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Abstract

This paper establishes a link between the stability of a first order, explicit discrete event integration scheme and the sta-
bility criteria for the explicit Euler method. The paper begins by constructing a time-varying linear system with bounded
inputs that is equivalent to the first order discrete event integration scheme. The stability of the discrete event system is
shown to result from the fact that it automatically adjusts its time advance to lie below the limit set by the explicit Euler
stability criteria. Moreover, because it is not necessary to update all integrators at this rate, a significant performance
advantage is possible. Our results confirm and explain previously reported studies where it is demonstrated that a reduced
number of updates can provide a significant performance advantage compared to fixed step methods. These results also
throw some light on stability requirements for discrete event simulation of spatially extended systems.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

There is a growing interest in continuous system simulation methods that use forward looking predictions
of threshold crossings in continuous variables as the primary (in many instances, only) basis for advancing
time (see, e.g. [1–7]). For many applications, this kind of purely asynchronous approach results in a rela-
tively easy to program simulation that is stable, computationally efficient, and can be parallelized using
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highly effective parallel discrete event simulation algorithms (see, e.g. [8,9,7]). These gains seem to be offset
only by the relatively low (63) order of accuracy that has been obtained to date with this approach (see, e.g.
[2,10–13]).

Theoretical studies of these types of algorithms have received less attention than the development of the
algorithms themselves. This is due in part to the apparent lack of well established methods for analysis.
The simplicity of the updating conditions (i.e., finding the next anticipated threshold crossing time) is what
makes these methods attractive, but this simplicity belies complex dynamics that are exhibited by the algo-
rithms themselves.

Mathematical incarnations of these simulation algorithms closely resemble the hybrid automata considered
in control theory (see, e.g. [14,15]). Consequently, analysis of these types of discrete event methods tends to
draw more from hybrid systems concepts and less from established numerical theory for adaptive methods
(see, e.g. [16–19]). The advantage of purely asynchronous approaches is mainly in its support for large scale
parallel computing. By eliminating the need for any kind of global synchronization, it is possible to use highly
effective and very scalable parallel discrete event simulation algorithms to simulate many kinds of continuous
processes (see [20] for an introduction to parallel discrete event simulation).

This paper makes a contribution to the stability theory for a first order discrete event method. Our theory
links known stability criteria for the explicit Euler integration scheme and the first order discrete event
method. The major result of the theory is that the resultant of the discrete event system satisfies explicit Euler
stability criteria when simulating transients. The explicit Euler stability criteria can be violated only when the
simulated system is close to equilibrium. Violations can persist indefinitely only when the system is actually at
equilibrium.

One consequence of the theory is that discrete event simulations of linear, stable, time invariant systems
produce trajectories that are ultimately bounded (see, e.g. [21]). An accurate description of the bounding
region in terms of the system derivatives is derived. However, this bound does not give an estimate of the sim-
ulation error (see, for comparison, [22]).

The stability proof first formulates a Discrete Event System Specification (DEVS, see [23]) representation of
the first order integration scheme. This representation allows it to be treated as a time-varying linear system
with bounded inputs. The stability of this time-varying linear system depends on the resultant of the DEVS
satisfying explicit Euler stability criteria. The main result is that the DEVS resultant satisfies this stability cri-
teria everywhere except in a narrow region near equilibrium. Consequently, the system has ultimately bounded
trajectories.

The plan for the remaining part of this paper is as follows. Section 2 gives an overview of two previous
stability studies that are germane to our topic. Section 3 introduces an appropriate DEVS representation
of an integrator network. Section 4 shows that this representation accounts for an ‘‘aggressive’’ re-formulation
of the standard DEVS interpretation. In Section 5, this re-formulation of the DEVS integrator network is
transformed into a time-varying linear system with bounded inputs. In Section 6, it is shown that this system
has ultimately bounded trajectories. Moreover, the region that ultimately bounds a trajectory is centered on
the system equilibrium, and this bounding region has dimensions that are proportional to the integration
quantum. In Section 7, the implications of a time advance limit for error bounds and performance are
considered.

Examples of the time advance limit on the DEVS resultant are provided in Section 8. These examples dem-
onstrate the behavior of the time advance during transients, and provide concrete demonstrations of the time
advance bound. The consequences of this bound on simulation errors are also demonstrated. Finally, conclu-
sions are offered concerning the significance of the results, their implications for discrete event simulation of
spatially extended systems, and the need for further development of a theory for discrete event numerical
integration.

2. Related stability studies

There are two previous stability studies that are particularly relevant to the development in this paper.
These are a study of quantized state systems, undertaken in [1,22,24], and a study of differential automata pre-
sented in [15]. Quantized state systems are a particular type of differential automata, and so these two studies



J. Nutaro, B. Zeigler / Journal of Computational Physics 227 (2007) 797–819 799
each provide new information about that class of systems. The theory that will be developed in this paper gives
a third vantage point, and with this new view another insight is obtained.

Linear quantized state systems,1 as presented in [1] and elsewhere (also see Section 3 for an overview), are
defined by a linear system equipped with a hysteretic quantization function:
1 Th
genera
_xðtÞ ¼ AzðtÞ;
ziðtÞ ¼ bðxiðtÞÞ; and bðxiðtÞÞ quantizes xiðtÞ by

bðxiðtÞÞ ¼

xið0Þ if t ¼ 0;

bðxiðt�ÞÞ þ Dq if xiðtÞ ¼ bðxiðt�ÞÞ þ Dq;

bðxiðt�ÞÞ � Dq if xiðtÞ ¼ bðxiðt�ÞÞ � Dq;

bðxiðt�ÞÞ otherwise:

8>>><
>>>:

ð1Þ
Here we assume a uniform quantization. That is, the same Dq is applied to each component of x. While this is
not necessary in theory or practice, it does simplify the presentation considerably.

When the continuous system _x ¼ Ax is stable, the quantized state system produces bounded trajectories that
can be made arbitrarily close to those of the continuous system. Theorem 1, due to Kofman and Junco, makes
this concrete.

Theorem 1 (Kofman and Junco). Let ~xðtÞ be a trajectory of the linear system _~xðtÞ ¼ A~xðtÞ, x(t) a trajectory of

its associated quantized state system with a uniform quantization Dq, and xð0Þ ¼ ~xð0Þ. If A is a Hurwitz and

diagonalizable matrix, then
j~xðtÞ � xðtÞj 6 jV jjRðKÞ�1KjjV �1jDq;
where A = VKV�1 and j Æ j is the component-wise magnitude.

Theorem 1 states that the error in a simulation of a linear system by a quantized state system is proportional to
Dq, with the constant of proportionality being determined by A itself.

