator is formalized as a parametrized collection of maps. In general, a map is a function from one domain to
another. In this paper, we discuss mostly maps that are functions from one particle vector to another. The particle vectors
need not be of the same dimension. Such a map from a vector with m particles to a vector with n particles is expressed as
Pm ! Pn.

Let R denote a (possibly empty) parameter domain. Then, an operator o is expressed as a higher-order function of the
form R! ðPm ! PnÞ. Thus, for some parameter values r 2 R, the expression oðrÞ returns a map of the form Pm ! Pn, and
for a vector p of the form Pm, the expression oðrÞðpÞ returns a vector of the form Pn.

2.3. Networks

Operators can be applied in sequence. As operators are higher-order functions, the sequential application of operators
falls under the standard forward composition [1]. Consequently, a sequence of operators, an operator network, remains as
an operator also in the formal sense.

Consider operators a : R! ðPm ! PnÞ and b : C! ðPn ! PkÞ, parameters r 2 R and c 2 C, and a vector p of the form Pm.
Then, the forward composition aðrÞ � bðcÞ gives the map Pm ! Pk and is defined as:
ðaðrÞ � bðcÞÞðpÞ,bðcÞðaðrÞðpÞÞ ð2Þ
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Note that we use here forward composition, so that the application of the operators in a sequence can be read from left to
right. This clarifies the equations later, when we define sequences of operators. Consider a variable i, which may appear in r,
and some j < k. Then, the repeated application of an operator a, denoted by ai:j::kðrÞ, is defined as:
ai:j::kðrÞ,ai:jðrÞ � ai:jþ1::kðrÞ ð3Þ
Here, ai:jðrÞ denotes the application aðrÞwith i having the value j. Note that the well-definedness of a repeated application of
an operator depends on the operator and the given parameters, and has to be checked for each application separately.
3. Constructing an hourglass

We illustrate next use of the operators in modeling and simulating the construction of an hourglass. As we wish to model
a symmetric hourglass, we construct it as a spin shape. A spin shape is a three-dimensional shape that is obtained by revol-
ving a two-dimensional profile around an axis. Spin shapes are frequently used when producing objects, such as bottles,
glasses, vases, and tires, with CAD programs.

Although the process of constructing a spin shape from a profile sounds simple enough, it is not trivial to model it math-
ematically. Clearly, the final spin shape can be expressed implicitly, by describing the relation of the object boundary to the
profile; however, this does not help directly in modeling the actual construction process.

Technically, a spin shape is constructed in three phases: constructing a profile, growing a shape with the profile, and
pruning away overlapping particles. We shall formalize each of these phases as operators. We then formalize the construc-
tion of a spin shape as an operator network. Lastly, we use the operator network in computing the actual shape of the
hourglass.

3.1. Constructing a profile

We start by formalizing the construction of a two-dimensional profile for the spin shape. The profile is given as a particle
vector, and we construct it from a two-dimensional matrix. In the matrix, each element describes the radius of a particle in
the corresponding position of a two-dimensional space. An element of the matrix indicates the existence of a particle only if
it has a positive value; thus, an element of the matrix with a non-positive value indicates the absence of a particle in the
corresponding position of the two-dimensional space.

To formalize the construction of a profile, we define one primitive operator, merge. It merges the particles of one vector
with the particles of another. With the merge operator, we then define another operator, add, that adds new particles to a
particle vector based on a given matrix of radii. The actual construction of a profile is then formalized as an application
of the add operator, and we define it as the profile operator. We shall now present the formalization.

3.1.1. Merging
The merge operator merges two particle vectors. It is of the form merge : Pn ! ðPm ! PmþnÞ, and we define it as an aug-

mented vector:
mergeðuÞðpÞ,
p

u

� �
ð4Þ
Thus, the operator returns a new vector, where the top is the original vector and the bottom is the vector given as a
parameter.

3.1.2. Adding
We define the operator for adding new particles in steps. As the operator adds particles based on a given matrix of radii,

we start by defining first the addition of a single particle. We then define the addition of particles based on a row of a matrix,
and, lastly, we define the addition of particles based on the entire two-dimensional matrix. We define all these additions as
operators with the same name, as it is clear by the parameters which one of them is to be applied.

