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Cédric Ratzé a,b, François Gillet c,*, Jean-Pierre Müller a, Kilian Stoffel b

aCIRAD TA 60/15, 73 ave. Jean-Félix Breton, 34398 Montpellier Cedex 5, France
bUniversity of Neuchâtel, Institut Interfacultaire d’Informatique, rue Emile-Argand 13, 2007 Neuchâtel, Switzerland
cEPFL, Ecole Polytechnique Fédérale de Lausanne, Ecological Systems Laboratory, Station 2, 1015 Lausanne, Switzerland

e c o l o g i c a l c o m p l e x i t y 4 ( 2 0 0 7 ) 1 3 – 2 5

a r t i c l e i n f o

Article history:

Received 7 December 2006

Accepted 27 February 2007

Published on line 28 March 2007

Keywords:

Computer simulation

DEVS

Dynamical structure

Dynamical systems

Hierarchy theory

Holons

Levels of organization

Multi-agent systems

Multiple scales

a b s t r a c t

Organized complexity is a characteristic feature of ecological systems with heterogeneous

components interacting at several spatio-temporal scales. The hierarchy theory is a power-

ful epistemological framework to describe such systems by decomposing them vertically

into levels and horizontally into holons. It was at first developed in a temporal and

functional perspective and then, in the context of landscape ecology, extended to a spatial

and structural approach. So far, most ecological applications of this theory were restricted to

observational purposes, using multi-scale analysis to describe hierarchies. In spite of an

increasing attention to dynamics of hierarchically structured ecological systems, current

simulation models are still very limited in their representation of self-organization in

complex adaptive systems. An ontological conceptualization of the hierarchy theory is

outlined, focusing on key concepts, such as levels of organization and the compound and

component faces of the holons. Various existing formalisms are currently used in simula-

tion modelling, such as system dynamics, discrete event and agent based paradigms. Their

ability to express the hierarchical organization of dynamical ecological systems is dis-

cussed. It turns out that a multi-modelling approach linking all these formalisms and

oriented toward the specification of a constructive dynamical system would be able to

express the dynamical structure of the hierarchy (creation, destruction and change of

holons) and the functional and structural links between levels of organization.
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1. Introduction

An important form of complexity can be found in so-called

‘self-organized systems’ or ‘complex adaptive systems’ in

which the dynamics and the emergent properties are

consequences of interactions between heterogeneous com-

ponents at different spatio-temporal scales (Cowan et al.,

1994; Levin, 1999; Wu and Marceau, 2002; Patten et al., 2002).

Complexity in ecological systems is typically a kind of

‘organized complexity’ (Weinberg, 1975; O’Neill et al., 1986),

characterized by intermediate numbers of heterogeneous

components (e.g., organisms belonging to different species)

and structured interrelationships among these components,

including nested structures (e.g., biological communities,

ecosystems).

The only possibility to understand and to model such

complex systems is to exhibit some organizational principles

behind the apparent inextricability. The hierarchy theory

(Allen and Starr, 1982; O’Neill et al., 1986) allows a decom-

position of this kind of systems that could improve our

understanding of the underlying dynamical processes. Con-

ceived by its authors as an epistemology, this theory has the

important property to emphasize on both top-down and

bottom-up perspectives (Wu and David, 2002). Formally, it is a

view of ecological systems, which takes the scales of

observation explicitly into account and which tries to

conceptualize the phenomena at their proper scale. Hierarch-

ical organization simply means that, at a given level of

resolution, a system is composed of interacting components

(i.e., lower-level entities) and is itself a component of a larger

system (i.e., higher-level entity) (O’Neill et al., 1989). The

hierarchy theory assumes that ecological systems are near-

decomposable vertically into levels of organization and

horizontally into holons. Most ecological hierarchies are
nested hierarchies: in such a ‘holarchy’ (Koestler, 1968),

holons of the higher level are composed of and actually

contain the lower-level holons. A holarchically integrated

system is a dynamic and adaptive entity, reflecting in its own

functioning the patterns of change over all levels of the system

(Li, 2000).

The dynamics of hierarchically organized ecological sys-

tems has received increasing attention from the end of the

1980’s, as shown by a search on ISI Web of Science (Fig. 1).

Scientific journals in the field of ecology have furnished an

important contribution to this topic. However, the modelling

aspects have not been extensively developed so far. The focus

on modelling became less important since 1996, probably

because of the difficulty in translating the dynamical concepts

of the hierarchy theory into mathematical or computational

models. Therefore, hierarchy theory has been largely used in

an observational and descriptive perspective but few of these

descriptions have been developed so that to be simulatable. In

this direction, a lot of work remains to be done. Simulations

exhibiting multiple scales or even a hierarchical structure are

rare and most of them were built on a case-by-case basis (e.g.,

Luan et al., 1996; Wu and Levin, 1997; Mäkelä, 2003; Bragg et al.,

2004; Gillet, 2005; Li et al., 2006). Wu and David (2002) proposed

a multi-scale modelling methodology and a modelling plat-

form (HPD-MP) designed to facilitate the development of such

spatial hierarchical models. To go a step further, we need to

introduce a more conceptualised and unified modelling and

simulation approach.

Our goal is to build formal tools allowing the specification

of models of dynamical systems suited for the constructive

expression of the concepts of the hierarchy theory. Being

relatively new, a good part of the terminology of hierarchy

theory used in ecology is very general and can hide differences

in the actual meaning and use of its basic concepts. In this
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paper, we thus begin with a critical review of the main

concepts of the hierarchy theory, in order to extract their

operational meaning in a dynamic modelling perspective.

Thereafter, we review the existing formalisms which have

been proposed for modelling complex systems and we

evaluate their ability at expressing explicitly these concepts.

Finally, we discuss the possible ways to combine hetero-

geneous formalisms in a multi-modelling framework using

the holon concept, which we advocate as being central for

successful modelling of complex ecological systems.
2. Key concepts of the hierarchy theory

Following the epistemological perspective of the hierarchy

theory, all concepts discussed below are only convenient

representations of real natural systems, which may help at

interpreting the features and understanding the mechanisms

of organized complexity.