The linear quantized state system described above is an instance of a differential automaton [15]. Differen-
tial automata are defined by state space equations in the form
_xðtÞ ¼ f ðxðtÞ; qðtÞÞ; ð2Þ
qðt þ 0Þ ¼ dðxðtÞ; qðtÞÞ; ð3Þ
where xðtÞ 2 Rn and q(t) is a discrete state in some finite set Q. This system follows a trajectory defined by Eq.
(2) so long as q remains constant. At switching times tk, the value of q changes instantaneously from q(tk) to
q(tk + 0) through Eq. (3) (see [15] for a rigorous treatment of this subject).

We can define the vector form of b by a function �b whose range is countable. This function applies b to each
element of its argument, and its range is a countable (but not finite) subset of Rn. The quantized state system
can now be written as the pseudo-differential automaton
_xðtÞ ¼ AqðtÞ; ð4Þ
qðt þ 0Þ ¼ �bðxðtÞÞ: ð5Þ
The term ‘pseudo-differential automaton’ is used to indicate that the range of q is not finite. We can now cor-
rect this fact.

The requirement that q have a finite range can be satisfied if, for any x(0), it is possible to find a bounded
subset of Rn such that for all t P 0, x(t) remains in that subset. This subset is called an invariant set, and it is
denoted by K. When considering any particular initial condition, we can always restrict the range of q to the
finite image of K under �b. Therefore, for any initial condition we can construct a differential automaton that
has a finite set of discrete states. The next lemma establishes the existence of K when A has eigenvalues with
negative real parts.
e definition of quantized state systems can be readily expanded to include non-linear systems, and similar properties hold in the more
l case. See [24].
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Lemma 2. Suppose that A is a Hurwitz matrix. Then for every initial condition x(0), there exists a bounded set

K � Rn such that, for all t P 0, the resulting trajectory x(t) stays inside the set K.

Proof. If x(t) is bounded, then this is clearly true. Suppose, contrarily, that x(t) is not bounded. Then as
t!1, the interval between switching times goes to zero. However, it is also true (see Section 6) that x(t)
at switching times t1, t2, . . . can be written
2 Th
becaus
traject
xðtnþ1Þ ¼ ðI þ ðtnþ1 � tnÞAÞxn þ ðtnþ1 � tnÞAkn;
where kn is a vector with component-wise bounded elements. The matrix
I þ ðtnþ1 � tnÞA
has eigenvalues inside of the unit circle when tn+1 � tn is positive but suitably small. But this contradicts our
assumption that x(t) grows without bound because, upon reaching some finite limit, x(t) must begin to con-
tract towards (tn+1 � tn)Akn. h

The following facts are also true for quantized state systems2:

(1) The vector Aq is constant between switching times.
(2) It is deterministic; every initial state generates a single trajectory.
(3) The switching surfaces are hypercubes.
(4) The system is legitimate (non-Zeno) (see, e.g. [23,15,25]).

These items follow almost directly from the definition of the quantized state system. However, a complete
proof requires a lengthy recapitulation of basic definitions, and so we only sketch the arguments here. Item 1
follows directly from Eqs. (5) and (4). Item 2 is also an immediate consequence of the definition of the quan-
tized state system (see [23,1], or [15] for a review of the dynamics associated with this type of discrete event
system). Item 3 follows immediately from Eqs. (5) and (1). Finally, to see that the system is legitimate, it is
sufficient to note that Dq > 0 and k _xk is bounded. Therefore, the time separating switching events is strictly
positive.

Given facts 1–4 and Lemma 2, the following theorem, due to Matveev and Savkin [15], holds so long as, for
all t, x(t) 6¼ 0. Note that if x(t) = 0 at some point, then _xðtÞ ¼ 0, and the system has reached equilibrium.

Theorem 3 (Matveev and Savkin). The following statements hold:

(i) There exists a limit cycle lying in K.
(ii) The number of such cycles is finite.

(iii) Any limit cycle lying in K is regularly locally asymptotically stable in K.

(iv) Any trajectory lying in K regularly converges to one of the above limit cycles.

To summarize, this theorem states that, as t!1, every trajectory becomes periodic. That is to say, both

the continuous and discrete variables are periodic! If we wait long enough, the system will settle into a trajec-
tory with a period T such that
xðtÞ ¼ xðt þ T Þ and qðtÞ ¼ qðt þ T Þ:

In practice, this is often seen to occur in finite time. Moreover, there are only finitely many such periodic tra-
jectories, and so they act as distinct ‘equilibrium trajectories’ for the system. See [15] for a rigorous definition
of the terms used in Theorem 3.
ese items address the following pre-conditions for Theorem 3: Item 1 satisfies Assumption 5.2.1 in [15]. Assumption 5.2.2 holds
e of item 2. Assumption 5.2.3 is satisfied by items 2 and 3. Assumption 5.2.4 follows from item 3 and the fact that the system
ories are bounded. Assumption 5.2.5 states that the system must be legitimate. Assumptions 5.2.6–5.2.8 are satisfied by items 2 and 4.
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Theorems 1 and 3 (with Lemma 2), and the new development that will be presented in this paper, give
three distinct proofs that linear quantized state systems produce bounded trajectories (under, of course, the
necessary assumptions concerning A). In the course of constructing these arguments, however, three different
facts are uncovered – each being apparent only from the vantage point of one of the three particular theories.
These are

(1) [Theorem 1]: The trajectories of a linear quantized state system can be made arbitrarily close to those of
a continuous linear system _x ¼ Ax. This makes quantized state systems suitable for use as a numerical
integration scheme. Moreover, linear quantized state systems with a stable A matrix produce bounded
trajectories irregardless of the quantization parameter Dq.

(2) [Theorem 7; see Section 6]: Limiting changes in x(t) between events forces the time advance of the resul-
tant to satisfy known stability constraints almost everywhere (note this is only proved for the case where
A is Hurwitz with real eigenvalues; see Section 6). That is, the quantized state system acts as a kind of
self-stabilizing numerical method. This supports the observation, made by Karimabadi et al. in [7], that
their discrete event method for simulating plasma flow is self-stabilizing.

(3) [Theorem 3, Lemma 2]: A linear quantized state system either reaches equilibrium at x(t) = 0, or it is
ultimate attracted to a limit cycle that is periodic in both its continuous state x and discrete state q. This
is clearly evident in simulations of linear quantized state systems, and a part of the machinery that pro-
duces the limit cycles is the instability of the system near equilibrium (here the matrix I + (tn+1 � tn)A is
no longer Hurwitz, and so x(t) can grow – see Section 6). It further suggests that quantized state systems
which are used as numerical integration schemes should be equipped with an upper limit on the time
advance in order to converge on equilibrium points.

