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Abstract: The increase of productivity and decrease of production loss is an important goal for
modern industry to stay economically competitive. For that, efficient fault management and quick
amendment of faults in production lines are needed. The prioritization of faults accelerates the
fault amendment process but depends on preceding fault detection and classification. Data-driven
methods can support fault management. The increasing usage of sensors to monitor machine health
status in production lines leads to large amounts of data and high complexity. Machine Learning
methods exploit this data to support fault management. This paper reviews literature that presents
methods for several steps of fault management and provides an overview of requirements for fault
handling and methods for fault detection, fault classification, and fault prioritization, as well as
their prerequisites. The paper shows that fault prioritization lacks research about available learning
methods and underlines that expert opinions are needed.

Keywords: cyber-physical systems; cyber-physical production systems; fault detection; fault classifi-
cation; fault prioritization; fault amendment; fault modes; machine learning; FMEA

1. Introduction

For the manufacturing industry, a primary aim is to increase the productivity and
quality alongside the reduction of unplanned downtimes of machines in production lines to
be able for economic competition [1,2]. Machine downtime can be reduced by implementing
predictive maintenance methods that will lead to operators taking care of machines that will
soon fall into a fault mode. Still, machine faults occur, which could result in the necessity
of replacing parts of the equipment. This may also lead to accidents and system failures
that will cost millions in lost production, or pollution [3]. Therefore, proper fault handling
is needed, as faults significantly impact reducing downtime and manufacturing costs. This
process depends heavily on how early a fault is detected and identified after the occurrence,
as more possibilities to act will exist [4]. In addition, there is also an impact on the meantime
to repair (MTTR), which describes the average time until the machine has been repaired by
operating personnel [5]. Fault detection includes the correct determination of the faults’
nature, their impact, and location in the manufacturing process, based on data produced by
the manufacturing system [6,7]. The identified faults can be classified and then prioritized
to accelerate the repair actions by the personnel. Therefore, supporting methods for the
fault handling steps are needed [8]. Those depend on collected data that gives information
about the machine’s status.

This data can be produced by sensors that are ubiquitous in modern manufacturing
sites. Here, we focus on cyber-physical systems (CPS) in Industry 4.0, which is also known
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as cyber-physical production systems (CPPS) [9]. A CPS consists of both cyber-elements,
e.g., software-modules and physical-components, e.g., sensors and actuators [6,10] and
their interaction [11,12]. Regarding the distribution of the term CPPS in research, we
also use the broader term of a CPS focusing on production systems. Complexity in fault
detection rises in such an environment and, in addition to that, the probability of fault.
In such complex systems, the probability of faults is higher [6,13], which leads to a more
complicated and computationally intensive fault detection [12]. Therefore, the need for
automated and scaleable fault handling methods gets even higher. In this paper, a fault will
be defined as a machine state in which a process does not perform as required or needed
(e.g., [12,14,15]).

This paper will review methods used for fault handling in manufacturing processes
and will focus on their use in cyber-physical systems. To do so the concept fault handling
in CPSs is introduced and requirements needed for fault handling methods are listed in
Section 2. Several methods for the single steps of fault handling, namely fault detection
(Section 3.1), fault classification (Section 3.2) and fault prioritization (Section 3.3), will
be introduced shortly and a listing of literature references for each step will be given in
Section 3. The results of the literature review will be discussed in Section 4. A conclusion
and a prospect of future research areas will be given in Section 5.

2. Requirements for Effective Fault Handling

To perform effective fault handling in an industrial production environment, prerequi-
sites are required to enable methods to perform well. First, there are the conditions that
need to be fulfilled by the production site. Most fault diagnosis methods depend on the
machines’ historical data within production lines. These methods are data-driven and can
only perform well if a necessary amount of data is available [16]. Therefore, they need to
be scalable to handle the huge amount of data. As modern production sites implement
Internet of Things (IoT) devices [17] and several sensors to monitor machine condition,
the data amount can also reach a high complexity. Sensors monitor various variables,
based on both physics, like vibration, temperature, pressure, and based on processes of
a manufacturing system, like process deviations, control settings, and machine specifica-
tions [1,17]. The complexity in data can be handled, e.g., via dimensionality reduction
methods. Complexity is not only caused by the number of used sensors but also by the
general structure of the machines in production lines and how these with their respective
sensors are connected [5]. Additionally, the collected data is temporal. Sensor data is often
gathered as time-series data, which also needs to be handled by methods that are used to
produce insights about the machine’s status [18]. The temporal aspect is also relevant in
industries that need to implement real-time fault detection and diagnosis as they can only
use methods that are able to process data quickly and give results in real-time. Another
general requirement for fault handling methods is the ability to train models on imbalanced
data as in production, the amount of data that represents normal condition is more often
seen as data that indicates faulty machine states [19,20].