2.1. The concept of scale

Despite the growing importance of scale in ecology, this notion

is used based on different definitions (Hay et al., 1997; Marceau

and Hay, 1999) and can lead to some confusion (Marceau,

1999). In a recent review, Dungan et al. (2002) identified three

dimensions of the scale concepts in a spatial context:

phenomenon, sampling and analysis. In our modelling

perspective, we will outline three important meanings of

the notion of spatio-temporal scale: (i) an observational

meaning, (ii) an ontological meaning and (iii) a representa-

tional meaning.
(i) In
 the observational meaning, scale conceptually repre-

sents a filter or a window of perception through which the

world is quantified (Hay et al., 2002). This observation

scale is not a property of the world, but is generated by the

sampling of an external observer (Allen and Hoekstra,

1992; Blaschke and Petch, 1999). This conception of scale is

defined by two combined characteristics (Marceau and
Hay, 1999; Dungan et al., 2002): the observation grain is the

smallest space and time unit used in the sampling or the

smallest distinguishable information that can be

obtained; the observation extent is the total space-time

span over which the observations with this grain are

made. For an external observer, meaningful entities and

phenomena only exist over a specific range of observation

scales (Hay et al., 2002). For example, while no relationship

is observable at the traditional week-long sampling

interval between phytoplankton and zooplankton bio-

mass in a lake, a negative relationship exists at finer

temporal scale (2- to 3-day interval) and a positive one at

coarser scale (10- to 14-day interval) (Carpenter, 1989).
(ii) T
he ontological meaning of scale refers to the notion of

characteristic (or inherent or intrinsic) scale of an object

(entity, process or phenomenon), i.e. to the effective size

or measure of the object and/or its properties and

attributes (Marceau and Hay, 1999). For example, proper-

ties such as size, mass, volume of entities such as cell, leaf

or tree remain scale invariant when multiplying the

observations in their specific scale domain, before

disappearing outside of the scale domain. The intrinsic

scale of existence of an entity determines its proper

window of interaction within its environment. The

phenomenon grain corresponds to the minimum spa-

tio-temporal size at which an object reacts to the external

dynamics, and the extent as the reach or span of its

interactions (Burnett and Blaschke, 2003). For example,

the spatial and temporal scales of biological activity in

aquatic systems are tightly coupled to the scales of

physical phenomena such as thermoclines, currents, or

gyres (Meentmeyer and Box, 1987; Steele, 1989). For Allen

and Starr (1982), the scale is the period of time and space

over which signals are integrated or smoothed to give a

message. In this perspective, objects of interest are

intrinsically linked to the particular scale at which they

can be distinguished and defined (Marceau, 1999).
(iii) T
he representational meaning of scale is of particular

importance because modelling implies the representation

of a world with some limited precision. The scale of
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representation may be chosen independently of the

intrinsic scale of existence of an entity and of the scale

at which it is observed, by applying scaling operations.

Scaling refers to the transfer of information or data from

one scale to another. When scaling up, information is

taken at one scale to derive information at a larger scale.

Inversely when scaling down, the information obtained at

one scale is applied to components at a finer scale

(Marceau, 1999). Difficulties arise in scaling up, as

illustrated by the ‘modifiable area unit problem’ (Jelinski

and Wu, 1996): many different ways exist to aggregate a

study area into coarser spatial units, which are arbitrary

and have no intrinsic meaning.
A constructive simulation of hierarchical systems should

be able to account for the intrinsic scale of the entities and to

express both scaling-up and scaling-down operations.

2.2. The concept of level of organization

2.2.1. Scale domains and scale thresholds
The central idea of the hierarchy theory is to derive the

hierarchical organization from differences in temporal and

spatial scales between the phenomena of interest. In empirical

studies, some analytical methods (e.g., plot of power spectrum

or fractal dimension versus scale) revealed the existence of

thresholds in the continuum of possible scales of observations

(Turner et al., 1989), which correspond to boundaries between

distinct levels of organization (Marceau, 1999). Two comple-

mentary concepts are important to understand the link

between scales and levels of organization: the scale domain

and the scale threshold. The scale domain is a region of the

scale spectrum over which the structure and the functional

relationships between variables describing a particular object

of interest (process, entity, phenomenon) do not change or

change monotonically (in an easily predictable way) with

change in scale. Such domains are separated by thresholds

that are relatively sharp transitions or critical points along the

scale continuum where a shift in the relative importance of

variables influencing a process occurs (Marceau, 1999). The

relatively isolated levels of organization correspond to scale

domains, and interactions tend to be stronger and more

frequent within a domain of scale than among them (Hay

et al., 2002).

Many studies have shown the effect of scale change on the

explanatory power of different sets of variables. For example,

at the scale of individual leaf surfaces, evapotranspiration is

mainly influenced by stomatal mechanisms, while at the

canopy or regional scales, climate becomes the driving force

(Jarvis and McNaughton, 1986); the mortality of oak seedlings

decreases with increasing precipitation at the local scale of

forest stands, whereas at regional scale it is lower in drier

climatic regions (Neilston and Wulstein, 1983).

2.2.2. Functional and structural boundaries between levels
At the beginning (Allen and Starr, 1982; O’Neill et al., 1986),

hierarchy theory in ecology has focused on temporal and

functional aspects of ecosystems: the hierarchical levels were

defined by different characteristics of the processes (e.g.,

behavioural frequencies, relaxation time, cycle time or
response time). In the spatial context of landscape ecology,

a more structural approach has emerged that integrates the

spatial aspects in the so-called ‘hierarchical patch

dynamics’ (HPD) paradigm (Wu and Levin, 1994, 1997; Wu

and Loucks, 1995; Reynolds and Wu, 1999; Burnett and

Blaschke, 2003). Basically, the landscape is decomposed into

a hierarchy of patch mosaics to relate functional processes

with structural spatial properties across scales. As observed

at a given scale based on a given criterion, each patch is

homogeneous in its interior and relatively heterogeneous in

comparison to its exterior. For example, to understand

effects of urbanization on landscape dynamics, Wu and

David (2002) used a three-level hierarchy: the regional

landscape with patches characterized by dominant biome

and land use pattern, local landscape (e.g., urban or rural)

and local ecosystem composed of relatively homogeneous

vegetation-soil complexes.