We start by formalizing the addition of a single particle with a given initial position~p and radius r, but with a zero initial
velocity and acceleration. As the particle is added only if it has a positive radius, the operator is of the form
add : ðR3;RÞ ! ðPm ! PnÞ with either n ¼ m or n ¼ mþ 1. We define the operator as:
addð~p; rÞðpÞ,
mergeðð~p; ;; ;; rÞÞðpÞ; ifr > 0
p; ifr 6 0

8><
>: ð5Þ
Next, we formalize the addition of new particles based on a row i of a matrix r̂ of the form Ru�v. The operator is of the form
add : ðI;Ru�vÞ ! ðPm ! PnÞ, where m 6 n 6 mþ v depending on the given row of the matrix. We define the operator as:
addði; r̂ÞðpÞ,addj:1::vððj� 1; u� i;0Þ; r̂ði;jÞÞðpÞ ð6Þ
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Note that, for the new particles, the vertical position is an inverted index, u� i, to retain the vertical orientation of the
shape induced by the matrix.

Lastly, we formalize the addition of new particles based on the entire matrix r̂ of the form Ru�v. The operator is of the form
add : ðRu�vÞ ! ðPm ! PnÞ with m 6 n 6 mþ uv, and we define it as:
addðr̂ÞðpÞ,addi:1::uði; r̂ÞðpÞ ð7Þ
3.2. Constructing

We formalize the construction of a profile from a matrix of radii, r̂ of the form Ru�v, as an operator of the form
profile : Ru�v ! ð; ! PmÞ. We define it as an application of the add operator:
profileðr̂ÞðÞ,addðr̂Þð;Þ ð8Þ
Thus, as the particles are added to an empty particle vector, ð;Þ, the profile is a particle vector that is induced in its entirety by
the matrix of radii, r̂.

3.3. Growing a shape

Next, we formalize the second phase in constructing a spin shape: the growing of a shape with a profile. We assume that
the profile is given as a particle vector. Then, the shape is grown by rotating the profile about the y-axis, and by merging it
with the existing shape.

To formalize the growing, we need in addition to the previously defined primitive operator, merge, another operator,
rotate. It rotates the particles of a vector about the y-axis. The actual growing is then formalized as a composite of the
two primitive operators, and we define it as the grow operator. We shall now present the formalization.

3.3.1. Rotating
The rotation operator rotates all the particles of a vector by a given angle about the y-axis. For the rotation operator, we

first define three auxiliary functions: ang, dist, and rot. The function ang : R3 ! R returns the angle of a three-dimensional
coordinate ~p on the x–z plane, and it is defined as [20]:
angð~pÞ,
arctanð~pz=~pxÞ þ p; if ~px < 0
arctanð~pz=~pxÞ; if ~px P 0

8><
>: ð9Þ
The function dist : R3 ! R returns the distance of a three-dimensional coordinate ~p to the y-axis, and it is defined as [20]:
distð~pÞ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2
z
þ~p2

x

q
ð10Þ
The function rot : ðR3;RÞ ! R3 returns a three-dimensional coordinate that is obtained by rotating the original coordinate~p
for h radians about the y-axis, and it is defined as [20]:
rotð~p; hÞ,ðdistð~pÞ cosðangð~pÞ þ hÞ;~py; distð~pÞ sinðangð~pÞ þ hÞÞ ð11Þ
Now, the rotation operator is of the form rotate : R! ðPm ! PmÞ, and we define it as:
rotateðhÞðpÞ,u; where each ui ¼ ðrotðpip ; hÞ; piv ; pia ; pir Þ ð12Þ
3.3.2. Growing
We present now the formalization for the growing of a shape p with a profile u that is rotated by h radians about the

y-axis. The operator is of the form grow : ðPn;RÞ ! ðPm ! PmþnÞ, and we define it as the composite:
growðu; hÞðpÞ,mergeðrotateðhÞðuÞÞðpÞ ð13Þ
3.4. Pruning

We formalize next the last phase of constructing a spin shape: pruning away overlapping particles of a shape. We assume
that the shape is given as a particle vector. Then, the pruning removes all those particles of the shape that overlap to a given
degree with the rest of the particles.

Clearly, the pruning process, as described above, is ambiguous. Interestingly, it is easier to formalize the pruning process
unambiguously as an inverse process, as a reconstruction process. Then, we first define a conditional merge operator that
merges a single particle with a particle vector, provided that its distance to any of the vector particles is greater than a given
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lower limit. The reconstruction process is then formalized as a repeated application of the conditional merge operator, and
we define it as the prune operator. We shall now present the formalization.

3.4.1. Conditional merging
We formalize the conditional merge operator by using the primitive merge operator that was defined earlier. The condi-

tional merge operator is of the form merge : ðP;RÞ ! ðPm ! PnÞ, where either n ¼ m or n ¼ mþ 1 holds. We define it for a
particle u and a lower limit d as:
Fig. 1.
the sam
mergeðu; dÞðpÞ,
p; if kup � pipk 6 d holds for anyi

mergeðuÞðpÞ; otherwise

8><
>: ð14Þ
Thus, the particle u is merged with the particle vector p, only if its distance to any particle pi is greater than d. The distance
between u and pi is computed as the Euclidean norm over the difference of their current positions, kup � pipk.

