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Abstract

A particle system, as understood in computer science, is a novel technique for mod-
eling robots in their environment. Particle systems have traditionally been used for
modeling complex dynamics of fluids and gases. In this paper, as the main contribu-
tion, we adapt our earlier work on particle systems, to compute a preliminary stress
visualization for a bipedal robot walking on a soft sediment. The underlying prob-
lem of modeling rigid objects with particles is solved by introducing rack particles
that enforce structural rigidness while maintaining deformability under stress. The
presented approach opens many new possibilities; as it provides a computationally
lightweight and unified, complementary framework for computing a stress of inter-
acting, moving components with underspecified, non-trivial materialistic properties.
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1 Introduction

A stress analysis involving objects with materialistic properties presents nu-
merous mathematical challenges [1-8]. The associated problems have tradi-
tionally been tackled by using numerical methods [2,9], including spring-mass
models [8,10,11] and finite element methods [4-6,12-14]. These methods pro-
vide reliable results; however, their use is typically constrained to well specified
dynamics. Because of this, the traditional methods do not fully support early
stages of development, where many of the properties, including the interaction
dynamics, are underspecified or even unknown.

In this paper, we investigate a complementary approach. As the main contri-
bution, we propose here the use of a particle system to compute a preliminary
stress visualization in early stages of the development process. To do this, we
adapt our earlier work on particle systems [15-18], particularly on modeling
and simulating non-linear dynamics of non-rigid bodies in a mechanical setting
[19-24] to include also the dynamics of rigid but deformable bodies.

To illustrate the proposed approach, we model, simulate, and visualize the
dynamics of a bipedal robot walking on a soft sediment. The research question
explored here deals with the use of a walking robot in underwater archeology.
Namely, does a bipedal robot maintain a better visibility than a vehicle with a
propulsion system when the sediment floor contains scattered artifacts. Some
earlier studies on underwater walking exists [25,26] but not in connection to
robotics. Still, an excellent survey on various aspects related to design and
control of underwater robotics is done by Yuh [27]. The research presented
here is in its early stages, whereby we first wish to know how the shape of
the robot affects its motion-and structural stress during the walking. At this
stage, we do not even consider the effect of the arms on the dynamics, which
is a significant factor for small robots as pointed by Yuh [27]. Consequently,
the effect of water currents on the robot is also omitted here.

1.1 Related work

Particle systems have been used successfully for decades in computer science
2,8,28-30] and in physics [30-32] to model complex dynamics of, for instance,
fluids and gases as well as elastic and deformable bodies. Particle systems are
computationally attractive, because the models are simple difference equations
over matrices independently of the underlying complexity of the simulated ob-
jects. Consequently, the models are compact and computationally lightweight.
Moreover, particle systems can be used to simulate non-linear dynamics of
objects with underspecified properties, because the simulation is rich with



emergent dynamics [15,19,33] that compensates for the missing parameters.
Emergent dynamics typically exhibits a level of details [19] that is hard or
impossible to capture otherwise, and it may capture anything from simple
friction [20] to complex hunting behavior [15]. Formally, particle systems cap-
ture so called basic emergence [33], which means behavior that is reducible to
particle-to-particle interactions without any evolutionary processes involved.
The presented work can be seen as a continuation to work done by Jansson et
al. [2] and Terzopoulos et al. [8] with an emphasis on conservative incorpora-
tion of rigid body dynamics into the particle system framework. In particular,
when comparing the presented work with that in [8], the forces here are com-
putationally simpler, requiring less effort in the modeling phase.

Particle systems is a complementary approach to modeling with finite ele-
ment methods [4,5]. When using a finite element method, the modeled space
is partitioned into a predefined mesh and the focus is on the flow of mat-
ter and forces within the mesh, whereas with particle systems, the focus is
on individual particles and their interaction within a continuous Euclidean
space. Because of this, particle systems support modeling of a multi-scale het-
erogeneous setting better than finite element methods [5,6,13] which excel in
modeling structures with homogenous properties. Conversely, when the num-
ber of particles increases, the use of finite element methods becomes attractive.
As for the computational complexity, particle systems excel in having a com-
putationally compact and lightweight model; according to Kipfer et al. [34],
a particle system even with some 1 x 10% particles can be computed in real-
time by using a graphics processor. However, because particle systems tend
to have a quadratic computational complexity with respect to the number of
particles, the computation time for particle system with more than 1 x 10°
particles may well become infeasible. Because of this finite element models
excel, for instance, in analyzing fluid flows [12]. In this paper, we consider a
model with less than 40,000 particles.

Particle systems is-also a complementary approach to use of spring-mass mod-
els [8,10,11]. When using a spring-mass model, the focus is in defining the
springs and their coefficients between the mass points which represent rigid
undeformable bodies. In contrast to this, when using particle systems, the in-
teraction properties are assigned to the particles and particle-to-particle forces;
in particular, the particle-to-particle forces may well be temporal and they do
not need to be spring-like forces at all. Furthermore, with particle systems,
the particles tend to be of uniform shape, whereby even the interacting bigger
bodies are composed of smaller particles. In this respect, the introduction of
rack particles, proposed in this paper to enforce the rigidness of interacting
bodies, has obvious similarities with the idea of adding stiffness constraints
to a spring-mass model, as put forward by Provot [10]. However, unlike the
addition of stiffness constraints, the use of rack particles does not change the
underlying computational process at all.



In contrast to other numerical methods used in stress analysis, for instance,
by Demirdzi¢ et al. [9] and by Saadawi et al. [14], the particle systems tend
to be computationally lighter and more mechanical, as they require no dis-
cretization or timing consideration for the modeled space. In particle systems,
the particles move and interact in a continuous Euclidean space. In summary,
particle systems are an attractive tool for modeling at early stages of the de-
velopment, when the exact details of the shape parameters and interaction
forces are still unknown, and use of less than a million particles suffices.