2.2.3. Relating patterns and processes across hierarchical
levels
The next problem is to find appropriate scaling laws to relate

information across a wide range of scales. A variety of

mathematical tools exist for up- or down-scaling (Turner

et al., 1989). However, it appears that such techniques can only

be appropriate when applied within the relevant scale

domains of the phenomena under investigation (Wiens,

1989). Extension across the scale thresholds may be difficult

or impossible because (i) of the instability in the dynamics of

the transition zone between two domains of scale (Marceau,

1999), and (ii) of changes in spatial heterogeneity (Turner et al.,

1989). The presence of different dominant processes at

different scales means that as a scaling method attempts to

span a wider range of scales, it needs to incorporate the effects

of an increasing number of processes (Peterson, 2000).

It is therefore of crucial importance to identify these scale

thresholds and to derive the appropriate laws governing the

interactions within and between levels of organization. If

entities and relationships between variables emerge at

specific scales, there must be a way to define and relate them

across discrete levels of organization (Marceau, 1999).

In a constructive modelling perspective, the purpose is to

express a hierarchically structured virtual world in a

simulator effectively functioning with various explicit levels

of organization based on multiple scale domains of descrip-

tion and interaction, which can be used to assess the

consequences of the organizational principles of the hier-

archy theory. It turns out that one of the greatest challenges

for mechanistic ecological modelling is to meaningfully

connect the levels of organization. However, it is impossible

to reduce the higher level to the lower because each has its

own unique scale-dependent qualities: the whole and the

parts are both valid objects of intellectual pursuit. When scale

and levels of organization are articulated into a hierarchical

organization, they can be used to develop models with

considerable predictive value. Bragg et al. (2004) defined a

hierarchical model as an integrated, systematic approach for

approximating ecological behaviour across organization

levels. They argued that an explicitly hierarchical model

should be a notable improvement over designs that are more

rigid.
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2.3. The concept of holon

2.3.1. Functional and structural boundaries between
subsystems

Within a same level of organization, some of the components

will interact weakly and others strongly, creating boundaries

around strongly interacting components regarding their

surrounding components. This is a functional, spatial and

temporal way to delimit the subsystems at a given level of the

hierarchy.

From these considerations, it is possible to describe an

upper level of organization which is also composed of

components or patches but interacting at slower rate, each

of which representing a subsystem at its intrinsic scale.

Introduced by Koestler (1968), the notion of holon is defined as

being both a component and a compound. For example, a leaf

can be simultaneously seen as either an atomic part of a plant

interacting with its environment or as a composed whole

integrating its cells. As such, this notion implies to articulate a

subsystem as a set of strongly interacting components at a

given level of organization, that is a composed whole, and its

representation as an atomic part at the next upper level of

organization (Fig. 2).

In vegetation ecology, different nested integration levels

are considered, and in each of them holons can be

recognized. (i) The lower level is the synusia (Gillet and

Gallandat, 1996), composed of plants of similar size and

sharing a same local habitat (e.g., the short herb layer of a

forest understorey, or a patch of tall forbs in a clearing);

frequent and direct plant interactions (e.g., competition)

occur within each synusial community, which is delimited

as a holon. (ii) At a higher level, the phytocoenosis (e.g., a

forest) integrates tree, shrub, herb and moss synusiae in

which plants belonging to different synusiae have no direct

interactions, but some synusiae influence each other in a

complex way (e.g., the tree synusia modifies the climate

inside the forest, and some herb synusiae play an important

role in the initial stages of tree regeneration). As a holon, a

forest phytocoenosis tends to develop its boundaries

(canopy, forest edges) to protect its components against

external disturbances. (iii) Phytocoenoses interact through

their boundaries (ecotones) in the landscape at a third

organization level.
Fig. 2 – The holons for articulating organizational levels.
2.3.2. Component and compound holon
The holon can also naturally scale up and down the

information between the two levels of organization it relates,

taking into account the representational meaning of scale. For

uniformity, we will consider that any component at any level

of description is a holon, being an entity potentially or

effectively decomposable into a subsystem at the lower level

of organization. Therefore, the term ‘‘holon’’ will be used

uniformly thereafter making the distinction between atomic

or ‘‘component holons’’ when talking about the interacting

components and ‘‘compound holons’’ when talking about the

subsystems.

2.4. The concept of constraint

The behaviour of an ecological system is dynamically limited

to a subset of the set of possibilities, on one hand by the

potential behaviour of its components, and on the other hand

by the environmental constraints imposed by higher levels

(O’Neill et al., 1989). For example, limiting climatic factors,

such as temperature, impose constraints on plant growth. In

the famous example of spruce budworm dynamics (Ludwig

et al., 1978; Allen and Hoekstra, 1992), avian predation

controls the growth of the budworm population when its

density is low, but at a critical stage the population can reach

a high enough density so as to escape this predation

constraint and to increase uncontrolled until the pest eats

itself out of its resources: this switch in constraints is

responsible for the cyclic epidemic outbreaks observed in

spruce forests.

According to the hierarchy theory, the relationships

between levels are asymmetric: the constrained processes

have a lower influential power on the dynamics of the upper

level than the constraining process has on the dynamics of the

lower level. Taking into account this notion of constraint, we

have to define the holons so that the asymmetry between the

component- and the compound-holon actually occurs in the

simulations.

An important consequence of this organizational princi-

ple is that the dynamics of the system at a given focal level is

not only dependent on the interactions between compo-

nents at the lower level (bottom-up integration) but also to

the constraints imposed by the higher level (top-down

influences). Therefore, any model of a hierarchical system

should consider at least three levels of organization,

involving a triadic view of causalities (Salthe, 1985; Ulano-

wicz, 1997).