In addition, data quantity and intrinsic complexity are a requirement for fault handling
methods. CPSs produce a huge amount of data as they include many sensors and devices for
processing and communication tasks, which connect physical elements like machines with
cyber-physical data-processing units [6,11]. In addition, they consist of several subsystems,
which leads to a higher complexity of the production line itself and its data relations [12,14].
Moreover, the higher complexity makes CPSs more prone to faults [13]. Therefore, fault
handling supported by automated methods gets more important. The complexity and
high dimensionality also result in computationally expensive feature extraction, which
emphasizes the need for effective dimensionality reduction. Another reason for the need
of automated fault handling in CPS is that not only the machines can experience fault
states, but also the sensors themselves can generate faulty data, so sensor faults need to
be handled as well.

sec:requirements
sec:detection
sec:classification
sec:prioritization
sec:methods
sec:discussion
sec:conclusion
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As this paper reviews methods for different steps of fault handling, requirements for
those steps need to be explicitly outlined. First, fault detection, which is the entry point of
fault handling, works with the raw data of sensors. Therefore, the used methods need to be
able to work with the given raw data, or feature extraction methods need to be implemented
as well. Which method will be applied also depends on the raw data format that is available
in the monitored system. Methods used for fault classification need to discriminate several
groups of faults. A prerequisite to achieving this goal is that fault types are already defined,
and historical data is labeled to train performant classifiers. In case labeling data is not
feasible, then unsupervised methods are used. Therefore, experts need to be at hand to
describe the fault groups former identified by the algorithm [1]. The classification and
detection of faults with their respective types in the data are essential for the next step—fault
prioritization. During the step of prioritization, the opinions of experts are needed [21,22].
They need to consider various faults that can occur in the monitored system. They also
need to consider that machines do not work separately but depend on each other. So,
in addition to the single machines’ criticality, experts need to take the chain of faults into
account and how machines influence other processes in the production line [5]. Domain
knowledge of experts is also important. Production lines and the employed CPSs have a
high level of individuality with many configuration possibilities [23]. So copying methods
from one production line to another is no feasible option without substantial manual effort.

3. Methods

This section will show which methods are used in the literature for the different
fault handling steps. The fault handling process, as shown in Figure 1, consists of the data
collection, data pre-processing, and feature selection before training any models. The step of
fault amendment is also designated after the decision has been made of which fault to tackle
first. The methods presented in this paper are used for fault detection, fault classification,
and fault prioritization steps. We focus on the mid-tier process (fault detection, fault
classification, fault prioritization) because the data structure of each employed CPS is
unique, and a generalization cannot be given for all available methods in the context of
this work.

Figure 1. The overall fault handling process begins with the data collection, including pre-processing
of the data and feature handling before training models for fault detection and fault classification.
Afterwards, fault prioritization occurs; after that, all found faults will be handled manually by the
operators’ personnel or automatically during the fault amendment process. Due to the individuality
nature of the steps or their maturity, not all research fields are covered by this survey. Investigated
research fields are covered by grey boxes, whereas white boxes cover the latter.
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In addition, we declare fault amendment as an important process step, which describes
the correction process after the fault handling steps. First attempts for fault amendment
exists, e.g., Diedrich, Balzereit et al. [24–26] investigate an automated reconfiguration of
CPSs after a fault is detected. To the best of our knowledge, no other automated attempts
are made in the field of fault amendment but prompt us to include this step separately in
the process without deeper analysis, leaving a field open for future research.

Therefore, this review only considers papers whose described methods have been
mapped to one sub-step of the above-mentioned fault handling process (fault detection,
classification, and prioritization). Note that various types and architectures exist for each
listed method, which may be used in the context of Industry 4.0-related fault diagnosis.
For this reason, we only provide a selected excerpt, which should be seen as examples for
the following methods.

3.1. Fault Detection

Fault detection is the process of finding an occurrence of a fault in a unit of the
monitored process based on measurements that are provided by the system. Those faults
lead to abnormal or system-critical behavior of the machine, reducing the performance
of the whole system significantly [21,27,28]. Some referenced papers also include the
identification of further fault characteristics like impact, location, or time of occurrence and
the actions taken to avoid further damage in the process of fault detection [6,7,29], whereas
others state that this is a specific part of fault isolation [28]. In this paper, we consider
methods that detect whether a fault occurred or not, despite a possible subdivision into
the fault categories [20]: abrupt (e.g., [30]), incipient (e.g., [31]), or intermittent (e.g., [32]).
Methods of fault classification will handle any further identification.

Fault detection methods can be separated into three groups [14,20,33]: Data-driven models
learn the systems behaviour by training and thus depend on enough available data [16]. Data-
driven approaches use analytical models and historical data. The approaches do not depend
on knowledge of the monitored process structures and are scalable regarding the number of
sensors they draw data from [22]. As the amount of gathered sensor data is increasing and
machine learning techniques have been developed rapidly, many researchers focus on data-
driven methods for fault diagnosis problems [34]. Model-based methods require building a
specific model that includes the architecture and process of the monitored systems, as well as
correlation and relations between the various process variables [20]. Mining those relations can
be computationally intensive in large-scale systems with complex structures, and requires a
huge amount of sensors [22]. Knowledge-based methods for fault diagnosis rely on sets of rules
that are formed by expert knowledge of the monitored system and the relations between several
fault types [33]. The dependency on knowledge makes those models very system-specific,
which makes updating more complicated [16].

We align our work with recent outstanding surveys [14,20,35] and set the perspective
around our defined fault handling process. Due to the scalability to vast amounts of data, this
paper will focus on data-driven methods. Table 1 gives an overview of the presented methods,
including further references, which have not been presented in this paper due to brevity.
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Table 1. Overview of used methods for fault detection with references.

