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Abstract

Cell differentiation has a crucial role in both artificial and natural development. This paper presents results from
simulations in which a genetic algorithm (GA) was used to evolve artificial regulatory networks (ARNs) to produce
predefined 3D cellular structures through the selective activation and inhibition of genes. The ARNs used in this
work are extensions of a model previously used to create 2D geometrical patterns. The GA worked by evolving the
gene regulatory networks that were used to control cell reproduction, which took place in a testbed based on cellular
automata (CA). After the final chromosomes were produced, a single cell in the middle of the CA lattice was allowed
to replicate controlled by the ARN found by the GA, until the desired cellular structures were formed. Two simple
cubic layered structures were first developed to test multiple gene synchronization. The model was then applied to
the problem of generating a 3D French flag pattern using morphogenetic gradients to provide cells with positional
information that constrained cellular replication.
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1. Introduction

Cell differentiation is at the core of the processes
that lead to the development of multicellular organ-
isms. The initial undifferentiated cell —the zygote—
undergoes a series of divisions that ultimately pro-
duce tissues and organs made of highly differenti-
ated cells. It is now evident that gene regulatory
networks play a central role in the development and
metabolism of living organisms (Davidson, 2006).
Furthermore, it has been found in recent years that
the diverse body structures and patterns generated
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during the development of an organism are greatly
influenced by the selective activation and inhibition
of very specific regulatory genes. On the other hand,
computational models known as Artificial Regula-
tory Networks (ARNs) have the objective of em-
ulating the gene regulatory networks found in na-
ture to some extent. ARNs have previously been
used to study differential gene expression either as a
computational paradigm or to solve particular prob-
lems (Eggenberger, 1997; Reil, 1999; Banzhaf, 2003;
Joachimczak and Wróbel, 2008; Chavoya, 2009). In
order to evolve ARNs to perform specific tasks, evo-
lutionary computation techniques have been used in
the past (Bongard, 2002; Kuo et al., 2004).

In this work we describe results on the use of a
genetic algorithm (GA) to evolve ARNs in order to
synchronize cell differentiation with the purpose of
obtaining 3D structures by means of the selective
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activation and inhibition of genes. The ARNs used
in this work were originally based on the model de-
veloped by Banzhaf (2003) and have been extended
to overcome gene synchronization limits previously
reported (Chavoya and Duthen, 2008). In order to
test the functionality of the ARN found by the GA,
chromosomes representing ARNs were applied to a
cellular growth testbed that has been successfully
used in the past to develop simple 2D and 3D geo-
metrical shapes (Chavoya and Duthen, 2006). The
cellular growth testbed is based on cellular automata
(CA), as they provide a simple mathematical model
that can be used to study self-organizing features
of complex systems (Wolfram, 1983). Gene synchro-
nization was first tested by developing genomes that
generated two simple structures consisting of cubic
structures with two and three concentric layers, re-
spectively. Each layer corresponds to differentiated
cells expressing distinct genes controlled by an ARN.
The cell differentiation model was then applied to
what is known as the French flag problem, using
morphogenetic fields to spatially constrain cell re-
production.

The paper starts with a section describing the
French flag problem with a brief description of mod-
els that have used it as a test case. The next section
describes the cellular growth testbed developed to
evaluate the evolved genomes, followed by a section
presenting the morphogenetic gradients used. The
next section introduces the artificial genomes con-
taining the ARNs and how they were implemented.
The following section describes the GA used and
how it was applied to evolve the genomes. Results
are presented next, followed by a section of conclu-
sions.

2. The French Flag Problem

The problem of generating a French flag pattern
was first introduced by Wolpert in the late 1960s
when trying to formulate the problem of cell pat-
tern development and regulation in living organisms
(Wolpert, 1968). This formulation has been used
since then by some authors to study the problem of
artificial pattern development. More specifically, the
problem deals with the creation of a pattern with
three sharp bands of cells with the colors and order
of the French flag stripes.

