
sensors

Article

GO-DEVS: Storage and Retrieval System for DEVS Models
Using Graph and Ontology Representation

Chun-Hee Lee 1, Jang Won Bae 2,* and Euihyun Paik 1

����������
�������

Citation: Lee, C.-H.; Bae, J.W.; Paik,

E. GO-DEVS: Storage and Retrieval

System for DEVS Models Using

Graph and Ontology Representation.

Sensors 2021, 21, 6771. https://

doi.org/10.3390/s21206771

Received: 9 September 2021

Accepted: 5 October 2021

Published: 12 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Intelligence Information Research Division, Electronics and Telecommunications Research Institute,
Daejeon 34129, Korea; ch.lee@etri.re.kr (C.-H.L.); ehpaik@etri.re.kr (E.P.)

2 School of Industrial Management, Korea University of Technology and Education, Cheonan 31253, Korea
* Correspondence: jangwon_bae@koreatech.ac.kr

Abstract: DEVS is a powerful formal language to describe discrete event systems in modeling and
simulation areas and useful for component-based design. One of the advantages of component-
based design is reusability. To reuse or share DEVS models developed by many other modelers,
a system to systematically store and retrieve many DEVS models should be supported. However,
to the best of our knowledge, there does not exist such a system. In this paper, we propose GO-
DEVS (Graph/Ontology-represented DEVS storage and retrieval system) to store and retrieve
DEVS models using graph and ontology representation. For effective model sharing, an ontology
is introduced when a DEVS model is developed. To search for DEVS models in an effective and
efficient way, we propose two types of queries, IO query and structure query, and provide a method to
store and query DEVS models on an RDBMS. Finally, we experimentally show GO-DEVS can process
the queries efficiently.

Keywords: DEVS; storage/retrieval system; model sharing; ontology; graph

1. Introduction

DEVS (Discrete EVent System Specification), which was proposed by Zeigler et al., is
a formal language to describe discrete event models [1–3]. DEVS has been used widely in
modeling and simulation areas [4–6] because it has a well-formed formalism and models
can be represented by modular and hierarchical concepts in the DEVS formalism [1–3]. If
we build discrete event models using DEVS, the models can have comprehensive represen-
tations by its formal descriptions and can be used as building blocks for the future models
by its modular property. The basic building block of DEVS is an atomic model which is
similar to a finite state machine. A state is changed to the other state by an incoming mes-
sage or time out. Notice that we use message, event and port interchangeably in this paper.
A coupled model is composed by assembling atomic or coupled models through couplings.
Since a subpart of the coupled model is a DEVS model, we can construct complex models
using the hierarchical specification of DEVS. Because of the above characteristics of DEVS,
it is very useful for component-based design. One of the advantages of component-based
design is reusability. Using the component-based design concept, a complex system can
be easily built by assembling components, which can be implemented directly by system
developers themselves or borrowed from subparts of other systems for reuse. To reuse or
share DEVS models developed by many other modelers, a system to store and retrieve
a large number of DEVS models effectively and efficiently should be supported. How-
ever, to the best of our knowledge, there does not exist such a system. Therefore, we
propose GO-DEVS (Graph/Ontology-represented DEVS storage and retrieval system)
to systematically store and retrieve a huge number of DEVS models using graph and
ontology representation.

For effective DEVS model sharing among model developers, an ontology is introduced
in GO-DEVS. Ontology is a conceptualization to represent knowledge with objects and

Sensors 2021, 21, 6771. https://doi.org/10.3390/s21206771 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4681-5059
https://doi.org/10.3390/s21206771
https://doi.org/10.3390/s21206771
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21206771
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21206771?type=check_update&version=2

Sensors 2021, 21, 6771 2 of 20

their relationships [7]. Model developers should use terminologies in ontology when they
specify input and output events. To search for DEVS models from a DEVS model database,
GO-DEVS supports two types of queries, IO query and structure query. The IO query is to
find compatible components with the given input/output specification while the structure
query is to find similar components to the given component structure. To process those
queries, GO-DEVS transforms a DEVS model into the set of graphs with meta information
by decomposing the model hierarchically. The transformed data are stored on an RDBMS
(Relational DataBase Management System). Additionally, by adopting the XML encoding
scheme, GO-DEVS improves the retrieval efficiency significantly. The contributions of the
paper are as follows:

• Introduction of an Ontology to DEVS Models: To effectively reuse DEVS models
developed by other developers, models should be understood in common. To do that,
we introduce an ontology to DEVS models.

• Transformation of a DEVS Model into Graph Representation: To support the effi-
cient model retrieval, we need to represent DEVS models effectively because they
show a complicated pattern and are not easy to handle. To relieve the complexity of
DEVS model structures, we propose a method to represent them by the set of graphs
with meta information.

• Queries to Retrieve DEVS Models: To retrieve DEVS models that model developers
want to find, we propose two types of queries, IO query and structure query.

• Effective Table Design to Retrieve DEVS models: To support efficient processing
for two types of queries, we provide the basic table design and the advanced table
design. In the advanced table design, an XML numbering scheme is adopted.

2. Related Work

Originally, Zeigler et al. invented DEVS formalism [1,2]. After that, many researchers
have been extending DEVS [8,9]. Dalle and Zeigler formally embedded a component shar-
ing concept into DEVS, where multiple instances of a DEVS component can share identical
internal states [8]. Vicino et al. proposed a new time data type in DEVS [9]. Additionally,
simulators to execute DEVS models have been developed in various languages such as
C++, Java, and Python [10–12].

SES (System Entity Structure) was proposed to represent the structural knowledge in
hierarchical and modular systems and provide “plan-generate-evaluate” framework [2,13].
In terms of model reusability, its aim is similar to GO-DEVS. However, SES does not
consider the relations between components at the same level, which show a graph pattern.

Additionally, Song et al. [14] provided a conceptual methodology for model-verification
in Model-Driven Architecture (MDA) using simulation models. To map models (described
by ontologies) in MDA with models (described by SESs) in simulations, Song et al. used
the ontology matching algorithm. However, they tried to solve the problem of verifying
models in MDA while we tried to focus on storage and retrieval systems.

In the literature of databases, indexing various types of data for fast retrieval has
been studied for a long time. In particular, XML and graph data look similar to DEVS
models. To process large scale XML data, XML indexing and query processing techniques
have been developed [15,16]. To index and retrieve graph data, much work has been
conducted [17–19]. Even though many XML indexing and graph indexing techniques have
been invented, they cannot be applied to DEVS model storage and retrieval systems for
many reasons. First, since DEVS model structures are constructed layer by layer and their
internal structure shows a graph pattern, they cannot be represented by trees. Additionally,
it is not easy to effectively represent them by a simple form of graphs. Second, the query
forms for XML and graph data are not intended for retrieving data in the form of DEVS
models. Third, the approaches in XML and graph areas do not consider model sharing
among users.

In addition, query optimization has been studied extensively in the database field to
optimize the processing of queries in terms of execution times. In particular, in relational

Sensors 2021, 21, 6771 3 of 20

databases, a query optimizer is used for finding the best query execution plan [20]. It
makes multiple candidate query evaluation plans and chooses the best plan using various
techniques, such as indices, query result size estimation, early selection operation process-
ing, query rewriting with materialized views [20,21]. In [21], query optimization using
materialized views was surveyed in detail.

In many cases, studies in the modeling and simulation (M&S) area have undervalued
the computation cost or ignored the issues of storing and retrieving data. They are interest-
ing problems for researchers in the database (DB) area. Therefore, in this paper, we try to
bridge two areas in terms of DEVS model sharing.

3. Preliminary

The atomic model of DEVS (Discrete EVent System Specification) is defined below [2,3].

Definition 1. An atomic DEVS model AM is formally defined by
AM=< X, Y, S, s0, δext, δint, λ, ta >, where

X is the set of input events,

Y is the set of output events,

S is the set of model states,

s0 ∈ S is the initial model state,

δext : Q× X → S, an external transition function,

(Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)})
δint : S→ S an internal transition function,

λ : S→ Y, an output function,

ta : S→ R+, a time advance function

Basically, an atomic DEVS model can be represented by a state diagram which is
similar to a finite state machine (See Figure 1a–c). The atomic DEVS model starts from the
initial state s0. After receiving an input event (∈ X), the current state is changed to the other
state. The state change is described by the external transition function δext : Q× X → S
and is bounded by the time advance function ta. The atomic DEVS model has a different
property from the finite state machine. It has transitions by time out, which are described
by the internal transition function δint. Specifically, each state has the time limit specified
by ta and if there is no incoming event during the time limit, the state is automatically
moved to the other state by δint. Additionally, right before calling the internal transition,
the output function λ is called and generates some output events.