Method Details References

Neural Network Self-organizing map [36]
ANN [37,38]

Random Forest Classification Problem (normal, fault) [39]

k-Nearest Neighbors (kNN) Ensemble method based on kNN with random forest k-means for
feature selection [40]

Naïve Bayes classifier Ensemble method based on Naïve Bayes classifier with random
forest k-means for feature selection [40]

Kernel PCA Training on only normal data points and using threshold for fault
detection [19,41,42]

TEDA (Typicality and
Eccentricity Data Analytics)

Unsupervised algorithm, no previous knowledge needed; detects
outliers as faulty data samples [3,43–45]

Improved Support Vector
Machines (SVM)

OS-LSSVM uses a sparsity component to increase the prediction
speed of sensor values; fault is detected in case of high residual

error
[46–48]

3.1.1. Neural Networks

Neural networks can be used as supervised or unsupervised learning techniques for
the problem of fault detection [36,37]. Artificial neural networks (ANNs) learn complex
non-linear functions. They also learn the importance of input features so that no preceding
feature extraction methods are needed to reduce the complexity. However, input features
need to be normalized to ensure that features with a larger scale will not be privileged [37].

Heo and Lee [37] applied a supervised ANN method to solve fault detection formu-
lated as a binary classification problem. The model consists of an input layer with one
node for each feature, several hidden layers, and one softmax layer that calculates the
output values. The output neuron with the highest assigned value defines the data set class,
which is in case of fault detection either normal or faulty. The authors train ANNs with
different hidden layers and nodes per hidden layer using the rectified linear unit (ReLU) as
an activation function. They apply the classifier to the Tennessee Eastman process, which
is used as a benchmark process with defined fault types in literature (e.g., [49–51]). Their
results are compared to those of Yin et al. [52] and Zhang and Zhao [53] and achieve the
best overall detection rate.

Von Birgelen et al. [36] train self-organizing maps (SOM), as introduced by Koho-
nen [54], for fault diagnosis. SOM learns the characteristics of the normal behavior of
components in a CPS. That means no faulty data sets are needed for training, which makes
this method suitable for imbalanced data. SOM is an unsupervised neural network architec-
ture that organizes its neurons in a topological map. At the end of the training stage, each
neuron represents a unit, encompassing a part of the training data. Live data is mapped to
the best fitting unit to calculate the quantization error, the distance between actual data
value, and the mapped unit. If the quantization error exceeds a threshold, the data set is
considered faulty, and further fault diagnosis can be performed. The authors evaluate their
approach via experiments on real-world systems, including industrial plants.

3.1.2. Random Forests

Random forests consist of uncorrelated decision trees trained independently and with
a random choice of considered split features and training data sets. A random forest is a
supervised method, as labeled data is needed to find splits [55]. Imbalanced data can be
handled by weighted sampling methods or penalty on the misclassification of the minority
class [56,57]. Due to the randomly selected split features and the independently trained
trees, random forests are suitable for high dimensional data, and big data sets [58].
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Yan and Zhou [39] use historical flight sensor data to detect and predict anomalies in
aircraft components. They formulate the detection problem as a three-class classification
problem with one class to represent normal state and two classes representing faults. A ran-
dom forest is trained based on features that are extracted by using statistical analysis and
correlation analysis. Their proposed method is evaluated in a case study on a component
of an aircraft system.

3.1.3. k-Nearest Neighbors (kNN) and Naïve Bayes

Both k-Nearest Neighbors and Naïve Bayes can be used as ensemble classifiers for
fault detection in which the classifier chooses the class that is represented most among the
results of trained classifiers. kNN is a non-parametric classification algorithm that classi-
fies a new observation to the majority class among its k-Nearest Neighbors observations.
The method is sensitive to non-informative features, which likely occur in high-dimensional
data. The ensemble method with a random selection of features counters this problem [59].
The Naïve Bayes classifier is a probabilistic classifier that assumes that all features are
pairwise independent. A new observation will be assigned to the class with the highest
calculated posterior probability [60]. In comparison to a classical Bayes approach, the en-
semble method results in higher efficiency of Naïve Bayes with regard to high-dimensional
data, because in the classification stage, all features are considered to calculate the posterior
probability [61].

Fan et al. [40] use ensemble models based on k-Nearest Neighbors (kNN) and Naïve
Bayes classifiers to classify wafers of semiconductor manufacturing as flawless or faulty.
They train a random forest model to handle high-dimensional data to get the variable
importance of all sensor variables. K-means cluster those, and the cluster variables with
the highest average variable importance are used in the final fault detection step. Ensemble
models based on kNN and Naïve Bayes were trained with data that included an equal
amount of randomly selected faulty and normal data sets to prevent inaccuracy due to
class imbalance. The models were compared by sensitivity and specificity, and the kNN
ensemble method performed better than the Naïve Bayes method.