1.2  Owverview

In Section 2, we extend and present the approach introduced by Ronkko,
Waldén, and Back [23], where the particle system is formalized using mathe-
matical operators. Then, the model is modular, as it is composed of operators
that can be reused in other models. This also means that the model can be
extended by introducing new operators into the model. Furthermore, as each
operator captures a single aspect of the model, the entire model is decompos-
able into smaller, intentional units. Also, as the entire model is composed of
mathematical operators, the operators also induce the set of difference equa-
tions that are then used for computing the simulation. In particular, this paper
presents a new application of the method introduced by Ronkko, Waldén, and
Back [23],

In Section 3, we introduce rack particles which are used to enforce structural
rigidness to an otherwise non-rigid object composed of a large number of par-
ticles. The rack particles interact only with the particles of their host object,
enforcing further rigidness by suppressing the wave propagation in the host
object. Consequently, an object with rack particles remains deformable.

In Section 4, we present the particle system model for the bipedal walking
robot, MagPod. The model consists also a mechanism for the movement.

In Section 5, we present and analyze the simulated motion of MagPod. The
analysis confirms that use of rack particles allows modeling of rigid but de-
formable bodies with particles. A more detailed visual analysis of the simu-
lated ‘dynamics reveals many intricate emergent phenomena associated with
bipedalism, for instance, MagPod’s body tilts upright as it walks forward. The
visual analysis reveals also another intricate emergent phenomenon associated
with flat feet and foot biomechanics, namely, the outer sides of MagPod’s feet
show clear bending due to stress.

Finally, in Section 6, we conclude and discuss future work.



2 The particle system

As in [23], we formalize particle systems using mathematical operators. We
start by formalizing particles as 5-tuples. We then formalize operators as
higher-order functions and operator sequences as forward compositions of op-
erators. After that, we formalize the model of motion as an operator sequence,
and present the induced set of difference equations that is used for computing
the simulation. Lastly, we formalize the primitive operators for all the forces
that are used in this paper to model the robot.

2.1 Particles and operators

In general, a particle may be of any shape [32]; however, we assume throughout
this paper that a particle is a sphere with a varying radius, but with a constant
and uniformly distributed mass. In an earlier article [23], we formalized a par-
ticle as a 4-tuple. In this paper, however, we need to use the original position
of a particle as a reference, whereby we formalize a particle as a 5-tuple.

Particles. We model particles using five variables: original position, current
position, velocity, acceleration, and radius. From these variables, only the ra-
dius is a positive real-valued number, R, whereas all the other variables are
three-dimensional vectors, R3. As R3 refers here to a subspace of Euclidean
space, we shall denote the components of R? by x, y, and z, respectively.

Formally, a particle type P is a 5-tuple:

P = (R37R37R37R37R+) (1)

In P, the components represent in the given order the original position, the
current position, the velocity, the acceleration, and the radius. We shall denote
these components by o, p, v, a, and r, respectively. For instance, the velocity
of a particle p along the y-axis is referred to as pyy. A set of particles is
expressed as a particle vector; thus, for instance, P° captures ten particles.
Then, for instance, the velocity vector of the i’th particle in a particle vector
p is referred to as p;y.

Operators. As in [23], we formalize an operator as a parameterized collec-
tion of maps. In general, a map is a function from one domain to another. In
this paper, we discuss only maps that are functions from one particle vector
to another. The particle vectors need not be of the same dimension. Such a



map from a vector with m particles to a vector with n particles is expressed
as P — P

Let ¥ denote a (possibly empty) parameter domain. Then, an operator o is
expressed as a higher-order function of the form ¥ — (P™ — P™). Thus, for
some parameter values o € ¥, the expression o(o) returns a map of the form
P™ — P™, and for a vector p of the form P™, the expression o(c)(p) returns
a vector of the form P".

Operator sequences. Operators can be applied in sequence. As operators
are higher-order functions, the sequential application of operators falls under
the standard forward composition [35]. Consequently, a sequence of operators
remains as an operator also in the formal sense.

Consider operators a : ¥ — (P™ — P") and b : I' — (P" — P¥), parame-
ters 0 € ¥ and v € I, and a vector p of the form P™. Then, the forward
composition a(c) e b(7y) gives the map P™ — P* and is defined as [23]:

(a(o) ¢ b(7))(p) = b(v)(a(0)(p)) (2)

In particular, we define the convention:

pea(o) = a(o)(p) (3)

Note that we use here a left associative forward composition, so that the
application of the operators in a sequence can be read from left to right. This
clarifies the equations.

Matrix definitions. In the sequel, we need to express simple matrices with
specific element values. The matrices are used only locally and are not ref-
erenced later. To -avoid unnecessary definition of temporary variables, we use
the following convention to define a matrix with m rows and n columns, where
each element has the value given by the expression expr(i, j):

[eiCpT(i, j)]i:l..m,j:l..n

Conditional expressions. We also use conditional expressions within ma-
trices. To clarify the conditional expressions in the formulas, we define the
following function:

1, if the predicate P holds
(P) = (4)

0, otherwise



The function returns a value 1, if the predicate P holds. Otherwise the function
returns 0.

2.2 Model of motion

The model of motion for the particle system is traditionally [32,23] given as an
Euler approximation [36] of the Newtonian model of motion [37]. As in [23],
we formalize it here as an operator sequence.

The model of motion is a sequence of two operators, netForce and integrate. The
netForce captures all the forces in the model, and is, thus, model dependent.
The integrate operator, however, integrates all the forces into the motion by
computing the actual Euler approximation of the Newtonian dynamics, and
can, therefore, be formalized independently of the model.

