
Control Engineering Practice ] (]]]]) ]]]–]]]
Contents lists available at ScienceDirect
Control Engineering Practice
0967-06

doi:10.1

� Corr

E-m

francois

Pleas
Pract
journal homepage: www.elsevier.com/locate/conengprac
Modeling of hybrid control systems using the DEVSLib Modelica library
Victorino Sanz a,�, Alfonso Urquia a, Franc-ois E. Cellier b, Sebastian Dormido a

a Dpto. de Informática y Automática, ETSI Informática, UNED, Juan del Rosal 16, 28040 Madrid, Spain
b Department of Computer Science, ETH Zurich, CH-8092 Zurich, Switzerland
a r t i c l e i n f o

Article history:

Received 12 December 2009

Accepted 29 November 2010

Keywords:

Object-oriented modeling

Hybrid control

Modelica

Parallel DEVS
61/$ - see front matter & 2010 Elsevier Ltd. A

016/j.conengprac.2010.11.014

esponding author. Tel.: +34 913989469; fax:

ail addresses: vsanz@dia.uned.es (V. Sanz), aur

.cellier@inf.ethz.ch (F.E. Cellier), sdormido@d

e cite this article as: Sanz, V., et al.
ice (2011), doi:10.1016/j.conengprac
a b s t r a c t

DEVSLib is a free Modelica library, developed by the authors, that supports the Parallel DEVS formalism.

The library is mainly designed to model discrete-event systems. It also includes interfaces to

communicate the DEVSLib models with the rest of the Modelica libraries. Thus, the library can be used

in the development of multi-domain and multi-formalism hybrid models using the object-oriented

methodology supported by Modelica. This manuscript presents the hybrid system modeling capabilities

included in DEVSLib. In particular, these functionalities are applied to the description of hybrid control

systems. A case study of a supermarket refrigeration system, using the traditional control approach, is

discussed. Three implementations of the plant and its controllers have been developed and are described.

The system is simulated reproducing the day and night conditions, and the results from the three

implementations are compared. DEVSLib is freely available for download at http://www.euclides.dia.

uned.es.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Hybrid models, which define the interaction of continuous-time
and discrete-event dynamics, are used for describing hybrid control
systems, such as control systems where a continuous-time plant is
controlled using discrete-time or event-based controllers.

Different modeling paradigms are applied for developing hybrid
models. Two widely used paradigms are block diagram modeling
and object-oriented modeling (i.e., physical modeling). The main
advantage of the object-oriented modeling, in comparison with the
block diagram modeling, is the acausal descriptions of models,
which facilitates the modeling task and the code reuse (Åström,
Elmqvist, & Mattsson, 1998; Cellier, 1991). Modeling environments
supporting object-oriented modeling automatically perform the
symbolic manipulations required to translate an acausal, object-
oriented description of the model into efficient executable code
(Cellier & Kofman, 2006).

Object-oriented modeling languages facilitate describing the
continuous-time part of hybrid models using differential and
algebraic equations (DAE). In addition, these languages provide
constructs to describe discontinuities in the continuous-time beha-
vior, equations with variable structure, and time and state events.
Among the object-oriented modeling languages, the Modelica
language (Elmqvist, Mattsson, & Otter, 1998; Fritzson, 2003) may
be considered the state-of-the-art for hybrid system modeling
ll rights reserved.

+34 913987690.

quia@dia.uned.es (A. Urquia),

ia.uned.es (S. Dormido).

Modeling of hybrid control
.2010.11.014
(Elmqvist, Cellier, & Otter, 1993; Mattsson, Otter, & Elmqvist, 1999;
Otter, Elmqvist, & Mattsson, 1999).

On the other hand, multiple formalisms have been proposed for
representing discrete-event models. Finite Automata, Petri Nets,
Grafcets and StateCharts are some of the most common formalisms
used in control applications (Hrúz & Zhou, 2007). Extensions to
these formalisms, such as Hybrid Automata (Lynch, Segala, &
Vaandrager, 2003) and Hybrid Petri Nets (David & Alla, 2001),
have been developed for modeling hybrid systems.

DEVS (Discrete EVent system Specification) is a modular and
hierarchical formalism for modeling discrete-event systems (Zeigler,
Kim, & Praehofer, 2000). DEVS was proposed by Bernard P. Zeigler in
1976. Extensions to the DEVS formalism include Parallel DEVS (Chow,
1996), DEV&DESS for combined continuous-time and discrete-event
systems (Zeigler et al., 2000), RT-DEVS for real-time discrete-event
systems (Hong, Song, Kim, & Park, 1997), Cell-DEVS for cellular
automata (Wainer & Giambiasi, 2001), Fuzzy-DEVS (Kwon, Park, Jung,
& Kim, 1996), and Dynamic Structure DEVS (Barros, 1995).

Some control applications of the DEVS formalism are described in
Zeigler (1989). A DEVS-based methodology to analyze and design
discrete-event controllers is proposed in Son and Kim (1994). Kofman
(2003) presents the Quantized State Control (QSC) method, used to
map an existing continuous-time controller into a discrete-event
model within the DEVS formalism framework, which can be imple-
mented in a digital computer. Also, Campbell and Wainer (2006)
shows how to apply their M&S-Driven Engineering methodology,
based on the use of the DEVS formalism, to develop components of
real-time embedded systems.

The application of discrete-event modeling formalisms to the
construction of the discrete-event part of hybrid models facilitates
systems using the DEVSLib Modelica library. Control Engineering

http://www.euclides.dia.uned.es1
http://www.euclides.dia.uned.es1
www.elsevier.com/locate/conengprac
dx.doi.org/10.1016/j.conengprac.2010.11.014
mailto:vsanz@dia.uned.es
mailto:aurquia@dia.uned.es
mailto:francois.cellier@inf.ethz.ch
mailto:sdormido@dia.uned.es
dx.doi.org/10.1016/j.conengprac.2010.11.014
dx.doi.org/10.1016/j.conengprac.2010.11.014


V. Sanz et al. / Control Engineering Practice ] (]]]]) ]]]–]]]2
the model development, maintenance, and reuse. It also helps to
ensure the correctness and validity of the developed model.

Several Modelica libraries have been programmed in order to
support discrete-event modeling formalisms. StateCharts (Ferreira
& de Oliveira, 1999), StateGraph (Otter, Årzén, & Dressler, 2005),
Petri Nets (Mosterman, Otter, & Elmqvist, 1998) and Hybrid Automata
(Pulecchi & Casella, 2008) are some of the supported formalisms.
A more extensive list of available (free and commercial) Modelica
libraries can be found at Modelica Libraries (2009).

DEVSLib is a free Modelica library that supports the Parallel
DEVS formalism. The library includes interface models to transform
DEVS events into discrete-time signals, and discrete-time and
continuous-time signals into series of events. Thus, DEVSLib is
compatible with other Modelica libraries, facilitating the descrip-
tion of multi-formalism and multi-domain hybrid systems. The
DEVSLib library has been developed by the authors of this manu-
script and is freely available on the web (www-euclides, 2009) as a
package of the DESLib Modelica library (Sanz, Urquia, & Dormido,
2009c). The library and the work discussed in this paper have been
developed using the Dymola simulation environment (Dynasim
AB, 2006).