Lindenmayer and Rozenberg (1972) used the
French flag problem to illustrate how a grammar-
based L-System could be used to solve the gener-

ation of this particular pattern when enunciated
as the production of a string of the type anbncn

over the alphabet {a, b, c} and with n > 0. On the
other hand, Herman and Liu (1973) developed an
extension of a simulator called CELIA (Baker and
Herman, 1970) and applied it to generate a French
flag pattern in order to study synchronization and
symmetry breaking in cellular development.

Miller and Banzhaf (2003) used what they called
Cartesian genetic programming to evolve a cell pro-
gram that would build a French flag pattern. They
tested the robustness of their programs by manu-
ally removing parts of the developing pattern. They
found that several of their evolved programs could
repair to some extent the damaged patterns. Bow-
ers (2005) also used this problem to study the phe-
notypic robustness of his embryogeny model, which
was based on cellular growth with diffusing chemi-
cals as signaling molecules.

Gordon and Bentley (2005) proposed a develop-
ment model based on a set of rules that described
how development should proceed. A set of rules
evolved by a GA was used to develop a French flag
pattern. The morphogenic model based on a mul-
tiagent system developed by Beurier et al. (2006)
also used an evolved set of agent rules to grow
French and Japanese flag patterns. On the other
hand, Devert et al. (2007) proposed a neural net-
work model for multicellular development that grew
French flag patterns. Even models for developing
evolvable hardware have benefited from the French
flag problem as a test case (Tyrrell and Greensted,
2007; Harding et al., 2007).

More recently, Knabe et al. (2008) developed a
model based on the CompuCell3D package (Cick-
ovski et al., 2007) combined with a genetic regula-
tory network that controlled cell parameters such as
size, shape, adhesion, morphogen secretion and ori-
entation. They were able to obtain final 2D patterns
with matches of over 75% with respect to a 60× 40
pixel target French flag pattern.

3. Cellular Growth Testbed

Cellular automata were chosen as models of cellu-
lar growth, since they provide a simple mathemati-
cal model that can be used to study self-organizing
features of complex systems (Wolfram, 1983). CA
are characterized by a regular lattice of N identi-
cal cells, an interaction neighborhood template η,
a finite set of cell states Σ, and a space- and time-
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independent transition rule φ which is applied to
every cell in the lattice at each time step.

In the cellular growth testbed used in this work,
two regular lattices with non-periodic boundaries
were defined. A 19×19×19 lattice was used for the
cubic patterns and a 13×13×13 lattice was used to
produce a solid 3D French flag structure. In the lat-
ter case a smaller lattice was used in order to reduce
simulation times, since the introduction of morpho-
genetic fields required a higher number of GA ex-
periments to obtain a genome that generated the
desired pattern, as discussed in Section 7. In both
cases, the set of cell states was defined as Σ = {0, 1},
where 0 can be interpreted as an empty cell and 1 as
an occupied or active cell. The interaction neighbor-
hood η considered for this work was a 3D Margolus
template (Fig. 1), which has been previously used
with success to model 3D shapes (Wu et al., 2004).
In this template there is an alternation of the block
of cells considered at each step of the CA algorithm.
At odd steps, the seven cells shown to the left and the
back in the figure constitute the interaction neigh-
borhood, whereas at even steps the neighborhood is
formed by the mirror cells of the previous block. The
3D Margolus neighborhood was chosen over, for ex-
ample, a 3D Moore neighborhood, since in the lat-
ter case the interaction neighborhood would consist
of the nearest 26 cells, giving a CA lookup table of
226 ≈ 6.7×107 rows, as opposed to the 27×2 = 256
rows required by the 3D Margolus neighborhood. In
general, the number of rows in the CA lookup table
grows exponentially with the number of cells in the
neighborhood used. The 3D Margolus template cov-
ers a fair amount of the neighboring cells requiring
relatively few rows in the CA lookup table.

Lookup Table

h0p h6h5
Output 

bit

00 00 0

00 10 1

00 01 1

11 11 0

00 11 0

00 00 1



Neighborhood

template








Odd

steps

Even

steps

h2

h1 h0

h3 h6

h4 h5

h0 h1

h2

h5 h4

h6 h3

Fig. 1. Cellular automaton’s 3D Margolus neighborhood tem-
plate and the associated lookup table. The parity bit p in
the lookup table determines which block of the neighbor-
hood template is being considered for evaluation. The ob-

jective cell is depicted as a darker cube in the middle of the
template.