2.5. Interactions between hierarchies

Additionally, a given hierarchy derives from a given perspec-

tive or point of view on the system. The hierarchy theory

considers the dynamics of an ecological system as resulting

from the interplay of different hierarchically structured

perspectives (O’Neill et al., 1986). Various thematic points of

view (e.g., population, ecosystem) can lead to different

organizations that are interacting at different levels of

organization. Therefore, the hierarchy theory will encompass

all the thematic points of view interacting in the ecological

system.
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3. Review of the existing modelling
formalisms

Various formalisms or modelling approaches are extensively

used in ecological modelling. Each of them is based on some

assumptions and hypotheses. It is probably possible to express

or to represent any kind of system in each of these formalisms,

but it turns out that each formalism is more or less suitable for

the expression of certain categories of models including the

choice between continuous or discrete time or states, explicit

or implicit space, structural and qualitative aspects or

functional and quantitative aspects, dynamical or fixed

structure, single or multiple levels of organization. For our

purpose, two criteria are critical: the expression of (i)

dynamical structure and of (ii) hierarchical organization. A

comparison of the various formalisms in regard to these two

model features is given in Table 1. We shall discuss each

approach in turn.

3.1. System dynamics models

3.1.1. Ordinary differential equations
Most of the modelling formalisms used so far in ecology are

the ordinary differential equations (ODEs), suited to express

continuous dynamical systems. A model of this kind is a

system of coupled state variables, each describing a contin-

uous quantity, such as population density or average biomass,

evolving smoothly in a time continuum. The ODEs give

implicitly all the possible trajectories of the state variables

depending on the other variables taken in consideration on

their infinitesimal linear variation of trajectory in the phase

space. The structure of interaction (that is the reciprocal
Table 1 – Comparison of modelling formalisms

Modelling approaches Entities; formalisms

System dynamics paradigm

Differential equations Physical state variables; ODE, PDE,

continuous time and space

Compartment models Aggregated state variables, stock-flow

diagrams, feedback loops, difference

equations, implicit spatial structure

Discrete event paradigm

Cellular automata Neighbouring cells in a fixed lattice;

state-transition rules, discrete time and

DEVS Passive objects; flowcharts

Agent based paradigm

Individual-based models Particles, moving individuals; individual

behaviour rules

Multi-agent systems Active objects (reactive and proactive ag

interaction rules in a changing environm
influences of the coupled variables) is given once and for all by

the coupled equations. The simulation phase consists in

solving numerically, with a given precision, the system of

equations with the parameters and the initial conditions

appropriate to a particular empirical case. To solve differential

equations numerically, any computer simulation must

achieve a discretization of time by means of various integra-

tion methods (e.g., explicit or implicit Euler, Runge-Kutta). The

theoretical assumption of this kind of mathematical model is

that natural systems generally tend to evolve asymptotically

toward single or multiple stable equilibria (either punctual,

cyclic or strange). This equilibrium paradigm leads to studies

of the long-term, asymptotic behaviour of ecological systems

by searching for attractors and bifurcations (Coquillard and

Hill, 1997; Bousquet and Le Page, 2004). However, recent work

has emphasized the importance of short-term, transient

dynamics in ecological systems and models (Hastings, 2004),

including transient chaos and saddle nodes.

It is possible to express different time scales for the state

variables in a system of ODEs in which differences in rates are

explicitly exhibited. The dynamics of such a slow-fast system

is dominated by the slow variables, with the fast variables

simply following along. Furthermore, the fast variables are

supposed to rapidly reach a steady state, which can be used as

an approximated constant parameter only influencing stati-

cally the global dynamics. Such dynamics can be analyzed by

the geometric singular perturbation approach (Rinaldi and

Scheffer, 2000). Translated into the hierarchical terminology,

the slower components belong to a higher level and impose

constraint on the dynamics of the faster components (O’Neill

et al., 1986). The system may pass several transient phases in

which both fast and slow variables play alternatively the
Dynamical
structure

Hierarchical organization

No In the singular perturbation

theory: fast and slow variables

give different temporal scales

No By structural abstraction, but

not so expressive as the notion

of level in hierarchy theory

space

No One level of interaction in the

model, and a second emergent

global implicit level for the

external observer

Only DS-DEVS By structural and behavioural

abstraction, but the levels are

not explicitly ordered by

temporal scales

Only in i-state

configuration

models

No

ents);

ent

Yes, by reciprocal

situation in an

(explicit or not)

interaction space

Often only one emergent global

implicit level for an external

observer. In some cases, emergent

bottom-up construction of levels



e c o l o g i c a l c o m p l e x i t y 4 ( 2 0 0 7 ) 1 3 – 2 5 19
major role (O’Neill et al., 1989). Due to switches between

different constraints, fast variables may exhibit periodically

catastrophic shifts, as illustrated by the famous example of

spruce budworm outbreaks (Ludwig et al., 1978).

Auger (Auger and Poggiale, 1998; Auger et al., 2000) used

aggregation methods to simplify systems of ODEs with several

time scales and proposed to define a level of organization as a

level of invariance and conservation.

3.1.2. Compartment models
The compartment models, or box models, are a particular

representation of ODEs, where the semantic interpretation

refers explicitly to the theory of system dynamics and

systems thinking (Forrester, 1961; Richmond, 2001). Com-

partment models are integrated and spatially implicit, which

means that they are designed to describe the time develop-

ment of average properties in implicitly defined spaces

(Eriksson, 1971), following the mean-field assumption. A

compartment model is composed of a finite set of state

variables describing some average characteristics of discrete,

structural entities statically linked together by a network of

flows and controls (Godfrey, 1983). Differential (continuous

time) or difference (discrete time) equations are used to

calculate flows. Some compartments can be merged in a new

one to abstract the complexity of the functioning and

structure of the interior of a compartment to the others,

allowing some modularity and nestedness. They were at first

designed to describe physiological processes depending on

local mass balance conditions (Jacquez and Simon, 1993).