Integrating. The integrate operator retains the original pesition and the size
of the particles, while integrating accumulated acceleration to the velocity, and
the velocity to the position of the particles. The integration is computed as
an Fuler approximation of the trivial Newtonian model with forward error
correction. The integrate operator also zeros the acceleration value, to allow
a new accumulation of acceleration. As Euler approximation is a numerical
approximation, the resulting accuracy depends on a coefficient that acts as
a fixed time step. Let p be a particle vector of the form P™ and ¢ be the
fixed time step. Then, the integration is expressed an operator of the form
integrate : (R) — (P™ — P™), and we define it as [23]:

integrate(t)(p). = p + [(@, tDiv+t°Pia; tDia; —Pia; Q))] (5)

i=1..m

Thus, when using forward error correction, the update velocity is obtained
from the current velocity by adding the acceleration multiplied by the time
step. Similarly, the updated position is obtained from the current position
by adding the updated velocity multiplied by the time step. Forward error
correction is used, because it improves the stability of simulated dynamics for
a particle system [18]. For instance, the classical equation p, +tp, + %pg gives
a very unstable motion for the particles in the presence of collision and biding
forces defined later. Note that the there are alternative integration schemes
that could be used in the particle system. Note also that, when choosing
the value for the time step, there is a trade off between the computation
accuracy and the computation time; a smaller time step gives more accurate
computation, but it also causes the computation to take more time.



The motion. Let p be a particle vector of the form P™. and netForce be a
model dependent operator of the form netForce : ()) — (P™ — P™), capturing
all the forces in the model. Also, let ¢ be the fixed time step. Then, the model
of motion is an operator of the form motion : (R) — (P™ — P™), and we
define it as [23]:

motion(t) = netForce() e integrate(t) (6)

The actual simulation is obtained by iteratively computing the model of mo-
tion. There are three distinct computational phases: computation of all the
affecting forces, computation of updated velocities, and computation of up-
dated positions. Thus, the model of motion induces a set of difference equations
that are used for computing the simulation:

!/

p. = (p ® netForce()),
P, = Py + 1D} (7)
P, = Pp + tPy

2.8  Primitive operators for forces

Although the model of the walking robot comprises of many objects, all com-
posed of particles, the operators forming the netForce operator are nevertheless
based on a set of primitive operators that we formalize next. Note that some
operators require coefficient matrices as parameters. The values for these ma-
trices are obtained through experimentation. There is a correlation between
the values in the coefficient matrices and the physical phenomena; however,
due to particle system formulation, the actual values differ from those used in
standard physics equations.

Forcing. A constant force on a particle is modeled implicitly as its effect,
as acceleration. Thus, an operator modeling a constant force adds a constant
acceleration to the particles. Let p be a particle vector of the form P™, and
@ be a matrix of the form R™*3 capturing the acceleration. Then, a constant
force is modeled as an operator of the form force : (R™*3) — (P™ — P™), and
we define it as [23]:

force(a)(p) = p+[(0,0,0,a;,0)],_, ,. (8)

Damping. The damping force captures loss of kinetic energy; thus, the ac-
tual damping force depends on the velocity of a particle. Let p be a particle



vector of the form P™, and ¢ be a real-valued number capturing the magni-
tude of the damping. The damping force is then modeled as an operator of
the form dampen : (R) — (P™ — P™), and we define it as [23]:

dampen(c)(p) = force( [—cpivl,_; ., )(P) 9)

Note that there could also be alternative damping forces defined in the model,
however, here we only use linear damping forces.

Colliding. We model the generic collision forces on particles as their effect,
as acceleration on the particles. We formalize the collision forces as an operator
that adds acceleration due to collision forces on a particle vector that collides
with another particle vector. The magnitude of the acceleration is controlled
with a coefficient matrix.

For the collision operator, we first define an auxiliary function; col. It returns
for a single particle the acceleration due to collision forces with a particle
vector. The returned acceleration is the sum of all the aceelerations due to
the individual particle-to-particle collisions. The magnitude of the particle-to-
particle collision forces are controlled with a coefficient matrix. Let p be the
colliding particle, u be a particle vector of the form P and ¢ be a coefficient
matrix of the form R™. Then, the function col: (P, R" P") — R? is defined
as [23]:

(uir + pr)2
| wip — Ppl|?

} (10)

n
col(p,é,u) = > é(uyp — pp) min{0,1 —
=1

Here, for the pair of particles'p and u;, the min{-} expression evaluates to 0
if the two particles do not overlap, that is, their distance is greater than the
sum of their radii. Consequently, the particles are considered to collide, only
if they overlap. Then, the collision force for the particle p is directed directly
away from the particle u;, because the min{-} expression becomes negative.
The magnitude of the collision force is controlled by ¢;.

The col function, as defined above, is a generalization of the collision function
used before for computing the collision of particles in a particle system [15,19-
22,16-18]. The characteristics of that collision function are discussed in more
detail in a technical report [38].

We formalize now the generic collision operator for a particle vector. Let p
be the colliding particle vector of the form P™, and u be a particle vec-
tor of the form P" capturing the particles that collide with p. Also, let
¢ be a matrix of the form R™*™ capturing the collision coefficients for all
the pairs of particles of p and u. Then, the collision operator is of the form



collide : (P™,R™*") — (P™ — P™), and we define it as [23]:

collide(u, é)(p) = force([col(pi, &, 1)), ,.)(P) (11)

Binding. Similarly to collision forces, we model the generic binding forces
on particles as their effect, as acceleration on the particles. The purpose of the
binding forces is to try to maintain the original distance between the bound
particles. We formalize the binding forces as an operator that adds acceleration
on a particle vector that is bound to another particle vector. The magnitude
of the acceleration is controlled with a coefficient matrix.

For the binding operator, we first define an auxiliary function, bin. It returns
for a single particle the acceleration due to binding forces with a particle
vector. The returned acceleration is the sum of all the accelerations due to
the individual particle-to-particle bindings. The magnitudes of the particle-
to-particle binding forces are controlled with a coefficient matrix. Let p be
the particle to be bound, u be a particle vector of the form P™, and ¢ be a
coefficient matrix of the form R™. Then, the function bin : (P,R", P") — R?
is defined as:

n

bin(p,é,u) = Zzu%p (1 -

i [t — Py |?