3.1.4. Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) is a self-supervised learning method
that can be used to detect faulty observations. KPCA is an expansion of PCA where the
data points are mapped into a higher-dimensional space by a kernel function. Then, PCA
is performed in the higher-dimensional space [62]. During the training process, KPCA
is performed on data samples that represent the normal state; hence, class imbalance in
the case of fault detection is irrelevant. Consequently, KPCA succeeds on imbalanced and
only partly labeled production line data. The maximum reconstruction error during the
training stage defines the threshold used for fault detection in the test stage. For new
data sets, the reconstruction error is calculated, and in case the threshold exceeds, the data
set is considered faulty. As the kernel is an N by N matrix, with N being the number
of observations, the time to generate the kernel matrix strongly increases if N is high.
The KPCA method for fault detection is used by Wang et al. [19]. They evaluate their
method in a case study based on experiments on a data set comprising industrial etching
processes for fault detection. Yang, Chen, and Sun [41] meet the problem that KPCA cannot
be used for real-time detection. This has been possible by reducing the training data set with
an approximate basis that consists of a minimum of training samples but still represents
the total training samples well.

3.1.5. Typicality and Eccentricity Data Analysis

Typicality and Eccentricity Data Analysis (TEDA) is an unsupervised method in-
troduced by Angelov [44] that can be used for fault detection, as well as classification,
clustering, and prediction problems [43,63]. The model uses a data analysis method, fol-
lowing the concepts of typicality and eccentricity. In this context, typicality is described as
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the spatial similarity of a data sample to all other data samples, whereas eccentricity states
the difference of a data sample from all other data samples. The method operates without
any assumptions about the data distribution and data independence, which is unlikely in
real-world scenarios. In addition, TEDA is a recursive algorithm, which makes this method
fast and suitable for big data and real-time applications, resulting in a low computational
complexity. Typicality and eccentricity are recalculated with every new data sample, so a
threshold needs to be defined that separates normal from outlier (faulty) data samples [35].

Bezerra et al. [3] and Costa et al. [43] use TEDA as a fully autonomous algorithm for
fault detection in industrial processes. Several signals are used to detect data samples as
faulty. With the TEDA method, no prior knowledge of the processes and data samples and
no user-defined parameters are needed. The TEDA method was used as an unsupervised
learning algorithm in Lou and Li [45] by selecting features via the Laplacian Score method
before training to make a priori knowledge during pre-processing stage negligible.

3.1.6. Improved Support Vector Machines

Improved Support Vector Machines (SVM) for fault detection, named online sparse
least squares SVM (OS-LSSVM), is proposed by Deng et al. [46]. They use the method
for the detection and prediction of sensor faults. The sensors produce time-series data,
which is analyzed based on sliding windows. The approach is based on the LSSVM method
introduced by Suykens et al. [64]. Additionally, a sparsity component is implemented,
which states that all input vectors can be linearly represented by the base vector space so
that all training samples can be replaced by the base vector set. Furthermore, the training
data is acquired with the sliding time window method that only considers the latest data
points. This increases the prediction speed so that the method can be used for the real-time
prediction of faults. For evaluation, the proposed method is applied on a gyro sensor.
The results show that the residual error is lower when using LSSVM without the proposed
sparsity component, while the forecasting time decreases with the sparsity component.

3.2. Fault Classification

In this paper, the fault classification process includes the fault detection of various
fault types by clustering analysis and the classification of detected faults into predefined
fault classes. In both cases, data that indicates faults need to be analyzed by experts with
deep knowledge of the monitored system. In the case of clustering, experts need to define
which identified cluster represents which fault type (unsupervised learning). In the case of
classification, experts need to define which fault types can occur in the monitored system
and which historical data sets represent those fault types (supervised learning).

Fault classification and therefore the generalization of faults is a prerequisite for fault
prioritization (Section 3.3) thus experts can focus on a limited number of identified fault
types. An overview of the presented fault classification methods is given in Table 2.

sec:prioritization
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Table 2. Overview of used methods for fault classification with references.

Method Details References

k-means Clustering method to identify fault types [1,2,65]

Gaussian Mixture Model Clustering method to identify
different distributions [1,2]

Fuzzy-c-means Extension of K-means with
fuzzy variables [2]

Autoencoder [49,66]
Neural Network ANN with softmax layer [37,67,68]

CNN-based feature learning [69–71]

Sparse Representation Classification
(SRC)

Performs classification based on sparse
representation of training data [72]

SVM Two-class classifier or pair-wise classifiers
for multi-class classification [51,67,69,70,73–78]

Decision Tree Classification with QUEST, C&RT, C5.0,
and CHAID methods [75]

Random Forest Random Forest with feature extraction [69,79]

Tree-structured fault dependence kernel Hierarchical large margin SVM [80]

Linear Discriminant Analysis Uses distance metrics to assign classes [34]

3.2.1. Fault Clustering Methods

Fault clustering methods include k-means clustering, Gaussian-Mixture-Model cluster-
ing, and fuzzy-c-means clustering. Those methods are used by Amruthnath and Gupta [1,2]
to identify clusters in vibration data of a rotating fan in different setups. By using unsuper-
vised learning techniques, they address the challenges of supervised learning for early fault
detection, such as the necessity of historical, labeled data and the incapability of classifying
new faults that are not known at training time, which results in an extended training time
and an inflexible model. On the contrary, unsupervised learning methods can be used
for class structures, in which no knowledge of the original data is required. Both papers
use PCA for dimensionality reduction and make the assumption that vibration is the only
significant feature.