They are specifically adapted to the modelling of transfers

and exchanges of matter or energy between compartments

representing stocks or reservoirs.

3.1.3. Partial differential equations
Partial differential equations (PDEs) can be used for the explicit

expression of a continuous space in the model. Here the

coupled state variables are dependent on both time and space

coordinates. Generally the PDEs are more difficult to solve

than ODEs and can be very heavy to simulate. Here again, the

computer simulation needs to discretize the space, e.g. by

finite element methods (Lewis and Ward, 1991).

Using nonlinear stochastic PDEs, an interdisciplinary field

of research called synergetics (Haken, 1997) has investigated

the emergence of spatial, temporal and functional structures

in physical self-organizing systems, with possible applications

to landscape ecology (Li, 2000).

3.2. Discrete event models

3.2.1. Discrete event specification systems
An automaton is defined by its sets of inputs, outputs, and

internal states, a transition function from an input and state to

a new state and an output function. As such, automata are

discrete in time even if the dates of input/output/transition

occurrences can be either at fixed time steps or arbitrary. The

DEVS (discrete event specification system) was developed by

Zeigler et al. (2000) in the context of the theoretical founda-

tions of the simulation and modelling of discrete event

dynamical systems and adapted to the coupling of systems

through encapsulation.
An atomic DEVS model is an automaton structure with the

addition of an internal transition function and a time advance

function for spontaneous state transitions. An atomic model is

like a compartment or black box with input and output ports,

where the input and output events are received or sent, and an

internal state which can transit to a new state for two possible

reasons: (i) an external event occurred at the input part of the

box; (ii) an internal transition occurred when the box was in its

current state for an elapsed time corresponding to the result of

the time advance function applied to this state. If the natural

duration of the current state is equal to infinity, then no

internal transition can occur. Some extensions have been

defined to break out some limitations. For example, the DEVS

models were originally asynchronous, so that if two external

events occurred simultaneously at the input port of a basic

DEVS model, it was necessary to specify a priority of treatment

of these events in the DEVS coupled model. This limitation

does not exist anymore in parallel-DEVS (Zeigler et al., 2000)

for which an abstract simulator (Chow et al., 1994) has been

defined.

A coupled DEVS model is defined as the specification of a

new box with input and output ports and including a finite set of

basic DEVS models (i.e., atomic or other coupled DEVS models),

which are statically interconnected. A coupled DEVS model has

an external behaviour equivalent to an atomic model, allowing

to using it as a new atomic model for another coupled model.

This feature of DEVS is called closure under coupling and

permits to recursively build more and more complex models in

a hierarchical and modular manner. However, the decomposi-

tion achieved in the DEVS formalism is functional and not

spatial.

3.2.2. Cellular automata
To explicitly express spatially located interactions, the

cellular automaton (CA) introduced by von Neumann

(1963) is widely used. A CA is a finite set of interconnected

automata or cells, which represent discrete spatial domains.

The connectivity reflects the local interactions between the

states of neighbouring cells. Different types of connectivity

are possible, such as the von Neumann connectivity, where

each cell has four direct neighbours, or the De Moore

connectivity with eight neighbours. Regarding time and

simulation, a CA is a synchronous model evolving step by

step following a discrete-time dynamics: each cell evolves

simultaneously with the others in function of its current

state and the current state of its neighbours. An extension of

DEVS called Cell-DEVS (Wainer and Giambiasi, 2001) has

been developed to specify CA.

In the context of ecological modelling, Phipps (1992) argued

that many ecological problems related to spatial heterogeneity

and patchiness can be formalized with CA. More generally,

they are well suited to mimic systems with strong local

interactions. However, a CA does not take into account various

scales of space and time. Only two levels are considered: the

global or macro-level of the whole cell grid and the local or

micro-level of each individual cell. But the interactions

themselves stay on one single level, the second level being

only present for the observation and analysis of the possible

relations between the local rules and the emergent global

pattern resulting from the local interactions.
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Furthermore, as for the classical PDE models of systems

dynamics, the connectivity does not evolve over time, the

lattice being fixed once for all. However, the definition of the

parallel dynamic structure discrete event system specification

(DS-DEVS), again as an extension of DEVS, allows the

possibility to both dynamically change the network of

connections between atomic models and create or destroy

some atomic models of any coupled model (Barros, 1996, 1998).

3.3. Agent based models

The power of the classical system dynamics models is the

abstraction of objects by taking average quantities or

measures to represent them, but it is also their weakness. If

the object is constant, it is a good approximation to describe it

with only some state variables. However, if it has a complex

and changing internal structure, then we cannot only extract

some quantities from the object’s structure to represent the

object itself. We have to build a calculus on objects, i.e. on the

structures that link the variables, by building a constructive

dynamical system (CDS). An important property of a CDS is the

possibility of dynamical creation or destruction of some

objects in the system (Fontana and Buss, 1996). Furthermore,

changes in the structure influence both the dynamics of the

variables and the structure of their relationships; it is a case of

dynamical system with dynamical structure (Giavitto et al.,

2002). Individual-based models and multi-agent systems were

proposed for considering structural dynamics.

3.3.1. Individual-based models
The essence of the individual-based model (IBM) approach is

to derive properties of ecological systems from the properties

of the biological organisms constituting the system (Lomnicki,

1992; Bousquet and Le Page, 2004). The two main reasons given

to justify IBMs were the need to consider (i) the genetic

uniqueness of the individuals and (ii) the fact that their spatial

location implies local interactions with the environment

(Huston et al., 1988).

In fact there are two schools of thought about the notion of

individual in the IBM approach (DeAngelis and Rose, 1992). The

‘i-state distribution models’ consider inter-individual varia-

bility due to heterogeneity in the internal structure (sizes,

ages, and others characteristics) of populations and commu-

nities. This methodology relies on analytic tools such as Leslie

matrices or difference equations that can deal with distribu-

tions of characteristics in populations. By contrast, the ‘i-state

configuration models’ represent each individual as a discrete

entity with unique characteristics and a specific history. This

methodology is based on the simulation of interacting

individual entities. Furthermore the social aspects can be

represented by individuals perceiving the system and deciding

to change the organization. This second approach goes clearly

in the direction of more individual autonomy and is closer to

the multi-agent system approach.