[uio = po|*

) (12)

Here, for the pair of particles p and w;, the rightmost term of the expression
evaluates to 0 if the two particles are as far away from each other as originally.
If the particles are closer to each other than originally, the rightmost expres-
sion becomes negative, causing the particles to repel each other. Similarly, if
the particles are further away from each other than originally, the rightmost
expression becomes positive, causing the particles to attract each other. Note
that the magnitude of a repelling or attracting force depends on the distance
of the particles polynomially. Furthermore, the magnitude is controlled by ¢;.

The bin function, as defined above, is a generalization of the binding function
used before for computing the binding of particles in a particle system [15,19-
22,16-18]. The characteristics of that binding function are discussed in more
detail in a technical report [38].

We formalize now the generic binding operator for a particle vector as an
operator called bind. Note we give the operator the same name as for the
function, because it is clear by the parameters, which one of them is to be
applied. Let p be a particle vector of the form P™ denoting the particles to
be bound, and u be a particle vector of the form P" capturing the particles
that p is bound to. Also, let ¢ be a matrix of the form R™*" capturing the
binding coefficients for all the pairs of particles of p and u. Then, the binding

10



operator is of the form bind : (P",R™*") — (P" — P™), and we define it as:

bind(u, &)(p) = force([bin(p;, &, u)l._, ,.)(p) (13)

Attracting. In addition to the binding forces, we also need linear attraction
forces between the particles Similarly to the binding forces, we model the at-
traction forces on particles as their effect, as acceleration on the particles. We
formalize the attraction forces as an operator that adds acceleration on a par-
ticle vector that is attracted towards another particle vector. The magnitude
of the acceleration is controlled with a coefficient matrix.

Let p be a particle vector of the form P™ denoting the particles to be attracted,
and u be a particle vector of the form P" capturing the particles that p is
attracted towards. Furthermore, let ¢ be a matrix of the form R™*™ eapturing
the attraction coefficients for all the pairs of particles of p and u. Then, the
attractor operator is of the form attract : (P", R™*") — (P™ = P™), and we
define it as:

j=1 ! lwjs = Pl

attract(u, ¢)(p) = force( [Z éi-M] )(p) (14)

Note that, unlike for the binding forces, the magnitude of the attraction forces
is completely controlled by ¢. Also, the magnitude of an attraction force de-
pends linearly on the distance of the attracted particles. Consequently, an
attraction force is weaker for longer distances than a binding force, and be-
cause of this, an attraction force cannot break apart an object with binding
forces.

3 Modeling rigid objects with particles

In this section, we propose the use of rack particles in modeling rigid objects
by using particles and particle-to-particle binding forces only. We start by
showing how local deformations propagate as waves throughout an object
composed of particles. We then formalize rack particles and associated forces
that are used to isolate local deformations by preventing wave propagation.
Lastly, we illustrate how rack particles make an object rigid but deformable
by showing how a two-dimensional plane with rack particles behaves under a
local pulling force.

11



a) b) l c) d)
Fig. 1. An increase in the number of binding forces makes a plane stiffer but does
not make it rigid, when pulled up from one corner. a) the initial setting, b) a plane
with particles bound only to their neighboring particles, c¢) a plane with particles

bound to half of the plane particles, d) a plane with particles bound all of the plane
particles.

3.1 Deformation of a plane with binding forces

To illustrate how local deformations propagate as waves throughout the whole
body of particles, we consider a square plane composed of 400 particles, with
a side of 20 particles, as shown in image (a) of Figure 1. We shall vary the
number of binding forces within the plane, to show how the plane behaves as
a whole when pulled up from a corner. In the model, the motion of the plane
is slightly dampened, to prevent cascading waves from occurring.

We shall denote the plane by a particle vector plane of the form P4, The
plane is subjected to a force pulling it up from the corner nearest to the origin
(0,0,0). For the force, we define an acceleration matrix pull of the form R400%3:

pull £ [{[[plane,,|[*< 10) - (0,100,0)] (15)

i=1..400
For the internal binding forces we define an auxiliary function, within(d), that
returns a matrix of the form RA%°*4%0 capturing the binding coefficients for
all the pairs of particles of plane. The variable d determines a limit distance;
all the particles j, whose original distance is within the limit distance d of
a particle ¢ will be bound to the particle ¢ with a magnitude of 20 units. A
particle 7, however, is never bound to itself. Formally, within(d) is expressed
as:

within(d) 2" |20 - (|[plane,, — plane,|| < d)(i # j)] (16)

i=1..400, j=1..400
Now; the model of motion for the plane is:

plane e force(pull) @ bind(plane, within(d)) e dampen(1) e integrate(0.01) (17)
Figure 1 shows some selected images from the simulated dynamics of Equation
17. The image (a) of the figure shows the initial setting for the simulation. The

image (b) shows an intermediate stage of a simulation with d = 2. The image
(c) shows an intermediate stage of a simulation with d = 10. Lastly, the image

12



(d) shows an intermediate stage of a simulation with d = 100. As the image (b)
of Figure 1 shows, an object with only a few binding forces may deform and
stretch severely under a force affecting it locally. As the number of the binding
forces is increased, the object becomes stiffer; however, the object is still very
flexible and it may exhibit waves, as in the image (c) of Figure 1. Even the
maximal number of binding forces does not prevent the local deformations
from spreading throughout the body of an object, as shown in the image (d)
of Figure 1. In the image (d), the plane does still bend visibly, although each
particle of the plane is bound to all the particles of the plane. Because of this,
the binding forces alone are not enough to capture the dynamics of a rigid
object.