Gaussian-Mixture-Model is a non-parametric density estimation method that can
identify several Gaussian distributions within a data set. Each of the different distributions
represents a cluster. Amruthnath and Gupta [1] identified six clusters in their data with
the Gaussian Mixture Model method in total, of which three represent redundant healthy
states of the machine, as well as one for each of the following faulty states: operating
failure, equipment failure and total shutdown of the machine. Experts defined the rep-
resentations of the clusters. For the k-means method, the silhouette method identified
an optimal number of two clusters. The clusters represent healthy and faulty states in
general, but differentiation between operating failure, equipment failure, and total shut-off
is impossible. In another research study, Amruthnath and Gupta [2] identified five clusters
with the Gaussian-Mixture-Model method. Based on the elbow method, three clusters were
identified with k-means, representing the healthy state, warning, and faulty state. Addi-
tionally, the fuzzy-c-means method was used. Fuzzy-c-means clustering is an extension of
k-means clustering, improved by Bezdek [81]. The parameter c is comparable to the one k
of k-means. The fuzzy aspect is given because all data sets belong to every cluster with
a certain weight depending on its distance to the cluster’s centroid. The fuzzy-c-means
method achieves the same results as the k-means method if hierarchical clustering has
been performed.



Sensors 2022, 22, 2205 9 of 19

3.2.2. Neural Networks

Neural networks and their variants can be used for fault classification. Heo et al. [37]
propose an artificial neural network (ANN) model for classifying data into 17 fault types for
the Tennessee Eastman process. Normal and faulty data are used as training and test data.
An ANN with three hidden layers using both ReLU activation function and a softmax layer
with softmax function is compared to results of two references [49,82] and achieves the best
overall classification rate for the selected fault types and normal state. The authors explain
the better results with their network design so that the ANN performs fault detection and
classification simultaneously.

Another ANN is the autoencoder. An autoencoder is one kind of unsupervised learn-
ing technique that identifies important features in the input data. The model encodes
the input data into a lower-dimensional space and tries reconstruction through decoding.
The difference between original input data and reconstructed output data gives the recon-
struction error, which will be minimized by training the autoencoder [83]. Several methods
encode the input into a lower-dimensional space.

Lv et al. [49] apply a stacked sparse autoencoder with a softmax classifier to the
multi-class classification problem of several fault types and normal mode. A stacked sparse
autoencoder is a neural network consisting of several sparse autoencoders. The sparsity
penalty causes most of the hidden layer units not to get activated and thus focus on unique
features that identify the classes of the training data [83]. The model is evaluated on
data of the Tennessee Eastman Process experiment that got detected as faulty beforehand
and achieved the best average fault classification rate compared to other state-of-the-art
approaches, including sparse representation, random forest, SVM, and structural SVM.

Fang et al. [66] propose an autoencoder to detect 10 different fault types from data
generated in a satellite power system. The neural network includes two hidden layers that
use the de-noising autoencoder method. The input layer consists of 48 nodes for each input
parameter. The output layer consists of 10 output nodes for each fault type to be identified.
The proposed method is compared to the deep belief network and deep Boltzmann machine
methods based on the same data set. The results indicate that the proposed deep neural
network method performs best.

Another neural network variant is the convolutional neural network (CNN). Good-
fellow, Bengio, and Courville [83] describe CNNs as neural networks used for processing
data with grid-like topology, like time-series data. A CNN includes at least one convo-
lutional layer as a hidden layer. A convolutional layer transforms input data into sparse
representations by sliding a minimum of one kernel matrix over the input data matrix and
calculating the dot product in each step. This sparse representation will be used as input to
the next network layer. The last layer of the CNN is a fully connected classification layer
that uses the softmax function. CNN’s merge the feature extraction step and model training
step, which saves computational time so that CNNs can be used in real-time fault classifica-
tion applications. This has been declared by Ince et al. [71], who use a one-dimensional
CNN to detect and classify faults for condition monitoring of a motor setup. This method
achieves high accuracy rates and low computational complexity due to the structure of the
CNN model.

Janssens et al. [69] propose a feature learning approach based on convolutional neural
network (CNN) for fault detection of several faults in rotating machinery. Feature learning
refers to the process of transforming raw data into a data format in an appropriate form
for the intended task. This transformation is done automatically by the neural network
and not by experts, as in feature engineering. The proposed approach consists of two
pipelines. The first pipeline determines if the data shows rotor imbalance. This is achieved
by feature extraction and logistic regression. The second pipeline shall detect four different
fault types with a CNN. For comparison, the second pipeline is also implemented with
feature extraction and random forest method and SVM method with different kernels.
The evaluation results show that random forest performs best for the approaches without
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feature learning, but the approach with feature learning based on CNN performs better
than the random forest approach.

3.2.3. Sparse Representation Classification

Sparse representation classification (SRC) is proposed by Wu et al. [72] for fault
classification. As the transfer of a multi-class classification problem into several binary
classification problems is a time-consuming process, the SRC method uses training data sets
with class labels to build a dictionary. To classify a new data sample, sparse representation
is performed. The model finds those entries of the dictionary which represent the new data
sample best. For dictionary entries, which represent sparsely, the new data sample with the
smallest error defines the new data sample’s class [84]. The approach is validated by an
experiment on the Tennessee Eastman process.