3. DEVS simulation of linear time invariant systems

A first order DEVS integrator with optimal hysteresis is described by (see [1,3])
S ¼ fðq; _q; qlÞjðq; _q; qlÞ 2 R� R� Rg;
X ¼ Y ¼ R;

taððq; _q; qlÞÞ ¼
ðql þ Dq� qÞ= _q; if _q > 0;

ðql � Dq� qÞ= _q; if _q < 0;

1; otherwise;

8><
>:

dintððq; _q; qlÞÞ ¼ ðql þ Dq � sgnð _qÞ; _q; ql þ Dq � sgnð _qÞÞ;
dextððq; _q; qlÞ; e; xÞ ¼ ðqþ e � _q; x; qlÞ;
kððq; _q; qlÞÞ ¼ ql þ Dq � sgnð _qÞ;

ð6Þ
where sgn( Æ ) is the sign function
sgnðxÞ ¼

1; if x > 0;

�1; if x < 0;

0; if x ¼ 0

8>><
>>:
and Dq is the state space discretization parameter. For the purposes of this discussion, the initial state always
has ql = q. Note that the _q < 0 case of the time advance function could be rewritten more conventionally as
taððq; _q; qlÞÞ ¼
ðq� ðql � DqÞÞ

j _qj if _q < 0:
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These integrators are coupled through a set of memory-less functions to describe a system of equations (see,
e.g. [1,23]). The resultant of this coupled system (see [23]) is an input free DEVS, and this input free DEVS has
an alternative representation that is isomorphic to a piecewise continuous system.

This equivalent piecewise continuous system is described by Eqs. (7)–(9) (see [1]). The matrix A and vectors
x and z are constrained to be real, and A is further assumed to be diagonalizable. The vector x, with elements
x1,x2, . . . ,xn, follows a straight line whose slope is described by Az, where z has the elements z1,z2, . . . ,zn. The
vector z is a discrete approximation of x that is constructed with a quantization function b and quantizer res-
olution Dq:
_xðtÞ ¼ AzðtÞ; ð7Þ
ziðtÞ ¼ bðxiðtÞÞ; and bðxiðtÞÞ quantizes xiðtÞ by ð8Þ

bðxiðtÞÞ ¼

xið0Þ if t ¼ 0;

bðxiðt�ÞÞ þ Dq if xiðtÞ ¼ bðxiðt�ÞÞ þ Dq;

bðxiðt�ÞÞ � Dq if xiðtÞ ¼ bðxiðt�ÞÞ � Dq;

bðxiðt�ÞÞ otherwise:

8>>><
>>>:

ð9Þ
The trajectory of x is a series of connected lines. The slope of a line, given by Az, changes when any component
of x changes in magnitude by Dq. One possible phase plot of the x and z variables is shown in Fig. 1. This plot
shows the evolution of a particular system with
Dq ¼ 0:1; A ¼
�1 1

0 �2

� �
; and zð0Þ ¼ xð0Þ ¼

1

1

� �
: ð10Þ
In this instance, the system moves to its equilibrium state and then stops. The trajectory x(t) is shown by the
solid line. The points indicate states at which Eq. (9) is satisfied.

The more general case is illustrated in Fig. 2. This phase plot was produced by the same system with initial
conditions zð0Þ ¼ xð0Þ ¼ ½ 1:33 1:33 �T. In this case, the trajectory moves steadily towards equilibrium, and it
ultimately becomes trapped in a region near equilibrium.
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4. Equivalent representations of the integrator

A stability theory can be constructed for the system described by Eqs. (7)–(9). The relationship between
that system and the discrete event system described by (6) can be summarized in the following way. The state
trajectories of the components (i.e., xi, _xi, and zi and qi, _qi, and ql,i) are equal at the event times for those com-
ponents. Event times are defined in terms of the time advance function ta( Æ ) for the discrete event model, and
in terms of the quantization function b( Æ ) for the piecewise continuous model.

The mapping between the discrete event system and the piecewise continuous system is developed in three
parts. In the first part, sufficient conditions are developed for an aggressive DEVS model to be equivalent to a
classic, here called a lazy DEVS model. The aggressive DEVS model differs from the lazy DEVS model by
defining a state updating function that can be applied in the absence of internal or external events. In the sec-
ond part, an aggressive form of the DEVS integrator is developed. In the third and final part, the aggressive
DEVS integrator is shown to be equivalent to the piecewise continuous system described by Eqs. (7)–(9).

An input and output free coupled model N, with components that are DEVS atomic models, is defined by a
structure (see [23])
N ¼ hD; fzi;jg; Selecti; where

D is the set of component models;

fzijg is the set of coupling functions zij : Y i ! X j;

Select : 2D ! D is the tie resolution function:
For the purposes of this discussion, the component set D is assumed to contain only atomic DEVS models.
The coupling function zij maps the output of component i to the input of component j, where i, j 2 D. The
Select function is used to determine which component’s output and internal state transition functions should
be evaluated when multiple components are eligible to undergo an internal event.

The coupled model N is associated with an input and output free atomic model called its resultant (see [23]
for a detailed treatment of this subject). This atomic model, which will here be called a lazy DEVS, is defined by
DEVSlazy ¼ hS; dint; tai:

The state set S is
S ¼
Y
d2D

Qd ;
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where Qd is the set of total states (sd,ed) of the atomic model d. The time advance function of the resultant is
taðsÞ ¼ minfrd jd 2 Dg; ð11Þ

where for each component d, rd = tad(sd) � ed. That is, rd is the time remaining until the next internal event of
component d.

The imminent set of the coupled model N that corresponds to the state s of the resultant is given by
IMM(s) = {djd 2 D & rd = ta(s)}. This describes the set of components that have minimum remaining time
rd (i.e., they are candidates to undergo an internal event).

The internal transition function of the resultant is defined in the following way. Let s = (. . ., (sd,ed), . . .) and
d* = Select(IMM(s)). Then
dintðsÞ ¼ s0 ¼ ð. . . ; ðs0d ; e0dÞ; . . .Þ; where

ðs0d ; e0dÞ ¼

ðdint;dðsdÞ; 0Þ; if d ¼ d�;

ðdext;dðsd ; ed þ taðsÞ; xdÞ; 0Þ; if xd 6¼ ;;

ðsd ; ed þ taðsÞÞ; if xd ¼ ;;

8>><
>>:

where xd ¼ zd�;dðkd� ðsd� ÞÞ:
When the function dint,d is evaluated, it is said that an internal event has occurred at component d. Evaluation
of dext,d is called an external event, and the xd = ; case is called a non-event. The derivation of the resultant can
be found in [23].