3.4.2. Pruning
We present now the formalization for the pruning of a shape p with m particles, such that the distance between any pair

of the remaining particles is greater than d units. The pruning operator is of the form prune : ðRÞ ! ðPm ! PnÞ, where
0 6 n 6 m holds, and we define it as a repeated application of the conditional merge operator:
pruneðdÞðpÞ,mergei:1::mðpi;dÞð;Þ ð15Þ
Note that, above, the pruning is defined as a reconstruction process that starts always with an empty particle vector, ð;Þ.

3.5. Constructing a spin shape

As mentioned earlier, a spin shape is constructed in three phases: constructing a profile, growing a shape with the profile,
and pruning away overlapping particles. We present now the model of the construction process using the operators defined
above. We assume throughout this paper that a spin shape is constructed from 200 segments, where the ith segment is the
profile rotated by ip

100 radians. We also assume that the spin shape is not dense, so that the distance of any two particles is at
least 0.5 units.

Let r̂ be the matrix of radii. We formalize the construction of a spin shape from r̂ as an operator of the form
spin : Ru�v ! ð; ! PmÞ, and we define it as:
spinðr̂ÞðÞ, growi:0::199 profileðr̂ÞðÞ; ip
100

� �
� pruneð0:5Þ

� �
ð;Þ ð16Þ
Thus, the profile is first created from the matrix of radii, r̂. Then, the profile is used for growing the spin shape iteratively.
Note that growing process starts with an empty particle vector, ð;Þ. Finally, the grown shape is pruned so that the distance
of any two particles is at least 0.5 units.

The spin operator above is a network of operators. The network is depicted in Fig. 1. The figure clearly shows that there are
only two primitive operators involved in the construction of a spin shape: merge and rotate.

3.6. Constructing the hourglass

We shall now show how the hourglass is constructed using the spin operator. The hourglass is a volumetric shape that is
composed of an exterior and a body of sand. Both of these components are constructed as spin shapes.
The network of operators modeling the construction on a spin shape, spin. The asterisk (�) indicates the application of a sequence of operators with
e name.
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For the construction, we first define two matrices of radii, one for the exterior and the other for the body of sand. As the
matrices are large, we show them schematically in Fig. 2. In the figure, the matrix for the exterior is the matrix ê, and the
matrix for the body of sand is the matrix ŝ.

The spin shapes for both the exterior and the body of sand are the given by the spin operator. As for the exterior of the
hourglass, we capture its construction as an operator of the form exterior : ð;Þ ! ð; ! PmÞ, and we define it as:
Fig. 2.
dimens
0.9.

Fig. 3.
illustra
extriorðÞðÞ,spinðêÞðÞ ð17Þ
Similarly, for the body of sand, we capture its construction as an operator of the form sand : ð;Þ ! ð; ! PmÞ, and we define it
as:
sandðÞðÞ,spinðêÞðÞ ð18Þ
The spin shapes for the two distinct elements of the hourglass are shown in Fig. 3. The figure also shows the composite shape
of the two individual shapes. Note that the composite shape has 5621 particles that are all constructed by the operators from
the two matrices of radii.

4. Modeling Newtonian dynamics

We formalize next the Newtonian dynamics for the hourglass. As the exterior of the hourglass is assumed to stay put, we
only consider the dynamics of the sand. As the body of sand is composed of individual particles, the Newtonian dynamics
describes only the dynamics of the individual sand particles. The dynamics of the whole body of sand is then given as com-
posite dynamics.

The Newtonian dynamics is computed using the Newtonian model of motion. In the Newtonian model of motion, the po-
sition of a sand particle changes depending on its velocity, which, in turn, changes depending on its acceleration. The accel-
Two matrices of radii; the matrix for the exterior, ê, on the left and the matrix for the body of sand, ŝ, on the right. Both of the matrices have the
ions 30� 15. In the matrices, each element captures a particle radius; ‘‘-” denotes the value 0, ‘‘@” denotes the value 1.4, and ‘‘#” denotes the value

The resulting spin shapes: the exterior on the left, body of sand in the middle, and the composite shape on the right. The colors have been added for
tive purposes.
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eration of a sand particle is determined by forces affecting it. There are four kinds of forces affecting a sand particle simul-
taneously: a gravity force, a dampening force, collision forces between the sand particles, and collision forces between the
sand and exterior particles. The collision forces between the sand particles keep the sand particles apart, whereas the col-
lision forces between the sand and exterior particles keep the sand particles inside the hourglass.