The increase in the number of the binding forces brings also another prob-
lem into the model; an object with a large number of binding forces becomes
unstable in the presence of local forces. This is due to the used integration
scheme formalized in Equation 5. If a force affects only one particle of the
object, all the bound particles try to pull that single particle back to its “de-
sired position”. As such a force is linear to the number of the bound particles,
it may easily exceed the pulling force, leading to a series of escalating over
corrections. For instance, if the magnitude of the binding forces appearing in
the function within(), Equation 16, was increased from 20 to 100, the par-
ticles of the plane with within(100) would diverge violently after only a few
computation rounds.

3.2 Formalization of the rack particles and forces

For modeling a rigid object with particles, we propose here the use of rack
particles. Rack particles reside outside the particles of their host object, and
they interact only with their host particles. In short, the host particles are
bound to the rack particles and vice versa; however, there are no binding forces
between any two rack particles or between any two host particles. Because of
the missing binding forces between the host particles, the effect of the local
forces remains local and there is no wave propagation. Still, because all the
host particles are bound to all the rack particles, there is a global effect on the
host object due to forces on the host particles. Consequently, the host object
becomes rigid but maintains the ability to have local deformations.

In this paper, we use only six rack particles per object. The rack particles
are located outside the bounding box of the object, so that there is one rack
particle above and below the object, as well as on each side of the object.
We place the rack particles so that they align at the center of the bounding
box, but so that the distance from a rack particle to the corresponding face of
the bounding box is five units. Note that the number and positioning of rack

13



particles affect the rigidness of the object, whereby a different kind of rack
particle configuration might be preferred in other models.

We shall define first a function that constructs the rack particles for a vector
of particles. Let p be a particle vector of the form P™. Then, the two opposite
corners of the bounding box for the particles p are given by the functions min
and max, of the form P™ — P, which we define as:

min(p) = (min{piox—Pir}, MIN{Pioy —Pir }, Min{pPicz —Pir}) (18)
max(p) £ (max{Piox+Pir}, MAX{Pioy +Pir}, Max{Pioz+Pir})  (19)
Thus, the center of the bounding box is given by a function ctr of the form

P" — P as:
- (min(p) + max(p)) (20)

N | —

ctr(p) 2

Then, the positions of the six rack particles for a particle vector p is given by
a function rck of the form P™ — R%*3 as:

rck(p) 2 (21)

(p)
(ctr(p)x, max(p)y, ctr(p).

Now, the function rack of the form P™ — P that constructs the rack particles
from a given vector of particles is defined as:

raCk(p) = [(er(p)i’ er(p)i’ ®7 ®7 1)]1‘:1..6 (22)

There are two kind of forces affecting the rack particles: binding forces and
damping forces. Throughout this paper we assume that the rack particles
rack(p) are bound to all the host particles p with a magnitude 0.5, and that
there is only a minor damping of the rack particles. Thus, we define an operator
rackFroces of the form P™ — (P% — P6) that captures the forces on the rack
particles as:

rackForces(p) = bind(p, [0.5] ) @ dampen(1) (23)

i=1..6, j=1..m
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Fig. 2. A plane with rack particles behaves as a rigid object when it is pulled up
form one corner: a) the initial setting, b) the state after 60 iterations, c) the state
after 120 iterations, d) the state after 180 iterations.

3.3  Simulating a rigid plane using the rack particles

We shall now illustrate the use of the rack particles in simulating a rigid but
deformable plane. We use the same plane and the same force pulling the plane
from one corner as earlier in Section 3.1. Thus, as earlier, we denote the plane
by plane, which is a vector of the form P4, In addition, we denote the rack
particles for the plane by planerack, which is a vector of the form P® defined
initially as:

planerack = rack(plane) (24)

As we use rack particles, there are no internal biding forces for the plane;
instead, the plane particles are bound to the rack particles. Each plane particle
is bound to each rack particle with a magnitude 100. We also use the matrix
pull for the pulling force, defined earlier in Equation 15. Now, the net forces
on the plane are captured as an operator planeForces of the form () — (P —
P1%9) and it is defined as:

planeForces() = « force(pull)
bind(planerack, [100],_, 400 ;_1.¢) (25)
dampen(1)

With these definitions, the particle system model for the plane and the rack
particles is expressed as the composite:

lane o planeForces
P P Y e integrate(0.01) (26)

planerack e rackForces(plane)

In the resulting vector, the top 400 particles describe a new state for the plane
particles, and the bottom 6 particles describe a new state for the rack particles.

Figure 2 shows some selected images from the simulated dynamics of the model
in Equation 26. As the image series of Figure 2 shows, the force pulling the
plane from a corner affects only the corner particles causing a local deforma-
tion. However, the deformation remains local and does not spread throughout
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Fig. 3. MagPod shown the from the right, front, and left.

the whole plane as before in Figure 1. Note also that as the force keeps on
pulling, the plane and the rack particles start to tilt. The motion is now uni-
form, and the plane does not bend as in Figure 1. The image series confirms
that the rack particles do enforce the dynamics of a rigid object.

4 MagPod

MagPod, shown in Figure 3, is a conceptual model of a bipedal robot walking
on a soft sediment. We are currently exploring the use of a walking robot
in underwater archeology; a bipedal robot maintains a better visibility than a
vehicle with a propulsion system when the sediment floor, containing scattered
artifacts, is easily stirred.

MagPod has two legs and a body, and it walks by moving its legs synchro-
nously. The motion of legs is realized by augmenting the body with attrac-
tion regions that act similarly to electromagnets. The attraction regions are
switched on and off in a predetermined sequence and there is an alternation
of phases, when a leg attracts the body and when the body attracts a leg. We
assume that the body of MagPod is in balance with the buoyancy, and that
its legs stick into the soft sediment, giving sufficient support to carry and pull
the body. The research presented here is in its early stages, whereby we do not
consider any motion of arms or effect of water currents on MagPod’s body,
yet.