Figure 1a–c are atomic model examples for housing market modeling, which can be
described by a state diagram. An input port and an output port correspond to one element
of X and Y, respectively. The circle in the state diagram has two elements, state S and
time advance ta. The thick circle is the initial state s0. The arrows mean transitions by
δext or δint. The arrows with the message starting with ? represent δext while the arrows
with the message starting with ! represent δint and λ. Initially, the buyer model (Figure 1a)
waits to receive the buyer input event. We set the time advance of the initial state WAIT to
+∞ to change the state by only external transitions. After receiving the input event, the
current state of the model is changed from WAIT to REQ_SELLER. As soon as we arrive at
the REQ_SELLER state, the buyer model generates the output event request_seller and the
current state is changed to READY_SELLER since REQ_SELLER has 0 time advance. The
request_seller event will be sent to the real estate broker model (Figure 1c) and the state of
the model will be changed from WAIT to WAIT_SELLER. By the state diagrams, we can
understand how the atomic models work.

Sensors 2021, 21, 6771 4 of 20

WAIT,∞

REQ_SELLER,0

READY_SELLER,5

?buyer (buyer_id) !request_seller
(buyer_id)

!cancel_buy

WAIT,∞

REQ_BUYER,0

READY_BUYER,10

?seller
(seller_id, house_id) !request_buyer

(seller_id, house_id)
!cancel_sell

WAIT,∞

WAIT_SELLER, ∞

MATCH,0

?request_seller
(buyer_id)

? request_buyer
(seller_id,
house_id)

?cancel_buy

WAIT_BUYER, ∞

?request_buyer
(seller_id,
house_id)

?cancel_sell ?request_seller
(buyer_id)

!complete
(buyer_id, seller_id,
house_id)

buyer
(buyer_id)

request_seller
(buyer_id)
cancel_buy

Input
Port

Output
Port

Input
Port

request_buyer
(seller_id, house_id)
cancel_sell

Output
Port

seller
(seller_id,
house_id)

complete
(buyer_id,
seller_id,
house_id)

Output
Port

Input
Port

request_seller
(buyer_id)

request_buyer
(seller_id,
house_id)

cancel_buy

cancel_sell

(a) Buyer Atomic Model

(b) Seller Atomic Model

(c) Real Estate Broker

buyer
(buyer_id)

request_seller(buyer_id)

cancel_buy

Input
Port

Output Port

Input
Port request_buyer

(seller_id,
house_id)

cancel_sell

Output Port

seller
(seller_id,
house_id)

complete
(buyer_id,
seller_id,
house_id)

Output
Port

Input Port

request_seller
(buyer_id)

request_buyer
(seller_id, house_id)

cancel_buy
cancel_sell

Buyer
Atomic
Model

Seller
Atomic
Model

Real
Estate
Broker

(d) Housing Market Coupled Model

Internal Coupling (IC)

buyer
(buyer_id)

Input
Port

seller
(seller_id,
house_id)

complete
(buyer_id,
seller_id,
house_id)

Output
Port

External Input
Coupling (EIC)

External
Output
Coupling
(EOC)

Figure 1. Atomic and Coupled DEVS Model Examples for Housing Market.

A coupled DEVS model consists of subcomponents and connections (i.e., couplings)
between subcomponents. Each subcomponent of the coupled DEVS model is an atomic
DEVS model or a coupled DEVS model.

Definition 2. A coupled DEVS model CM [2,3] is formally defined by
CM=< X, Y, M, EIC, EOC, IC, Select >, where

X is the set of input events,

Y is the set of output events,

M is the set of component models,

EIC ⊆ CM.X×
⋃

m∈M
m.X : external input coupling relations,

EOC ⊆
⋃

m∈M
m.Y× CM.Y : external output coupling relations,

IC ⊆
⋃

m∈M
m.Y×

⋃
n∈M

n.X : internal coupling relations,

Select : tie− breaking f unction

For each subcomponent Mi to work together, events (i.e., event messages) should
be transmitted to each other. For event transmission, DEVS introduces an input port to
receive the input event and an output port to send the output event. A port is allowed to
receive or send only one type of event. When the input port (resp., output port) of the root
model is connected to the input port (resp., output port) of the subcomponent, it is called
EIC (resp., EOC). Additionally, it is called IC when the output port of some subcomponent
is connected to the input port of the other component. Please note that EIC, EOC and
IC stand for External Input Coupling, External Output Coupling and Internal Coupling,
respectively. Through recursive coupled model definition and couplings, a DEVS model is
hierarchically constructed, and subcomponents of the model are connected. We omit the
set of subcomponent names, D, in this definition. For more detailed explanation in DEVS,
we can refer to [2,3]. Figure 1d shows the coupled DEVS example using the atomic models.
EIC, IC and EOC are depicted by dotted lines, solid lines, and double lines, respectively.

4. Scenario and Architecture of GO-DEVS

GO-DEVS can be used for DEVS component sharing. Figure 2a shows the scenario
how a DEVS model developer can use GO-DEVS when the model developer builds a model.

Sensors 2021, 21, 6771 5 of 20

Before DEVS model construction, the model developer searches for reusable components
using GO-DEVS. To find reusable components, the model developer should write an IO
query or a structure query. After finishing writing the query, the model developer sends the
query to GO-DEVS. The model developer then chooses the appropriate component among
the retrieved components from GO-DEVS. However, the model developer might think
that all the retrieved DEVS components are useless. In that case, there are two options for
the model developer. The first option is to rewrite the query and check other retrieved
components. The second option is to directly build a new component. When the model
developer builds a new component, input and output ports of the component should be
designed with the pre-constructed input/output event ontology. Through the processes
above, the model developer can build his/her own DEVS model. After that, the model
developer can store some of components into GO-DEVS for DEVS model sharing.

Figure 2. Scenario and Architecture of GO-DEVS.

The architecture of GO-DEVS is illustrated in Figure 2b. GO-DEVS consists of Storage
Engine and Query Engine. The storage engine transforms any DEVS model into the
set of graphs with meta information and effectively stores them into a DBMS. Because
DEVS models show complicated patterns and hierarchically constructed structures, we
represent their structures by the set of graphs with meta information, which are easy to
understand and manage. Therefore, the storage engine has a module, called DEVS-to-
Graph Transformation Module, to transform a DEVS model into the set of graphs with
meta information. After transforming the DEVS model, the storage engine stores it into
a DBMS.

The query engine supports two types of queries, IO query and structure query. The
IO query is to find reusable components by input/output event specifications while the
structure query is to find reusable components by structural information. In the case of
the structure query, it is not intuitive to input the structural information by text string.
Therefore, the query engine might provide GUI (Graphical User Interface) to input the
structure query. However, we will not deal with GUI in this paper since it is beyond the
scope of this paper.

5. Ontology and Graph Representation in GO-DEVS

For model sharing among different model developers, a common representation
language is necessary. Ontology is one of the best tools for that. Therefore, we assume
that input and output events of DEVS models are specified by ontology. Even if we can

Sensors 2021, 21, 6771 6 of 20

use various types of well-expressive ontology representations, we use a taxonomy, one
of the simplest ontology representations. This is because we do not focus on ontology
representation, but on the model retrieval system. For DEVS model sharing, model devel-
opers should specify input and output events by the common event taxonomy. Figure 3
shows the example of the event taxonomy. An event in DEVS modeling might have
some values to describe the detail of the event. Thus, each node in the event taxonomy
is represented by EventName(ValueType). EventName is the event name and ValueType is
the value type of the event. When we define a value type, wild cards (i.e., void, *, -)
are allowed. Please note that if event e1 is an ancestor of event e2 on the taxonomy, the
range of the value type of e1 should include that of e2. Based on the event taxonomy
above, an event is defined as a series of terms from the root node of the taxonomy to
the target node of the taxonomy. For instance, we can describe the BuyHouse1 event by
Common_Event_Taxonomy.Economics.Housing_Market.BuyHouse.BuyHouse1.

Common_Event_Taxonomy(*)

Social_Science(*) Civil_Engineering(*) Economics(*)

Housing_Market(*)

BuyHouse(*) SellHouse(*)

BuyHouse1(ID) BuyHouse2(HouseInfo)

…

…
… …

ValueType
void: no value
* : any thing including “void”
- : any thing not including “void”
ID: Integer
Price: Integer
HouseInfo: <ID, Price>
R: Real Number
…BuyHouse2(void)

Match(-)

MatchHouse(-)
MatchAgency(-)

HouseMarketInfo(*)

AgencyInfo(*) EconomicInfo(*)

InterestRate(R) LTV(R)DTI(R)

Figure 3. Common Taxonomy Example.