To capture all this, we start by formalizing the forces as operators gravitate, dampen, keepApart, and keepInside. To formalize
the Newtonian model of motion, we also define one more primitive operator, integrate, that integrates all the forces into the
motion. In effect, the integrate operator computes the Euler approximation of the Newtonian dynamics. The Newtonian mod-
el of motion is then given as an operator network consisting of the force operators and the integrate operator. Lastly, we dis-
cuss briefly the relation of the operator network to a set of difference equations used in capturing similar kind of non-linear
dynamics with particle systems.

4.1. Gravity

We formalize first the gravity force on sand particles. We assume that the sand particles are given as a particle vector.
For the formalization, we define first one primitive operator, force, that captures the effect of a constant force. With it, we

can then formalize the constant gravity force as an operator gravitate. We shall now present the formalization.

4.1.1. Forcing
A constant force on a particle is modeled implicitly as its effect, as acceleration. Thus, an operator modeling a constant

force adds a constant acceleration to the particles. Let p be a particle vector of the form Pm. Also, let â be a matrix of the form
Rm�3, capturing the acceleration on the particles. Then, a constant force is modeled as an operator of the form
force : ðRm�3Þ ! ðPm ! PmÞ, and we define it as:
forceðâÞðpÞ,u; where each ui ¼ ðpip ; piv ; pia þ âi; pir Þ ð19Þ
4.1.2. Gravitating
With the force operator, we formalize the constant gravity force. Let p be a particle vector of the form Pm, and ĝ be a vector

of the form Rm�3 capturing the acceleration due to gravity. The constant gravity force is then modeled as an operator of the
form gravitate : ð;Þ ! ðPm ! PmÞ, and we define it as:
gravitateðÞðpÞ,forceðĝÞðpÞwhere each ĝi ¼ ð0;�300;0Þ ð20Þ
Note that the coefficient �300 above is a computational coefficient, and, deviates therefore from the gravity force as known
in physics [24]. The relation between the known gravity constant, �9:81 m=s2, and the constant �300 becomes fixed later,
when we define the model of motion used for approximating the motion dynamics. As the model of motion uses a fixed time
step, 0.01, the used gravity constant�300 scales back to the value �3:00 m=s2. Thus, in a way, the gravity force defined in Eq.
(20) includes also the effect of a strong air resistance.

4.2. Dampening

We formalize next the dampening force on the sand particles. The dampening force captures loss of kinetic energy; thus,
the magnitude of the dampening force depends on the velocity of a particle. Because of this, the sand particles have a ten-
dency to stop moving in the absence of external forces. We assume in the sequel that there is only a moderate dampening
force affecting the sand particles.

We formalize the dampening force using the primitive force operator defined above. Let p be a particle vector of the form
Pm, and d̂ be a vector of the form Rm�3 capturing the acceleration due to dampening. The dampening force on the sand par-
ticles is then modeled as an operator of the form dampen : ð;Þ ! ðPm ! PmÞ, and we define it as:
dampenðÞðpÞ,forceðd̂ÞðpÞ; where each d̂i ¼ �5piv ð21Þ
Above, the factor �5 translates to a moderate loss of kinetic energy. As such, it is only a computational coefficient, and does
not correspond to a physical constant. The relation of the dampening constant �5 to the motion velocity becomes fixed later,
when we define the model of motion used for approximating the motion dynamics. As the model of motion uses a fixed time
step, 0.01, the used dampening constant �5 scales back to the value �0:05, which means a 5% loss of kinetic energy in the
motion.

4.3. Keeping the sand particles apart

We formalize next the collision forces between the sand particles. Such forces keep the sand particles apart by pushing
any overlapping sand particles away from each other. Two sand particles are considered to overlap, when their distance is
less than the sum of their radii.
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To formalize the collision forces between the sand particles, we first define a new primitive operator, collide, that models
generic collision forces between two particle vectors. With it, we then formalize the collision forces between the sand par-
ticles as an operator keepApart. We shall now present the formalization.

4.3.1. Colliding
We model the generic collision forces on particles as their effect, as acceleration on the particles. We formalize the col-

lision forces as an operator that adds acceleration due to collision forces on a particle vector that collides with another par-
ticle vector. The magnitude of the acceleration is controlled with a coefficient matrix.

For the collision operator, we first define an auxiliary function, col. It returns for a single particle the acceleration due to
collision forces with a particle vector. Such an acceleration is the sum of all the accelerations due to the individual particle-
to-particle collisions. The magnitude of the particle-to-particle collision forces are controlled with a coefficient matrix. Let p
be the colliding particle, u be a particle vector of the form Pn, and ĉ be a coefficient matrix of the form Rn. Then, the function
col : ðP;Rn;PnÞ ! R3 is defined as:
colðp; ĉ; uÞ,
Xn

i¼1

ĉiðuip � ppÞmin 0;1� ðuir þ prÞ
2

kuip � ppk2

( )
ð22Þ
Here, for the pair of particles p and ui, the minf�g expression evaluates to 0 if the two particles do not overlap; then, their
distance is greater than the sum of their radii. Consequently, the particles are considered to collide, only if they overlap. Then,
the collision force for the particle p is directed directly away from the particle ui, because the minf�g expression becomes
negative. The magnitude of the collision force is controlled by ĉi.