The CA rule φ was defined as a lookup table
that determined, for each local neighborhood, the
state (empty or occupied) of the objective cell at
the next time step. For a binary-state CA, these up-
date states are termed the rule table’s “output bits”.
The lookup table input was defined by the binary
state value of cells in the local interaction neighbor-
hood (η0 to η6), where 0 meant an empty cell and
1 meant an occupied cell and the parity bit p de-
termined which of the two blocks of cells was be-
ing considered for evaluation (Chavoya and Duthen,
2006). When p = 0, the first 128 rows (27) in the
lookup table represent the possible configurations of
the block of cells to the left and back of the objec-
tive cell, whereas when p = 1 the last 128 rows code
for the possible configurations of the mirror cells of
the previous block. The output bit values shown in
Fig. 1 are only for illustration purposes; the actual
values for a predefined shape, such as a cube, are
found by a GA.

In the testbed, a cell can become active only if
there is already an active cell in the interaction
neighborhood. Thus, a new active cell can only be
derived (reproduced) from a previously activated
cell in the interaction neighborhood. Starting with
an active cell in the middle of the lattice, the CA
algorithm is applied allowing active cells to repro-
duce for 60 time steps according to the CA rule
table. This upper limit of 60 was chosen because it
was found that the system was not sensitive to the
number of time steps. In principle, allowing a higher
upper limit in the number of time steps would give
the system more time to evolve a desired solution.
However, in most experiments performed, cells
tended to reproduce rapidly at the beginning and
then quickly fill up the available space for growth.
Besides, given the exponential reproduction of cells,
a higher number of time steps would mean longer
simulation times.

During an iteration of the CA algorithm, the order
of reproduction of active cells is randomly selected
in order to avoid artifacts caused by a deterministic
order of cell reproduction. For the sake of simplicity,
cell death is not considered in the present model.

For all experiments, the CA were implemented
as NetLogo models. NetLogo is a programmable
modeling environment based on StarLogo that can
be used to simulate natural and social phenomena
(Wilensky, 1999). It works by giving instructions
to hundreds or thousands of independent “agents”
all operating concurrently. It is well suited to study
emergent properties in complex systems that result
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from the interaction of simple but often numerous
entities. For each of the cell structures studied, a
NetLogo model was built.

4. Morphogenetic Gradients

Ever since Turing’s seminal article on the theo-
retical influence of diffusing chemical substances on
an organism’s pattern development (Turing, 1952),
the role of these molecules has been confirmed in
a number of biological systems. These organizing
substances were termed morphogens, given their in-
volvement in driving morphogenetic processes. In
the present model, morphogenetic gradients were
generated similar to those found in the eggs of the
fruit fly Drosophila, where orthogonal gradients of-
fer a sort of Cartesian coordinate system (Carroll
et al., 2004). These gradients provide reproducing
cells with positional information in order to facili-
tate the spatial generation of patterns. The artificial
morphogenetic gradients were set up as suggested in
(Meinhardt, 1982), where morphogens diffuse from
a source towards a sink, with uniform morphogen
degradation throughout the gradient.

Before cells were allowed to reproduce in the cel-
lular growth model, morphogenetic gradients were
generated by diffusing the morphogens from one of
the CA boundaries for 1000 time steps for each of
the three orthogonal axes. Initial morphogen con-
centration level was set at 28 − 1 = 255 arbitrary
units, and the source was replenished to the same
level at the beginning of each cycle. The diffusion
factor was 0.20, i.e. at each time step every grid po-
sition diffused 20% of its morphogen content and all
neighboring positions received an equal amount of
this percentage. This factor was introduced to avoid
rapid morphogen depletion at cell positions and its
value was experimentally determined to render a
smooth descending gradient. The sink was set up at
the opposite boundary of the lattice, where the mor-
phogen level was always set to zero. At the end of
each time step, morphogens were degraded at a rate
of 0.005 throughout the CA lattice. Three orthogo-
nal gradients were defined in the CA lattice, one for
each of the main Cartesian axes (Fig. 2).