A DEVS model can have a very complicated structure such as Figure 4a and is not
easy to manipulate and understand. To transform the DEVS model into a simpler form,
let us consider the case of a coupled model first. We can observe a coupled DEVS model
layer by layer. For example, see the DEVS model of Figure 4a. Even though it has
multiple layers and shows the complicated structure, we can see the top layer (i.e., level
1) first. The top layer consists of just B, C and D subcomponents as shown in Figure 4b.
It has a much simpler shape than the original full structure. Then, we can observe the
B component at the next layer (i.e., level 2) as shown in Figure 4c. In this way, we can
observe the complicated structure of the coupled DEVS model by hiding the details of its
subcomponents as shown in Figure 4b–m (Level 1: A, Level 2: B, C, D, Level 3: E, F, G, H, I,
J, Level 4: K, L). For effective representation of the model structure, we introduce the block
unit. Informally speaking, the block unit is the component structure without the details of
its subcomponents. The block unit is illustrated in Figure 5.

(a) DEVS model example (b) Root block at level 1

(c) B component
block at level 2

(d) C component
block at level 2

(e) D component
block at level 2

(j) I component
block at level 3

DID1 OD1

EIE1

IE2
OE1

F
IF1 OF1

GIG1

IG2
OG1

H
IH1

OH1
OH2

I

K L

II1 OI1

(f) E component
block at level 3

(g) F component
block at level 3

(h) G component
block at level 3

(i) H component
block at level 3

J
IJ1 OJ1

(k) J component
block at level 3

K
IK1 OK1

(m) L component
block at level 4

L
IL1 OL1

(l) K component
block at level 4

CB
A

E

G H

F
I

D

J

K L
IA1

IA2

IB1

IB2

IE1

IE2

IG1

IG2

OE1

IF1

OF1

OG1

IH1

OH1

OH2

OB1

IC1

ID1

OC1

OD1

IJ1 OJ1

II1 OI1

IK1 OK1

IL1

OL1

OA1

CB
A

D

IA1

IA2
OA1

B
E

G H

F
IB1

IB2
OB1

C
I

J

IC1 OC1

Figure 4. DEVS Example.

Sensors 2021, 21, 6771 7 of 20

 Meta Info
- Block ID: 1
- Parent Block ID: -
- Parent Block Node ID: -
- Block Root Node ID: A
- Input Ports: IA1, IA2
- Output Ports: OA1

(a) Block1 (b) Block2

C’’

I’’ J’’

(c) Block3

Graph G3

 Meta Info
- Block ID: 2
- Parent Block ID: 1
- Parent Block Node ID: B
- Block Root Node ID: B’
- Input Ports: IB1, IB2
- Output Ports: OB1

 Meta Info
- Block ID: 3
- Parent Block ID: 1
- Parent Block Node ID: C
- Block Root Node ID: C’’
- Input Ports: IC1
- Output Ports: OC1

C’’

I’’ J’’

Graph G3

(d) Relationships between
Block1, Block2 and Block3

A

B C

DGraph G1

A

B
C

D
Graph G1

B’

E’ F’

H’

Graph G2

G’

B’

E’ F’

H’

Graph G2

G’

Block2 Block1
Block3

Figure 5. Block Units in Example of Figure 4.

The block unit has two elements <G, M>, where G is the graph and M is the block
meta information. M consists of block id, parent block id, parent block node id, block root
node id, input ports and output ports. The block id is the block identifier. The block is
connected to some node of its parent block, which is denoted by parent block id and parent
block node id. For example, Block 2 is connected to the B node of Block 1 in Figure 5d. The
block root node means the component itself. Graph G represents the relationships between
subcomponents or the relationships between the block root node and subcomponents. The
arrows from the block root node to non-root nodes correspond to EICs and the arrows from
non-root nodes to the block root node correspond to EOCs and the arrows among non-root
nodes correspond to ICs. Because two nodes can be connected with several ports, there
might be multiple edges between nodes.

Next, an atomic model can be represented by a graph in a different way. The atomic
model can be described by a state-transition diagram and has a similar structure to a graph.
See the atomic DEVS examples of Figure 1. If we consider states of the atomic model by
nodes and transitions of the atomic model by edges, we can easily represent the atomic
model by the graph. An atomic model is also denoted by the block unit <G, M>. However,
G is not the graph for the component structure but the graph for state transitions above
and the edge of G is represented in a different way . Additionally, the block root node id of
M is empty. In summary, we can represent a DEVS model by multiple block units and each
block unit has graph G and meta information M.

6. Queries for DEVS Model Retrieval

We propose two types of queries, IO query and structure query, for effective retrieval and
reuse. The IO query is a simple query to find components with the compatible input and
output events. The IO query form is illustrated in Figure 6a. The query is considered to be a
black box DEVS model where only input and output ports (i.e., events) are specified. Based
on the event taxonomy, we can formally define the IO-compatibility among components.

BuyHouse

SellHouse
MatchHouse

Housing
MarketInfo

BuyHouse

AgencyInfo
MatchAgency…

Black
Box

BuyHouse

SellHouse
MatchHouse

(e) Model3(d) Model2

(c) Model1

(f) Model4

(b) IO Query Example

Match
AgencyInfo

InterateRate
LTV

DTI

…

Black
Box

Input
Ports

Output
Ports

Match
BuyHouse

SellHouse

…

(a) IO Query Form

Figure 6. IO Query Examples.

Sensors 2021, 21, 6771 8 of 20

Definition 3. Component A with input event set XA and output event set YA, is IO-compatible
with component B with input event set XB and output event set YB, denoted by A→io B, if

(1) ∀xA ∈ XA, ∃xB ∈ XB where xB is located at the same position as xA or the ancestor position
of xA on the event taxonomy.

(2) ∀yA ∈ YA, ∃yB ∈ YB where yB is located at the same position as yA or the ancestor position
of yA on the event taxonomy.

The IO query is to find a set of components, C = {c ∈ MDB|q →io c}, where q is
the given IO query and MDB is a DEVS model database collected in the central server for
model sharing. Figure 6 shows the IO query example. Given the IO query q in Figure 6b,
GO-DEVS finds DEVS models c such that q→io c. The result of the query is (c) and (e) in
Figure 6. Please note that Match is an ancestor of MatchHouse (See Figure 3).

The structure query is a query to find structurally similar components. In the structure
query, we focus on how subcomponents are hierarchically constructed and how subcompo-
nents are connected. We do not handle the internal structures of atomic subcomponents
because it is too detailed for users to specify. As we mentioned in Section 5, a DEVS model
structure is represented by the set of block units. To find components with similar struc-
tures, we specify the pattern in a block unit and the relationship between blocks. It is called
the block statement. Specifically, the block statement has Block Statement ID, Parent Block
Statement ID, Parent Block Statement Node ID, Topological Relationship, Graph Pattern,
and Root Node. Block Statement ID is the identifier for the block statement. It is used to
refer to the relationship between blocks. One block statement corresponds to one block
unit. Parent Block Statement ID is the identifier for the parent block statement. Parent
Block Statement Node ID is the node identifier in the parent block statement. A block
is connected to some node V of the parent block as explained in Section 5. Parent Block
Statement Node ID corresponds to the node V. Topological Relationship has two types,
(Direct/Indirect). The direct relationship (/) represents the parent-child relationship and the
indirect relationship (//) represents the ancestor-descendant relationship. In the indirect
relationship, there can exist another block between Block A and Block B, where Block A is
the block corresponding to Block Statement ID and Block B is the block corresponding to
Parent Block Statement ID. Graph Pattern is a structure specification described by graph
representation. Root Node is the root node of the Graph Pattern. The root node means the
outmost model.

For structural similarity in a block, we adopt graph pattern queries (For structural
search, we consider not multigraphs but simple graphs. Even though each block is repre-
sented by a multigraph G(V,E), we can easily reduce the multigraph to the simple graph.).
There are many types of graph pattern queries such as subgraph query (with/without
labels), supergraph query, similar query [17–19,22–25]. In this paper, we use the subgraph
query without labels since there is no standard graph similarity measure and the subgraph
query without labels includes at least the pattern structure which the user wants to find.
Figure 7 shows the subgraph query (without labels) example. Given the graph query in
Figure 7a, the subgraph query finds graphs that contain the graph structure of the query
without considering labels. In case (c), if we use the mapping a–o, b–m, c–n and d–l, we
can say that graph (c) contains the query in terms of subgraph isomorphism. In a similar
way, we are sure that (d) contains (a). Therefore, the result for the subgraph query (a) is (c)
and (d).

a

b

c d

(a) Graph query

p

q

r s o

l

m n

(b) Graph 1 (c) Graph 2 (d) Graph 3

a b

c d

e f

Figure 7. Subgraph Query Example.