The col function, as defined above, is a generalization of the collision function used before for computing the collision of
particles in a particle system [5–7,12,14–16]. The characteristics of that collision function are discussed in more detail in a
technical report [13].

We formalize now the generic collision operator for a particle vector. The formalization uses the primitive force operator.
Let p be the colliding particle vector of the form Pm. Also, let u be a particle vector of the form Pn capturing the particles that
collide with p. Furthermore, let ĉ be a matrix of the form Rm�n capturing the collision coefficients for all the pairs of particles
of p and u. Then, the generic collision operator, collide, is of the form collide : ðPn;Rm�nÞ ! ðPm ! PmÞ, and we define it as:
collideðu; ĉÞðpÞ,forceðâÞðpÞ; where each âi ¼ colðpi; ĉi; uÞ ð23Þ
4.3.2. Keeping apart
As mentioned earlier, the purpose of the collision forces between the sand particles is to keep the sand particles apart. We

formalize now the collision forces between the sand particles as an operator. Let p be a particle vector of the form Pm cap-
turing the sand particles. Also, let k̂ be a coefficient matrix of the form Rm�m capturing the magnitude of the collision forces
between each pair of sand particles. Then, the operator keeping the sand particles apart is of the form
keepApart : ð;Þ ! ðPm ! PmÞ, and we define it as:
keepApartðÞðpÞ,collideðp; k̂ÞðpÞ; where k̂ij ¼
100; if i 6¼ j

0; if i ¼ j

8><
>: ð24Þ
Thus, all the sand particles collide with a force that has the same collision coefficient, 100. Moreover, a sand particle can
never collide with itself. The relation of the collision constant 100 to the motion velocity becomes fixed later, when we define
the model of motion used for approximating the motion dynamics. As the model of motion uses a fixed time step, 0.01, the
used collision constant 100 scales back to the value 1, meaning that the collision force between the sand particles is exactly
that obtained by the function in Eq. (22).

4.4. Keeping the sand particles inside the hourglass

We formalize next the collision forces between the sand particles and the exterior particles. Such forces keep the sand
particles inside the hourglass.

We formalize the collision forces between the sand and exterior particles using the previously defined collide operator.
Furthermore, we use the exteriorðÞ operator to capture the exterior particles, as defined earlier in Section 3.6. The operator
returns a particle vector of the form Pn. Let p be a particle vector of the form Pm capturing the sand particles, and ĉ be a coef-
ficient matrix of the form Rm�n. Then, the operator keeping the sand particles inside the hourglass is of the form
keepInside : ð;Þ ! ðPm ! PmÞ, and we define it as:
keepInsideðÞðpÞ,collideðexteriorðÞ; ĉÞðpÞ; where each ĉij ¼ 200 ð25Þ
Thus, each sand particle collides with each exterior particle. The collision coefficient for each collision force between the sand
and exterior particle is 200, whereby the collision forces between the sand and exterior particles are two times stronger than
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the collision forces among the sand particles. The collision coefficients reflect the fact that the body of sand is a fluid material
with respect to the exterior. The relation of the collision constant 200 to the motion velocity becomes fixed later, when we
define the model of motion used for approximating the motion dynamics. As the model of motion uses a fixed time step,
0.01, the used collision constant 200 scales back to the value 2, meaning that the collision force between the sand particles
is two times stronger than that obtained by the function in Eq. (22).

4.5. The Newtonian model of motion

We formalize next the Newtonian model of motion for the sand particles. In the Newtonian model of motion, as men-
tioned earlier, the position of a sand particle changes depending on its velocity, which, in turn, changes depending on its
acceleration. The acceleration of sand particles is determined by the four forces formalized above: a gravity force, a damp-
ening force, collision forces between the sand particles, and collision forces between the sand and exterior particles. The
forces affect the sand particles simultaneously.

We start by formalizing an operator netForce that captures the simultaneous effect of the forces on the sand particles. We
then formalize the integration of the forces into the motion as a primitive operator integrate. With these operators, we then
define the Newtonian model of motion as an operator network, captured by an operator called motion.