An aggressive DEVS can be specified over the same set of components as a lazy DEVS. The aggressive
DEVS time advance function and state set are identical to those of the lazy DEVS. The internal transition
function is defined in terms of a set of functions d;;d : Qd � R! Qd and dx,d : Qd · Xd! Qd. There is one
d;,d function and one dx,d function for each component. The aggressive DEVS internal transition function
is given by
ð. . . ; ðs0d ; e0dÞ; . . .Þ ¼ dintðð. . . ; ðsd ; edÞ; . . .ÞÞ; where

ðs0d ; e0dÞ ¼
ðdint;dðsdÞ; 0Þ; if d ¼ d�;

dx;dðd;;dððsd ; edÞ; taðsÞÞ; xdÞ; if xd 6¼ ;;
d;;dððsd ; edÞ; taðsÞÞ; if xd ¼ ;;

8><
>:
where xd ¼ zd�;dðkd� ðsd� ÞÞ.
The initial state of the aggressive and lazy DEVS are constrained to be identical with all ed = 0. The d;,d and

dx,d functions are constrained such that the following properties hold:

(1) Autonomous behavior is preserved, i.e.,
ðs0d ; e0dÞ ¼ d;;dððsd ; 0Þ; edÞ ) dint;dðs0dÞ ¼ dint;dðsdÞ & kdðs0dÞ ¼ kdðsdÞ:
(2) The external transition function is preserved, i.e.,
dx;dðd;;dððsd ; edÞ; tÞ; xÞ ¼ ðdext;dðsd ; ed þ t; xÞ; 0Þ:

(3) The time advance function is preserved, i.e.,
ðs0d ; e0dÞ ¼ d;;dððsd ; edÞ; tÞ ) tadðs0dÞ � e0d ¼ tadðsdÞ � ðed þ tÞ:

(4) d;,d has the composition property
d;;dððsd ; edÞ; aþ bÞ ¼ d;;dðd;;dððsd ; edÞ; aÞ; bÞ:
If all of these properties are satisfied, then the following is true.

Theorem 4. Let s(t) denote the state trajectory of the lazy DEVS and ~sðtÞ the state trajectory of the aggressive

DEVS. Let t* denote any time at which some component model of the lazy DEVS undergoes an internal or
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external event. Let sd(t) denote the trajectory of that component as it evolves as part of the lazy DEVS, and ~sdðtÞ
the corresponding component trajectory as it appears as part of the aggressive DEVS. Then
sdð0Þ ¼ ~sdð0Þ and sdðt�Þ ¼ ~sdðt�Þ:
Proof. The proof is accomplished by induction on the number of internal and external events that occur in the
execution of the lazy DEVS.

Base case: The statement sdð0Þ ¼ ~sdð0Þ follows directly from the assertion that sð0Þ ¼ ~sð0Þ. Let t1 denote the
first event occurring in the lazy DEVS. So t1 ¼ taðsð0ÞÞ ¼ tað~sð0ÞÞ. Hence, the first event time of the aggressive
and lazy DEVS coincide.

Let d be a component that undergoes an internal or external event. If it is an internal event, then
ta(s) = tad(sd) and both the aggressive and lazy DEVS update sd using dint,d. If it is an external event, then it
follows from property 2 that dx,d(d;,d((sd, 0), ta(s)),x) = (dext,d(sd, ta(s), x),0). So sdðt1Þ ¼ ~sdðt1Þ.

Inductive step: Assume that the theorem holds for every subsequent lazy DEVS event time t2, t3, . . . , tn and
consider the next event at time tn+1.

Let d be a component undergoing an internal or external event at time tn+1 as part of the lazy DEVS
evolution. Let the total state of this component at time tn be (sd,ed). From the induction hypothesis,
sdðtn � edÞ ¼ ~sdðtn � edÞ. That is, they agree on the state of component d when it last changed as part of the
lazy DEVS evolution. Using this fact and the composition property of d;,d, the corresponding total state of the
aggressive DEVS component at time tn can be written as ðs0d ; e0dÞ ¼ d;;dððsd ; 0Þ; edÞ.

Suppose that component d is selected by the lazy DEVS to undergo an internal event at time tn+1. So
tnþ1 ¼ tn þ tadðsdÞ � ed :
It follows from property 3 that the corresponding next event time of the aggressive DEVS component is
tn þ tadðs0dÞ � e0d ¼ tn þ tadðsdÞ � ð0þ edÞ ¼ tn þ tadðsdÞ � ed ¼ tnþ1
and so it too will undergo an internal event at time tn+1. Moreover, it follows from property 1 that
dint;dðsdÞ ¼ dint;dðs0dÞ; so sdðtnþ1Þ ¼ ~sdðtnþ1Þ:

Notice that tn+1 defines the next event time of both the aggressive and lazy DEVS. Also, the induction hypoth-
esis requires that tn be the previous event time for both DEVS. Consequently, taðsðtnÞÞ ¼ tað~sðtnÞÞ, or to be
brief, taðsÞ ¼ tað~sÞ at all event times. If d undergoes an external event, then it follows from this fact, properties
1, 4, and 2 that
xd ¼ zd�;dðkd� ðsd� ÞÞ ¼ zd�;dðkd� ðs0d� ÞÞ and ðdext;dðsd ; ed þ taðsÞ; xdÞ; 0Þ ¼ dx;dðd;;dððsd ; 0Þ; ed þ taðsÞÞ; xdÞ;

where d * refers to the component that was selected for an internal event. It was previously shown that
ðs0d� ; e0d� Þ ¼ d;;d� ððsd� ; 0Þ; ed� Þ. Therefore, sdðtnþ1Þ ¼ ~sdðtnþ1Þ in this case as well. h

The lazy DEVS integrator defined by system (6) can be written as an equivalent aggressive DEVS. To define
this aggressive DEVS integrator, let
d;ðððq; _q; qlÞ; eÞ; sÞ ¼ ððqþ ðeþ sÞ � _q; _q; qlÞ; 0Þ and dxðððq; _q; qlÞ; eÞ; xÞ ¼ ððq; x; qlÞ; 0Þ:

Properties 1–4 can be verified as follows:

(1) Preservation of autonomous behavior
d;ðððq; _q; qlÞ; 0Þ; eÞ ¼ ððqþ e � _q; _q; qlÞ; 0Þ ) dintððq; _q; qlÞÞ
¼ ðql þ Dq � sgnð _qÞ; _q; ql þ Dq � sgnð _qÞÞ ¼ dintððqþ e � _q; _q; qlÞÞ

& kððq; _q; qlÞÞ ¼ ql þ Dq � sgnð _qÞ ¼ kððqþ e � _q; _q; qlÞÞ:
(2) Preservation of the external transition function
dxðd;ðððq; _q; qlÞ; eÞ; tÞ; xÞ ¼ dxðððqþ ðeþ tÞ � _q; _q; qlÞ; 0Þ; xÞ ¼ ððqþ ðeþ tÞ � _q; x; qlÞ; 0Þ
¼ ðdextððq; _q; qlÞ; eþ t; xÞ; 0Þ:
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(3) Preservation of the time advance function
d;ðððq; _q; qlÞ; eÞ; tÞ ¼ ððqþ ðeþ tÞ � _q; _q; qlÞ; 0Þ ) taððq; _q; qlÞÞ � ðeþ tÞ ¼ ql � Dq� q
_q