5. Genomes

Two different artificial genomes are proposed in
this work, depending on whether or not they con-
strain cell reproduction by means of morphogenetic

(a) (b) (c)

Fig. 2. Morphogenetic gradients. Positions with highest mor-
phogen concentration are depicted in white; darker tones

mean lower concentrations. (a) Left to right (x axis); (b)

back to front (y axis); (c) top to bottom (z axis).

fields. In both cases, genomes were defined as bi-
nary strings starting with a series of ten regulatory
genes, followed by a series of structural genes, which
contain the CA’s lookup tables that control cell re-
production. The regulatory genes at the beginning
of the genome constitute an ARN and they deter-
mine the concentration level of the regulatory pro-
teins that control structural gene activation.

The genome that does not make use of morpho-
genetic fields is presented in Fig. 3

1 8

Regulatory 

protein

Regulatory protein coding regions

Translation by 

majority rule 

Determine degree 

of match 

1

Regulatory genes 

. . .

To inhibitor and 

activator sites on the 

other regulatory genes

12 10

Structural genes 

2

. . .

Inhibitor/activator sites

Regulatory 

site

Defin-

ing 

bits

. . . m

Fig. 3. Genome structure and regulatory gene detail. Regula-
tory genes make up an artificial regulatory network, whereas

structural genes contain the lookup tables that control cell

reproduction.

Structural genes are always associated to the cor-
responding regulatory genes, that is, structural gene
number 1 is associated to regulatory gene number 1
and its related translated protein, and so on. A struc-
tural gene was defined as being active if and only if
the regulatory protein translated by the associated
regulatory gene was above a certain concentration
threshold. The value chosen for the threshold was
0.5 as the sum of all protein concentrations is always
1.0, making it impossible for two or more regulatory
proteins to be with a concentration above 0.5 units
at the same time. As a result, one structural gene
at most can be expressed at a particular time step
in a cell. A structural gene is interpreted as a CA
rule table by reading its bits as output bits of the
CA rule. If a structural gene is active, then the CA
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lookup table coded in it is used to control cell repro-
duction. If no protein concentration is above the 0.5
threshold, then cell reproduction cannot occur.

The gene regulatory networks implemented in
this work are an extension of the model originally
proposed by Banzhaf (2003). However, unlike the
ARN developed by this author, genes implemented
in the present models are not preceded by promoter
sequences and there are no unused intergene regions.
Promoters in biology indicate where regulatory
binding sites begin. In Banzhaf’s model, a genome
is a randomly generated bit string where the begin-
ning of a gene is signaled by a fixed arbitrary 8-bit
sequence. As a result, this promoter sequence can
occur with a probability of 2−8 ≈ 0.0039 = 0.39%
and the number of genes is proportional to the
length of the genome.

For the present model, it was decided that un-
used bit sequences between genes would be a waste
of space and an additional source of variation in the
evolution experiments, since the number of regula-
tory genes could vary from genome to genome. Fur-
thermore, this approach would make relating a fixed
number of structural genes to a varying number of
regulatory genes difficult. As a result it would be
possible to have less regulatory genes than struc-
tural genes, which went against the concept of one
regulatory gene controlling one structural gene.

In the models proposed in the present work, all
regulatory genes are adjacent and have predefined
initial and end positions. Furthermore, the number
of regulatory genes is fixed and the number of reg-
ulatory sites is more than two and they can behave
either as an activator or an inhibitor, depending on
the configuration of the function defining bits associ-
ated with the regulatory site (Chavoya and Duthen,
2008). If there are more 1’s than 0’s in the function
defining region, then the site functions as an acti-
vator, but if there are more 0’s than 1’s, then the
site behaves as an inhibitor. Finally, if there is an
equal number of 1’s and 0’s, then the regulatory site
is turned off. This means that the regulatory site
role as an activator or as an inhibitor can be evolved
by the GA. Furthermore, if the number of function
defining bits is even, then the regulatory site can be
turned on and off. The number of regulatory sites
was extended with respect to the original model in
order to more closely follow what happens in na-
ture, where biological regulatory genes involved in
development typically have several regulatory sites
associated with them (Davidson, 2006).