4.5.1. The net force
All the forces affect the sand particles simultaneously. We model the simultaneous effect, the net force, as an operator

network. As the operators for the forces are mutually associative and commutative, the order of the operators in the network
is free. Let p be a particle vector of the form Pm capturing the sand particles. We formalize the net force as an operator of the
form netForce : ð;Þ ! ðPm ! PmÞ, and we define it as:
netForceðÞðpÞ,ðgravitateðÞ � dampenðÞ � keepApartðÞ � keepInsideðÞÞðpÞ ð26Þ
4.5.2. Integrating
We integrate the forces into the motion by using Euler approximation [25]. More specifically, we define the operator that

integrates the acceleration to the velocity and the velocity to the position of particles as an Euler approximation of the trivial
Newtonian model of motion [24] with forward error correction. As Euler approximation is a numerical approximation, the
resulting accuracy depends on a coefficient that acts as a fixed time step. Let p be a particle vector of the form Pm, and t be the
fixed time step. Then, the integration is an operator of the form integrate : ðRÞ ! ðPm ! PmÞ, and we define it as:
integrateðtÞðpÞ,u; where each ui ¼ ðpip þ tuiv ; piv þ tpia ; ;; pir Þ ð27Þ
Thus, due to use of forward error correction, the integration operator computes first the updated velocity using the current
acceleration. It then computes the updated position using the updated velocity. Lastly, it sets the acceleration back to
zero. Note that forward error correction is used, because it improves the stability of simulated dynamics for a particle system
[14].

4.5.3. The model of motion
Lastly, we formalize the model of motion for the sand particles. To recall, we do not need to consider the motion of the

exterior particles, as the exterior of the hourglass is assumed to stay put. Let p be a particle vector of the form Pm capturing
the sand particles. The model of motion is an operator of the form motion : ð;Þ ! ðPm ! PmÞ, and we define it as:
motionðÞðpÞ,ðnetForceðÞ � integrateð0:01ÞÞðpÞ ð28Þ
Thus, the model of motion has two distinct computational phases: computation of the affecting forces, and integration of the
forces into the motion. The integration uses 0.01 as the fixed time step, which translates to moderate computation accuracy.
Note that if we were to increase the computation accuracy by making the time step smaller, we would also have to rescale
the constants for the gravity, dampening and collision forces in Eqs. (20), (21), (24), and (25).

The motion operator is a network of operators, as depicted in Fig. 4. The figure shows clearly, how the model of motion is
build on top of two primitive operators: force and integrate. The figure also shows how the model of motion relates back to the
operator network for the construction of a spin shape, spin.

4.6. The induced set of difference equations

The model of motion, as captured by the motion operator, induces a set of difference equations. The main body for the
difference equations comes from the integrate operator. The netForce operator determines then the acceleration for each sand
particle.

As defined earlier, let ĝ, d̂, k̂, and ĉ be the gravity coefficient vector, the damping coefficient vector, the collision magnitude
vector between the sand particles, and the collision magnitude vector between the sand and exterior particles, respectively.
Also, let p be particle vector capturing the sand particles, u be a particle vector capturing the exterior particles, and a be a



Fig. 4. The network of operators capturing the model of motion for the body of sand in the hourglass. Note that the operator spin is actually an operator
network of its own.
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vector of the form R3�m capturing the acceleration induced by the netForce operator. Then, for a sand particle i, the model of
motion, motion, induces the set of difference equations:
p0ip ¼ pip þ tp0iv
p0iv ¼ piv þ ta0i

a0i ¼ ĝi þ d̂i þ colðpi; k̂i; pÞ þ colðpi; ĉi; uÞ
ð29Þ
The set of difference equations, Eq. (29), is a special case of a set of difference equations used in earlier studies to compute
particle system dynamics [5–7,12,14–16]. However, the set of difference equations lacks the intentionality that is made ex-
plicit in the operator network, as illustrated in Fig. 4 above. Moreover, the operator network also reveals the modularity and
the connectivity between the operators, making it easier to modify and adjust the model intentionally. Also, because of the
modularity, it is possible to extend and reuse parts of the operator network in other models coherently.

Interestingly, although the set of difference equations above is far from the standard laws of physics, the dynamics that
they capture adheres to the laws of physics. This is discussed in a case study on the realism of particle system dynamics,
presented in [12]. The paper presents a method, called simulated tendency, that is used to analyze the computed dynamics
for realism.
5. Simulation results

To simulate the dynamics of a hourglass, we first form a model of the hourglass as an operator network using the pre-
sented operators. Although the operators are higher-order functions, they are also computable. Thus, an operator network
captures not only the formalization of the processes, but also the computation of the simulation.

We shall now present the simulation results for the hourglass, and discuss what is emergent in the simulated dynamics.
We then study briefly how the shape of the hourglass affects the dynamics.