Sensors 2021, 21, 6771 9 of 20

Until now, we explained a single block statement. The structure query consists of
multiple block statements. Each block B1 can be connected to another block B2, which is
described by Parent Block Statement ID, Parent Block Statement Node ID, and Topological
Relationship. If Topological Relationship is specified by direct, block B1 should be connected
directly to its parent block B2, i.e., the level difference between B1 and B2 is 1. However,
if Topological Relationship is specified by indirect, the level difference between B1 and
B2 can be more than or equal to 1. Thus, the structure query finds DEVS models whose
block structures meet the given multiple block statements. Figure 8 shows the structure
query example with 3 block statements. Block statement 1 specifies the outmost structure.
The graph pattern of block statement 1 is shown in the bottom of Figure 8a. According to
block statement 2 (See Figure 8b), block 2 should be directly connected to block 1 through
node b, where block 1 and block 2 correspond to block statement 1 and block statement 2,
respectively. Additionally, according to block statement 3 (See Figure 8c), block 3 should be
indirectly connected to node c of block 1, where block 3 corresponds to block statement 3.
Relationships among 3 block statements are depicted in Figure 8d. Please note that the
DEVS model in Figure 4a meets this structure query.

a

b c

 Block Statement ID: 1
 Parent Block Statement ID:
 Parent Block Statement Node ID:
 Topological Relationship:
 Graph Pattern: G1(V1, E1)
 Root Node ID: a

b

e

g h

k

 Block Statement ID: 2
 Parent Block Statement ID: 1
 Parent Block Statement Node ID: b
 Topological Relationship: direct(/)
 Graph Pattern: G2(V2, E2)
 Root Node ID: b

 Block Statement ID: 3
 Parent Block Statement ID: 1
 Parent Block Statement Node ID: c
 Topological Relationship: indirect(//)
 Graph Pattern: G3(V3, E3)
 Root Node: k

(a) block statement 1 (b) block statement 2

(c) block
statement 3

G1(V1, E1) G2(V2, E2)
G3(V3, E3)

Block Statement 1

Block
Statement 2

Block
Statement 3

direct
indirect

(d) block
structure

Figure 8. Structure Query Example.

7. Storing DEVS Models in GO-DEVS

To store DEVS models, we use an RDBMS because it is very mature and stable. We
will first show the basic relational table design in Section 7.1 and the advanced relational
table design in Sections 7.2 and 7.3. For convenience, we use the abbreviated table names
instead of full table names as shown in Figure 9.

Full Table Name Abbreviated Table Name Full Table Name Abbreviated Table Name

DEVS_NODE_TAB dnode_t TAXONOMY_VALUE_TAB taxo_val_t

DEVS_EDGE_TAB dedge_t TRANSITIVE_TAXONOMY_TAB tran_taxo_t

ATOMIC_NODE_TAB anode_t DEVS_COMPACT_EDGE_TAB compact_dedge_t

ATOMIC_EDGE_TAB aedge_t TRANSITIVE_BLOCK_TAB tran_block_t

BLOCK_TAB block_t INPUT_PORT_TAB_AD ip_ad_t

INPUT_PORT_TAB ip_t OUTPUT_PORT_TAB_AD op_ad_t

OUTPUT_PORT_TAB op_t TAXONOMY_TAB_AD taxo_ad_t

TAXONOMY_TAB taxo_t BLOCK_TAB_AD block_ad_t

Figure 9. Abbreviated Table Name.

7.1. Basic Table Design

In Section 5, we provided a method to transform a DEVS model into multiple blocks.
A block consists of G and M, where G is a multigraph with nodes V and edges E and M is
meta information. We design dnode_t, dedge_t, anode_t and aedge_t to store G and design
block_t, ip_t and op_t for the meta information M. dnode_t and dedge_t are tables to store
graph data G from coupled models while anode_t and aedge_t are tables to store graph
data G from atomic models. Since graphs from coupled and atomic models show different
forms, we store them to separate tables. Figure 10a shows the basic table design. block_t
is the table to store block id, parent block id, parent block node id and block root node
id in the meta information. taxo_t and taxo_val_t are the tables to store tree nodes and

Sensors 2021, 21, 6771 10 of 20

their values in the common taxonomy, respectively. We add the column parent_event_id to
taxo_t to express the parent-child relationship of the taxonomy.

model_id block_id state ta is_initial model_id block_id from_state to_state transition_event_id transition_type
ATOMIC_NODE_TAB (anode_t) ATOMIC_EDGE_TAB (aedge_t)

model_id block_id event_id

model_id block_id event_id

INPUT_PORT_TAB (ip_t)

OUTPUT_PORT_TAB (op_t)
event_id event_name parent_event_id level

TAXONOMY_TAB (taxo_t)
event_id value_type

TAXONOMY_VALUE_TAB (taxo_val_t)

model_id block_id node_id
DEVS_NODE_TAB (abbr: dnode_t)

model_id block_id from_node_id from_port_id to_node_id to_port_id coupling_type
DEVS_EDGE_TAB (dedge_t)

model_id block_id from_node_id to_node_id

DEVS_COMPACT_EDGE_TAB (compact_dedge_t)

model_id block_id block_root_node_id parent_block_id parent_block_node_id
BLOCK_TAB (block_t)

TRANSITIVE_BLOCK_TAB (tran_block_t)
iteration model_id block_id block_root_node_id parent_block_id parent_block_node_id

iteration event_id event_name parent_event_id level

TRANSITIVE_TAXONOMY_TAB (tran_taxo_t)

model_id block_id event_start event_end model_id block_id event_start event_end

INPUT_PORT_TAB_AD (ip_ad_t) OUTPUT_PORT_TAB_AD (op_ad_t)
event_id event_start event_end event_name level

TAXONOMY_TAB_AD (taxo_ad_t)

model_id block_id block_start block_end block_root_node_id parent_block_id parent_block_node_id block_level

BLOCK_TAB_AD (block_ad_t)

(b) Advanced Table Design for IO Query

(c) Advanced Table Design for Structure Query

(a) Basic Table Design

Figure 10. Table Designs.

To process the IO query q, we must check if the ports of q and component c have the
same path on the taxonomy tree. To do that, we should perform multiple self-joins on
taxo_t and it will raise the heavy processing cost. Therefore, we precompute all the pairs
for ancestor nodes and descendant nodes by evaluating the transitive closure of edges
< event_id, parent_event_id >. The result is stored on tran_taxo_t.

The structure query is a query to find structurally similar components and consists
of block statements. Structural characteristics can be specified by the graph pattern of the
block statement. Since we use a simple graph to investigate structural similarity, we reduce
multigraphs into simple graphs. We make the edges of simple graphs by running the
SQL statement of "INSERT INTO compact_dedge_t SELECT distinct model_id, block_id, f rom_node_id, to_node_id FROM

dedge_t". It is stored on compact_dedge_t. A block statement has the topological relation as
a condition. If the topological relation is indirect, we must check if two blocks have the
ancestor-descendant relationship. However, block_t has just the parent-child relationship.
In a similar way to taxo_t, we can evaluate the transitive closure of block_t in terms of
< block_id, parent_block_id >. The transitive closure is stored on tran_block_t.

7.2. Advanced Table Design for IO Query

In the basic table design, we made tran_taxo_t to avoid the self-join operations on
taxo_t. However, in the case of deep taxonomy trees, much more records can be produced
compared to the original table taxo_t and it will raise another cost to store records and join
with other tables. To solve it, we can adopt the region numbering scheme [26] which is one
of XML numbering techniques to check node relationships. We will briefly introduce the
region numbering.

Theorem 1. [26] Suppose a tree T(V,E). We assign two numbers (start, end) to each node in V as
follows. We traverse all the nodes of T in the depth-first order with counter. When we visit some
node for the first time, we assign the counter value to start of that node. When we visit some node
for the last time, we assign the counter value to end of that. counter increases whenever the value
is assigned. Then, for any u,v ∈ V, u is an ancestor of v in the tree T iff u.start < v.start and v.end
< u.end.

The conditions of u.start < v.start and v.end < u.end can be expressed by intervals,
[v.start, v.end] ⊂ [u.start, u.end]. The example of the region numbering scheme is shown in
Figure 11. We assign two numbers [start, end] to each event of the taxonomy by traversing

Sensors 2021, 21, 6771 11 of 20

the taxonomy tree. By the property of the region numbering scheme, we can easily
check if any two events are in the ancestor-descendant relationship. Suppose that event
ev1 has [s1, e1] and event ev2 has [s2, e2] according to the region numbering scheme. If
[s1, e1] ⊂ [s2, e2], we can say that ev2 is the ancestor of ev1. Otherwise, ev1 and ev2 are
not in the ancestor-descendant relationship. Please note that the ancestor-descendant
relationship includes the parent-child relationship and we can also know that ev1 and ev2
are in the parent-child relationships by checking two formulas, (1) [s1, e1] ⊂ [s2, e2] and (2)
ev2.level = ev1.level + 1.

a

b c d

f g

h ie

[1, 18]

[2, 5]

[3, 4]

[7, 8]

[10, 11] [12, 13]

[9, 14]

(6, 15)
[16, 17] See region numbers of c, i and e.