Besides the inhibitor/activator sites, each regu-

latory gene contains a series of five regulatory pro-
tein coding regions which “translate” a protein us-
ing the majority rule, i.e. for each bit position in the
protein coding regions, the number of 1’s and 0’s is
counted and the bit that is in majority is translated
into the regulatory protein. An odd number of reg-
ulatory protein coding regions sites was chosen by
Banzhaf in order to avoid ties when applying the
majority rule.

The regulatory sites and the individual protein
coding regions all have the same size in bits. Thus
the protein translated from the coding regions can
be compared on a bit by bit basis with the regulatory
sites from the inhibitors and activators, and the de-
gree of matching can be measured. As in (Banzhaf,
2003), the comparison was implemented by an XOR
operation, which results in a “1” if the correspond-
ing bits are complementary.

Each translated protein is compared with the in-
hibitor and activator sites of all the regulatory genes
in order to determine the degree of interaction in
the regulatory network. The influence of a protein
on an activator or inhibitor site is exponential with
the number of matching bits. The strength of exci-
tation en or inhibition in for gene i with i = 1, ..., n
is defined as

eni =
1
v

v∑
j=1

cje
β(u+

ij
−u+

max) and (1)

ini =
1
w

w∑
j=1

cje
β(u−ij

−u−max) , (2)

where n is the total number of regulatory genes,
v and w are the total number of activator and in-
hibitor sites, respectively, cj is the concentration of
protein j, β is a constant that fine-tunes the strength
of matching, u+

ij and u−ij are the number of matches
between protein j and the activator and inhibitor
sites of gene i, respectively, and u+

max and u−max are
the maximum matches achievable between a pro-
tein and an activator or inhibitor site, respectively
(Banzhaf, 2003).

Once the en and in values are obtained for all reg-
ulatory genes, the corresponding change in concen-
tration c for protein i in one time step is found using

dci
dt

= δ (eni − ini) ci , (3)

where δ is a constant that regulates the degree of
protein concentration change. Parameters β and δ
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were set to 1.0 and 1.0× 106, respectively, as previ-
ously reported (Chavoya and Duthen, 2007b).

Protein concentrations are updated and if a new
protein concentration results in a negative value, the
protein concentration is set to zero. Protein concen-
trations are then normalized so that total protein
concentration is always the unity. At time step 0, all
ten proteins start out with the same concentration
level, i.e. with a value of 0.1 units.

As for structural genes, they code for the par-
ticular shape grown by the reproducing cells and
were obtained using the methodology presented in
(Chavoya and Duthen, 2006). Briefly, a gene was
evolved by a GA in the cellular growth testbed de-
scribed in Section 3 in order to produce predefined
3D shapes. The GA worked by evolving the CA rule
table’s output bits.

In the series of experiments presented in this
work, the number of structural genes is always less
than the number of regulatory genes. Thus, some
proteins both regulate concentration for other pro-
teins and directly control structural gene expression,
while others only have a regulatory role. Structural
gene expression is visualized in the cellular growth
testbed as a distinct external color for the cell.
Thus, cells with different external color represent
differentiated cells that express a specific structural
gene. The color associated with a structural gene is
assigned to a cell when it is created as a result of
the activation of that particular structural gene.

The second genome used in this work is an ex-
tension of the first genome presented and its struc-
ture is shown in Fig. 4. The difference lies in the
addition of three morphogen activation sites at the
end of the regulatory gene which are shown encir-
cled in the figure. A similar genome with two acti-
vation sites was previously proposed to develop 2D
patterns (Chavoya, 2008).

. . .

1 8
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Fig. 4. Genome structure and extended regulatory gene de-

tail. Three fields were added to each regulatory gene to con-
trol cell reproduction through the definition of morphogen

activation thresholds.