5.1. The computed dynamics of the hourglass

Before we can compute the dynamics of an hourglass, we have to fix the model for it. Clearly, in the model, we use all the
operators as defined earlier, including the matrices of radii that define the shape of the hourglass. In the sequel, we are inter-
ested in the dynamics only for the first 2500 iteration rounds, whereby we fix the model for the hourglass as:
hourglassðÞðÞ,motioni:1::2500ðsandðÞðÞÞ ð30Þ
This model reflects very clearly that only the body of sand is to move in the simulation, while the exterior of the hourglass
stays put.

The resulting dynamics is illustrated with an image series in Fig. 5. As the figure shows, the behavior of the body of sand is
disordered although the model is deterministic; it is impossible to say where an individual sand particle ends up in the lower
bulb, after it drops down from the upper bulb.

Fig. 5 indicates also another, more interesting property: some six sand particles remain in the upper bulb. At the first
glance, this may seem like an error in the simulation; however, a more careful inspection confirms that the phenomenon
is true to the laws of physics. Namely, by studying the matrices shown earlier in Fig. 2, it is easily verified that the opening
between the two bulbs in the hourglass is of a circular form with a radius of 0.6 units, whereas the radius of a sand particle is
0.9 units. Thus, a sand particle cannot pass from the upper bulb to the lower bulb without an external force. Moreover, the
gravity force on a sand particle, or rather the collective gravity force on the six sand particles, is not enough, either. However,
as the body of sand clearly does pass through the opening in the simulation, the simulation must, therefore, capture pressure.
As pressure is not addressed in any way in the model; it is an emergent property.



Fig. 5. An image series showing how the sand particles drop down during the simulation; the number of computed iteration rounds is indicated above each
image.
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To study the emergent pressure in more detail, we have plotted the evolution of the number of sand particles in the upper
bulb during the simulation as a graph in Fig. 6. The graph shows a clear exponential decay with a half-life at about 600 iter-
ations, indicating a decay constant k of about 0.0011. An exponential decay is often associated with many natural science
phenomena, including rates of chemical reactions, change in temperature difference, and pressure changes in a medium.

5.2. The effect of the shape to the dynamics

To ensure that the emergent pressure is not just due to the collective dynamics of the sand particles, we study the effect of
the shape of the exterior to the dynamics of the body of sand. As mentioned earlier, we have formalized the construction of
the hourglass as a process. Therefore, to study the effect, we only need to change the matrices of radii that capture the profile
for the hourglass, and compute the simulations with the existing operators.

We study here two cases that are of interest. Firstly, we study how the flow of sand particles is affected if the opening
between the two bulbs is widened. Secondly, we study how the flow of sand particles is affected if the two bulbs are widened
while the opening between the bulbs remains the same.

5.2.1. Wider opening between the bulbs
In order to construct an hourglass with a wider opening, we need to change only the matrix of radii for the exterior. Such a

matrix ê is shown in Fig. 7. When comparing the matrix to the original matrix, shown earlier in Fig. 2, only the middle rows
are changed to widen the opening. Fig. 7 shows also the matrix of radii for the body of sand, ŝ, which has remained
unchanged.
Fig. 6. A graph indicating how the sand particles drop from the upper bulb of the hourglass to the lower bulb during the simulation.



Fig. 7. Two matrices of radii for the hourglass with a wider opening; the matrix for the exterior, ê, on the left and the matrix for the body of sand, ŝ, on the
right. Both of the matrices have the size 30� 15. In the matrices, each element captures a particle radius; ‘‘-” denotes the value 0, ‘‘@” denotes the value 1.4,
and ‘‘#” denotes the value 0.9.
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The simulation result is depicted in Fig. 8, where the evolution of the number of sand particles in the upper bulb during
the simulation is plotted as a graph. The figure also shows an intermediate state in the simulation, after 80 iteration rounds,
to confirm that the flow of sand particles is now much wider than in the original hourglass, shown earlier in Fig. 5.

The graph in Fig. 8 confirms that the body of sand flows much quicker through the hourglass than in the original case,
shown earlier in Fig. 6. Again, the graph in Fig. 8 shows an exponential decay, but this time with a half-life at about 125 iter-
ations. Thus, the decay constant k is this time about 0.0055. What is particularly important here to note, is that the flow
dynamics for the body of sand was changed although we only changed the shape of the exterior. Thus, the exterior particles,
although they do not move in any way, do affect the pressure, whereby the emergent pressure is not only due to the sand
particles, but rather due to all the particles of the hourglass.

5.2.2. Wider bulbs
In this last test, we study the interplay between the number of the sand particles and the shape of the exterior. Thus, we

widen the bulbs of the hourglass while keeping the narrow opening. Furthermore, as the bulbs have a bigger volume, we add
more sand particles to the hourglass. The resulting matrices of radii for the exterior and sand particles, ê and ŝ, are shown in
Fig. 9. Both of the matrices differ now from the two original matrices shown earlier in Fig. 2.