The P-DEVS formalism has been chosen due to its versatility for
hierarchical and modular description of discrete models. Object-
oriented modeling languages have similar characteristics for describ-
ing continuous models. However, implementing the communication
mechanisms of P-DEVS in Modelica turned out to be quite a challenge
(Sanz, Urquia, & Dormido, 2010).

It should be noted that the P-DEVS formalism can also be used as a
basis for implementing other discrete-event modeling approaches in
Modelica, such as the process-oriented modeling approach (Kelton,
Sadowski, & Sturrock, 2007; Sanz et al., 2009c).

The objective of this manuscript is to present the functionalities
provided by the DEVSLib Modelica library in order to describe hybrid
control systems. The Parallel DEVS formalism and the Modelica
language are combined to describe the controller and the plant. This
combined approach facilitates the description of hybrid models,
including the interactions between continuous and discrete parts.

DEVSLib has been successfully used to describe hybrid control
systems. A hybrid model of a ‘‘Crane and Embedded Controller’’
system was described in Sanz, Cellier, Urquia, and Dormido (2009a).
This system was proposed by ARGESIM as a comparison for different
tools that support hybrid modeling. The crane system was described
as a continuous-time model using the Modelica language. The
controller was modeled in part using the DEVSLib library and in part
using the Modelica Standard Library (MSL). Both parts are inter-
connected using DEVSLib interface models. Another example of a
hybrid opto-electrical communication system modeled using DEVSLib
is described in Sanz et al. (2009b). DEVSLib has also been used to
describe process-oriented models (Kelton et al., 2007) in Modelica
(Sanz, Urquia, & Dormido, 2006, 2007). These and other examples are
distributed together with the library.

In this manuscript, a new case study is discussed to demonstrate
the hybrid modeling functionalities of DEVSLib. The case study
consists on a supermarket refrigeration system. This system was
proposed in Larsen, Izadi-Zamanabadi, and Wisniewski (2007) as a
benchmark for control applications. An NMPC control approach for
the system is discussed in Sarabia, Capraro, Larsen, and de Prada
(2009). The purpose of this work is to describe the system and its
traditional control approach as a hybrid model using Modelica and
DEVSLib following the object-oriented methodology.

The document is organized as follows: A brief description of the
Parallel DEVS formalism and the Modelica language are included in
Sections 2 and 3. The DEVSLib library is briefly described in Section
4, detailing its functionalities and interfaces for hybrid system
modeling. The functionalities of DEVSLib applied to modeling of
hybrid control systems are presented in Section 5. The supermarket
Please cite this article as: Sanz, V., et al. Modeling of hybrid control
Practice (2011), doi:10.1016/j.conengprac.2010.11.014
refrigeration system modeled using DEVSLib and Modelica is dis-
cussed in Section 6. The manuscript ends with some conclusions.
2. Parallel DEVS formalism

The Parallel DEVS (P-DEVS) formalism is briefly introduced in
this section. Models in P-DEVS can be described behaviorally
(named atomic) or structurally (named coupled).

2.1. Atomic P-DEVS models

According to the P-DEVS formalism, an atomic model is the
smallest component that can be used to describe the behavior of a
system. An atomic P-DEVS model is formally defined by a tuple of
eight elements, as described in Chow (1996):

M¼ ðX,S,Y ,dint ,dext ,dcon,l,taÞ

where
systems using the D
X is
 the set of input events.

S is
 the set of sequential states.

Y is
 the set of output events.
dint : S�!S is
 the internal transition function.
dext : Q � Xb�!S is
 the external transition function.
dcon : Q � Xb�!S is
 the confluent transition function.
l : S�!Yb is
 the output function.
ta : S�!Rþ0,1
is
 the time advance function
Xb is a set of bags over elements in X, Q ¼ fðs,eÞjsAS,0rertaðsÞg,
and e is the time elapsed since the last transition.

A detailed description of the behavior of an atomic P-DEVS
model can be found in Chow (1996) and Zeigler et al. (2000). An
informal description of its behavior is presented here.

An atomic model remains in the state sAS, for a duration ts ¼ ta(s),
if no input events are received during this interval. After ts is
elapsed, an internal event is triggered. The actions associated with
the internal event are: (1) an output can be generated using the
output function and the state previous to the event ðoutput¼ lðsÞÞ;
and (2) an internal transition is performed, by changing the state to
snew1 ¼ dintðsÞ.

Multiple input events can be received simultaneously through
one or several ports:
�
 If any input event is received at time instant text where text o
tlastþts, an external event is triggered. tlast indicates the time
instant when the last event occurred, and so the input events are
received before the time instant for the next scheduled internal
event. As a consequence of the external event, the state is
changed to snew2 ¼ dextðs,e,bagÞ (i.e., an external transition is
performed), where s is the current state, e is the elapsed time
since the last transition (text�tlast), and bagDX is the set of
received input events.

�
 If the external input event is received at time text with text¼

tlast + ts, the conditions for the external and the internal events
are simultaneously satisfied. This situation triggers a confluent

event that substitutes the external and internal events. The
actions associated with the confluent event are: (1) an output
can be generated as output¼ lðsÞ (similarly to the management
of internal events); and (2) a confluent transition is performed
by changing the state to snew3 ¼ dconðs,e,bagÞ, being s the current
state, e the elapsed time, and bagDX the set of received input
events (similarly to the dext function).

A new internal event is scheduled after each internal, external,
and confluent event. This new internal event will occur at time
EVSLib Modelica library. Control Engineering

dx.doi.org/10.1016/j.conengprac.2010.11.014


V. Sanz et al. / Control Engineering Practice ] (]]]]) ]]]–]]] 3
instant tnew ¼ ta(snew) + time, where time is the current time, i.e.,
the time instant of the current event, and ta(snew) is the duration
until the next internal event scheduled as a consequence of the
current event. The duration ta(snew) is a function of the new state
snew (changed by the execution of the transition function). Note that
the time advance function can also return a zero or an infinite value.
If taðsnewÞ ¼1, snew is called a passive state in which the model will
remain until an external input event is received. If 0otaðsnewÞo1,
snew is called an active state, and ta(snew) indicates the time interval
before the next internal event. If ta(snew) ¼ 0, snew is called a
transitory state, which generates an immediate internal event.

2.2. Coupled P-DEVS models

The P-DEVS formalism supports the hierarchical and modular
description of the model. Every model has an interface to commu-
nicate with other models.

A coupled P-DEVS model is a model composed of several inter-
connected atomic or coupled models that communicate externally
using the input and output ports of the coupled model interface. It is
described by the following tuple (Zeigler et al., 2000):

M¼ ðX,Y ,D,fMdjdADg,EIC,EOC,ICÞ

where
Pleas
Pract
X
 is the set of input events.

Y
 is the set of output events.

D
 is the set of the component names.

Md
 DEVS model, for each dAD.

EIC
 External Input Coupling: connections between the inputs of

the coupled model and its internal components.