We shall now proceed by formalizing the body and legs of MagPod, the prop-
erties of the sediment, and the model of motion.

41  Body

The body of MagPod is composed of 2907 particles and 6 rack particles, as
shown in Figure 4. We shall denote the particles by a vector body which
is of the form P?°7. The particles of body have no velocity or acceleration
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Fig. 4. MagPod’s body, where red particles are the rack particles and blue particles
belong to indicated attraction regions: a) right side, b) front view, c) left side.

initially, and they have a radius of 1 unit. The corresponding rack particles,
bodyrack, are initially given by the function rack(body).

The motion principle is that the legs move synchronously from one attrac-
tion region to another in the following predefined sequence, where each tuple
shows the number of the activated body region for the right and the left leg
respectively:

(4,6) — (1,7) — (2,8) — (3,5)

The activation sequence above is then repeated. To get: the actual walking
motion, the legs are used in turns to pull the body forward. When the body
region 6 or 7 is active, the left leg is stuck to the sediment, pulling the body
forward. Similarly, when the body region 2 or 3 is active, the right leg is
stuck to the sediment, pulling the body forward. The body region 8 is used
for pulling the left leg up from the sediment, and the body region 5 is used
to push the left leg forward. Similarly, the body regions 4 and 1 are used for
pulling the right leg up from the sediment and pushing it forward.

To control the use of the attraction regions in the body, we define an integer
matrix, breg, which is of the form I8%2%07 Each row of the matrix gives indexes
to the particles with respect to the corresponding region. For instance, bregy
gives the indexes for the body particles when the body region 3 is active.
As illustrated in Figure 5, only a particle with a non-zero index belongs to
the attraction region. The actual index values are used for aligning attraction
regions of the body and a leg, so that when there is an attraction force between
the two, the force tries not only to attract, but also to align the leg in an
upright position.

In addition to the alternating attraction forces between the attraction regions,
the body is subject to a damping force, collision forces toward the legs, and
binding forces toward the rack particles. There are no other forces affecting
MagPod’s body, as it it is assumed to be balanced with the buoyancy. As for
the collision forces between the body and the legs, we balance them so that
the body actively collides with a leg, only if the leg is pulling the body. If
the body is pulling the leg, the leg actively collides with the body. In this
way, we avoid simulating an anomaly, where the leg appears to push the body,
although the body is supposed to be pulling the leg.
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Fig. 5. A partial view of the matrix bregs provides indexing for all the body particles
with respect to the attraction region number 3.

We shall now express the body forces formally. Similarly to breg, let rreqg and
Ireg denote the index matrices for the attraction regions of the right and the
left leg. The matrices rreg and Ireg are of the form I?%2. Also, let rightleg and
leftleg be vectors of the form P3%2 capturing the particles of the right and left
leg. Furthermore, let r and [ be integers denoting the active regions on the right
and the left side of MagPod’s body. Then, the net forces on MagPod’s body
are captured as an operator bodyForces of the form (I, T) — (P07 — P2%7),
defined as:

bodyForces(r, ()
£ attract(rightleg, [200(7" €12,3} Abreg,;=rreg; ;éO)]
e attract(leftleg, [200([6 {6, 7} A breg,, = Ireg; 7£0>}
o collide(rightleg, [100(r € {2, 3})],; 5907 j—1.382)
o collide(leftleg, [100(l €{6, T})],_; 5007, j—1.382)
e bind(bodyrack, [100],.; 5907 ;1. ¢)
e dampen(10)

)

1=1..2907, j=1..382

)

i=1..2907, j=1..382

(27)
As the operator above clearly shows, the body collides with a leg only when
it is attracted to that leg. The collision of a leg and the body, when the body
is pulling the leg, is captured among the forces on the legs.

4.2 Legs

MagPod has two legs: the right leg and the left leg. Each leg is composed of
382 particles and 6 rack particles, as shown in Figure 6. We shall denote the
right leg particles by a vector rightleg and the left leg particles by a vector
leftleg. Both of these vectors are of the form P3%2. The leg particles have
no velocity or acceleration initially, and they have a radius of 1 unit. The
corresponding rack particles, rightrack and leftrack, are initially given by
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Fig. 6. MagPod’s legs with red rack particles and blue particles indicating the at-
traction region: a) right side of right leg, b) front view of right leg, c) left side of
right leg, d) right side of left leg, e) front view of left leg, f) left side of left leg.

the functions rack(rightleg) and rack(leftleg).

Similarly to the attraction regions of the body, we define matrices rreg and
Ireg to control the use of the attraction regions of the legs. Both rreg and lreg
are of the form I**2, and they give indexes to the leg particles with respect
to the leg regions, the same way as the matrix breg, as explained earlier in
Section 4.1.

The legs are subject to attraction and collision forces as well as attraction
forces toward the body. In addition, the legs are subject to collision forces
toward the sediment, binding forces toward the rack particles, damping forces,
and a push-down force. A leg is attracted toward the body only if it is not
pulling the body. A leg collides always with a body; however, if the leg is
pulling the body, the collision magnitude is much smaller. This models the
fact that the leg gets support from the sediment and does not move easily,
even if the body is pushing it. Moreover, when any leg particle collides with the
sediment, the motion of the whole leg is strongly dampened. This models the
fact that theleg gets stuck in the sediment. The push-down force, (0, —50,0),
is used to model the fact that the robot actively pushes down the legs to reach
for the sediment.

