
Accepted Manuscript

A New Cell Space Devs Specification: Reviewing the Parallel Devs Formalism

Seeking Fast Cell Space Simulations

Fahad A. Shiginah, Bernard P. Zeigler

PII: S1569-190X(11)00014-1

DOI: 10.1016/j.simpat.2011.01.006

Reference: SIMPAT 1055

To appear in: Simulation Modeling Practices and Theory

Received Date: 1 May 2010

Revised Date: 21 December 2010

Accepted Date: 24 January 2011

Please cite this article as: F.A. Shiginah, B.P. Zeigler, A New Cell Space Devs Specification: Reviewing the Parallel

Devs Formalism Seeking Fast Cell Space Simulations, Simulation Modeling Practices and Theory (2011), doi:

10.1016/j.simpat.2011.01.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.simpat.2011.01.006
http://dx.doi.org/10.1016/j.simpat.2011.01.006

A NEW CELL SPACE DEVS SPECIFICATION: REVIEWING THE
PARALLEL DEVS FORMALISM SEEKING FAST CELL SPACE

SIMULATIONS

Fahad A. Shiginah
Department of Electrical & Computer Engineering; Sultan Qaboos University. shiginah@squ.edu.om

Bernard P. Zeigler

Arizona Center for Integrative Modeling and Simulation. Department of Electrical & Computer Engineering; University of

Arizona. zeigler@ece.arizona.edu

Abstract

This paper introduces a new specification for cellular DEVS models that assures high performance. It starts with the

parallel DEVS specification and derives a high performance cellular DEVS layer using the property of closure

under coupling. This is done through converting the parallel DEVS into its equivalent non-modular form which

involves computational and communication overhead tradeoffs. The new specification layer, in contrast to multi-

component DEVS, is identical to the modular parallel DEVS in the sense of state trajectories which are updated

according to the modular message passing methodology. The equivalency of the two forms is verified using

simulation methods. Once the equivalency has been ensured, analysis of the models becomes a decisive factor in

employing modularity in cellular DEVS models. Non-modular models guarantee the efficiency of the models in

contrast to the current cellular DEVS implementation approaches. This was achieved by converting the cell space

partially or fully into atomic model in order to eliminate inter-cell messages. However, the new specification needs

an automated way to implement and verify models since they might become complicated ones.

Keywords: DEVS, Cellular DEVS, Cell space Modeling, non-modular DEVS.

1. INTRODUCTION
The cell space modeling approach divides the spatial space into discrete cells where local computations held at

each cell are based on its own as well as its neighbors’ states. In conventional DEVS implementation of cellular

models (e.g. [1]), a cell is implemented as a DEVS modular atomic or coupled model. When detailed modeling of

spatial dynamics is required, large number of cells are typically employed. This results in a large number of atomic

models that communicate through message passing to carry out the global simulation. Therefore, the task of

implementing large scale cellular spaces with highly active cells in DEVS will face the burden of huge number of

inter-cell messages and hence a performance reduction. Many techniques were introduced to resolve this issue and

to gain speedup. Examples of such work can be found in [2-4] where the cellular DEVS simulation engine was

improved to handle messages and cell activity scanning in more efficient manner. On the other hand, the quantized

DEVS approach [5, 6] shows that quantization helps in improving the performance of DEVS simulations by

reducing the number of state transitions as well as the number of messages while introducing acceptable errors.

Most research work in DEVS cellular space modeling has treated each cell as an atomic or coupled model and

then either sought to speed up the simulation engine or introduce quantization to the model in order to reduce

messages and transitions with attendant error. The work presented here applies enhancement methods to the model

development level. This new error-free (i.e. quantization not employed) approach is designed to reduce the number

of messages by encapsulating and transforming a group of cells into non-modular form. Instead of treating a single

cell as an atomic DEVS model, the encapsulation method will group a number of cells in one atomic model. The

resulting model will be a non-hierarchal, non-modular cell representation that gives a significant speed up which in

conjunction with the simulator enhancements expected to give high performance on large cell spaces.

2. RELATED WORK
There are few related works that touched the area of converting coupled DEVS models into atomic models like

[7] and [8]. Their implementation of the approach is by allowing the conversion during the compilation process. On

the other hand, this paper applies the conversion into the specification and development process. The first work

involved converting classical, rather than parallel DEVS, models and it did not target the cellular space in particular

which made that approach a good speedup way for small size models. The other work also tried to convert large

models into atomic ones to easily deal with them in Dymola. A conclusion was reached that there is no advantage of

following the conversion approach since the overhead of handling large model is much greater than the messages

overhead. This paper disagrees with that conclusion which can be considered an environment specific conclusion.

Our initial work in [9] proved the significance of the approach for large cellular DEVS models.

3. BACKGROUND
3.1. Parallel DEVS Formalism (P-DEVS)

Discrete EVent System Specification (DEVS)[6] supports object orientation over modeling environments. Its

theory provides a mathematical formalism for representing dynamic systems. The DEVS formalism was revised in

[10] to reduce sequential processing and enable full parallel executions. The resulting parallel DEVS has the basic

atomic model defined as:

M = taYSX conext ,,,,,,, int λδδδ ,

where

X is a set of input values (set of ports/values in coupled structures)

S is a set of states (set of ports/values in coupled structures)

Y is a set of output values

δint: S → S is the internal transition function

δext: Q × Xb → S is the external transition function

Q = {(s,e) | s ∈ S, 0 ≤ e ≤ ta(s)} is the total state set

e is the time elapsed since last transition

Xb denotes the collection of bags over X

δcon: S × Xb → S is the confluent transition function

λ: S → Yb is the output function

ta: S → R 0→� is the time advance function.