- Since [12, 13] [6, 15],
c is an ancestor of i.

- Since [3, 4] ⊄ [6, 15],
c is not an ancestor of e.

⊂

Figure 11. Region Numbering Example.

Based on this concept, we provide the advanced table design for input and output
events in Figure 10b. In the tables for input and output ports, we use event_start and
event_end instead of event_id to easily check if two events have the ancestor-descendant
relationship. The tables are named ip_ad_t and op_ad_t. Additionally, in the table for the
taxonomy, we add event_start and event_end. This is named taxo_ad_t. In the advanced
table design for IO queries, we use ip_ad_t, op_ad_t and taxo_ad_t instead of ip_t, op_t and
tran_taxo_t.

7.3. Advanced Table Design for Structure Query

The structure query contains the condition for the topological relationship between
blocks. To efficiently check relationships between two blocks, we adopt the region num-
bering scheme in the same way as Section 7.2. A DEVS model is transformed into blocks
with meta information and blocks can be constructed into the tree structure. We assign two
region numbers to each block while traversing the tree structure of blocks by depth-first
search. In the advanced table design, two numbers of each block are added to block_t.
We name it block_ad_t as shown in Figure 10c. block_start, block_end and block_level of
block_ad_t correspond to two region numbers of the block and the level of the block in the
tree structure. Because the advanced table design for structure queries uses the region
numbering scheme when we check block relationships, tran_block_t is not necessary.

8. Processing Queries in GO-DEVS

To process two types of queries, we propose a method to translate them into SQL
queries. We will describe the translation of IO queries in Section 8.1 and the translation of
structure queries in Section 8.2.

8.1. IO Query Processing

In this section, we provide a method to translate an IO query into the SQL query in the
basic table design and in the advanced table design. Given IO query q = (IPs, OPs) where
IPs are the set of input ports (={ip1, ip2, · · · , ipm}) and OPs are the set of output ports
(={op1, op2, · · · opn}), the IO query should return components c such that the given IOs and
OPs are compatible with c. If we do not consider the IO-compatibility, we can transform
the IO query into the SQL in Figure 12a. We assume ip1, ip2, · · · , ipm and op1, op2, · · · opn
are port IDs. By joining m ip_t and n op_t and adding selection conditions for the given
input/output event IDs and conditions for uniqueness, we can write the SQL query. For
simplicity, we show the query translation when m is 2 and n is 2 as an example (See
Figure 12a). However, the SQL query in Figure 12a cannot find all the IO-compatible
components but the components with the same ports as the given query.

Sensors 2021, 21, 6771 12 of 20

SELECT distinct it1.model_id, it1.block_id
FROM INPUT_PORT_TAB it1, INPUT_PORT_TAB it2, OUTPUT_PORT_TAB ot1, OUTPUT_PORT_TAB ot2
WHERE it1.event_id = ip1 and it2.event_id = ip2 and ot1.event_id = op2 and ot2.event_id = op2 and /* Selection conditions for the given events */

it1.model_id = it2.model_id and it1.block_id = it2.block_id and it2.model_id = ot1.model_id and it2.block_id = ot1.block_id and
ot1.model_id = ot2.model_id and ot1.block_id = ot2.block_id /* Join conditions for connecting input/output tables */
not(it1.event_id = it2.event_id) and not(ot1.event_id = ot2.event_id) /* Conditions for uniqueness */

(a) QueryTranslation in BasicTable Design without IOcompatibility

SELECT distinct it1.model_id,it1.block_id
FROM INPUT_PORT_TAB it1, INPUT_PORT_TAB it2, OUTPUT_PORT_TAB ot1, OUTPUT_PORT_TAB ot2, TRANSITIVE_TAXONOMY_TAB tt1,

TRANSITIVE_TAXONOMY_TABtt2, TRANSITIVE_TAXONOMY_TAB tt3, TRANSITIVE_TAXONOMY_TAB tt4
WHERE tt1.event_id = ip1 and tt2.event_id = ip2 and tt3.event_id = op1 and tt4.event_id = op2 and /*Selection conditions for the given events */

tt1.parent_event_id = it1.event_id and tt2.parent_event_id = it2.event_id and
tt3.parent_event_id = ot1.event_id and tt4.parent_event_id = ot2.event_id and /*Conditions for ancestor-descendant relationships */
it1.model_id = it2.model_id and it1.block_id = it2.block_id and it2.model_id = ot1.model_id and it2.block_id = ot1.block_id and
ot1.model_id = ot2.model_id and ot1.block_id = ot2.block_id and /*Join conditions for connecting input/output tables
not(it1.event_id = it2.event_id) and not(ot1.event_id = ot2.event_id) /*Conditions for uniqueness */

(b) QueryTranslation in BasicTable Design

SELECT distinct it1.model_id, it1.block_id
FROM AD_INPUT_PORT_TAB it1, AD_INPUT_PORT_TAB it2, AD_OUTPUT_PORT_TAB ot1, AD_OUTPUT_PORT_TAB ot2
WHERE it1.event_start<=ip1_start and it1.event_end>=ip1_end and it2.event_start<=ip2_start and it2.event_end>=ip2_end and ot1.event_start<=op1_start

and ot1.event_end >= op1_end and ot2.event_start <= op2_start and ot2.event_end >= op2_end and /* Conditions for region numbers */
it1.model_id = it2.model_id and it1.block_id = it2.block_id and it2.model_id = ot1.model_id and it2.block_id = ot1.block_id and
ot1.model_id = ot2.model_id and ot1.block_id = ot2.block_id /* Join conditions for connecting input/output tables */
not(it1.event_start = it2.event_start) and not(ot1.event_start = ot2.event_start) /* Conditions for uniqueness */

(c) Query Translation in Advanced Table Design

Figure 12. Query Translation for IO Query.

To find all the IO-compatible components in the basic table design, we should use
tran_taxo_t. tran_taxo_t contains all the pairs for events and their ancestor events on the
taxonomy tree. For the IO query translation with the IO-compatibility, we join m ip_t (Table
Name: it1, it2, · · · , itm), n op_t (Table Name: ot1, ot2, · · · ., otn) and m+ n tran_taxo_t (Table
Name: tt1, tt2, · · · , ttm+n) with four kinds of conditions, Selection conditions for the given m
input events and n output events, Conditions for ancestor-descendant relationships, Join conditions
for connecting input/output tables, Conditions for uniqueness.

The complete SQL query for the IO query in the basic table design is shown in
Figure 12b. The SQL query in the basic table design has m + n joins with tran_taxo_t and
the size of tran_taxo_t can be big. Therefore, executing the SQL query in the basic table
design may spend much time. In the advanced table design, we can avoid joins with
tran_taxo_t using region numbers. To translate the IO query into the SQL query in the ad-
vanced table design, we should first obtain the region numbers of the given input/output
events (ip1, ip2, · · · ipm, op1, op2, · · · , opn) from taxo_ad_t. If we let the region numbers of
ipi (resp., opi) be ipi_start and ipi_end (resp., opi_start and opi_end), we add the conditions
for the ancestor-descendant relationship between two events as follows:
it1.event_start <= ip1_start and it1.event_end >= ip1_end, · · · ,
itm.event_start <= ipm_start and itm.event_end >= ipm_end,
ot1.event_start <= op1_start and ot1.event_end >= op1_end, · · · ,
otn.event_start <= opn_start and otn.event_end >= opn_end

The complete query for the IO query in the advanced table design is shown in
Figure12c. The join conditions for connecting input/output tables and the conditions
for uniqueness are added such as the IO query translation in the basic table design.

8.2. Structure Query Processing

Algorithm 1 shows a method to translate a structure query into the SQL query in
the basic table design. Since a structure query consists multiple block statements, we
translate each block statement into the partial SQL statement and merge them to make
the complete SQL statement. In Line 1, we initialize sqlQuery which has the SELECT
part, the FROM part and the WHERE part. In Lines 2–12, each block statement BSi is
translated to the partial SQL query. It is appended to sqlQuery. We add tran_block_t
Bi to the FROM clause of sqlQuery (Line 3). Bi can be considered to be the block table
name corresponding to BSi. To process the ancestor/descendant relationship between

Sensors 2021, 21, 6771 13 of 20

blocks, we must use tran_block_t instead of block_t. If the block statement has its parent
block id (i.e., the block statement is not in the top), we add the join conditions with the
parent block according to the relation types (Lines 5–9). If the parent block (Bp) and the
current block (Bi) are connected indirectly (i.e., the ancestor/descendant relationship),
we add the join condition for the relationship, Bi.parent_block_id = Bp.block_id (Lines 6–7).
Additionally, to prevent blocks in different models from being joined, we add the condition,
Bi.model_id = Bp.model_id. If the parent block (Bp) and the current block (Bi) are connected
directly (i.e., the parent/child relationship), we add the join conditions similar to the
indirect case above (Lines 8–9). However, in this case, we add the additional condition
Bi.iteration=1.