� ðeþ tÞ

¼ ql � Dq� q
_q

� ðeþ tÞ � _q
_q

¼ ql � Dq� q� ðeþ tÞ � _q
_q

¼ ql � Dq� ðqþ ðeþ tÞ � _qÞ
_q

¼ taððqþ ðeþ tÞ � _q; _q; qlÞÞ:
(4) Composition property for d;
d;ðd;ðððq; _q; qlÞ; eÞ; aÞ; bÞ ¼ d;ðððqþ ðaþ eÞ � _q; _q; qlÞ; 0Þ; bÞ ¼ ððqþ ðaþ eþ bÞ � _q; _q; qlÞ; 0Þ
¼ d;ðððq; _q; qlÞ; eÞ; aþ bÞ:
The aggressive and lazy DEVS integrator networks have components whose state trajectories agree at their
lazy DEVS event times. A similar relationship can be established between the aggressive DEVS integrator net-
work and the system described by Eqs. (7)–(9).

Theorem 5. Consider the resultant of a network of aggressive DEVS integrators. The integrators are coupled

through a set of memory-less functions that correspond to the rows of Az in Eq. (7). Let the function fd( Æ ) denote

the dth row of Az. Let t* denote an event time for the aggressive DEVS network, i.e., a time at which the

aggressive DEVS internal transition function is evaluated. Let the state trajectory of component d be denoted by

qd(t), _qdðtÞ, and ql,d(t). Then
qdðt�Þ ¼ xdðt�Þ; ql;dðt�Þ ¼ zdðt�Þ; and _qdðt�Þ ¼ fdðzðt�ÞÞ ¼ _xdðt�Þ:
Proof. The theorem can always be made to hold at t = 0 by setting qd(0) = xd(0) = zd(0) = ql,d(0). Suppose the
theorem holds at some time t*, and consider the event at the next event time t* + ta(s).

Let component d undergo an internal event at this time. The definition of the aggressive DEVS requires that
ed = 0, and so
taðsÞ ¼ tadðsdÞ ¼
ðql;d þ Dq� qdÞ= _q; if _q > 0;

ðql;d � Dq� qdÞ= _q; if _q < 0;

1; otherwise:

8><
>:
Without loss of generality, consider the case where _q > 0. In this case
qdðt� þ taðsÞÞ ¼ ql;dðt�Þ þ Dq ¼ qdðt�Þ þ
ql;dðt�Þ þ Dq� qdðt�Þ

_qðt�Þ � _qdðt�Þ ¼ qdðt�Þ þ
Z t�þtaðsÞ

t�
_qdðt�Þds: ð12Þ
From the induction hypothesis, _qdðt�Þ ¼ _xdðt�Þ, ql, d(t*) = zd(t*), and qd(t*) = xd(t*). Moreover, _xdðtÞ is constant
until the next discrete change in z(t), and so this time can be computed as
Dqþ zdðt�Þ � xðt�Þ
_xðt�Þ ¼ taðsÞ:
By making the appropriate substitutions into Eq. (12), it can be verified that xd(t* + ta(s)) = qd(t* + ta(s)). It
follows immediately from this fact, Eqs. (8) and (9) that _qdðt� þ taðsÞÞ ¼ _xdðt� þ taðsÞÞ and ql,d(t* + ta(s)) =
zd(t* + ta(s)).

If d undergoes an external event at time t* + ta(s), then ql,d and zd remain unchanged, and consequently,
ql,d(t* + ta(s)) = zd(t* + ta(s)). It is also true that
xdðt� þ taðsÞÞ ¼ xdðt�Þ þ
Z t�þtaðsÞ

t�
_xdðt�Þds ¼ xdðt�Þ þ taðsÞ � _xdðt�Þ ¼ qdðt�Þ þ taðsÞ � _xdðt�Þ



Fig. 3. Parts of Eq. (14).
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and so xd(t* + ta(s)) = qd(t* + ta(s)). Moreover, the agreement of the imminent model state with the piecewise
continuous system and property 1 ensures that _qdðt� þ taðsÞÞ ¼ fdðzðt� þ taðsÞÞÞ ¼ _xdðt� þ taðsÞÞ. h
5. Discrete time linear model of the DEVS integrator

The system described by Eqs. (7)–(9) can be rewritten as a time-varying linear system with bounded input.
This is intuitively clear upon observing that the continuous formulation describes a sequence of line segments.
Moreover, the time interval separating two different segments can be readily determined from Eq. (9) and the
component-wise slope Az(t) of the line segment.

These observations can be formalized in the following way. Let Dt(n) be the time separating any two
sequential discrete values of z (e.g. two adjacent points on the z(t) curves in Figs. 1 and 2). To be precise,
let tn and tn+1 denote the times at which these sequential values occur. Then Dt(n) = tn+1 � tn.

The function z(t) is, by construction, constant in the interval [tn, tn+1). The behavior of x(t) in this interval
can be determined directly from Eq. (7) to be
xðtnþ1Þ ¼ xðtnÞ þ
Z tnþ1

tn

AzðtnÞdt ¼ xðtnÞ þ AzðtnÞ
Z tnþ1

tn

dt ¼ xðtnÞ þ ðtnþ1 � tnÞAzðtnÞ

¼ xðtnÞ þ DtðnÞAzðtnÞ: ð13Þ
Letting z(tn) = x(tn) + k(tn), Eq. (13) can be rewritten as
xðtnþ1Þ ¼ xðtnÞ þ DtðnÞAxðtnÞ þ DtðnÞAkðtnÞ ¼ ðI þ DtðnÞAÞxðtnÞ þ DtðnÞAkðtnÞ: ð14Þ

Eq. (9) requires that ik(tn)i1 6 Dq, and so this is a time-varying linear system with bounded input. This for-
mulation of the system is illustrated in Fig. 3.

6. Stability of the linear system model

In everything that follows, the matrix A is assumed to have real, negative eigenvalues. The stability of system
(13) results from the step size Dt(n) satisfying the stability criteria
DtðnÞ < 2

jkmaxj
;

when the system derivatives Azn are suitably large. This forces system (13) to contract when it is away from
equilibrium, just as the explicit Euler time step limit forces a simulation of a linear system to contract until it
reaches equilibrium. The bound on Dt(n) is a direct result of restricting individual components to change by no
more than Dq in any step of the simulation algorithm. In this manner, the time advance is automatically ad-
justed in such a way that the DEVS model satisfies the explicit Euler stability criteria, and it is therefore stable.