The simulation result is depicted in Fig. 10, where the evolution of the number of sand particles in the upper bulb in the
simulation is plotted as a graph. The figure also shows an intermediate state in the simulation, after 400 iteration rounds, to
confirm that the flow of sand particles is similar to that of the original hourglass, shown earlier in Fig. 5.
Fig. 8. Image of the hourglass with a wider opening after 80 iteration rounds on the left; a graph indicating how the sand particles drop from the upper bulb
of the hourglass to the lower bulb during the computation on the right.



Fig. 10. Image of the hourglass with wider bulbs after 400 iteration rounds on the left; a graph indicating how the sand particles drop from the upper bulb
of the hourglass to the lower bulb during the computation on the right.

Fig. 9. Two matrices of radii for the hourglass with wider bulbs; the matrix for the exterior, ê, on the left and the matrix for the body of sand, ŝ, on the right.
Both of the matrices have the size 30� 15. In the matrices, each element captures a particle radius; ‘‘-” denotes the value 0, ‘‘@” denotes the value 1.4, and
‘‘#” denotes the value 0.9.
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The graph in Fig. 10 confirms that it takes now a longer time for the body of sand to flow through the hourglass than in the
original case, shown earlier in Fig. 6. The graph in Fig. 10 shows again an exponential decay, but this time with a half-life at
about 1000 iterations. Thus, the decay constant k is this time about 0.00069. Consequently, the graph confirms that the emer-
gent pressure captures also the tradeoff properties between the volume and the shape, when considering the flow of sand
particles.

In summary, the three different kinds of hourglasses illustrate how significant it is to allow the emergence of properties in
a model, and how intricate such properties are even in the simple cases. Based on the shown dynamics, one could argue that
embedding of shape sensitive pressure dynamics of shown complexity in any other way would indeed be a daunting task. By
using particle based models that support emergent dynamics such details ‘‘come for free”. Furthermore, as the whole model
was formalized using operators, there is now a clear intuitive connection between the initial values, the simulation, and the
final results. Because of this, we can be assured that a change in the initial setting, in the shape of the hourglass, remains local
to the construction and does not affect the actual model of motion, which was the same in all three cases. Consequently, the
resulting changes in the dynamics are provably due to the changes in the shape of the hourglass.

6. Conclusion

In this paper, we discussed simulation of non-linear dynamics using a particle system. As the main contribution, we
formalized particle system computations as mathematical operator networks, to gain intentionality and modularity. We
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illustrated use of operator networks in modeling and simulating the construction and the dynamics of an hourglass. We also
showed how an operator network model supports experimentation, as we simulated the dynamics of differently shaped
hourglasses. The actual computations were implemented using C++ and a publicly available software package, Atoms [17].

The reason why particle based models are considered attractive, is that they are computationally light and, yet, they ex-
hibit emergent dynamics that is hard or impossible to capture by any other means. Emergent dynamics was also displayed
by the dynamics of the hourglass; we discovered an emergent pressure for the body of sand, which we then also studied and
discussed. Because the model was an operator network, it was easy to study the effect of the shape of the hourglass to the
pressure. Such investigation would have been considerably harder, if the model was given as a set of difference equations of
the traditional form, without any support for reshaping the hourglass.

As indicated by the hourglass example, the use of operators and operator networks helps bringing in the intentionality
into a model. The operators capture small, independent computations, whereby the intuition behind an operator is clear.
Moreover, the operators can be reused even within the same model. This was illustrated, for instance, with the force operator
in the model of the hourglass. The reuse of the operators improves the coherence within the model.

The operators are connected together using the standard functional forward composition. Then, the obtained operator
network is also an operator in the formal sense. This particular property is needed for bringing in modularity. It also simpli-
fies the formal treatment of the model, as there are no special cases or exceptions. As illustrated with the hourglass example,
an operator network can capture a complex process, such as the creation of a spin shape. Still, the operator network can be
used within a model just like any other operator.

It should be noted that, because the operators are formalized as higher-order functions, they are formally analyzable. The
operators could be analyzed, for instance, by using Refinement Calculus [1]. Within Refinement Calculus, an operator is tech-
nically a relational update, as an operator may not have an inverse image. Furthermore, as the functional composition used
for connecting the operator is also part of Refinement Calculus, the behavior of an entire operator network can also be ana-
lyzed using Refinement Calculus. This opens many new, exciting possibilities and intriguing topics for future research. In par-
ticular, it seems that Refinement Calculus could be a tool for proving the correctness of an operator and its implementation.
Then, we could use virtually any programming language to implement the operators to gain better performance, while
ensuring with Refinement Calculus that the implementation is correct.
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