We shall now express the forces on a leg formally. Let mag and breg denote the
index matrices of the attraction regions for the leg and the body as before.
Also, let b be an integer denoting the active attraction region of the body.
Furthermore, let p be a vector of the form P?%? capturing the leg particles,
body be a vector of the form P27 capturing the body particles, sediment be
a vector of the form P3%°% capturing the sediment particles, and r be a vector
of the form P® capturing the rack particles for the leg. Then, the net forces
on a leg are captured as an operator legForces of the form (P% 18%207 T) —
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(P3%2 — P32 defined as:

legForces(r, mag, b)(p)
= p
e attract(body, {300<b€ {1,4,5,8} A mag; = breg,,; 7&0)}
e collide(body, [100(b€{1,4,5,8})],_; 350 i—1.2007)
e collide(body, [5(b€{2,3,6,7T})];_1 350 j—1.2007)
e collide(sediment, [50];_; 355 j—1 30000)
e bind(r, [IOO]i:L.ggg,jzl..G)
o force( [(0,—50,0)],_, , )

e dampen(10 + 85(Fi,j : ||col(p;, 1, sediment;)|| > 0 Abe{2,3,6,7}))
(28)

)

1=1..382, 7=1..2907

7

Note that the definition above starts with a forward composition “pe...”.
The reason for stating p explicitly in the definition is that weneed to express
a condition for the damping force that depends on p. The stated condition
evaluates to a positive number, if any of the particles of p collide with any of
the particles of sediment.

The leg force, as defined above, is generic to both legs. We shall now specialize
it to each leg. Let r be an integer denoting the active attraction region on the
right side of MagPod’s body. Then, the net forces on MagPod’s right leg are
captured as an operator rightForces of the form (I) — (P35 — P382)  defined
as:

rightForces(r) = legForces(rightrack, rreg, r) (29)

Let [ be an integer denoting the active attraction region on the left side of
MagPod’s body. Then, the net forces on MagPod’s left leg are captured as an
operator leftForces of the form (I) — (P32 — P3%2) defined as:

leftForces(l) = legForces(leftrack, lreg,[) (30)

4.8  Sediment

We model the sediment as a flat plane composed of 300 by 100 particles, as
shown in Figure 7. The radius of a sediment particle is 2 units. We shall denote
the sediment particles by a vector sediment which is of the form P399 Ag
the sediment is soft material, there are no rack particles involved with it.

The sediment particles are subject to two kinds of forces: collision forces to-
ward MagPod’s legs and damping forces. The magnitude of the collision forces
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Fig. 7. The sediment is composed of 300 by 100 particles, each having a radius of 2
units. The particles form a flat plane, although the added colors give an impression
of an uneven terrain.

is small, as the sediment gives in slowly under the weight of a leg. Further-
more, the motion of sediment particles is strongly dampened, to prevent the
sediment particles form moving without an external force.

We shall now express the forces on the sediment particles formally. Let rightleg
and leftleg be vectors of the form P3%? capturing the leg particles. Then, the
net forces on the sediment particles are captured as an operator sedimentForces
of the form () — (P30000 — P30000) " defined as:

sedimentForces() 2 collide(rightleg, [1]5—1. 30000, j=1..382)

collide(leftleg, [1]i:1..30000,j=1..382)
dampen(50)

(31)

4.4 Model of motion

For the overall model of motion we need to combine all the net forces of the
components, the body, the legs, and the sediment. We define the overall net
force as an operator working on 33, 689 particles, as that is the total number
of particles in all the components.

Let body, rightleg, leftleg, bodyrack, rightrack, leftrack, and sediment
denote the particle vectors of the corresponding components. Also, let r and [
be integers denoting the active attraction regions on the right and the left side
of MagPod’s body. Then, the overall net forces are captured as an operator
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netForces of the form (I, 1) — (P?3689 — P36%9) " defined as:

body body e bodyForces(r, 1)

rightleg rightleg e rightForces(r)

leftleg leftleg e leftForces(l)

bodyrack | ®netForces(r,l) = | bodyrack e rackForces(body) (32)
rightrack rightrack e rackForces(rightleg)
leftrack leftrack e rackForces(leftleg)
sediment | sediment e sedimentForces(()

Now, the overall model of motion with respect to the active attraction regions
r and [ is captured as an operator of the form motion : (I,I) — (P30 —
P33589) and we define it as:

motion(r,1) = netForce(r, () o integrate(0.01) (33)

5 Simulation analyzed

To simulate the modeled motion, we compute iteratively motion(r,1), where
the values of (r,1) follow the predefined sequence described earlier:

(4,6) —(1,7) — (2,8) — (3,5)

For each tuple in the above sequence, the operator motion(r, () is iterated 1200
times. Thus, the whole sequence, modeling a short walk where MagPod takes
one step with both.of its legs, requires the iteration of motion(r,l) a total
of 4800 times. The computation was implemented on top of an open-source
particle system package called Atoms [39]. A non-optimized computation of
1200 iteration rounds run with a 1.83 GHz Intel CoreDuo processor in a
single thread took 142 seconds. Such a computation, when run with a modern
graphics processor, could be completed within a second for instance by using
the approach reported by Kipfer et al. [34].

b.1  Emergent properties

The image series in Figure 8 shows the simulated motion of MagPod for the
first 9600 iteration rounds. The simulation shows several interesting emergent
properties. Two of the properties, however, are of special interest: MagPod’s
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0 iterations 1200 iterations 2400 iterations
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Fig. 8. Image series showing MagPod’s walking motion on the sediment; the number
of computed iterations is shown at the bottom of each image.

body tilts upright as it walks, and MagPod leaves a trail of footprints in the
sediment.

As Figure 8 shows, MagPod’s body tilts upright as it walks forward. This is
a very intricate property typically associated with bipedalism, especially with
kangaroos, dinosaurs, and some birds. As we have omitted water currents in
the model and as the model is deterministic, this phenomenon is due to the
style of walking. It is explained by the fact that the legs pull the back of the
body forwards while the front of the body has mass and, therefore, resists
the forward motion. If we were to include water currents in the model, this
property could become either exaggerated or dampened depending on the
shape and design of MagPod’s body.