Fig. 4. Contractive and expansive regions of a two-dimensional state space.
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In effect, the state space can be separated into two distinct regions. There is a contractive region in which
the stability criteria is satisfied. This contractive region occupies all of the state space except for a small region
near the equilibrium. Near equilibrium, there is an expansive region in which the stability criteria can be vio-
lated. The expansive region is inside of the contractive region, and this containment assures that the trajecto-
ries of (13) are bounded. Fig. 4 illustrates this partitioning of the state space.

The step size Dt(n) for system (13) is equivalent to the time advance of the corresponding aggressive DEVS
resultant. The time advance is given by Eq. (11), where the rd are bounded by the time advances of the indi-
vidual components. The time advance of the resultant is, consequently, bounded by the time advance of its
fastest component. An upper bound on the time advance of the resultant can be stated explicitly for any par-
ticular state of the resultant.

Theorem 6. Dt(n) is bounded by the inequality
DtðnÞ 6 2Dq
kAznk1

: ð15Þ
Proof. The component rds are bounded by Theorem 5 and Eq. (6) as
rd 6
2Dq
jðAznÞd j

¼ 2Dq
j _qd j

;

where (Azn)d is the dth component of the vector Azn. The time advance of the resultant is the minimum of the
rd. It is therefore bounded by the least upper bound of the set of {rdjd 2 D}. The least upper bound of this set
is given by
lubfrd jd 2 Dg 6 2Dq
kAznk1
and so
DtðnÞ 6 lubfrd jd 2 Dg 6 2Dq
kAznk1

;

which completes the proof. h

This bound on the time advance of the resultant forces the eigenvalues of I + Dt(n)A to have magnitudes
less than 1 when the system is sufficiently far from its equilibrium. More specifically, if the system is a suitable
distance from equilibrium, then Dt(n) satisfies
DtðnÞ < 2

jkmaxj
;

where jkmaxj is the largest magnitude of the eigenvalues belonging to A.
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Theorem 7. If
kAzðtnÞk1 > Dqjkmaxj;

then
DtðnÞ < 2

jkmaxj
:

Proof. Let
kAzðtnÞk1 > Dqjkmaxj:

Inequality (15) can be rearranged to show that
2Dq
DtðnÞP kAznk1:
Therefore,
2Dq
DtðnÞ > Dqjkmaxj
and it follows that
DtðnÞ < 2

jkmaxj
: �
The link between explicit Euler stability (see, e.g. [26], or any introductory numerical analysis textbook) and
the stability of the DEVS integrator network can be stated explicitly as a corollary to Theorem 7.

Corollary 8. Let hlimit be the maximum time step in a stable, explicit Euler simulation of a stable linear system. If

iAzni1 > Dqjkmaxj, then Dt(n) < hlimit.

It follows Theorem 7 that Eq. (14) has ultimately bounded trajectories.

Theorem 9. Consider the system described by Eq. (14). It for all n
DtðnÞ < 2

jkmaxj
;

then
kxðtnÞk1 <
2Dqb
jkmaxj

kAk1
as n!1. The constant 0 < b <1 is specific to the system under consideration.

Proof. Let /(tn, tm) = (I + Dt(n � 1)A)(I + Dt(n � 2)A) � � � (I + Dt(m)A), or, more concisely
/ðtn; tmÞ ¼
Yn�m

p¼1

ðI þ Dtðn� pÞAÞ:
It is well known from the theory of linear systems (see, e.g. [21]) that
xðtnÞ ¼ /ðtn; 0Þxð0Þ þ
Xn�1

q¼0

ð/ðtn; tqþ1ÞDtðqÞAkðtqÞÞ:
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It follows from the hypothesis and well known properties of the infinity-norm that
kxðtnÞk1 6 k/ðtn; 0Þxð0Þk1 þ
Xn�1

q¼0

ðk/ðtn; tqþ1ÞDtðqÞAkðtqÞk1Þ

6 k/ðtn; 0Þxð0Þk1 þ
Xn�1

q¼0

ðk/ðtn; tqþ1Þk1 � jDtðqÞj � kAk1 � kkðtqÞk1Þ

< k/ðtn; 0Þxð0Þk1 þ
2Dq
jkmaxj

kAk1
Xn�1

q¼0

k/ðtn; tqþ1Þk1:
The upper bound on Dt(n) constrains the eigenvalues of I + Dt(n)A to have magnitudes less than 1. Conse-
quently, as n!1, i/(tn, 0)x(0)i1 vanishes and
Xn�1

q¼0

k/ðtn; tqþ1Þk1 <1:
Moreover,
k/ðtn; tkÞk1
k/ðtn; tk�1Þk1

< 1
and so, by the ratio test, the sum converges as n!1. Let b be this limit to complete the proof. h

Theorem 9 shows that x(t) is ultimately contained in a bounded region, provided that iAz(tn)i1 is suffi-
ciently large, or, more specifically, if it satisfies Theorem 7. It remains to show that violations of Theorem
7 cannot persist. That is, if a system enters the expansive region, then it must remain in that region (e.g. if
z(t) = 0) or once again enter the contractive region.

Suppose that, for some tm, the hypothesis of Theorem 9, and consequently, Theorem 7, fails to hold. That
is, for some time tm
kAzðtmÞk1 6 Dqjkmaxj: ð16Þ
If inequality (16) is satisfied at all times subsequent to tm (e.g. if z(tm) = 0) then (16) describes a bound on x(t)
that is proportional to Dq. More specifically, "n > m, x(tn) must satisfy
kAðxðtnÞ þ kðtnÞÞk1 6 Dqjkmaxj;

where Eq. (9) constrains k(tn) such that ik(tn)i1 6 Dq.

Otherwise, for some n > m, the hypothesis of Theorem 9 holds. In this case, x(tn) is bounded by the region
described in Theorem 9 or the smallest value of ix(t)i1 for which Theorem 7 holds. More specifically, there is a
constant K > 1 such that
kAðxðtnÞ þ kðtnÞÞk1 6 KDqjkmaxj:

In either case, ix(tn)i1 is ultimately contained in a region whose dimensions are proportional to Dq. The con-
clusion of this argument is restated as Theorem 10.

Theorem 10. Consider the system described by Eq. (14). As tn!1, x(tn) must satisfy
kAðxðtnÞ þ kðtnÞÞk1 6 KDqjkmaxj;

where K > 1, or
kxðtnÞk1 <
2Dqb
jkmaxj

kAk1;
where 0 < b <1 is a constant specific to the system under consideration.
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Theorem 7 defines the outer edge of the expansive region, and (9) gives a conservative estimate of the inner
edge of the contractive region. Theorem 10 states that the system must ultimately be trapped within one of
these bounds. In particular, the system becomes trapped within the expansive region if it happens to reach
equilibrium. Otherwise, the system will wander in an area contained within the conservative bound on the
inner edge of the contractive region.