Algorithm 1: translateStructureQuery_BASIC()
Input: structure query
Output: SQL query

1 initialize sqlQuery
2 for each block statement BSi do
3 add the table name (Bi) of TRANSITIVE_BLOCK_TAB to the FROM clause of sqlQuery

TRANSITIVE_BLOCK_TAB Bi

4 if BSi has the parent block id then
5 let Bp be the table name of the parent block
6 if BSi ’ s topological relationship is INDIRECT then
7 add the following join conditions to the WHERE clause of sqlQuery

Bi .model_id = Bp .model_id and Bi .parent_block_id = Bp .block_id
8 else
9 add the following join conditions to the WHERE clause of sqlQuery

Bi .model_id = Bp .model_id and Bi .parent_block_id = Bp .block_id and Bi .iteration = 1

10 column_name = Find the column name pointing to BSi’ parent block node
(i.e., Vq .node_id if the parent block node is an isolated node and its node table is Vq ,

Eq .from_node_id if the parent block node corresponds to the source node from edge tab Eq ,
Eq .to_node_id if the parent block node corresponds to the destination node from edge tab Eq)

11 add the following condition to the WHERE clause of sqlQuery
Bi .parent_block_node_id = column_name

12 translateGraphPattern(sqlQuery, BSi .graph_pattern, Bi)

13 write the SELECT clause of sqlQuery
B1.model_id, B1.block_id (B1 is the top block)

14 make the complete SQL query statement by sqlQuery and return the complete SQL query

By the conditions above, we can connect the current block to the parent block. How-
ever, we should also add the condition for the parent block node because the current
block is connected to some node in the parent block. To do that, we add the condition
Bi.parent_block_node_id = column_name (Lines 10–11). column_name is the column name
pointing to the parent block node. In Line 12, we translate the graph pattern into the SQL
query which will be described later. Finally, we can make the complete SQL query in
Lines 13–14.

Algorithm 2 shows an algorithm to translate a structure query into the SQL query in
the advanced table design. In Lines 2–15, each block statement is translated to the partial
SQL query and in Lines 16–17, the final SQL query is made. In the advanced table design,
we use block_ad_t instead of tran_block_t (Line 3). If the block statement has its parent block
id (i.e., the block statement is not in the top), we add the join conditions with the parent
block according to the relation types (Lines 4–14).

If the parent block (Bp) and the current block (Bi) are topologically on the ances-
tor/descendant relationship, we add the conditions in Line 8. The ancestor/descendant
relationship between two blocks is identified using region numbers of block_ad_t. Even
though the region numbers of block_ad_t can identify block relationships, they cannot check
the parent block node. Because the child block can come from any node in the parent block,
we should check parent_block_node_id. To give the condition on parent_block_node_id, we
add auxiliary block_ad_t, which is a block node directly below Bp, to the FROM clause (Line 7).
Additionally, we add the conditions to the WHERE clause as shown in Line 8. Bi_aux corre-
sponds to a child block of Bp and Bi corresponds to a descendant block of Bp including a child

Sensors 2021, 21, 6771 14 of 20

block. After that, we add the condition on Bi_aux.parent_block_node_id = column_name
(Lines 9-10). If the parent block (Bp) and the current block (Bi) are topologically on the par-
ent/child relationship, we add Bi.model_id = Bp.model_id and Bi.parent_block_id = Bp.block_id
to give the join conditions for the parent-child relationship (Line 12) and we add the condition
on parent_block_node_id (Lines 13-14). This part is almost the same as that of Figure 1. How-
ever, the part does not include Bi.iteration = 1 because block_ad_t has only one record for the
parent node while tran_block_t has many parent nodes (i.e., ancestor nodes) for each node.

Algorithm 2: translateStructureQuery_ADVANCED()
Input: structure query
Output: SQL query

1 initialize sqlQuery
2 for each block statement BSi do
3 add the table name (Bi) of BLOCK_TAB_AD to the FROM clause

BLOCK_TAB_AD Bi

4 if BSi has the parent block id then
5 let Bp be the table name of the parent block and Bi_aux be the auxiliary table name
6 if BSi’s topological relationship is INDIRECT then
7 add the table name (Bi_aux) of BLOCK_TAB_AD to the FROM clause

BLOCK_TAB_AD Bi_aux

8 add the following join conditions to the WHERE clause of sqlQuery
Bp .model_id = Bi_aux .model_id and Bp .block_id = Bi_aux .parent_block_id and
Bi_aux .model_id = Bi .model_id and Bi_aux .block_start ≤ Bi .block_start and Bi_aux .block_end ≥

Bi .block_end
9 column_name = Find the column name pointing to BSi’ parent block node

10 add the following condition to the WHERE clause of sqlQuery
Bi_aux .parent_block_node_id = column_name

11 else
12 add the following join conditions to the WHERE clause

Bi .model_id = Bp .model_id and Bi .parent_block_id = Bp .block_id
13 column_name = Find the column name pointing to BSi’ parent block node
14 add the following condition to the WHERE clause of sqlQuery

Bi .parent_block_node_id = column_name

15 translateGraphPattern(sqlQuery, BSi .graph_pattern, Bi)

16 write the SELECT clause of sqlQuery
B1.model_id, B1.block_id (B1 is the top block)

17 make the complete SQL query statement by sqlQuery and return the complete SQL query

Algorithm 3 shows an algorithm to translate the graph pattern in both the basic table
design and the advanced design (i.e., translateGraphPattern() algorithm). Basically, we
map each edge to the edge table (i.e., compact_dedge_t) and we add the join conditions
with the block to consider edges in only the same block. After that, we add conditions of
connecting edges according to the node type. For brevity, we omit the detailed explanation
of the algorithm.

Sensors 2021, 21, 6771 15 of 20

Algorithm 3: translateGraphPattern()
Input: SQL Statement sqlQuery, Graph Pattern G, Block Table Name B
Output: SQL Statement sqlQuery

1 add the table names to the FROM clause of sqlQuery
by mapping each edge to the table name of DEVS_COMPACT_EDGE_TAB
DEVS_COMPACT_EDGE_TAB E1, DEVS_COMPACT_EDGE_TAB E2, . . . , DEVS_COMPACT_EDGE_TAB En

2 For each edge, add the join conditions with the block to the WHERE clause
E1.block_id = B.block_id and E1.model_id = B.model_id
E2.block_id = B.block_id and E2.model_id = B.model_id
...
En .block_id = B.block_id and En .model_id = B.model_id

3 for for each node N do
4 if N has both incoming edges and outgoing edges then
5 let Ele f t1 , Ele f t2 , Ele f t3 , . . . , Ele f tp be edges heading to N from incoming nodes
6 let Eright1 , Eright2 , Eright3 , . . . , Erightq edges heading to outgoing nodes from N
7 for i=1 to q do
8 add Ele f t1 .to_node_id = Erighti .from_node_id to the WHERE clause of sqlQuery

9 for i=2 to p do
10 add Ele f ti .to_node_id = Eright1 .from_node_id to the WHERE clause of sqlQuery

11 if N has only incoming edges then
12 let Ele f t1 , Ele f t2 , Ele f t3 , . . . , Ele f tp be edges heading to N from incoming nodes
13 for i=2 to p do
14 add Ele f t1 .to_node_id = Ele f ti .to_node_id to the WHERE clause of sqlQuery

15 if N has only outgoing edges then
16 let Eright1 , Eright2 , Eright3 , . . . , Erightq edges heading to outgoing nodes from N
17 for i=2 to q do
18 add Eright1 .from_node_id = Erighti .from_node_id to the WHERE clause of sqlQuery

19 if N is an isolated node then
20 add the node table name corresponding to N to the FROM clause of sqlQuery

DEVS_NODE_TAB VN

21 add the join conditions corresponding to N to the WHERE clause of sqlQuery
VN .block_id = B.block_id and VN .model_id = B.model_id

22 if N is the root node then
23 add the block root node condition to the WHERE clause of sqlQuery

B.block_root_node_id = column name pointing to the root node

24 add the conditions for uniqueness to the WHERE clause of sqlQuery and return sqlQuery

9. Experiments

In this section, we will show experimentally that GO-DEVS can process IO queries
and structure queries efficiently.