EOC
 External Output Coupling: connections between the

internal components and the outputs of the coupled
model.
IC
 Internal Coupling: connections between the internal
components.
The connection of P-DEVS models implies the establishment of
an information transmission mechanism between the connected
models. P-DEVS models follow a message passing communication
mechanism. A model generates messages as outputs, using its
output function, which are received by other models as external
inputs. Messages can be received simultaneously through one or
multiple ports. Connections between models can be in the form of
1-to-1, 1-to-many and many-to-1. Each message can transport an
arbitrarily complex amount of information (e.g., from one single
number to a complex data structure, depending on the particular
application). The received messages represent the bag of input
elements used as an argument for the external and confluent
transition functions.
3. The Modelica language

Modelica is a free object-oriented modeling language mainly
designed to describe mathematical models of physical systems
(Modelica Association, 2009). Modelica is developed and main-
tained by the Modelica Association, which is an international
association composed of multiple organizations and individual
members. The development of the language includes several chara-
cteristics from previous languages like ALLAN (Jeandel & Larivire,
1997), Dymola (Elmqvist, 1978), NMF (Sahlin, Brign, & Sowell,
1996), ObjectMath (Fritzson, Viklund, Fritzson, & Herber, 1995),
Omola (Andersson, 1989), SIDOPS+ (Breuneuse & Broenink, 1997)
and Smile (Kloas, Friesen, & Simons, 1995). Multiple free and com-
mercial tools support the Modelica language such as CATIA
e cite this article as: Sanz, V., et al. Modeling of hybrid control
ice (2011), doi:10.1016/j.conengprac.2010.11.014
(Dassault Systemes, 2009), Dymola (Dynasim AB, 2006), LMS Imagi-
ne.Lab AMESim (LMS International, 2009), MapleSim (Maplesoft,
2009), MathModelica (MathCore Engineering AB, 2009), SimulationX
(ITI GmbH, 2009), OpenModelica (Fritzson et al., 2002) and Scicos
(Campbell, Chancelier, & Nikoukhah, 2006).

Modelica supports the equation-based, object-oriented model-
ing methodology (EOO), which facilitates the description of large
and complex systems (Cellier, 1996). Models can be described by
means of equations and algorithms (i.e., behavioral description),
by interconnecting instantiations of previously defined classes
(i.e., structural description), or by combining both methods.

Modelica provides advanced modeling functionalities, including
multiple class inheritance and definition of partial classes, constructs
to impose information encapsulation, user’s control over the selection
of the state variables (Otter & Olsson, 2002), advanced features for
model initialization (Mattsson, Elmqvist, Otter, & Olsson, 2002), cons-
tructs to define arrays of components, connectors and connections,
support to the combined use of equations, algorithms and structural
information, and constructs for algorithmic Modelica code encapsu-
lation and reuse, and for interfacing with external functions in C and
Fortran (Olsson, 2005). The replaceable and redeclare constructs allow
modifying the class of an object, even when already defined in a
model. Models can also include annotations, which provide additional
information such as graphical attributes, environment-dependent
information, version and documentation.

Modelica supports event-based and nonevent-based treatment
of logical conditions (using the noEvent operator). It provides
language constructs to describe the trigger conditions of time
and state events, and the actions associated to the events (Mattsson
et al., 1999). These actions include: (1) updating the value of discrete-
time variables and reinitialize continuous-time state variables, using
when clauses; and (2) changing the mathematical description of
equations and assignments, using the if statement.

A model in Modelica has to satisfy the single-assignment rule.
This means that the number of unknown variables and equations in
the model has to be equal, and that the number of equations in each
branch of a conditional equation must also be equal. Otherwise, the
model is incorrect (singular).

Equations in Modelica follow the synchronous data flow
principle, meaning that at each time instant, the active equations
express relations between variables that have to be satisfied con-
currently (Otter et al., 1999). The order in which the equations are
evaluated is automatically determined by data flow analysis of the
system of equations, leading to unique computations of the unknown
variables.

There are different specialized classes to facilitate the descrip-
tion of diverse models. They include the record, type, model, block,
function, connector, package, operator, and operator function classes.
These classes present restrictions in the amount and type of
components they may contain. A detailed description can be found
in Modelica Association (2009).

Models can be described in a hierarchical and modular fashion,
interconnecting components similar to the topological structure of
the real system. Connections between EOO models are non-direc-
tional. Modelica provides the connector class, to describe the model
interface, and the connect sentence, to describe the interactions
(or connections) between models. These model interactions are based
on the energy-balance principle. Connector variables are classified
into across or through. The connected across variables are set equal,
while the connected through variables are summed up and the sum is
set equal to zero.

The features for developing and using model libraries
strengthen the Modelica modeling capabilities. Modelica libraries
facilitate the application of several modeling formalisms and the
development of multi-domain models (Modelica Libraries, 2009).
The main Modelica library is the Modelica Standard Library (MSL)
systems using the DEVSLib Modelica library. Control Engineering

dx.doi.org/10.1016/j.conengprac.2010.11.014


V. Sanz et al. / Control Engineering Practice ] (]]]]) ]]]–]]]4
(Modelica, 2008), which is developed and supported by the
Modelica Association.

Modelica modeling environments implement hybrid-model
simulation algorithms (Elmqvist, Mattsson, & Otter, 2001; Mattsson
et al., 1999). Models are translated by the modeling environment into a
hybrid DAE form, in order to simulate and analyze the system. The
formal description of a hybrid DAE is (Modelica Association, 2009):

c :¼ fcðrelationðvÞÞ

m :¼ fmðv,cÞ

0¼ fxðv,cÞ

with v :¼ ½ _x,x,y,t,m,preðmÞ,p�, where
�

P
P

p are the variables without time dependency (i.e., parameters or
constants).

�
 t is the independent variable (time).

�
 x(t) is the set of variables that appear differentiated.

�
 m(te) are the variables that are unknown and only change their

values at event instants te. pre(m) are the values of these
variables immediately before the event.

�
 y(t) is the set of algebraic variables.

�
 c(te) are the conditions of all if-expressions, included when-

expressions after conversion.

�
 relation(v) are the relations containing variables vi (e.g., v1ov2).

This description defines a DAE that may include discontinuities,
variable structure and/or discrete-events. The simulation is per-
formed as follows (Modelica Association, 2009):
1.

Fig. 1. DEVSLib library architecture.
The DAE model is solved by a numerical integration method. In
this phase, the conditions of the if and when clauses as well as
the discrete variables are kept constant. Therefore, the model is
a continuous function of continuous variables, and the most
basic requirement of numerical integrators is satisfied.
2.
 During integration, all relations between model variables are
monitored (e.g., v1ov2). If one of the relations changes its value,
an event is triggered, i.e., the exact time instant of the change is
determined, and the integration is halted. Relations that depend
only on time are usually treated in a special way, because this
allows to determine the time instant of the next event in advance.
3.
 At an event instant, the model is a mixed set of algebraic equations
that is solved for the Real, Boolean and Integer unknowns.
4.
 After an event is processed, if any of the relations between
variables has changed its value due to the treatment of the
event, a new event is triggered and processed. Otherwise, the
integration is restarted (i.e., back to step 1).

4. The DEVSLib Modelica library

The general architecture of DEVSLib is shown in Fig. 1. Its
components are structured in two areas: the user’s area and the
developer’s area. The user’s area contains all the required compo-
nents to describe new P-DEVS models, including useful auxiliary
models and the interfaces to combine DEVSLib models with other
Modelica libraries. This area is composed of the Users Guide, atom-
icDraft, coupledDraft, AuxModels and Examples packages shown in
Fig. 1. The developers area is contained in the SRC package (see Fig. 1),
and includes the internal implementation of the library components
as well as the development oriented documentation.