The morphogen threshold activation sites can pro-
vide reproducing cells with positional information
as to where they are allowed to grow in the CA lat-
tice. There is one site for each of the three orthog-
onal morphogenetic gradients described in Section
4. These sites are 9 bits in length, where the first
bit defines the allowed direction (above or below the
threshold) of cellular growth, and the next 8 bits
code for the morphogen threshold activation level,
which ranges from 0 to 28 − 1 = 255. If the site’s
high order bit is 0, then cells are allowed to repli-
cate below the morphogen threshold level coded in
the lower order eight bits; if the value is 1, then
cells are allowed to reproduce above the threshold
level. Since in a regulatory gene there is one site for
each of the three orthogonal morphogenetic gradi-
ents, for each set of three morphogen threshold ac-
tivation levels, the three high order bits define in
which of the eight relative octants cells expressing
the associated structural gene can reproduce.

6. Genetic Algorithm

Genetic algorithms are search and optimization
methods based on ideas borrowed from natural ge-
netics and evolution (Holland, 1992). A GA starts
with a population of chromosomes representing vec-
tors in search space. Each chromosome is evaluated
according to a fitness function and the best individ-
uals are selected. A new generation of chromosomes
is created by applying genetic operators on selected
individuals from the previous generation. The pro-
cess is repeated until the desired number of gener-
ations is reached or until the desired individual is
found.

The GA in this paper uses tournament selec-
tion as described in (Mitchell, 1996) with single-
point crossover and mutation as genetic operators.
Single-point crossover consists of randomly select-
ing two chromosomes with a certain probability
called crossover rate, and then randomly selecting
a single bit position in the chromosome structure.
From this point on, the remaining fragments of
the two chromosomes are exchanged. The resulting
chromosomes then replace the original ones in the
chromosome population. On the other hand, muta-
tion consists of randomly flipping one bit in a chro-
mosome from 0 to 1 or vice versa. The probability
of each bit to be flipped is called the mutation rate.

As in a previous report, we used the following pa-
rameter values (Chavoya and Duthen, 2007a). The
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initial population consisted of 1000 binary chromo-
somes chosen at random. Tournaments were run
with sets of 3 individuals randomly selected from the
population. Crossover and mutation rates were 0.60
and 0.15, respectively. Finally, the number of gener-
ations was set at 50, since there was no significant
improvement after this number of generations.

Single-point crossover with a rate of 0.60 was cho-
sen because it was reported to give the best results
when trying to evolve a binary string representing
a CA using a GA (Breukelaar and Bäck, 2005). As
for the mutation rate, we decided to use a value one
order of magnitude higher than the one used in the
same report, since it was found that single bits could
have a considerable influence on the final behavior
of the ARN. In particular, in one experiment the
flipping of a single bit almost doubled the fitness
value of an evolving genome (Chavoya and Duthen,
2007b).

The fitness function used by the GA was defined
as

Fitness =
1
k

k∑
i=1

insi − 1
2outsi

desi
, (4)

where k is the number of different colored shapes in-
side a pattern, each corresponding to an expressed
structural gene, insi is the number of active cells
inside the desired shape i with the correct color,
outsi is the number of active cells outside the de-
sired shape i, but with the correct color, and desi is
the total number of cells inside the desired shape i.
This fitness function is an extension of the one used
in (de Garis, 1999), where the shape produced by
only one “gene” was considered. To account for the
expression of several structural genes, the combined
fitness values of all structural gene products were
introduced in the fitness function used.

During the course of a GA experiment, each chro-
mosome produced in a generation was fed to the
corresponding NetLogo model, where the structural
genes were attached and cells were allowed to repro-
duce controlled by the ARN found by the GA. Fit-
ness was evaluated after the simulation stopped and
a colored pattern was formed. This process contin-
ued until the maximum number of generations was
reached or the optimal solution was found.

7. Results

The GA described in Section 6 was used in all
cases to obtain de CA’s rule tables to conform the

structural genes for specific simple patterns and to
evolve the ARNs for the desired multicolored pat-
terns. After an evolved genome was obtained, an ini-
tial active cell containing it was placed in the cen-
ter of the CA lattice and was allowed to reproduce
for 60 time steps in the cellular growth testbed de-
scribed in Section 3, controlled by the gene activa-
tion sequence found by the GA. In order to grow the
desired structure with a predefined color and posi-
tion for each cell, the regulatory genes in the ARN
had to evolve to be activated in a precise sequence
and for a specific number of iterations. Not all GA
experiments produced a genome capable of generat-
ing the desired pattern.