7. Comparing QSS and forward Euler

A synchronous form of the first order discrete event method can be constructed by updating every state
variable simultaneously. This derived method uses an adaptive time step that is chosen so that the fastest com-
ponent changes its magnitude by Dq.3

This method simulates a set of ordinary differential equations in the form
3 Th
unlike
crossin

4 By
the net
_x ¼ f ðxÞ

with a recursive function
xnþ1 ¼ xn þ hðnÞf ðxnÞ; where hðnÞ ¼ Dq
kf ðxnÞk1

: ð17Þ
The method stops if if(xn)i1 = 0 (i.e., if an equilibrium is reached).
When simulating a linear system _x ¼ Ax, Eq. (17) becomes
xnþ1 ¼ xn þ
Dq
kAxnk1

xn ¼ I þ Dq
kAxnk1

� �
xn:
This system is the same as system (13) with kn = 0. The step size at the nth step is
hðnÞ ¼ Dq
kAxnk1

;

where (13) has a step size
DtðnÞ < 2Dq
kAznk1

:

Within trajectory segments that are monotonically increasing or decreasing, Dt(n) will, in fact, be bounded by
Dq/iAzni1. The 2Dq term applies only when hysteresis can cause the system to move a distance further than Dq

between events (see [1]).
The numerical properties of the synchronous DEVS integrator are similar to those of the asynchronous

form. The synchronous integrator will, in general, require fewer simulation cycles (i.e., fewer state changes
of the resultant) to cover an interval of time. However, it will update every component at each simulation
cycle. Consequently, the total number of component updates could be (very) large when compared with the
asynchronous scheme, even if the asynchronous scheme requires more simulation cycles. The synchronous
integrator will also create smaller errors than the asynchronous form because it forces the slower components
to update at state space intervals smaller than Dq.

The asynchronous form trades error for, potentially, reduced execution time. If individual components are
loosely coupled4 and their rates vary widely, then the asynchronous form could require significantly fewer
component updates than the synchronous form. The additional errors in the asynchronous method result from
evaluating slower components less often than would be done using the synchronous method.
e synchronous DEVS model ensures that every component sees the most recently computed state values for its neighbors. This is
the aggressive DEVS model in which components only see new neighbor values when the neighbors q variable reaches a threshold
g (i.e., jq � qlj = Dq).
loosely coupled we mean that the number of integrator inputs influenced by an integrator output is small relative to the dimension of
work. In linear systems, this is caused by a sparse transition matrix. An example will be given in Section 8.



Table 1
Relative errors of synchronous and asynchronous DEVS methods with respect to explicit Euler

Euler time step Relation to maximum DEVS error

min{h(n)} Maximum Euler error < maximum DEVS error
max{h(n)jh(n) < 2/jkmaxj} Maximum Euler error > maximum DEVS error
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The synchronous integrator is useful for comparing the relative properties of discrete event and other fixed
and adaptive time stepping methods. It closely mimics the error and stability properties of the asynchronous
model. If the synchronous model has error, stability, and/or performance properties that look attractive rel-
ative to other methods, then the asynchronous model could provide an additional performance boost via its
locally adaptive time advance. Similarly, if the synchronous model looks unattractive for some particular
problem, then the extra performance obtained with the asynchronous method will need to be very significant
for it to be considered a viable alternative.

Eq. (17) is an adaptive form of the explicit Euler method
xnþ1 ¼ xn þ hf ðxnÞ: ð18Þ

If h is fixed to be the smallest h(n) observed over a simulation interval (e.g. as is done in [5]), then Eq. (18) will
require a larger number of steps than both the synchronous and asynchronous DEVS methods. However, Eq.
(18) will use smaller time steps to evaluate slower dynamics, thereby giving it better accuracy than either adap-
tive method. If h is fixed to be the largest h(n) < 2/jkmaxj, then Eq. (18) will need fewer steps than the adaptive
methods but will, in general, exhibit larger errors.

The errors exhibited by the asynchronous method will, in general, be larger than those of the synchronous
method. However, for systems with loosely coupled components and a large range of rates, the asynchronous
method may perform better by reducing the total number of component updates.

These observations, applied to linear systems, are summarized in Table 1. Where the time advance of the
DEVS schemes is limited by Theorem 7, the explicit Euler method can be used to bound the errors that will be
observed in a first order discrete event simulation of a linear system. The largest explicit Euler error that occurs
when using a time step min{h(n)} gives a lower bound on the maximum error that will be observed in the dis-
crete event simulation. The largest explicit Euler error that occurs when using a time step max{h(n)jh(n) < 2/
jkmaxj} gives an upper bound on the maximum error that will be observed in the discrete event simulation.

8. Examples

The examples in this section demonstrate the error and stability properties developed in the previous sec-
tions. It also highlights the computational advantage of the first order QSS scheme, relative to the other first
order methods described in Section 7, for simulating large, loosely coupled systems. Specifically, the first order
QSS method generates errors comparable to other first order accurate methods while realizing a substantial
reduction in computational costs for large, loosely coupled systems. We anticipate that this advantage will
carry over to higher order QSS schemes (see, e.g. [2,10,11,13]).

Consider the system _x ¼ �ax, where a > 0. This system has a single state variable. The synchronous and
asynchronous DEVS methods are identical for a system with a single variable. A (synchronous or asynchro-
nous) discrete event simulation of this system is described exactly by
xnþ1 ¼ xn � hðnÞaxn; where hðnÞ ¼ Dq
jaxnj

:

Whenever jxnjP Dq/2, then h(n) 6 2/a. Noting that a is the eigenvalue of this system, we see that a discrete
event simulation of this system is stable regardless of the choice of Dq. The first order quantization method
automatically adjusts its time step to maintain stability.

The relative errors in a discrete event and fixed step explicit Euler simulation of this system are shown in
Fig. 5. This example was computed using x0 = 1, a = 1, and Dq = 0.1. The simulation is stopped at the first
step after the discrete event scheme terminates at time t 	 3.
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Fig. 5 plots the errors in the discrete event scheme, explicit Euler with h = min{h(n)} and h = max{h(n)}.
The discrete event scheme requires 10 steps to complete the simulation; with h = min{h(n)} = 0.1, explicit
Euler requires 30 steps; with h = max{h(n)} = 1, explicit Euler requires three steps.

Consider the system
A ¼
�1 1

0 �2

� �
: ð19Þ
The phase plot of this system, starting from initial state x ¼ ½ 1 1 �T and simulated with Dq = 0.1, is shown in
Fig. 1. Fig. 6 shows the contractive and expansive regions for this system with Dq = 0.1. This bound describes
the z vectors that satisfy the inequality iAzi1 < Dqjkmaxj = 0.2. This inequality is satisfied when
j � z1 þ z2j < 0:2;

j � 2z2j < 0:2:
Fig. 7 shows the time advance of the resultant as a function of time during a simulation of this system. Fig. 8
shows the output trajectories zn for the same simulation using the asynchronous DEVS integrator. The explicit
Euler stability limit for this system is 1. The time advance of the resultant satisfies this whenever the system
state is outside of the expansive region.