The behavior of a general P-DEVS atomic model is implemented
in an abstract class called ‘‘AtomicDEVS’’, included in the SRC
package. This class manages the detection of external, internal, and
confluent events, and the execution of the actions associated with
each transition.
lease cite this article as: Sanz, V., et al. Modeling of hybrid control
ractice (2011), doi:10.1016/j.conengprac.2010.11.014
Using the discrete-event management functionalities included
in Modelica, i.e., such as the when and if statements, the AtomicDEVS
model defines the conditions for detecting the occurrence of external,
internal, and confluent events. External events are detected due to the
reception of an external message, which increases the value of the
‘‘event’’ variable of the input port that received the message. Internal
events are detected when the simulation time reaches the time for the
next scheduled internal event (i.e., time4 ¼ nextInternalEvent). Con-
fluent events are detected when the conditions for external and
internal events are simultaneously met. Dymola automatically detects
the occurrence of these events during the simulation (Elmqvist et al.,
2001; Mattsson et al., 1999).

The simulation time is managed by Dymola, which executes the
numerical integrator and performs the simulation following the
procedure described in Section 3. The simulation is performed
combining the continuous-time integration, and the detection and
execution of discrete events.

4.1. Atomic and coupled models with DEVSLib

Atomic models in DEVSLib (cf. model ‘‘atomicDraft’’ in Fig. 1)
can be described analogous to their formal specification (see
Section 2). The interfaces of the model are defined including the
required input and output ports. The state is represented as the
Modelica record ‘‘st’’ and can be initialized defining the ‘‘initst’’
function. The transition, output, and time advance functions can be
defined be means of the ‘‘int,’’ ‘‘ext,’’ ‘‘con,’’ ‘‘out,’’ and ‘‘ta’’ functions.

DEVSLib models can be aggregated and connected to compose
coupled models. Coupled model components can be either atomic
or other coupled models, thus the coupled models can be arranged
systems using the DEVSLib Modelica library. Control Engineering

dx.doi.org/10.1016/j.conengprac.2010.11.014


V. Sanz et al. / Control Engineering Practice ] (]]]]) ]]]–]]] 5
hierarchically. The description of P-DEVS coupled models using
DEVSLib follows their formal specification (see Section 2). Using the
object-oriented modeling capabilities of Modelica, coupled models
are constructed connecting previously developed components and
including the required input/output ports.

4.2. DEVSLib model communication

In P-DEVS, external events transport information between models.
The transmitted information is called ‘‘message’’. Messages are crea-
ted by the output function and received as inputs for the external and
confluent transition functions.

The model communication mechanism in Modelica is based on
the definition of ports, called ‘‘connectors,’’ and connections between
ports, using ‘‘connect-equations’’. Variables defined in two connected
connectors are either set equal, or are summed up with the sum being
set equal to zero.

The Modelica model communication and the P-DEVS message
passing mechanisms are conceptually different. The former relates
values of variables, while the latter transports information between
models. Several approaches were studied and developed in order to
implement a suitable message passing mechanism in Modelica
(Sanz, Urquia, & Dormido, 2008).

A direct implementation of a message passing mechanism in
DEVSLib using Modelica connectors was studied. However, con-
nectors do not allow the simultaneous reception of messages,
because their variables cannot be assigned with several values at
the same time. Also, Modelica does not allow a variable number of
objects in a model, so the message transmission cannot be directly
implemented.

Other approaches for developing the message passing mechan-
ism in DEVSLib, based on an intermediate storage of the transmitted
messages, were studied and implemented. The first approach was to
use a text file to store the messages, so the sender writes the message
to the file and notifies this to the receiver, that subsequently reads it.
This approach allows simultaneous reception of messages, because
several messages can be written to the file, but its performance and
versatility are poor. The other approach substitutes the text files by
dynamic memory space. This increases the performance and the
versatility of the mechanism, allowing to manage different types of
messages without redefining the message management operations.

The dynamic memory approach for message passing is the
mechanism implemented in DEVSLib. This approach is combined
with the standard Modelica connectors to provide a communica-
tion mechanism transparent to the user. DEVSLib models are
topologically connected using standard Modelica connectors and
connect-equations.

4.3. DEVSLib interfaces to other Modelica libraries

DEVSLib includes models to translate the content of the DEVS
messages into discrete-time signals, and discrete-time and contin-
uous-time signals into DEVS messages. There are two mechanisms
used in the continuous-to-discrete translation: the cross-functions
and the quantization. The former translates the value of a continuous-
time or discrete-time signal into a message every time the signal
crosses a given threshold in one direction (upwards or downwards).
The models ‘‘crossUP’’ and ‘‘crossDOWN’’ implement this behavior
in DEVSLib. The quantization mechanism is implemented by the
‘‘quantizer’’ model. This model generates a message every time the
value of the continuous-time or discrete-time signal changes by a
predefined quantum, similarly to the behavior of the Quantized State
System (QSS) first-order integration method (Kofman, 2004).

On the other hand, the discrete-to-continuous translation is
performed generating a piecewise-constant signal whose value is
Please cite this article as: Sanz, V., et al. Modeling of hybrid control
Practice (2011), doi:10.1016/j.conengprac.2010.11.014
the one of the last message received. The model ‘‘DICO’’ (DIscrete-
to-COntinuous) implements this behavior in DEVSLib. DEVSLib also
includes a ‘‘DIBO’’ (DIscrete-to-BOolean) model that generates a
boolean signal set to ‘‘false’’ if the value of the arrived message is
zero, and ‘‘true’’ in any other case.

These interface models are implemented to manage the stan-
dard DEVSLib message type. However, the message type in DEVSLib
can be redefined by the user and the interface models adapted to
the new message type.

Also, DEVSLib models can receive continuous-time or discre-
te-time inputs as parameters to their transition functions. These
inputs facilitate the description of discrete-event behavior in
hybrid models, which can be influenced by the values of contin-
uous-time or discrete-time variables. In order to maintain the
modularity in the model construction, these inputs must be con-
nected using the model interfaces.
5. Modeling of hybrid control systems using DEVSLib

This section discusses the application of DEVSLib components
and functionalities to describe hybrid control systems. The descrip-
tion of sensors and actuators and of discrete (time- or event-based)
controllers is presented. The description of the plant is considered
to be performed using a continuous-time model, and thus its descri-
ption is not included in this section.

5.1. Sensors and actuators

Sensors and actuators are required to communicate the con-
tinuous-time model of the plant with the controllers. Since time-
based sensors are already available in the Modelica Standard
Library, DEVSLib does not include them.

Event-based sensors can be modeled using the DEVSLib inter-
faces described in Section 4.3. The crossUP and crossDOWN models
can be used as threshold detectors. The quantizer model can
be used to observe the plant output avoiding time discretization
(i.e., sampling).

The responses of these three models when applied to a sinusoid
signal are shown in Fig. 2. The crossUP model detects the sinusoid
signal crossing the value 2 in upwards direction and generates a
message with that value. The crossDOWN model detects the sinusoid
signal crossing the value 2 in downwards direction and generates a
message with that value. The quantizer model generates a message
every time the value of the signal changes by an amount exceeding the
defined quantum—i.e., at values 1 and 2, and then again at 1 and 0,
and so on. It should be noticed that the signal never crosses the values
3 and �3, and therefore, messages are not generated at those points.