In the figures shown next the following conven-
tions are used: in the 3D insets the positive x axis
extends to right, the positive y axis is towards de
back of the page, the positive z axis is at the top,
and the axes are rotated 45 degrees to the left to
show a better perspective. The graphs presented in
the figures correspond to some of those experiments
where ARNs with fitness function values equal to
1.0 were found by the GA.

A two-layer cubic structure grown from the ex-
pression of two structural genes that produce con-
centric cubes is shown in Fig. 5. Expression of the
first gene generates the inner cube, while the sec-
ond gene drives cells to grow the outer layer to com-
plete the structure. The graph of the corresponding
regulatory protein concentration change over time
is shown in 5(e). Starting with an initial white cell
(a), the inner white cube is formed from the expres-
sion of the first gene (b), followed by the outer cube
resulting from gene 2 being expressed (c); the fin-
ished cube structure is shown in (d) with a cutout
to exhibit the layered structure.
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Fig. 5. Growth of a two-layer cube structure. (a) Initial cell;

(b) inner cube; (c) outer layer with inner cube inside; (d)

finished cube structure with a cutout made to show the two
layers; (e) graph of protein concentration change from the

genome expressing the two-layer cube structure.

Figure 6 shows a three-layer cubic structure grown
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from the expression of three structural genes, each
controlling the expression of cells forming a cube
layer of a different color. The graph of the corre-
sponding regulatory protein concentration change
over time is shown in 6(e). Starting with an initial
white cell (a), a white central cube is formed from
the expression of gene number 1 (b), the middle cu-
bic layer is then grown (c), followed by the outer
layer that completes the desired 3D structure (d).
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Fig. 6. Growth of a three-layer cube structure. (a) Initial
cell; (b) inner cube; (c) middle layer with inner cube inside;

(d) finished cube structure with a cutout made to show the

three layers; (e) graph of protein concentration change from
the genome expressing the three-layer cube structure.

The previous structures were chosen so that struc-
tural genes were expressed for the same number of
time steps in the cellular growth testbed. For the
two-color cubic pattern, each structural gene is ex-
pressed for exactly three time steps, whereas for the
three-color cube structure, each of the three genes
involved is activated for two time steps.

In order to explore the result of combining dif-
ferent structural genes that are expressed for a dif-
ferent number of time steps and to test the use of
morphogenetic fields to constrain cellular growth,
three different structural genes were used to grow a
solid 3D French flag pattern. Expression of the first
gene creates the white central cube, while the other
two genes drive cells to extend the lateral walls to
the left and to the right simultaneously, expressing
the blue and the red color, respectively. These two
last genes do not necessarily code for a cube, since
they only extend a wall of cells to the left and to the
right for as many time steps as they are activated
and when unconstrained, they produce a symmetri-
cal pattern along the x axis. In order to produce the
desired French flag pattern, cells expressing one of
these two genes should only be allowed to reproduce
on each side of the white central cube (left for the
blue cube and red for the right cube). This behav-
ior was achieved through the use of genomes where
the morphogen threshold activation sites evolved to

allow growth only in the desired portions of the 3D
CA lattice.

Figure 7 shows a 9 × 3 × 3 solid French flag pat-
tern grown from the expression of the three struc-
tural genes mentioned above. The graph of the cor-
responding ARN protein concentration change is
shown in Fig. 7(e). Starting with an initial white
cell (a), a white central cube is formed from the ex-
pression of gene number 1 (b), the right red cube is
then grown (c), followed by the left blue cube (d).
The evolved morphogenetic fields where cells are al-
lowed to grow are depicted in the figure as a translu-
cent volume for each of the three structural genes.
Note that for the genes that extend the wall of cells
to the sides, the corresponding morphogenetic fields
limited growth to the desired direction (red to the
right and blue to the left) and produced the desired
French flag pattern.
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Fig. 7. Growth of a 3D French flag pattern. (a) Initial cell;

(b) central white cube with morphogenetic field for gene
1 (cube); (c) central white cube and right red cube with

morphogenetic field for gene 3 (extend red lateral walls);

(d) finished flag pattern with morphogenetic field for gene 2
(extend blue lateral walls); (e) graph of protein concentration

change from the genome expressing the French flag pattern.