Figs. 9 and 10 show a comparison of the errors in the simulated trajectories of this two state variable system
for four different integration methods; the synchronous DEVS, asynchronous DEVS, explicit Euler with h

equal to the smallest time advance of the synchronous DEVS, and with h equal to the largest stable time
advance of the synchronous DEVS. In this example, the smallest time advance of the synchronous DEVS
is 0.05 and the largest is 0.721397. The expected ranking with respect to observed errors appears can be clearly
observed; i.e., explicit Euler with small time step, synchronous DEVS, asynchronous DEVS, and then explicit
Euler with the largest time step. The largest observed errors with each method are shown in Table 2.

The total number of steps (i.e., simulation cycles) and total number of component updates for each method
are summarized in Table 3. The component update count for the Euler simulations and synchronous DEVS
simulation can be computed by multiplying the step count by the number of components. The component
update count for the asynchronous method is the sum of the number of internal and external transition func-
tion evaluations. In this case, there are only two state variables, and therefore, the asynchronous method has a
very difficult time exploiting the different component rates.
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Lastly, consider a large, loosely coupled system5 with N components whose derivatives are
5 Th
_xi ¼
xi�1 � 2xi þ xiþ1; if 1 < i < N ;

xN�1 � 2xN þ x1; if i ¼ N ;

xN � 2x1 þ x2; if i ¼ 1:

8><
>: ð20Þ
e system is loosely coupled because each integrator updates itself and its two nearest neighbors when an output is generated.
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This system is similar to the heat equation with periodic boundary conditions if the spatial derivatives are
approximated by finite differences. An explicit Euler simulation of this system is stable if h < 0.5. For the sake
of illustration, the initial conditions are taken to be
xið0Þ ¼
1; if i ¼ N=2;

0; otherwise:

�

This choice ensures that the system has relatively wide a range of local rates.
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Fig. 10. Error in variable x2 of system (19).

Table 2
Maximum observed errors

Method Maximum x1 error Maximum x2 error

Euler with hmin 0.0102459 0.019201
Synch. DEVS (contractive region) 0.0491482 0.039556
Asynch. DEVS (contractive region) 0.0829385 0.0587184
Euler with hmax 0.457539 0.679061

Table 3
Simulation steps and component update counts for system (19)

Method Simulation steps Component updates

Euler with h = min{h(n)} 71 142
Euler with h = max{h(n)} 5 10
Synch. DEVS 16 32
Asynch. DEVS 20 32
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In this context, the potential for the asynchronous DEVS to reduce the number of actual component eval-
uations is demonstrated by simulating Eq. (20) with Dq = 0.1 and several choices for N. When N is suitably
large, in this case N P 50, the asynchronous DEVS model has a time advance of 1 at time 26.2023. More-
over, every method uses a fixed number of steps in that time interval. Table 4 shows the number of steps and
component updates for each simulation method as N varies. For this model, hmin = 0.05 and hmax = 0.498787.

Fig. 11 shows h(n), k _xk1, the maximum stable time step, and outer edge of the contractive region for the 50
state variable version of Eq. (20). Note that hmax is not the largest time advance of the synchronous model;
only the largest stable time advance. The largest time advance is 2.92591, with other time advances greater
than 0.5 occurring throughout the simulation. However, these time advances always occur when
k _xk1 6 0:199156. The largest eigenvalue magnitude in system (20) is 4. The expansive region begins when
the largest derivative is smaller than 4Dq = 0.4. Notice that k _xk1 6 0:199156 < Dqjkmaxj ¼ 0:4.
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Table 4
Simulation steps/component update counts for system (20)

N h = min{h(n)} h = max{h(n)} Synch. DEVS Asynch. DEVS

50 525/26,250 53/2650 48/2400 67/536
500 525/262,500 53/26,500 48/24,000 67/986
5000 525/2,625,000 53/265,000 48/240,000 67/5486
50000 525/26,250,000 53/2,650,000 48/2,400,000 67/50,486
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Fig. 12. Maximum error as a function of time for a simulation of (20) with N = 50.
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Fig. 12 shows the maximum error created by each simulation scheme as a function of time. The expected
ranking of maximum errors can be readily observed. The Euler scheme with minimum time step has a max-
imum error of 0.0182232, the synchronous DEVS scheme 0.0743780, the asynchronous DEVS scheme
0.0842123, and Euler with maximum stable time step has a maximum error of 0.4639601.

For large systems with many loosely coupled components that have varying rates, the QSS method realizes
a substantial reduction in the number of calculations required to complete a simulation. The small, two var-
iable system demonstrates that the additional error introduced by updating individual components asynchro-
nously is small. For the two variable system, an (internal) event in one component causes an (external) event in
the other component, and so there is no hope of an actual performance improvement. None the less, it is indic-
ative of the modest additional error introduced by asynchrony.

9. Conclusions

The theory developed in this paper complements previous studies of the stability of linear quantized state
systems. When the A matrix satisfies typical stability constraints, this class of systems exhibits four interesting
properties:

(1) Trajectories are bounded,
(2) they can be made arbitrarily close to those of a continuous system _x ¼ Ax,
(3) all trajectories are ultimately periodic or, after some time, x(t) = 0, and
(4) switching times (i.e., the time advance of the resultant) are constrained in such a way that the system is

self-stabilizing.

This paper contributes the last item to this litany of facts. By doing so, we show that the first order QSS
integration scheme satisfies a well-established stability constraint for its most closely related time stepping
method. This constraint is satisfied automatically by the QSS, without any explicit attempt to control error
or maintain stable operation. Our result suggests that any explicit, discrete event integration schemes will sat-
isfy classical stability constraints (as described, e.g. in [26,27]).

These two properties – self-stabilization and absence of global synchronization points – make the proposed
asynchronous scheme, and its higher order accurate relatives, attractive for simulating many types of spatially
distributed systems. There are two main advantages in this context. First, the method provides a simple algo-
rithm that intrinsically tracks the active computational domain (see, e.g. [4,5]). Second, the algorithm can be
parallelized using scalable parallel discrete event simulation algorithms (see, e.g. [7–9]).

Of the two advantages, the second is perhaps most significant and, certainly, most distinguishes synchro-
nous and asynchronous methods. By avoiding any kind of global considerations to ensure overall stability,
asynchronous schemes offer the performance advantage of locally adaptive time stepping with very little com-
putational overhead. Moreover, this provides an immediate segue into massively parallel computing through
the use of well established parallel discrete event simulation algorithms (see, e.g. [20]).
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