The output signal of an event-based controller is represented
using messages. These messages have to be translated and com-
municated to the plant. The DEVSLib discrete-to-continuous mod-
els (i.e., DICO and DIBO) can be used to translate the generated
control signal to a discrete-time or boolean signal. Also, DEVSLib
includes the ‘‘setValue’’ model, which generates a message with a
given value every time the model receives an external message.
This model can be used to communicate control actions, indepen-
dently of the value transmitted by the message.

For instance, consider the temperature control of a heating sys-
tem. The heater is turned off when the room temperature reaches a
certain value. Using DEVSLib, this system can be implemented using a
crossUP model to detect the temperature threshold. The output of the
crossUP is connected to a setValue model, that sends a message with
value 0. This message is received by a DIBO model that sets its output
to false, due to the 0 value of the message, turning off the heating
system. The description of this simple system using DEVSLib is shown
in Fig. 3.
systems using the DEVSLib Modelica library. Control Engineering

dx.doi.org/10.1016/j.conengprac.2010.11.014


Fig. 2. Sensors response using DEVSLib models: (a) crossUP (value ¼¼ 2); (b) crossDOWN (value ¼¼ 2); and (c) quantizer (quantum ¼¼ 1).

Fig. 3. Simple temperature control system described using DEVSLib.

V. Sanz et al. / Control Engineering Practice ] (]]]]) ]]]–]]]6
5.2. Controllers

DEVSLib can be used to describe discrete-time and event-based
controllers. Depending on the complexity of the actions performed
by the controller, it can be implemented as a single atomic model or
as a coupled model. The transition functions of atomic models may
contain the algorithms to calculate the control signal. On the other
hand, coupled models can be constructed by combining simpler
actions (e.g., the temperature control shown in Fig. 3).

Discrete-time controllers can be described using an atomic
DEVSLib model that only executes periodic internal transitions. Each
internal transition represents a sample interval. The time advance
function schedules a new internal transition for the next sampling
time. The inputs for the controller are represented by continuous-
time inputs for the atomic DEVSLib model, as described in Section 4.3.

Event-based controllers can be described using either atomic or
coupled DEVSLib models, depending on their complexity. Controller
inputs are received as messages through the input ports from the
DEVSLib sensors, and the control signals are also generated as
messages sent through the output ports.
6. Case study: supermarket refrigeration system

The DEVSLib functionalities for describing hybrid control sys-
tems are applied to the design of a supermarket refrigeration
system. This system was proposed in Larsen et al. (2007) as a
benchmark for hybrid control applications.

A supermarket refrigeration system is composed of three main
components: the display cases, the suction manifold and the
compressor rack. The display cases contain the refrigerated goods
offered to the customers. These display cases contain an evaporator
that is connected to a pressure line. The objective is to control the
temperature of the goods, which is approximated by the temperature
of the air inside the display. Some external disturbances affect the
temperature of the air in the display.
Please cite this article as: Sanz, V., et al. Modeling of hybrid control
Practice (2011), doi:10.1016/j.conengprac.2010.11.014
The refrigerant in each display case flows into the suction
manifold. A compressor rack provides refrigerant to the displays by
compressing the refrigerant in the suction manifold. Each display
has an inlet valve to control the flow of refrigerant. Each com-
pressor in the rack can be switched on and off, depending on the
pressure in the line. The traditional control approach for these kind
of refrigeration systems includes two main controllers: the air
temperature control associated with the display cases, and the
pressure control integrated into the compressor rack.

This section includes a description of the plant and the tradi-
tional control approach described in Larsen et al. (2007) and
Sarabia et al. (2009). These components have been modeled using
plain Modelica code, the Modelica Standard Library, and DEVSLib.
A comparison of the simulation results obtained by these three
implementations is included.

6.1. Display case

The dynamics of the display case are represented by four state
variables: the temperature of the goods, Tgoods, the temperature of
the air, Tair, the temperature of the evaporator wall, Twall, and the
mass of liquefied refrigerant in the evaporator, Mref. The inputs of
the display are: the pressure in the suction line, Psuc, the state of the
inlet valve (open/close), valve, and the disturbance, Qairload.

The following three equations describe the energy balance
between the goods, the air curtain, and the evaporator (Larsen
et al., 2007).

dTgoods

dt
¼�

Qgoods2air

Mgoods � Cpgoods

ð1Þ

dTwall

dt
¼

Qair2wall�Qe

Mwall � Cpwall

ð2Þ

dTair

dt
¼

Qgoods2airþQairload�Qair2wall

Mair � Cpair

ð3Þ

where Qairload is the external disturbance on the air curtain, and

Qgoods2air ¼UAgoods2air � ðTgoods�TairÞ ð4Þ

Qair2wall ¼UAair2wall � ðTair�TwallÞ ð5Þ

Qe ¼UAwall2ref ðMref Þ � ðTwall�TeÞ ð6Þ
systems using the DEVSLib Modelica library. Control Engineering

dx.doi.org/10.1016/j.conengprac.2010.11.014


V. Sanz et al. / Control Engineering Practice ] (]]]]) ]]]–]]] 7
UA is the overall heat transfer between media (defined with
subscripts). M denotes the mass, Cp the heat capacity of the media,
and Te the evaporation temperature (approximated by Eq. (7), in
absence of pressure drop in the suction line).

Te ¼�4:3544 � P2
sucþ29:2240 � Psuc�51:2005 ð7Þ

The heat transfer coefficient between the evaporator wall and
the refrigerant is a function of the mass of liquefied refrigerant
(cf. Eq. (6)), which is approximated by the following linear function:

UAwall2ref ðMref Þ ¼UAwall2ref ,max

Mref

Mref ,max
ð8Þ

The accumulation of refrigerant in the evaporator is described by

dMref

dt
¼

Mref ,max�Mref

tfill
if valve¼ 1

Qe

nHlg
if valve¼ 0,Mref 40

0 if valve¼ 0,Mref ¼ 0

8>>>>>><
>>>>>>:

ð9Þ

where tfill is the filling time of the evaporator, nHlg is the specific
latent heat of the remaining liquefied refrigerant in the evaporator,
which is approximated by Eq. (10).

nHlg ¼ ð0:0217 � P2
suc�0:1704 � Psucþ2:2988Þ � 105

ð10Þ

The mass of refrigerant leaving the evaporator into the suction
manifold is described by

m¼
Qe

nHlg
ð11Þ

The temperature control for the display case is defined as an
hysteresis controller that opens and closes the inlet valves to
regulate the temperature of the air, Tair. The parameters for the
controller are the upper and lower thresholds for the temperature
(T air and T air). The hysteresis is operated at a sample time of
1 second. The state of the valves at the kth sample is defined as

valveðkÞ ¼

1 if Tair 4T air

0 if Tair oT
air

valveðk�1Þ if T
air

oTair oT air

8>><
>>: ð12Þ

The model of the display case has been developed translating
the equations described above into plain Modelica code. Interface
ports have been added to the model in order to allow its connection
with the other elements of the refrigeration system. The developed
model is shown in Fig. 4.

The air controller detailed in Fig. 4b includes a crossUP model to
detect the upper temperature for the air. When the air temperature
Fig. 4. (a) Display case, including air controller; and (

Please cite this article as: Sanz, V., et al. Modeling of hybrid control
Practice (2011), doi:10.1016/j.conengprac.2010.11.014
reaches the threshold, the crossUP generates a message that is
translated into another message with value 1 by the setValue
model. This latter message is translated by the DIBO model into a
‘‘true’’ value for the valveOpen port. The crossDOWN model detects
the lower limit for the air temperature and actuates analogously to
the crossUP model, but in this case, the setValue generates a
message with value 0, that closes the valve (i.e., sets the value of the
valveOpen port to ‘‘false’’). The two ‘‘Cond’’ models included in the
center of the air controller check the initial conditions for the air
temperature, setting the correct value for the valve at the beginning
of the simulation.