Applied to plant populations and communities, the IBM

approach suffers from important theoretical limitations due (i)

to the difficulty to apply the notion of biological individual to

clones and (ii) to its underlying reductionist viewpoint

ignoring the reality of high-level entities and hierarchical

structures (Gillet et al., 2002).
3.3.2. Multi-agent systems
Basically, a multi-agent system (MAS) is a dynamical collec-

tion of interacting agents (Ferber, 1999). An agent is an

autonomous discrete entity acting on its local environment

and interacting with other agents (see the influence-reaction

model in Ferber and Müller, 1996), in a way chosen by itself

(autonomy) and based on some knowledge of its own state and

of the state of its local environment (other agents and objects

of different kinds). In many cases of spatially explicit multi-

agent systems, space is represented by a cellular automaton,

in which the agents are situated (e.g., Bousquet et al., 1998).

The most crucial properties of the MAS are: (i) the locality of

the interactions between the agents and their environment;

(ii) the possibility for the agents to move in this environment,

i.e. to change the local environment of interactions and

consequently the structure of the relational network; (iii) the

autonomy of the agents, which is a choice governed by the

local situation; (iv) the possibility of dynamical creation or

destruction of the agents.

Contrary to ODE, PDE, CA and DEVS formalisms, the MAS

approach has the disadvantage to be not exhaustively and

commonly formalized. However some recent contributions

tried to improve this situation by defining some specification

methodologies (e.g., A-UML, Odell et al., 2000) or by building

abstract machines specifically designed for MAS simulation

using DEVS formalism (Schattenberg and Uhrmacher, 2001;

Uhrmacher, 2001).

The MAS community distinguishes between the agent-

centred and the organization-centred MAS. The concept of

organization was first introduced to better structure the MAS

in the specification phase, in a static way (Durand, 1996). It

refers to a structured set of possibly interacting roles, where

each role corresponds to a recurrent behaviour played by an

agent in the organization. For example, a simple organization

of biomass exchange can be composed of two roles, the role of

biomass consumer and the role of biomass producer, and one

recurrent interaction of biomass consumption between these

roles. Instantiated in a grazing system, a cow agent plays the

role of biomass consumer while a plant agent plays the role of

biomass producer. Later on, this concept was used to structure

dynamically the community of agents in the system, such as

in agent-group-role (Gutknecht, 2001) or in MOCA (Amiguet,

2002; Amiguet and Müller, 2002a,b; Amiguet et al., 2002).

Following this organization concept, the system is partitioned

into overlapping groups of agents where an agent can play the

different roles defined in a group. This conception can be

useful to represent the multiplicity of thematic points of view

on a system and their articulations. In the grazing system

example, the same cow can play simultaneously a role of

nutrient source for the plant. In all cases, the system remains

partially flat, because the organization is not structured with

multiple explicit levels.

In the direction of expressing hierarchies is the idea of the

dynamical reification of a group of agents as a new agent.

Servat (Servat et al., 1998; Servat, 2000) made an important

contribution in this direction, which corresponds in terms of

the hierarchy theory to the dynamical emergence of a new

holon with agents as interacting component-holons and group

of agents as compound-holon. He observed that in traditional

MAS models, an external observer can observe global
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emergent phenomena; but this macro level is not part of the

model and needs, after the simulation, some analysis to be

caught. He proposed first to internalise the external observer

with an automatic dynamical detection of stable emergent

structures in the agent population and to give them some

visibility as observable groups of agents with integrated

observation variables. The second important step is to give

to the emergent agent group the possibility to play a role as an

actor in the dynamics of the model. This step needs the

reification of the group as a new agent, which implies

specifying the rules of interaction between agents, between

groups and between agents and external groups, and also

between a group and its agents. Showed in the hierarchy

theory perspective, Servat’s approach remains relatively flat in

the sense that the groups are always interacting at the same

explicit level of interaction than the other entities, so that

agents can directly interact with external groups. Servat

applied these mechanisms to a hydro-dynamical model for

runoff, erosion and infiltration processes where the agents are

water drops grouping into rivers and ponds. Rivers as stable

flowing water paths and ponds as stagnating water zones obey

to different behavioural laws and evolve according to coarser

time and space scales than single water droplets. Translated

into holonic concepts, water droplets represent component-

holons at a low level of organization and rivers and ponds

component-holons at the upper level. To link the two levels, a

compound-holon represents the integration of a group of

component-holons of the low level to build the component-

holons of the upper level. Thus, a level of organization

represents the horizontal dynamical structure of interaction

between component-holons, while a compound-holon repre-

sents the vertical dynamical structure of composition of the

holons. The lower level of organization can also serve to detect

stable groups of water drops and to dynamically create,

destroy or change the rivers and ponds composition. This

clearly advocates for the ability of expressing a dynamical

structure in a hierarchical system model.

Another interesting attempt in the same direction is the

use of MAS to represent water flow as collection of vortex

particles (Tranouez et al., 2001). Here the vortex agents having

a similar vorticity can aggregate together locally to constitute a

vortex of higher level, which is reified by the creation of a new

vortex agent with a higher volume but the same internal rules.

This process of dynamical scale change is recursive and the

vortices interact both with lower level particles and other

vortices, the last type of interaction leading to the creation of

vortices of higher level. Here the levels are not strictly

delineated and the vertical hierarchy is not explicitly

represented.

3.4. Multi-modelling and multi-formalism

3.4.1. Structural versus behavioural abstraction
One important issue with the DEVS recursive model structure

is to represent hierarchies in which the components in each

level are partly dependent on the next lower level: it is thus

impossible to simulate each level independently. To solve this

problem, Lee and Fishwick (1996) distinguished between two

kinds of abstraction: structural and behavioural abstraction.