Unlike the problem of growing the two- or three-
layer cube structure, where one gene had to finish
forming the corresponding pattern before the next
gene could become activated, there is more flexibil-
ity in the activation sequence needed to grow the
French flag structure. In particular, after the central
white cube is fully formed, the genes that extend this
cube to either side can be activated in any order, and
their corresponding activations can even alternate
before either one has finished growing (Chavoya and
Duthen, 2007b). However, the requirement of simul-
taneously evolving both the correct gene activation
sequence and the appropriate morphogen threshold
activation values, caused that the genetic algorithm
could not easily evolve the genomes to produce the
desired pattern. In fact, the result presented corre-
sponded to the only successful case that produced
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the desired French flag structure out of over 500 ex-
periments, whereas the experiments that produced
genomes to grow the three-layer cube had an 18%
success rate and the experiments that generated the
two-layer cube were always successful.

8. Conclusions

The results presented in this paper show that
a GA can give reproducible results in evolving an
ARN to grow predefined simple 3D cellular struc-
tures starting with a single cell. In particular, sim-
ulations showed that the combination of a GA and
CA with a 3D Margolus interaction neighborhood
was a feasible choice for modeling 3D pattern gen-
eration.

Morphogenetic fields should in principle assist in
the creation of more complex patterns by providing
positional constraints to cellular growth. However
in the results obtained with the extended ARN with
morphogenetic fields, it was apparently harder for
the GA to find an activation sequence for the cre-
ation of the 3D French flag pattern. One possible
explanation is that with the addition of the mor-
phogen threshold activation sites to the ARN, the
search space grew even larger than in the original
ARN model, making it more difficult for the GA
to find an appropriate activation sequence. Despite
this apparent disadvantage, without the use of mor-
phogens it would have been impossible to generate
the 3D French flag form, as the genes that extend
the lateral walls of cells produce a symmetrical pat-
tern along the x -axis when not constrained.

On the other hand, there is evidence that the fit-
ness landscape on which the GA performs the search
to evolve the ARNs is very rugged (Chavoya and
Duthen, 2007b). In particular this means that vec-
tors that are adjacent in search space have very dis-
similar values in fitness evaluation. It is conjectured
that this behavior is widespread in the search spaces
defined in the models developed, given the difficul-
ties encountered when synchronizing more than two
structural genes. Most likely, a change of representa-
tion would aid in the search process. Ideally, a repre-
sentation should be associated with a smooth fitness
landscape in which the search process could easily
lead to the discovery of local or global optima in the
fitness function. More work is needed to obtain a
smoother fitness landscape. One other possibility is
to modify the GA crossover operator to limit the ex-
change of bits at the regulatory gene level and not at

the ARN level. In this manner, only one regulatory
gene per chromosome would be modified at a time,
leaving the other regulatory genes intact. In princi-
ple, this approach would limit the side effects caused
by exchanging several regulatory genes at the same
time when classical single-point crossover is used.

One restriction of the ARN models presented is
that all cells synchronously follow the same genetic
program, as a sort of biological clock. This has ob-
vious advantages in the synchronization of the be-
havior of developing cells, but it would also be desir-
able that cells had an individual program —possibly
a separate ARN— in order to react to local unex-
pected changes in their environment. After all, liv-
ing organisms do contain a series of gene regulatory
networks for development and metabolism control.
One could even envision either a hierarchy of ARNs,
where some ARNs could be used to regulate others
ARNs, or a network of ARNs, where all ARNs could
influence and regulate each other.

In general, the framework developed proved to
be suitable for generating simple 3D differentiated
structures, but more work is needed to explore gen-
eration of more complex forms. It is also desirable
to study cellular structure formation allowing cell
death and cell displacement, as in actual cellular
growth. Furthermore, in order to build a more accu-
rate model of the growth process, the use of a more
realistic physical environment may be necessary.

One of the long-term goals of this work is to study
the emergent properties of the artificial development
process. It is our hope that one day it will be feasible
to build complex structures composed of distinct
parts resulting from the differential expression of
artificial genes that interact in an intricate fashion.
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