The effect of the walking motion to the whole body of MagPod is visible in
the image series of Figure 9. It shows clearly how MagPod swings and sways
when walking. This phenomenon is also emergent and typically associated
with bipedalism. In fact, from the front view, MagPod’s walk resembles that
of a human; even the feet turn outwards when MagPod is walking.

The second emergent property of interest is the distinct trail of footprints
that MagPod leaves behind in the sediment. The trail is shown from a low
angle in Figure 10. As the figure shows, the distance between the footprints
in the trail is somewhat equal; however, the shape of the imprint is neither

23



Tenieie

3600 iterations

(AR ARSI

SLUTITTTP PP IIe

seasqaangs~

44 (1404480048880 &

=

g

8400 iterations

Fig. 9. Image series showing MagPod swings and sways while walking; the number
of computed iterations is shown at the bottom of each image.

Fig. 10. MagPod leaves a distinct trail of footprints in the sediment. Note that the
leg of MagPod appears to be bend because of perspective distortion.

flat nor uniform. This indicates the presence of diverse forces. A closer look
at the step motion of a leg, as illustrated in Figure 11, also indicates that the
presence of diverse forces that could cause stress on MagPod’s structure. Note
in particular, how the area of MagPod’s leg around the attraction region “R”

bends.
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Fig. 11. Image series showing MagPod’s step motion on the sediment; the number
of computed iterations is shown at the bottom of each image.

5.2 Preliminary stress visualization

For the preliminary stress visualization, we use the fact that forces cause local
deformations in MagPod’s parts, although the parts themselves behave as rigid
objects. We intrepret the magnitude and the duration of local deformations
as stress. To visualize stress, we use false coloring. We paint a particle the
redder and more opaque the further away it has drifted away from its “desired
position”, that is, from its initial relative position. We paint a particle that
has maintained its initial relative position grey and translucent. In this way,
we obtain images that highlight the stress points.

Figure 12 shows four selected images from the simulation drawn using the
false coloring. It should be noted that as stress is not addressed in the model,
it is and emergent property of the model. In Figure 12, the image after 1, 320
computed iterations displays clearly shearing stress due to torsion around and
on the attraction regions. It also shows how the front particles of the right foot
bend due to-a collision with the sediment. The image after 2,600 computed
iterations shows how a pulse force propagates through the whole body when
the leftleg is lifted from the sediment. The lifting of a leg causes the center of
mass to shift, leading to the swinging and swaying that was capture in Figure
9. 0ut of all the images, the image after 4,720 computed iterations is the
most interesting, as it shows bending of the outer side on the right foot. This
phenomenon is mostly associated with foot biomechanics, especially with flat
feet. Lastly, the image after 17,480 computed iterations shows clearly, how
one of MagPod’s right foot toes breaks up in the sediment due to MagPod’s
weight.

In summary, the simulated motion of MagPod confirms that a particle system
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Fig. 12. A stress visualization on MagPod shows shearing stress due to torsion,
generic shear stress, bending, and a broken toe. The number of computed iterations
is shown at the bottom of each image.

can be used to simulate the interaction of both non-rigid and rigid objects.
In particular; the motion analysis above confirms that use of rack particles
is sufficient for modeling rigid object with particles and particle-to-particle
forces. The advantage of using a particle based approach is that the computed
motion dynamics can then be used for performing also a preliminary stress
visualization, as discussed above. All in all, the discussion above indicates that
particle systems are a valuable tool for simulating complex motion dynamics
and for performing preliminary analysis on the simulated dynamics. Thus, a
particle system based approach saves time, because it can be used to model
systems with a modest modeling effort, to identify interesting dynamics and
structures that can then be analyzed further with more rigorous approaches,
as discussed earlier in related work section.
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6 Conclusion

In this paper, we investigated a complementary approach to stress visualiza-
tion in early stages of the development process, the use of a particle system. In
order to model also rigid but deformable objects with particles, we proposed
here use of rack particles. Rack particles interact only with the particles of
their host object. The purpose of the rack particles was to isolate local defor-
mations in the host object by preventing wave propagation.

We illustrated the use of rack particles in preliminary stress visualization by
formalizing, modeling, and simulating a bipedal robot walking on a soft sedi-
ment. The simulated dynamics exhibited non-trivial interaction dynamics that
emerged from the model. Two of the emergent properties were of particular
interest; firstly, MagPod’s body tilted upright as it walked forward; and sec-
ondly, the outer sides of MagPod’s feet showed clear bending when MagPod
was walking. Both of these intricate properties are typically associated with
bipedalism, especially with kangaroos, dinosaurs, and some birds; thus, con-
firming to some degree that the simulated dynamics is that of a walking robot.

Technically, the preliminary stress visualization was extracted from the sim-
ulation simply by using false coloring. We painted a particle the redder and
more opaque the further away it had drifted from its initial relative position.
In this way, we obtained images that highlight the stress points. The prelimi-
nary analysis indicated sections of the body and legs that showed shear stress,
torsion, and local bending.

Overall, the analysis confirmed that particle system simulations are a comple-
mentary tool for performing a preliminary stress point analysis of a body, to
identify the parts of the structures that should be subjected to more rigorous
analysis by mathematical methods. In particular, the simulation results con-
firmed a particle system can be used to simulate the interaction of both non-
rigid and rigid ebjects by using rack particles. Thus, particle systems provide
a uniform platform for modeling and analyzing the dynamics of interacting
bodies with varying materialistic properties using particles only.

We are encouraged by the obtained results; they raise many interesting topics
for future research. Clearly, an important topic for future research to to study
modelling of more complex scenarios in robotics using particle systems. Also
incorporation of bigger volumes into the models is a central topic for future
research; in particular, an attractive topic is teh inclusion of water into the
model of MagPod, to study water currents and their interaction to MagPod’s
shape and design. As such models tend to comprise of millions of particles,
there is also a need to develop the computational tools. We believe that, for
such tools, the use of graphics processor for the computation [34] is a necessity.
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