The structural abstraction corresponds to the decomposition
of the system in subsystems or components and is equivalent

to multi-modelling. Behavioural abstraction is the replace-

ment of a component with its specific internal structure by a

more generic component which produces a similar behaviour.

This kind of decomposition is more vertically structured and is

not well suited to easily represent horizontal interactions with

dynamical structure of interaction between components at

each level.

3.4.2. Coupling system dynamics and discrete event
formalisms
Zeigler et al. (2000) have formally developed a similar

approach, which they called multi-formalism, for the case

of discrete event simulation. They defined different specifica-

tion formalisms: DTSS for discrete time specified systems,

DESS for differential equation specified systems and DEVS.

Furthermore, DEVS can used as a relatively universal

formalism, by either mapping other existing formalisms in

an equivalent DEVS model or wrapping other formalisms by a

DEVS interface for input and output. The use of coupled DEVS

models enables the coupling of different kinds of formalisms.

For example to simulate on digital computers systems of

differential equations, for which the traditional methods are

based on the discretization of time, one may discretize the

phase space by the definition of thresholds, obtaining so a

transformation of the ODE system into a quantized-state

system, which can be exactly represented in a DEVS model

(Kofman and Junco, 2001; Kofman et al., 2001).

GDEVS (Giambiasi et al., 2000) is a generalisation of DEVS

and an interesting way to hybrid continuous time dynamics

with discrete event systems. Basically, a DEVS relies always on

piecewise constant functions. GDEVS generalizes the input

and output functions to piecewise polynomial functions of a

given fixed order.

It is also possible to combine some advantages of CA and

ODE by coupling or integrating them together. This solution is

implemented in the Spatial Modeling Environment (Costanza

and Voinov, 2004), a generic tool to build spatially explicit

models of populations, ecosystems and landscapes. The

landscape at any point in time is described using a raster

(cell based) representation. In each cell, a same compartment

model describes the local internal dynamics by a system of

difference equations. The neighbouring cells can then be

connected by horizontal fluxes of material and information.

Such models allow simulating dynamics at two spatial scales

(cell and landscape), or even more if a modular structure is

used within the cell unit model, the lower scale being in this

case only implicit (functional disaggregation). The spatial

disaggregation of a compartment model is also implemented

in the Simile visual modelling environment (Muetzelfeldt and

Massheder, 2003), using a declarative representation of model

structure. An original feature of this approach is the condi-

tional existence of some part of the model and a high flexibility

in the specification of submodels, allowing a hierarchical

model structure and the combination of various formalisms,

including individual-based models.

3.4.3. Coupling agent-based and system dynamics formalisms
More specifically oriented toward modelling of an ecological

system with multiple scales, Duboz (Duboz et al., 2003; Duboz,
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2004) gave an important contribution to the combination of

different formalisms. He argued that the micro- and macro-

levels are better modelled with different formalisms, and thus

he coupled the formalism suited for the macro-level (ODE) with

a MAS for the micro-level in the concrete case of a marine

ecosystem with copepod as predator and phytoplankton as

prey. A reactive agent model (MAS) was used to model the

impact of the heterogeneity of the distribution of individual

prey particles on the dynamics at the population level

expressed by a predator-prey model (ODE system of Holling–

Tanner). The strong coupling was achieved by cycles of bottom-

up emergent computation and top-down parameterization.

Suchcoupling isan operationalway todoa scale transfer (Fig. 3):

(i) in the bottom-up direction, at each integration step of the

ODE, the averaged ingestion rate parameter is replaced by an

instantaneous value calculated by the MAS; (ii) in the top-down

direction, the population state variables calculated by the ODE

at every time step of the upper level serve as initialisation

parameters for the MAS. At the MAS level, no continuity was

assumed between two adjacent cycles, because the role of each

MAS simulation on the ODE was to give an instantaneous

ingestion rate of the copepods which is density and hetero-

geneity dependent. The two coupled models operate at two

different time scales. Also important is the fact that the upper

macro-model is deterministic and continuous whereas the

lower micro-model is stochastic and discrete. To have more

stability against the stochastic nature of the micro-model the

MAS simulation was replicated with the same initialisation

parameters but different initial conditions, to get an averaged

computational trace of the simulations.

Recent developments of simulation tools such as Any-

LogicTM (Borshchev and Filippov, 2004), VLE (Quesnel et al., 2005)

or Mimosa (Müller, 2004; Müller et al., 2005) make it possible

weak or strong coupling of several modelling approaches.
Fig. 3 – Example of ODE and MAS strong coupling (after

Duboz et al., 2003 and Duboz, 2004). N: density of the prey

population; P: density of the predator population; K:

carrying capacity of the prey population; r: intrinsic net

growth rate of the prey; a: maximum ingestion rate of the

predators; b: half-saturation constant of the functional

response of the predators; e: transformation coefficient of

prey to predator; m: predator death rate. (1) MAS initialised

with fixed values for N and P from the ODE; (2) MAS

simulations; (3) transmission of the average value of the a

parameter; (4) ODE simulation for one integration step.
4. Conclusion and perspectives

Although they bring some ad hoc propositions for combining

two levels or several heterogeneous formalisms, none of the

above mentioned approaches can tackle the problem of

modelling all aspects of the dynamics of hierarchical systems

as described by the hierarchy theory. In particular, the

evolutionary, developmental aspect of hierarchical organiza-

tion (Holling, 1994; Salthe, 2005) has been poorly investigated

in ecological models. Too often, the emergence of hierarchies

is described as a bottom-up process, in which the integration

of components is considered the major determinant (e.g.,

Kolasa, 2005).