6.2. Suction manifold

The pressure of the suction line, Psuc, is described by

dPsuc

dt
¼

min�sucþmref ,const�Vcomp � rsuc

Vsuc �
drsuc

dPsuc

ð13Þ

where Vsuc is the total volume of the suction manifold, Vcomp is the
volume flow created by the compressors, min�suc is the sum of
refrigerant mass from the display cases into the suction manifold,
mref, const is a constant mass flow into the suction manifold from
unmodeled entities, and rsuc is the density in the suction manifold
(approximated by Eq. (14)).

rsuc ¼ 4:6073 � Psucþ0:3798 ð14Þ

The model of the suction manifold has been developed similarly
to the display case, translating Eq. (13) into plain Modelica code.
The interface of the model is composed of three inputs (m, Vcomp,
and mref, const) and one output (Psuc).

6.3. Compressor rack

The volume flow generated by each compressor is

Vcomp,i ¼ compi �
1

100
� Zvol � Vsl, i¼ 1, . . . ,q ð15Þ

where q is the number of compressors in the rack, compi is the
capacity of the ith compressor ð

Pq
i ¼ 1 compi ¼ 100Þ, Zvol is the

volumetric efficiency, and Vsl is the total displacement volume.
The pressure control for the compressor rack is defined as a PI

controller with a dead band (DB) around the reference pressure
(cf. Eq. (16)). This controller is typically operated at a sample time
of 60 s.

uPIðtÞ ¼ KpeðtÞþ

Z
eðtÞ

ki
dt ð16Þ
b) detail of air controller modeled using DEVSLib.

systems using the DEVSLib Modelica library. Control Engineering

dx.doi.org/10.1016/j.conengprac.2010.11.014


V. Sanz et al. / Control Engineering Practice ] (]]]]) ]]]–]]]8
where

eðtÞ ¼
Pref

suc�Psuc if jeðtÞj4DB

0 otherwise

(
ð17Þ

For all compressors in the rack, the ncth compressor is switched
on if Eq. (18) is satisfied, and switched off in all other cases.

uPI Z

Xnc�1

i ¼ 1

compiþ
compnc

2
ð18Þ

The compressor rack has been modeled using three different
approaches. The dynamics of the compressors (Eq. (15)) have been
Fig. 5. Pressure control modeled using: (a) DEVSLib and the MSL; and (b) an atomic

DEVSLib model.

Fig. 6. Actions performed by the atomic DEVSLib PI controll

Please cite this article as: Sanz, V., et al. Modeling of hybrid control
Practice (2011), doi:10.1016/j.conengprac.2010.11.014
modeled using plain Modelica code and are common for the three
approaches:
�

er (n

sys
The first approach also uses plain Modelica code to describe the
PI control.

�
 The second approach uses elements from DEVSLib and the

Modelica Standard Library to describe the PI control and the
activation of the compressors (detailed in Fig. 5a). The sampled
control signal generated by the PI controller is evaluated by
‘‘crossUP’’ and ‘‘crossDOWN’’ models in order to decide, which
compressors have to be activated at each sample time.

�
 The third approach includes an atomic DEVSLib model that

represents the PI control, and DIBO models to translate the
generated control signal to the compressor models (detailed in
Fig. 5b). In this case, the state of the PI controller is calculated at
each sample time instead of calculating it continuously and only
sampling its output. The actions performed by this atomic DEVSLib
PI controller are shown in Fig. 6. The controller executes its first
sampling at time 0 s. At each sample time, it performs the follow-
ing actions:

1. It executes the output function with phase ¼¼ 1, and no
output is generated (not shown in Fig. 6).

2. It updates the state of the PI controller and decides the next
state for the compressors.

3. It executes again the output function with phase ¼¼ 2, and
sends the new states to the compressors.

4. It executes again the internal transition function to schedule
ote

tem
the next sample (sigma ¼ sampleTime).
6.4. Experiment setup and simulation results

The experiment performed with the whole refrigeration system
is composed of two display cases, one suction manifold, and a
compressor rack that includes two compressors. The developed
model is shown in Fig. 7.

The system is evaluated during a day/night operation. During the
day, the external disturbance in each display case is set to 3000 J s�1.
During the night, each display case is covered with ‘‘night-covers’’
that reduce the external disturbance to 1800 J s�1 and the constant
mass flow in the suction manifold from 0.2 to 0:0 kg s�1.

The upper and lower temperature thresholds for the air in the
display cases are set to 5 and 2 3C, respectively. The reference
pressure for the compressor rack is set to 1.4 bar during the day,
and 1.6 bar during the night. Both compressors have the same
capacity (comp1 ¼ comp2 ¼ 50%). The rest of the parameters and
initial conditions for the system are shown in Tables 1 and 2.

The system is simulated during 14.400 s, defining the switching
between day and night at time 7.200 s. Simulation results are
that no output is generated with phase ¼¼ 1).

s using the DEVSLib Modelica library. Control Engineering

dx.doi.org/10.1016/j.conengprac.2010.11.014


Fig. 7. Supermarket refrigeration system modeled using DEVSLib.

Table 1
Parameters for the supermarket refrigeration system.

Display cases

Mgoods 200 kg

Cpgoods 1000 J kg�1 K�1

UAgoods–air 300 J s�1 K�1

Mwall 260 kg

Cpwall 385 J kg�1 K�1

UAair–wall 500 J s�1 K�1

Mair 50 kg

Cpair 1000 J kg�1 K�1

UAwall–ref, max 4000 J s�1 K�1

Mref,max 1 kg

tfill 40 s

Suction manifold

Vsuc 5 m3

Compressor rack

Vsl 0.08 m3 s�1

Zvol 0.81

Table 2
Initial conditions for state variables.

Disp. case 1 (1C) Disp. case 2 (1C)

Twall 0 0

Tair 5.1 0

Tgoods 2 2

Mref 0 0

V. Sanz et al. / Control Engineering Practice ] (]]]]) ]]]–]]] 9

Please cite this article as: Sanz, V., et al. Modeling of hybrid control
Practice (2011), doi:10.1016/j.conengprac.2010.11.014
shown in Fig. 8, including the evolution of the air temperature
values. The results obtained for the models including the first and
second pressure control approaches are identical (cf. Fig. 8a). The
results obtained from the third approach (with the atomic DEVSLib
pressure controller) are slightly different from the previous ones
(cf. Fig. 8b). These differences are easily explained, because in the
first and second approaches, the PI control operates in continuous-
time and only its output is sampled, whereas in the atomic DEVSLib
PI controller, all the calculations are performed at the same time
and remain constant between samples. The results obtained with
the third approach are similar to the results obtained by Sarabia
et al. (2009), with a model of the supermarket refrigeration system
constructed using EcosimPro.
7. Conclusions

DEVSLib is a free Modelica library, developed by the authors of
this manuscript, that supports the Parallel DEVS (P-DEVS) form-
alism. The DEVSLib functionalities and their application to the
modeling of hybrid control systems have been discussed.