3.2.4. Support Vector Machines

Support vector machines (SVMs) are used by Laouti et al. [73] to detect 10 different
fault types in wind turbines. These include sensor faults, actuator faults, and system faults.
For each fault type, one model is trained. All models use the Gaussian radial basis function
as kernel function, but each fault obtains different vectors used for classification. Their
method is validated by application on the data of a real wind sequence, and the results
show that 6 out of 10 faults could be detected with acceptable accuracy. Imbalanced data
influences the performance of the SVM method significantly, but this can be handled by
assigning weights to training samples or by oversampling of training samples of minority
classes [47].

Yan et al. [74] propose a hybrid approach for fault classification using an autoregressive
model with exogenous variables (ARX) for data pre-processing and SVM with Gaussian
radial basis function as kernel function for the classification of five different fault types and
normal state. The ARX model is used to remove variable correlations, hence reducing the
used variables. The model is suitable for online applications as parameters are estimated
recursively. However, the method is not suitable for applications where faults need to
be characterized in a short amount of time, because a time interval is required to detect
the impact of a fault on the parameters. The study used a time interval of two minutes.
The SVM model adopts the one-against-all algorithm, where an originally two-class SVM
classifier is constructed for all pairs of fault classes, respectively. The results are validated
by comparing them with several other approaches using variations of data pre-processing
and SVM.

3.2.5. Decision Trees

Decision trees are used additionally to SVMs by Demetgul [75] to identify 12 fault
types occurring in a didactic modular production system. Several kernels and decision tree
methods are used. The test setup provides signals of 8 sensors during normal and fault
operation. The results show that SVM achieves test accuracy of 100% for all used kernels
except for the sigmoid kernel (52.08%). The decision tree models achieve test accuracy
of 100% as well, except for the decision tree trained by Chi-square automatic interaction
detection (CHAID) method (95.83%).

3.2.6. Tree-Structured Fault Dependence Kernel

Tree-structured fault dependence kernel (TFDK) is an approach that can be described
as a hierarchical version of a large-margin SVM. This method includes fault dependence
information into the learning algorithm by assigning tree-structured labels to training data,
representing their fault type and severity level. Li et al. [80] use a TFDK as a learning
method for the classification of real-time sensor measurements into fault types of building
cooling systems and severity levels. The sample training and test data from several fault
data sets reduce the data imbalance. The approach is evaluated in a cyber-physical test
environment equal to the one used in Li, Hu, and Spanos [34]. Results are compared



Sensors 2022, 22, 2205 11 of 19

to other methods like multi-class SVM, decision tree, and neural network, which are all
outperformed by the proposed tree-structured method regarding classification accuracy.

3.2.7. Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a supervised learning technique that reduces
the dimensionality in data while obtaining a maximum amount of information by combin-
ing state indicators into so-called discrimination functions [85]. Li, Hu, and Spanos [34]
propose a two-stage method for fault classification and diagnosis of building chillers based
on LDA. Their method formulates a multi-class classification problem, including seven
faulty states and the normal condition. Eight data sets for each fault type and normal
condition are well separated in a lower-dimensional space produced by LDA, and each
of the data sets forms a cluster. New monitored data will be put into the cluster with the
lowest Manhattan distance between the data point and cluster center. An unknown fault is
identified if the distance is higher than a threshold. As most sensors produce data continu-
ously, the training data set can be updated in case an unknown fault is detected. The same
algorithm is used to classify monitored data into fault severity clusters, where each cluster
represents a defined severity level. The approach is evaluated with an experiment on an
integrated cyber-physical test environment.

3.3. Fault Prioritization

Fault prioritization is the process of deciding which fault must be eliminated first to
reduce the overall fault impact on the production output, especially loss of production.
To the best of our knowledge, there are no automated methods proposed to prioritize faults
in industrial production processes in literature. Papers that handle fault or maintenance
prioritization request that fault types are prioritized by risk or severity levels beforehand
by experts [34,80,86]. The assignment of newly discovered faults to these prioritized fault
types results in an indirect prioritization. The method Failure Mode and Effects Analysis
(FMEA), presented in Section 3.3.1 shows how experts can be supported in their decision
process of defining the risk and severity levels for the different identified fault types. In the
end, the defined priority levels can be assigned to the fault types, and fault classification as
shown in Section 3.2 can be used to prioritize faults indirectly.

As an outlook, fault prioritization is also part of other research fields, e.g., software
development. Here, bugs or faults will be categorized and prioritized during development.
With this aggregated knowledge beforehand, the training of the classifiers is possible
in order to rank novel faults, e.g., with natural language processing [87], SVM [87–89],
Naïve Bayes [88], k-Nearest Neighbors [88,89] and neural networks [88–90]. A similar
approach is conceivable if the huge amount of data is partially presented and annotated by
domain experts in a production site. As a result, the ideas of fault prioritization in software
development can also be used to prioritize faults in the Industry 4.0 domain in the future.