9.1. Experimental Environment

To measure the performance of GO-DEVS, we generated synthetic data and queries.
The reason we use synthetic data and queries is because this work is the first system
to support storing and retrieving many DEVS models using ontologies to the best of
our knowledge and therefore we could not find DEVS models whose input and output
messages are designed using ontologies. We ran queries on Intel CPU (core i7-1.80 GHz)
with 24.0 GB of memory and used MariaDB 10.5 as an RDBMS. The query execution time
was measured by running queries 10 times and averaging them. To improve the query
performance, we added indices in both the basic table design and the advanced table
design properly.

GO-DEVS uses a taxonomy for DEVS sharing. To generate the taxonomy data, we
used the well-known synthetic XML data [27,28]. Even though the synthetic XML data are
not directly relevant to the taxonomy of GO-DEVS, the synthetic XML data show complex
structures and hierarchies. Therefore, we are sure that it is appropriate for performance
comparison. The generated XML data size is approximately 1MB and the number of nodes
in the XML data are 17,132. Each XML node corresponds to an input or output event in
DEVS models. The maximum depth of XML data are 11 and the average depth is 4.5.

Sensors 2021, 21, 6771 16 of 20

We generated DEVS models by considering the number of subcomponents in a block,
component hierarchies and relationships between subcomponents. By <Hierarchy factor>,
we determine if we generate an atomic model or a coupled model. The range of <Hierarchy
factor> is [0,1). When the random number (∈ [0, 1)) is more than <Hierarchy factor>,
we generate the atomic model and stop the generation process. Otherwise, we produce
m subcomponents and their couplings, where m is the random number between 1 and
<Maximum components in a block>. For each subcomponent, the process above is repeated.
We set <Hierarchy factor> and <Maximum components in a block> to 0.3 and 5, respectively.

For input/output ports of an atomic model, we made the candidate input/output port
(or event) sets in various sizes and chose one from the candidate input/output port sets to
generate input/output ports of the atomic model. The number of ports in an atomic model
ranged from <Minimum number of ports in an atomic model> to <Maximum number of ports
in an atomic model>. <Minimum number of ports in an atomic model> and <Maximum number
of ports in an atomic model> were set to 2 and 6, respectively. A candidate port set was
produced by randomly picking up the event from event samples which were constructed
by selecting some XML nodes between level 3 and level 10 (Root level 0). Additionally, to
avoid IO queries with no results, we generated the IO-compatible port set with the above
produced port set. For a coupled model, we generated n internal couplings where n was
generated randomly between 0 and (the number of subcomponents in a block)*<Degree>/2.
<Degree> was set to 2. For input and output ports that are not connected by internal
couplings, we connected them to their main model by EIC and EOC, respectively. Finally,
we generated 30,000 DEVS models based on the description above.

To evaluate the performance of GO-DEVS, we made 8 IO queries (Q1 to Q8) and 6
structure queries(Q9 to Q14). We varied the number of ports for various experiments of
IO queries (Q1/Q2 = 1 input/output port, Q3/Q4 = 2 input/output ports, Q5/Q6 = 3
input/output ports, Q7/Q8 = 4 input/output ports). Input and output ports of Q1, Q3, Q5
and Q7 were chosen from event messages in low level on the taxonomy (i.e., depth = 3)
and those of Q2, Q4, Q6 and Q8 from event messages in high level (i.e., depth = 6).

Structure queries are specified with block statements as shown in Figure 13. Figure 13
shows the graph patterns of structure queries. Q9 and Q10 are a simple structure query
with only one block statement. Q10 has more nodes and edges than Q9. Q11 to Q14
have two block statements and block statements are connected. In Q11 and Q13, block
statements are connected via the parent/child relationship while, in Q12 and Q14, block
statements are connected via the ancestor/descendant relationship. Additionally, Q13 and
Q14 have similar structures to Q11 and Q12, respectively. However, Q13 and Q14 have
more nodes and edges in the first block compared to those of Q11 and Q12.

Q9 Q10

Q11 Q12 Q13 Q14

direct directindirect indirect

Figure 13. Graph Patterns of Structure Queries.

Sensors 2021, 21, 6771 17 of 20

9.2. Experimental Results

With the data sets and the queries described above, we measured the query perfor-
mance of the basic table design and the advanced table design. To conduct experiments
according to data size, we extracted six data sets in different sizes (i.e., 5 K, 10 K, 15 K,
20 K, 25 K and 30 K) from the generated 30,000 DEVS model data. Figure 14 shows the
experimental results for 8 IO queries. In most cases, the execution times of the advanced
table design were better than those of the basic table design. For experiments of Q7 and Q8
in Figure 14, we did not depict the execution times of the basic table design since the queries
in the basic table design were not finished during long time (300,000 ms). The experimental
results for IO queries showed a tendency that the performance gap between the advanced
table design and the basic table design rises as the number of IO ports increases.

(a) Q1 (b) Q2 (c) Q3 (d) Q4

(e) Q5 (f) Q6 (g) Q7 (h) Q8

The Number of Models

E
x
ec

u
ti

o
n
 T

im
e

(m
s)

▲: BASIC

■: ADVANCED

Figure 14. Experiments for IO Queries.

In addition, let us observe the execution times of Q3 and Q5 (low level ports) compared
to those of Q4 and Q6 (high level ports), respectively. The performance gap in queries with
high level ports was higher than that in queries with low level ports. In particular, in Q3,
the advanced design was a little worse than the basic design while in Q4, the advanced
design was much better than the basic design. This is because for queries with high level
ports, the basic table design needs many ancestor event records in tran_taxo_t to check the
relationship while the advanced table design needs only one record in taxo_ad_t.

Figure 15 shows the experimental results for structure queries. Q9 and Q10 have
one block statement and Q9 has a simpler graph pattern than Q10. Therefore, the query
result size of Q9 is bigger than that of Q10. In both Q9 and Q10, the advanced table design
is better than the basic table design in terms of the query execution time. Q11 and Q12
have two block statements and they have the same graph patterns. However, two block
statements are connected by the parent/child relationship in Q11 while they are connected
by the ancestor/descendant relationship in Q12. Q13 (resp., Q14) has a similar structure to
Q11 (resp., Q12) but Q13 (resp., Q14) has more nodes and edges in the first block than Q11
(resp., Q12). Now let us look at the experimental results of Q11, Q12, Q13 and Q14. The
advanced table design showed a better performance compared to the basic table design
in most cases. The query execution times of the advanced table design in Q12 fluctuated.
This is because the SQL query optimizer did not work well for that query.

Sensors 2021, 21, 6771 18 of 20

(a) Q9 (b) Q10 (c) Q11

(d) Q12 (e) Q13 (f) Q14

The Number of Models
E

x
ec

u
ti

o
n
 T

im
e

(m
s)

▲: BASIC

■: ADVANCED

Figure 15. Experiments for Structure Queries.

Consequently, we showed that our two approaches, basic and advanced table designs,
can be used to process IO queries and structure queries in GO-DEVS. In particular, the
advanced table design is much faster than the basic table design for IO queries that have
many IO ports or have high level ports. For structure queries, the advanced table design
can efficiently process queries compared to the basic table design in most cases. Therefore,
model developers can retrieve some shared components effectively and efficiently using
two types of queries.

10. Discussion

Even though we tried to develop a storage and retrieval system for simulation model
sharing, limited to DEVS, our approach has some limitations and there are several un-
touched issues to be solved in the future. To promote the practical use of simulation model
sharing, not limited to DEVS, researchers in both M&S (Modeling and Simulation) and DB
(DataBase) areas should collaborate. In this paper, we provided an initial framework for
model sharing in terms of DEVS. However, there are several untouched issues as follows:

• DEVS extensions: We developed GO-DEVS by focusing classic DEVSs but there are
many DEVS extensions. To share as many models as possible, we should consider all
the DEVS extensions in a model storage and retrieval system. To support them, we can
consider a framework to provide both common table designs and user-defined table
designs. We can extract common design concepts from a classic DEVS and various
DEVS extensions. Based on the common design concepts, the classic DEVS and simple
extensions can be handled. For other DEVS extensions, users must add a user-created
design using tools provided by the framework.

• Integration of SES and our approach: As mentioned in Section 2, SES (System Entity
Structure) was proposed for “plan-generate-evaluate” framework [2,13]. It can be
used for representing the structural knowledge in hierarchical and modular systems.
Even though SES can provide the structural information between parent and child
components in a general way, it does not consider the relations between components at
the same level. Therefore, SES and our approach need to be integrated in a systematic
way. For instance, we can extend SES by adding internal structures and develop a
framework to store and query extended SES data.

• Query Extensions: Even though we proposed IO and structure queries, we need to
invent easy and powerful queries for model sharing. Based on the queries, various
query optimization techniques must be developed to provide users with query results
quickly. Additionally, we must develop a UI tool for users to input queries easily.