In ecology, low-level fast processes are better understood

than high-level slow processes, (i) because observations and

experiments are mainly carried out at fine grain and small

extent in space and time, and (ii) because the most familiar and

established theories rely on population biology. This explains

the recent trend to develop detailed, process-based, micro-

models, and to infer from them aggregated, phenomenological

macro-models for landscapes simulations, by means of various

ad-hoc upscaling techniques and modelling formalisms (review

in Urban, 2005). This meta-modelling approach has proved to be

tactically efficient, but it is strategically questionable: it does not

explain how and why hierarchical levels emerge and interact in

ecological systems, by ignoring the triadic causality empha-

sized by the hierarchy theory. Such considerations could

however be critical in the future development of systems

ecology to cope with issues and problems associated with

human-environment interactions (Müller and Li, 2004).

The way out seems to start from generalized DEVS taking

advantage of its already proposed extensions to represent

multiple formalisms and dynamical structures, and to extend

it towards multi-agent systems and explicit representation of

holons. To represent and simulate adaptive evolution of

complex systems, the concept of holon, which is central to

hierarchy theory, has been successfully used in holon network

models (Honma et al., 1998) and in holonic MAS models (e.g.,

Rodriguez et al., 2006), but these approaches seem to have

passed unnoticed in ecology so far.

From our critical review of the existing formalisms used in

dynamical modelling, we have emphasized the notion of

constructive dynamical system. We have also pointed out the

interest of articulating different formalisms, in particular with

discrete and continuous dynamics and with different time

representations. This last articulation will be possible in the

context of an ontology of time for modelling and simulation of

dynamical systems we have proposed in another paper

(Müller and Ratzé, 2004).

The next step is to represent the revisited key concepts of

the hierarchy theory in a modelling and simulation frame-

work, leading to the construction of an architecture of

specifiable formal machines based on both the MAS approach

and the generalized DEVS formalism. For each key concept of

the hierarchy theory, we will design a specific kind of machine

with a particular role in the architecture: a component-holon

will be represented by an entity-machine, a compound-holon

by a group-machine, and a level of organization by a level-

machine. Each machine will be structured as an automaton

with a particular explicit time management.
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The critical points of such a conceptualization of the

hierarchy theory are: (i) the explicit expression of the concept

of level of organization, with a formal distinction between the

level of abstraction for the structural part and the level of

detail for the functional part; (ii) the articulation between the

level of organization and the scale domain; (iii) the repre-

sentation of the holon as two linked faces: the holon as a

component and the holon as a compound, which allows more

flexibility in the expression of the structural dynamics and the

articulation of the levels of detail; (iv) a categorization of the

possible bottom-up and top-down articulations within a

holon.

The main challenges will be: (i) to represent functional

dynamics of states, such that we can manipulate different

time representations, hybrid continuous and discrete

dynamics and different articulated degrees of detail; (ii) to

manage the simulation with a coherent time advance

following the principle of causality and such that we can

construct step by step in a distributed manner the different

state trajectories.
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Amiguet, M., Müller, J.-P., 2002a. La plateforme MOCA:
conception de SMA organisationnels à structure
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dynamique. In: P., Mathieu, J.-P., Müller, (Eds.), Systèmes
multi-agent et systèmes complexes, Actes des
JFIADSMA’02, Lille, Hermès, 151-154.

Amiguet, M., Müller, J.-P., Baez-Barranco, J.A., Nagy, A., 2002.
The MOCA platform: simulating the dynamics of social
networks. In: J. Sichman, F. Bousquet, P. Davidsson (Eds.),
MABS Lecture Notes in Artificial Intelligence 2581, pp. 71–88.

Auger, P., Poggiale, J.-C., 1998. Aggregation and emergence in
systems of ordinary differential equations. Math. Comput.
Model. 27, 1–21.

Auger, P., Charles, S., Viala, M., Poggiale, J.-C., 2000. Aggregation
and emergence in ecological modelling: integration of
ecological levels. Ecol. Model. 127, 11–20.

Barros, F.J., 1996. The dynamic structure discrete event system
specification formalism. Trans. Soc. Comput. Simul. 13,
35–46.
Barros, F.J., 1998. Abstract simulators for the DSDE formalism.
In: Medeiros, D.J., Watson, E.F., Carson, J.S., Manivannan,
M.S. (Eds.), Proceedings of the 1998 Winter Simulation
Conference. IEEE Computer Society Press, Washington, DC,
pp. 407–412.

Blaschke, T., Petch, J., 1999. Landscape structure and scale:
comparative studies on some landscape indices in Germany
and the UK. In: Maudsley, M., Marshall, J. (Eds.),
Heterogeneity in Landscape Ecology: Pattern and Scale. IALE
UK, Bristol, pp. 75–84.

Borshchev, A., Filippov, A., 2004. From system dynamics and
discrete event to practical agent based modeling: reasons,
techniques, tools. In: Proceedings of the 22nd International
Conference of the System Dynamics Society, July 25–29,
Oxford, England, http://www.xjtek.com/files/papers/
fromsystemdynamics2004.pdf.

Bousquet, F., Le Page, C., 2004. Multi-agent simulations and
ecosystem management: a review. Ecol. Model. 176, 313–
332.

Bousquet, F., Bakam, I., Proton, H., Le Page, C., 1998. Cormas:
common-pool resources and multi-agent Systems. In: Pobil,
A.P.D., Mira, J., Moonis, A., (Eds.), Lecture Notes in Artificial
Intelligence 1416, pp. 826–838.

Bragg, D.C., Roberts, D.W., Crow, T.R., 2004. A hierarchical
approach for simulating northern forest dynamics. Ecol.
Model. 173, 31–94.

Burnett, C., Blaschke, T., 2003. A multi-scale segmentation/
object relationship modelling methodology for landscape
analysis. Ecol. Model. 168, 233–249.

Carpenter, S.R., 1989. Temporal variance in lake communities:
Blue-green algae and the trophic cascade. Landsc. Ecol. 3,
175–184.

Chow, A.C., Zeigler, B.P., Kim, D.H., 1994. Abstract simulator for
the parallel DEVS formalism. In: Proceedings of the Fifth
Annual Conference on AI, Simulation and Planning in High
Autonomy Systems. IEEE Computer Press, Gainesville (FL),
pp. 157–163.

Coquillard, P., Hill, D.R.C., 1997. Modélisation et simulation
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