On the contrary, for software development ideas, FMEA is already used for fault
prioritization in the production domain. For this reason, we narrow the FMEA meth-
ods subsequently.

3.3.1. Failure Mode and Effects Analysis

FMEA is an effective method for failure analysis, identification, and classification,
as well as risk assessment of these faults [91,92]. This method originated in the 1960s
and was used in the aerospace industry for solving problems of quality and reliability of
products [93]. Subsequently, the method was also used in the production industry as a risk
assessment tool to increase the quality and stability of systems [93–96]. FMEA has also been
used for CPSs [92,97,98]. The representation of FMEA in literature has risen, especially
since 2013 [94–96]. Some papers are using Failure Mode, Effect and Criticality Analysis
(FMECA) if a criticality analysis is included [99,100].

With the FMEA method, several product development steps, including product man-
ufacturing, can be analyzed separately, and potential fault types can be identified and
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assessed regarding their risk and impact on further manufacturing steps. In product manu-
facturing, fault types depend on the architecture, the characteristics, and functionalities
of the production line so that experts are needed to identify dependencies of the used
machines and their potential fault types [94]. After the definition of Risk Priority Numbers
(RPNs) for all fault types, an assignment of RPNs to the faults is performed. The RPN
enables the comparison of the risks of various machine faults. In the original FMEA,
the RPN depends on the numerical assessment, with values 1 to 10, of the fault’s severity,
occurrence, and detection, where detection gives the probability that a fault is not detected
until a failure occurs that impacts the customer [95,101].

However, the RPN experienced some criticism in literature due to some disadvantages
that cause the resulting prioritization to be inaccurate [95,102]. The critical shortcomings
can be briefly summarized as: (1) the usage of three simple factors (severity, occurrence,
detection) does not guarantee that faults with equal risks get an equal RPN and faults
with different risks get different RPNs [100,103,104], (2) the difference between RPNs of
two faults does not represent their actual risk difference [103], (3) the three risk factors
are considered to be equally important, so factor weights are not considered [100,103],
and (4) the subjectivity of the RPN factors, caused by the subjectivity of the experts who
define the factors for all fault types, is not represented in the resulting RPN and leads to
uncertainty [92,100,103].

This criticism caused researchers to develop extensions for the calculation of RPNs so
that there are now various algorithms used to define the RPN of faults. An overview of
these extensions and algorithms is displayed in Table 3. One simple adaptation of the RPN
is the consideration of additional risk factors, which leads to a diversification of resulting
risk numbers. Examples for additional risk factors are “expected cost of failure” [91],
“environmental factors” [92], and further “economic impact” [92,105]. Additional risk
factors work against points of criticism (1) and (2). Another extension comparable to
additional risk factors is the splitting of one risk factor into several sub-risk factors. This
leads to a more precise definition of the original risk factors because more diverse aspects
are considered. An example is the partition of the severity risk factor. To define the severity
of a fault, both technical and economic aspects should be considered [105,106].

Table 3. Overview of extensions for RPN calculation.

Extension Details References

Additional risk factors

e.g., expected cost, cost of failures, weight
of corrective actions, uncertain risk

factors, environmental factors,
economic safety

[91,92,105,107–110]

Usage of sub-risk factors e.g., severity levels from various
perspectives like technical or economical [104–106]

Fuzzy variables Fuzziness used in variables to represent
uncertainty and imprecise risk factors [111–113]

Multi-criteria decision methods Defining risk based on multiple
conflicting criteria [108,113–119]

To handle the subjectivity of defining the risk factors, some authors suggest using fuzzy
logic as an extension of FMEA [112,117,119]. In these approaches, the risk factors are defined
via linguistic variables like low, medium, and high instead of numerical variables [111–113].
Those variables are then ranked with fuzzy numbers, which means that the number has one
assigned value and multiple values with probabilities, so that the severity can be ranked
as, e.g., {30%: 3, 50%: 4, 20%: 5} instead of using one numerical value on the scale of 1
to 10 [111,112].

Multi-criteria decision-making (MCDM) methods are also widely used to overcome
the shortcomings of original RPNs. MCDM is a branch of operations research that supports

tab:rpn
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experts in their decision-making process [120]. Examples for MCDM methods are the ana-
lytic hierarchy process (AHP) [108,117,118] and the technique for the order of prioritization
by similarity to ideal solution (TOPSIS) [113,117,119].

4. Discussion

The developed process of fault handling, as illustrated in Figure 1, begins with data
collection, pre-processing, and feature handling. Research provides numerous attempts
to handle these steps. For each of the described fault handling methods, other types of
preparations are necessary, denoting why it has not been described in this review in the
first instance. However, fault handling requires representative data to operate effectively
and generate sensible output. So while following the described fault handling process,
sufficient work should be invested into accurate data. Only very few data sets in the context
of industrial applications and smart manufacturing are available for open access [17],
which exacerbates validation of the defined fault handling process significantly. Therefore,
validation shall be fetched in a later stage.