Sensors 2021, 21, 6771 19 of 20

11. Conclusions

In this paper, we proposed GO-DEVS to systematically store and retrieve many DEVS
models. We introduced the ontology concept to effectively share DEVS models developed
by other model developers. To store DEVS models, we proposed a method to translate
a DEVS model into graph representation. Additionally, we adopted an XML numbering
scheme to process IO queries and structure queries efficiently and provided two relational
table schemas, basic table design and advanced table design, to save DEVS models into an
RDBMS. We finally showed that our two approaches can be used to process IO queries
and structure queries and the advanced table design is better than the basic table design in
most cases in terms of the execution time.

Author Contributions: Conceptualization, C.-H.L., J.W.B. and E.P.; methodology, C.-H.L. and J.W.B.;
software, C.-H.L.; writing—original draft preparation, C.-H.L. and J.W.B.; writing—review and
editing, C.-H.L. and J.W.B.; supervision, J.W.B.; project administration, E.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was partly supported by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No. R7117-17-0219, Development
of Predictive Analysis Technology on Socio-Economics using Self-Evolving Agent-Based Simulation
embedded with Incremental Machine Learning) and Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2018-0-
00225, Development of City Interior Digital Twin Technology to establish Scientific Policy).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Zeigler, B.P. Theory of Modeling and Simulation; Wiley: New York, NY, USA, 1976.
2. Zeigler, B.P.; Praehofer, H.; Kim, T.G. Theory of Modeling and Simulation, 2nd ed.; Academic Press: Orlando, FL, USA, 2000.
3. Zeigler, B.P.; Muzy, A.; Kofman, E. Theory of Modeling and Simulation: Discrete Event & Iterative System Computational Foundations,

3rd ed.; Academic Press: Cambridge, MA, USA, 2018.
4. Hamri, M.; Driouche, N. Modeling and simulation of logic gates using devs. In Proceedings of the SIMULTECH-5th International

Conference on Simulation and Modeling Methodologies, Technologies and Applications, Colmar, Alsace, France, 21–23 July 2015;
pp. 212–218.

5. Seo, K.-M.; Choi, C.; Kim, T.; Kim, J.H. Devs-based combat modeling for engagement-level simulation. Simulation Trans. Soc.
Model. Simul. Int. 2014, 90, 759–781. [CrossRef]

6. Bae, J.W.; Paik, E.; Kang, D.O.; Jung, J.; Lee, C.-H. Simulation framework for self-evolving agent-based models: A case study
of housing market model. In Proceedings of the Winter Simulation Conference, Gothenburg, Sweden, 12 December 2018;
pp. 1120–1131.

7. Gruber, T.R. Toward principles for the design of ontologies used for knowledge sharing. Int. J.-Hum.-Comput. Stud. 1995, 43,
907–928. [CrossRef]

8. Dalle, O.; Zeigler, B.P.; Wainer, G.A. Extending devs to support multiple occurrence in component-based simulation. In Proceed-
ings of the Winter Simulation Conference, Miami, FL, USA, 7–10 December 2008; pp. 933–941.

9. Vicino, D.; Dalle, O.; Wainer, G. A data type for discretized time representation in devs. In Proceedings of the SIMUTOOLS—7th
International Conference on Simulation Tools and Techniques, ICST, Lisbon, Portugal, 17–19 March 2014.

10. Franceschini, R.; Bisgambiglia, P.-A.; Touraille, L.; Bisgambiglia, P.; Hill, D. A survey of modelling and simulation software
frameworks using discrete event system specification. In Proceedings of the Imperial College Computing Student Workshop,
London, UK, 25–26 September 2014; pp. 40–49.

11. Wainer, G. Cd++: A toolkit to define discrete-event models. Softw. Pract. Exp. 2002, 32, 1261–1306. [CrossRef]
12. Bolduc, J.-S.; Vangheluwe, H. A Modeling and Simulation Package for Classic Hierarchical DEVS. McGill University. Technical

Report. 2002. Available online: http://atom3.cs.mcgill.ca/research/projects/DEVS/PythonDEVS/PythonDEVS.pdf (accessed
on 1 October 2019).

13. Zeigler, B.P.; Hammonds, P.E. Modeling & Simulation-Based Data Engineering: Introducing Pragmatics into Ontologies for Net-Centric
Information Exchange; Academic Press: Cambridge, MA, USA, 2007.

http://doi.org/10.1177/0037549714532960
http://dx.doi.org/10.1006/ijhc.1995.1081
http://dx.doi.org/10.1002/spe.482
http://atom3.cs.mcgill.ca/research/projects/DEVS/PythonDEVS/PythonDEVS.pdf

Sensors 2021, 21, 6771 20 of 20

14. Song, F.; Zacharewicz, G.; Chen, D. Adapting Simulation Modeling to Model-Driven Architecture for Model Requirement
Verification. In Proceedings of the International Conference on Simulation and Modeling Methodologies, Technologies and
Applications, Reykjavík, Iceland, 29–31 July 2013; pp. 302–309.

15. Wang, H.; Park, S.; Fan, W.; Yu, P.S. Vist: A dynamic index method for querying XML data by tree structures. In Proceedings of
the 2003 ACM SIGMOD International Conference on Management of Data, San Diego, CA, USA, 9–12 June 2003; pp. 110–121.

16. Rao, P.; Moon, B. PRIX: Indexing and querying XML using prüfer sequences. In Proceedings of the 20th International Conference
on Data Engineering, ICDE 2004, Boston, MA, USA, 30 March–2 April 2004; pp. 288–299.

17. Yan, X.; Yu, P.S.; Han, J. Graph indexing based on discriminative frequent structure analysis. ACM Trans. Database Syst. 2005, 30,
960–993. [CrossRef]

18. Cheng, J.; Ke, Y.; Ng, W.; Lu, A. Efficient query processing on graph databases. ACM Trans. Database Syst. 2009, 34, 2–48.
[CrossRef]

19. Lee, C.-H.; Chung, C.-W. Efficient search in graph databases using cross filtering. Inf. Sci. 2014, 286, 1–18. [CrossRef]
20. Ramakrishnan, R.; Gehrke, J. Database Management Systems, 2nd ed.; McGraw-Hill: New York, NY, USA, 2000.
21. Halevy, A.Y. Answering queries using views: A survey. VLDB J. 2001, 10, 270–294. [CrossRef]
22. Ullmann, J.R. An Algorithm for Subgraph Isomorphism. J. Assoc. Comput. Mach. 1976, 23, 31–42. [CrossRef]
23. Chen, C.; Yan, X.; Yu, P.S.; Han, J.; Zhang, D.-Q.; Gu, X. Towards graph containment search and indexing. In Proceedings of the

VLDB, Very Large Data Base Endowment, Vienna, Austria, 23–28 September 2007; pp. 926–937.
24. Yan, X.; Yu, P.S.; Han, J. Substructure similarity search in graph databases. In Proceedings of the 2005 ACM SIGMOD International

Conference on Management of Data, Baltimore, MD, USA, 14–16 June 2005.
25. Baek, S.G.; Kang, D.; Lee, S.; Eom, Y. Efficient graph pattern matching framework for network-based in-vehicle fault detection.

J. Syst. Softw. 2018, 140, 17–31. [CrossRef]
26. Zhang, C.; Naughton, J.; Dewitt, Q.L.D.; Lohman, G. On supporting containment queries in relational database management

system. ACM SIGMOD Rec. 2001, 30, 425–436. [CrossRef]
27. Schmidt, A.; Waas, F.; Kersten, M.L.; Carey, M.J.; Manolescu, I.; Busse, R. Xmark: A benchmark for xml data management. In

Proceedings of the 28th International Conference on Very Large Data Bases, Hong Kong, China, 20–23 August 2002, pp. 974–985.
28. XMark—An XML Benchmark Project. Available online: https://projects.cwi.nl/xmark/ (accessed on 1 October 2019).

http://dx.doi.org/10.1145/1114244.1114248
http://dx.doi.org/10.1145/1508857.1508859
http://dx.doi.org/10.1016/j.ins.2014.06.047
http://dx.doi.org/10.1007/s007780100054
http://dx.doi.org/10.1145/321921.321925
http://dx.doi.org/10.1016/j.jss.2018.02.050
http://dx.doi.org/10.1145/376284.375722
https://projects.cwi.nl/xmark/

	Introduction
	Related Work
	Preliminary
	Scenario and Architecture of GO-DEVS
	Ontology and Graph Representation in GO-DEVS
	Queries for DEVS Model Retrieval
	Storing DEVS Models in GO-DEVS
	Basic Table Design
	Advanced Table Design for IO Query
	Advanced Table Design for Structure Query

	Processing Queries in GO-DEVS
	IO Query Processing
	Structure Query Processing

	Experiments
	Experimental Environment
	Experimental Results

	Discussion
	Conclusions
	References