The descriptions of atomic and coupled P-DEVS models using
DEVSLib are very close to their formal specifications. The model
construction is facilitated by the object-oriented modeling cap-
abilities provided by the Modelica language. DEVSLib includes
interface models to combine P-DEVS models with the remainder of
the Modelica libraries, which facilitates the development of multi-
domain and multi-formalism hybrid models.
systems using the DEVSLib Modelica library. Control Engineering

dx.doi.org/10.1016/j.conengprac.2010.11.014


Fig. 8. Evolution of air temperature values in both displays using: (a) first and second control approaches; (b) atomic DEVSLib control approach.

V. Sanz et al. / Control Engineering Practice ] (]]]]) ]]]–]]]10
DEVSLib has been successfully applied to the description of a
supermarket refrigeration system. An event-based controller for
the air temperature of the display cases has been developed using
DEVSLib. Also, two different controllers for the refrigerant pressure
line have been developed. The first approach combines compo-
nents from the Modelica Standard Library and DEVSLib. The second
approach describes the pressure controller as an atomic DEVSLib
model. The simulation results of the system using the first control
approach are equivalent to the same controller developed using
plain Modelica. The results from the second approach are slightly
different due to the discrete-event nature of the whole controller.
Acknowledgements

This work has been supported by the Spanish CICYT under the
DPI2007-61068 Grant.

The authors also wish to express their gratitude to Prof. Cesar de
Prada and Dr. Daniel Sarabia from the Universidad de Valladolid (Spain)
for the information provided about their model of the supermarket
refrigeration system developed using EcosimPro (Sarabia et al., 2009).
References

Andersson, M. (1989). Omola—an object-oriented language for model representation.
Technical Report, TFRT 7417, Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden.

Åström, K. J., Elmqvist, H., & Mattsson, S. E. (1998). Evolution of continuous-time
modeling and simulation. In Proceedings of the 12th European simulation multi-
conference (pp. 9–18). Manchester, UK.

Barros, F. J. (1995). Dynamic structure discrete event system specification: A new
formalism for dynamic structure modeling and simulation. In Proceedings of the
1995 winter simulation conference (pp. 781–785). Arlington, VA, USA.

Breuneuse, A. P. J., & Broenink, J. F. (1997). Modeling mechatronic systems using the
SIDOPS+ language. Simulation Series, 29(1), 301–306.

Campbell, A. S., & Wainer, G. (2006). Applying DEVS modeling for discrete event
multiple model control of a time varying plant. In Proceedings of the 2006 winter
simulation conference (pp. 823–831). Monterey, CA, USA.

Campbell, S. L., Chancelier, J.-P., & Nikoukhah, R. (2006). Modeling and simulation in
Scilab\Scicos. New York, NY, USA: Springer.

Cellier, F. E. (1991). Continuous system modeling. Secaucus, NJ, USA: Springer-Verlag
New York, Inc.

Cellier, F. E. (1996). Object-oriented modeling: Means for dealing with system
complexity. In Proceedings of the 15th Benelux meeting on systems and control
(pp. 53–64). Mierly, The Netherlands.

Cellier, F. E., & Kofman, E. (2006). Continuous system simulation. Secaucus, NJ, USA:
Springer-Verlag New York, Inc.

Chow, A. C. H. (1996). Parallel DEVS: a parallel, hierarchical, modular modeling
formalism and its distributed simulator. Transactions of the Society for Computer
Simulation International, 13(2), 55–67.
Please cite this article as: Sanz, V., et al. Modeling of hybrid control
Practice (2011), doi:10.1016/j.conengprac.2010.11.014
Dassault Systemes (2009). Computer aided three dimensional interactive applica-
tion. /http://www.catia.com/S.

David, R., & Alla, H. (2001). On hybrid Petri Nets. Discrete Event Dynamic Systems,
11(1–2), 9–40.

Dynasim AB (2006). Dymola dynamic modeling laboratory user’s manual. /http://
www.dymola.com/S.

Elmqvist, H. (1978). A structured model language for large continuous systems. Ph.D.
thesis, Department of automatic control, Lunk Institute of Technology, Lund,
Sweden.

Elmqvist, H., Cellier, F. E., & Otter, M. (1993). Object-oriented modeling of hybrid
systems. In Eurosim simulation congress.

Elmqvist, H., Mattsson, S. E., & Otter, M. (1998). Modelica—the new object-oriented
modeling language. In: Proceedings of the 12th European simulation multi-
conference (pp. 127–131). Manchester, UK.

Elmqvist, H., Mattsson, S. E., & Otter, M. (2001). Object-oriented and hybrid
modeling in modelica. Journal Européen des Syst�emes Automatisés, 35(1), 1–10.

Ferreira, J., & de Oliveira, J. E. (1999). Modelling hybrid systems using statecharts and
Modelica. In: Proceedings of the 7th IEEE international conference on emerging
technologies and factory automation (pp. 1063–1069).

Fritzson, P. (2003). Principles of object-oriented modeling and simulation with Modelica
2.1. Wiley-IEEE Computer Society Pr.

Fritzson, P., Aronsson, P., Bunus, P., Engelson, V., Saldamli, L., Johansson, H., &
Karström, A. (2002). The open source Modelica project. In: Proceedings of the 2nd
international modelica conference (pp. 297–306). Oberpfaffenhofen, Germany.

Fritzson, P., Viklund, L., Fritzson, D., & Herber, J. (1995). High-level mathematical
modelling and programming. IEEE Software, 12(4), 77–87.

Hong, J. S., Song, H.-S., Kim, T. G., & Park, K. H. (1997). A real-time discrete event
system specification formalism for seamless real-time software development.
Discrete Event Dynamic Systems, 7(4), 355–375.

Hrúz, B., & Zhou, M. (2007). Modeling and control of discrete-event dynamic systems.
London, UK: Springer.

ITI GmbH (2009). SimulationX. /http://www.simulationx.com/S.
Jeandel, A., Boudaud., F., & Larivire, E. (1997). ALLAN Simulation release 3.1

description. M.DGIMA.GSA1887. GAZ DE FRANCE, DR, Saint Denis La plaine,
France.

Kelton, W. D., Sadowski, R. P., & Sturrock, D. T. (2007). Simulation with Arena (4th ed.).
New York, NY, USA: McGraw-Hill, Inc.

Kloas, M., Friesen, V., & Simons, M. (1995). Smile—a simulation environment for
energy systems. System Analysis Modelling Simulation18–19, 503–506.

Kofman, E. (2003). Quantized-state control: A method for discrete event control of
continuous systems. Latin America Applied Research, 33(4), 399–406.

Kofman, E. (2004). Discrete event simulation of hybrid systems. SIAM Journal on
Scientific Computing, 25(5), 1771–1797.

Kwon, Y. W., Park, H. C., Jung, S. H., & Kim, T. G. (1996). Fuzzy-DEVS formalism:
concepts, realization and applications. In: Proceedings of AIS’96 (pp. 227–234).

Larsen, L. F. S., Izadi-Zamanabadi, R., & Wisniewski, R. (2007). Supermarket
refrigeration system—benchmark for hybrid system control. In: Proceedings
of the European control conference (pp. 113–120). Kos, Greece.

LMS International (2009). Imagine.Lab AMESim. /http://www.lmsintl.com/
imagine-amesim-introS.