With the increase of computational resources at the beginning of the 21st century,
the focus seems to shift from model-based to data-driven fault detection methods. Due
to Industry 4.0 and further digitalization of processes, the complexity of manufacturing
systems also enhances, making model-based and knowledge-based approaches challenging
to handle. A more significant part of fault detection has been carried out by variants of
neural networks and deep learning regarding data-driven methods. We see a trend that
neural networks and deep learning will be used primarily in the future, as computational
resources are not that critical anymore. However, we showed that other promising methods
exist, which can be used for some use cases in the industry. Ensemble methods tend
to improve the results in various ways compared to single methods. We have given a
combination of kNN and Naïve Bayes, which reduces non-informative data sensitivity.
Especially TEDA and OS-LSSVM can detect faults very fast, which is crucial for real-
time applications. We assume that a combination of deep learning and other methods
to an ensemble would speed up the fault detection process by providing the benefits of
deep learning.

The situation for fault classification behaves very similarly compared to fault detection.
Increased computational resources facilitate and promote neural networks and deep learn-
ing. Autoencoders became a standard unsupervised learning method for fault classification.
Additionally, fault classification requires fault detection beforehand, in which variants of
neural networks will be implemented more often. Some papers also showed that one deep
learning algorithm can handle a combination of fault detection and classification [121,122].
So further applications on fault classification by neural networks and deep learning are
likely to be implemented. Beneath deep learning, SVMs are still broadly used for fault clas-
sification, often but non-exclusive for supervised learning tasks. Some tree-like algorithms
such as decision trees and random forests have been applied for fault classification, which
often explains its results more naturally than deep learning. TFDK provides an interesting
approach to classify faults by using severity levels. This algorithm may also be used in
fault prioritization, which significantly fastens the fault handling process. To the best of
our knowledge, this method has not been implemented in another context, so it may still
be an open issue for future research on fault handling.

Fault prioritization in an industrial context is difficult to achieve, as non-statistical
algorithms are rare. FMEA is an effective method extended frequently to reduce the impact
of criticized disadvantages. The method has proven its operational capability in various
industrial environments. However, this method is statistical and expensive regarding both
time and work. The method cannot be automated, as it requires a high degree of knowledge
within the domain. The first attempts to design automated fault prioritization have been
made, but not in Industry 4.0. We see a vast potential to transfer knowledge from other
disciplines into the manufacturing domain. This is crucial as factories tend to become



Sensors 2022, 22, 2205 14 of 19

more complex in the process of digitalization, and only efficient prioritization prevents
production outages.

As discussed earlier, some methods cover more than one phase of the mid-tier process.
Nevertheless, no known method covers all three steps of fault detection, fault classification,
and fault prioritization. This is basically due to missing algorithms for fault prioritiza-
tion. However, the chances are that a methodology can be developed with automated
prioritizing methods, which covers the whole mid-tier fault handling process in the future.
Such a methodology would be a step forward, especially with fully automated smart
manufacturing systems.

For fault amendment, innumerable methods exist, as these methods strongly depend
on the results of the preceding mid-tier process and the experience of the operator’s
personnel. So, generalization of this process step is not easy to achieve and, therefore,
will not be covered in this paper. An automated approach regarding fault amendment
is also challenging to realize. With new knowledge regarding additional non-statistical
fault prioritization methods with certain automated aspects, fault amendment needs to be
re-evaluated and possibly leaves additional prospects for future research.

5. Conclusions

We structured fault handling in the context of Industry 4.0 by defining the process
to scope future discussions in the research field. In addition, the requirements for fault
handling are defined. Moreover, a survey is provided, which was structured by the
presented process. Here, the survey is focused on the mid-tier fault handling processes.
Only selected examples for each category are provided for each sub-process because various
types and architectures exist for each method. Therefore, the scope of this work is to provide
guidance and an overview of current state-of-the-art fault handling techniques rather than
to claim completeness. The categories of each sub-process are designed to identify research
for further reading. Evaluated research was not always in the context of CPSs and may
miss certain information about the used evaluation environment, which made it impossible
to choose publications according to the presented requirements. Future attempts should
point out how methods can be assessed to meet the requirements of industrial processes
more precisely. The research also showed that requirements differ for each industrial plant
due to high specialization and possibilities in configuration. Therefore, methods should be
validated in the area of the industrial process before implementation.

We have also identified techniques outside of Industry 4.0 that can give impetus to
the fault handling process, especially fault prioritization, in the future. Methods from
the field of software development may be useful to classify and prioritize novel faults.
Compared to fault detection and classification methods, automated methods of fault
prioritization could not be identified in the literature. Here, many authors state that
experts are needed to prioritize faults due to a high individuality of the faults. Therefore,
the prioritization of faults solely accomplished by statistical learning methods is unlikely.
FMEA was presented in this paper as a method to support experts in their decision-making
regarding machine risks. Support methods for experts should be further investigated
and optimized, for example, by more thorough experts interviews. Another unexplored
path is fault amendment, and the first promising work has been done with the automated
reconfiguration of plants in a failure state, but the field beholds much potential. Future
work of our defined process encompasses the definition and validation of non-statistical
fault prioritization methods in Industry 4.0. With an accurate data set of industrial origin,
the described process can be validated and adapted if necessary. Finally, the development
of a methodology that covers the whole mid-tier fault handling process for an industrial
plant can be performed. The process and the overview given in this work should be seen
as a starting point for the definition of fault handling in the Industry 4.0 domain. Each part
is open to future research and may provide guidance.
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