Lynch, N., Segala, R., & Vaandrager, F. (2003). Hybrid I/O autamata. Information and
Computation, 180(1), 103–157.

Maplesoft (2009). MapleSim. /http://www.maplesoft.com/products/maplesim/S.
MathCore Engineering AB (2009). MathModelica System Designer. /http://www.

mathcore.com/products/mathmodelica/S.
Mattsson, S. E., Elmqvist, H., Otter, M., & Olsson, H. (2002). Initialization of hybrid

differential-algebraic equations in Modelica 2.0. In: Proceedings of the 2nd
international Modelica conference (pp. 9–15). Oberpfaffenhofen, Germany.
systems using the DEVSLib Modelica library. Control Engineering

http://www.catia.com/
http://www.dymola.com/
http://www.dymola.com/
http://www.simulationx.com/
http://www.lmsintl.com/imagine-amesim-intro
http://www.lmsintl.com/imagine-amesim-intro
http://www.maplesoft.com/products/maplesim/
http://www.mathcore.com/products/mathmodelica/
http://www.mathcore.com/products/mathmodelica/
dx.doi.org/10.1016/j.conengprac.2010.11.014


V. Sanz et al. / Control Engineering Practice ] (]]]]) ]]]–]]] 11
Mattsson, S. E., Otter, M., & Elmqvist, H. (1999). Modelica hybrid modeling and
efficient simulation. In Proceedings of the 38th IEEE conference on decision and

control (pp. 3502–3507). Phoenix, AZ, USA.
Modelica November (2008). Modelica standard library./http://www.modelica.org/

libraries/ModelicaS.
Modelica Association (2009). Modelica language specification 3.1. /http://www.

modelica.org/documentsS.
Modelica Libraries (2009). Modelica free and comercial libraries. /http://www.

modelica.org/librariesS.
Mosterman, P. J., Otter, M., & Elmqvist, H. (1998). Modelling Petri Nets as local

constraint equations for hybrid systems using Modelica. In Proceedings of the

summer computer simulation conference (pp. 314–319). Reno, NV, USA.
Olsson, H. (2005). External interface to Modelica in Dymola. In Proceedings of the 4th

international Modelica conference (pp. 603–611). Hamburg, Germany.
Otter, M., Årzén, K.-E., & Dressler, I. (2005). StateGraph—a Modelica library for

hierarchical state machines. In Proceedings of the 4th international Modelica

conference (pp. 569–578). Hamburg, Germany.
Otter, M., Elmqvist, H., & Mattsson, S. E. (1999). Hybrid modeling in Modelica based

on the synchronous data flow principle. In Proceedings of the 10th IEEE interna-

tional symposium on computer aided control system design (pp. 151–157). Kohala
Coast, HI, USA.

Otter, M., & Olsson, H. (2002). New features in Modelica 2.0. In Proceedings of the 2nd

international Modelica conference (pp. 7–1–7–12). Oberpfaffenhofen, Germany.
Pulecchi, T., & Casella, F. (2008). HyAuLib: modelling hybrid automata in Modelica.

In Proceedings of the 6th international Modelica conference (pp. 239–246).
Sahlin, P., Brign, A., & Sowell, E. F. (1996). The neutral model format for building

simulation (v. 3.02). Technical Report, Department of Building Sciences, The
Royal Institute of Technology, Stockholm, Sweden.

Sanz, V., Cellier, F. E., Urquia, A., & Dormido, S. (2009a). Modeling of the ARGESIM
‘‘crane and embedded controller’’ system using the DEVSLib Modelica library. In
Proceedings of the 3rd IFAC conference on analysis and design of hybrid systems.
Zaragoza, Spain.
Please cite this article as: Sanz, V., et al. Modeling of hybrid control
Practice (2011), doi:10.1016/j.conengprac.2010.11.014
Sanz, V., Jafer, S., Wainer, G., Nicolescu, G., Urquia, A., & Dormido, S. (2009b). Hybrid
modeling of opto-electrical interfaces using DEVS and Modelica. In Proceedings
of the DEVS integrative M&S symposium, spring simulation multiconference.

Sanz, V., Urquia, A., & Dormido, S. (2006). ARENALib: A Modelica library for discrete-
event system simulation. In Proceedings of the 5th international Modelica
conference (vol. 2, pp. 539–548).

Sanz, V., Urquia, A., & Dormido, S. (2007). DEVS specification and implementation of
SIMAN blocks using Modelica language. In Proceedings of the winter simulation
conference 2007 (pp. 2374).

Sanz, V., Urquia, A., & Dormido, S. (2008). Introducing messages in Modelica for
facilitating discrete-event system modeling. In Proceedings of the 2nd interna-
tional workshop on equation-based object-oriented languages and tools (pp. 83–94).
Paphos, Cyprus.

Sanz, V., Urquia, A., & Dormido, S. (2009c). Parallel DEVS and process-oriented
modeling in Modelica. In Proceedings of the 7th international Modelica conference
(pp. 96–107). Como, Italy.

Sanz, V., Urquia, A., & Dormido, S. (2010). Integrating Parallel DEVS and equation-
based object-oriented modeling. In Proceedings of the DEVS symposium, spring
simulation multiconference. Orlando, FL, USA.

Sarabia, D., Capraro, F., Larsen, L. F., & de Prada, C. (2009). Hybrid NMPC of
supermarket display cases. Control Engineering Practice, 17(4), 428–441.

Son, H. S., & Kim, T. G. (1994). The DEVS framework for discrete event systems
control. In Proceedings of the AI, simulation and planning in high autonomy systems
(pp. 228–234). Gainesville, FL, USA.

Wainer, G. A., & Giambiasi, N. (2001). Timed Cell-DEVS: Modeling and simulation of
cell spaces. In H. S. Sarjoughian, & F. E. Cellier (Eds.), Discrete event modeling and
simulation technologies: A tapestry of systems and AI-based theories and meth-
odologies. Springer.

www-euclides (2009). Euclides web-site. /http://www.euclides.dia.uned.es/S.
Zeigler, B. P. (1989). DEVS representation of dynamical systems: Event-based

intelligent control. Proceedings of the IEEE, 77(1), 72–80.
Zeigler, B. P., Kim, T. G., & Praehofer, H. (2000). Theory of modeling and simulation.

Orlando, FL, USA: Academic Press, Inc.
systems using the DEVSLib Modelica library. Control Engineering

http://www.modelica.org/libraries/Modelica
http://www.modelica.org/libraries/Modelica
http://www.modelica.org/documents
http://www.modelica.org/documents
http://www.modelica.org/libraries
http://www.modelica.org/libraries
http://www.euclides.dia.uned.es/
dx.doi.org/10.1016/j.conengprac.2010.11.014

	Modeling of hybrid control systems using the DEVSLib Modelica library
	Introduction
	Parallel DEVS formalism
	Atomic P-—DEVS models
	Coupled P-—DEVS models

	The Modelica language
	The DEVSLib Modelica library
	Atomic and coupled models with DEVSLib
	DEVSLib model communication
	DEVSLib interfaces to other Modelica libraries

	Modeling of hybrid control systems using DEVSLib
	Sensors and actuators
	Controllers

	Case study: supermarket refrigeration system
	Display case
	Suction manifold
	Compressor rack
	Experiment setup and simulation results

	Conclusions
	Acknowledgements
	References