An atomic model M in parallel DEVS remains in a state s ∈ S for ta(s) amount of time if no external event

occurs. When that time advance expires, i.e., when the elapsed time, e = ta(s), the system outputs the values, Yb =

�(s), just before it changes to state δint(s). When an external event x in Xb occurs before this expiration time, i.e., at e

< ta(s), the system changes to state δext(s,e,x). However, in case of internal and external transitions collide, δcon is

employed to resolve the conflict and determine the next state. In all cases, the model then goes to some new state s�

with some new resting time, ta(s�) and the same story continues. [6]

Note that input or output values Xb and Yb are bags of elements. This means that one or more elements can

appear on a port at the same time. This capability comes from the parallel implementation of DEVS which allow

components to send to the ports simultaneously. These basic components may be coupled in DEVS to form a multi-

component model which is defined by the following structure:

CM = },{},{},{,,, jiZiIiMDYX ,

where

X is the set of input values (set of ports/values in coupled structures)

Y is the set of output values (set of ports/values in coupled structures)

D is the set of components

for each i in D: Mi is a component which is an atomic model Mi = iiiconiextiiii taYSX ,,,,,,, int λδδδ

for each i in D ∪ {self}: Ii is the influencees of i, i is not in Ii

self is the coupled model itself CM which allow external inputs and outputs

for each j in Ii : Zi,j is the i to j output translation function (coupling)

jselfjself XXZ →:,

selfiselfi YYZ →:,

jiji XYZ →:,

3.2. Closure under Coupling of Parallel DEVS

Closure under coupling, in parallel DEVS, states that every coupled model (CM) has its own equivalent atomic

model (M). Generally speaking, the coupled DEVS model can be treated as a black box with input as well as output

ports (X and Y) that form the first terms of equivalency in the atomic and coupled models. The state set (S) of the

resultant model will be the total state sets of all the atomic coupled models. In addition, the time advance ta(s) will

be the minimum of all the internal atomic models.

�

3.3. Cellular Space Models in DEVS

Cellular Automata (CA), which was first introduced by John Von Neumann in the 1950s [11], has been widely

used in simulating complex systems. The domain of application of CA includes fluid and mass flow, natural

hazards, many other sorts of pattern recognition, image processing, ecosystems, and traffic modeling. In addition, it

has been used as solutions for common computational needs like networking, solving differential equations, and

distributed computing. [11-23]

The cellular automata applications, based on the discrete time simulation, consume the computation power in

doing computations to update all cells in every single iteration. In a wide range of applications, there are a lot of

cells that are not required to be updated at every step which makes the discrete time approach inefficient. In

addition, the selection of the time step size has a significant impact on the simulation accuracy. High accuracy

requires a very small step size which, in turn, requires huge computational resources. The discrete event approach

overcomes these problems by dedicating computational resources to the cells that actually perform state transitions

and hence avoiding unnecessary computation on inactive cells. Due to these advantages, many efforts were

dedicated to employ the DEVS approach to cellular automata applications (e.g. [1, 4, 24, 25]).

The conventional cellular DEVS approaches divide the spatial space into discrete cells where local

computations are done in each cell. A cell is implemented as an atomic DEVS model which performs the local

computations internally based on its own state as well as the neighboring states that are received through the

external ports. The cell space is implemented as a coupled DEVS model that contains a number of cells that are

arranged in an array. The neighboring rule followed in a specific application determines the internal port couplings

between cells and the boundary couplings that connect the cells at the borders with other cells in different cell

spaces. Figure-1 illustrates the conventional 2-D cellular space implementation in the DEVS formalism.

Cell
(0,2)

Cell
(2,2)

Cell
(1,0)

Cell
(0,0)

Cell
(2,0)

Cell
(1,2)

Cell
(1,1)

Coupled Model (CM): Cellular Space

Cell
(2,1)

Cell
(0,1)

j

i Couplings Atomic Model (M)

Xb Yb

Figure-1: Cellular Space in DEVS

4. NEW FRAMEWORK FOR CELLULAR DEVS MODELING
In this section we formulate a new cellular space DEVS specification to achieve fast simulation execution. The

basic idea is to convert the cell space entirely into DEVS atomic models. This process can be seen as converting

modular cells into non-modular form inside the atomic cell space where each cell can access the state variables of its

neighboring cells.

4.1. Converting Cell Space Model into Atomic DEVS

As a special case of the closure under coupling property in DEVS, cellular space models can take advantage of

this property in gaining speedup by converting coupled models into atomic ones. In this approach, scalability will

not be an issue since all cells (i.e. atomic models) have identical transition functions that will be applied to all cells

iteratively. This implies that the model will not be required to search for the functions in a huge pool for the

encapsulated atomic models. In addition, by fully composing the internal models into non-modular form, the inter-

cell communication messages will be eliminated and result in simulation speedup.

4.2. Closure under Coupling of Parallel DEVS Applied to Cell Spaces

Closure under coupling of parallel DEVS states that a coupled model can be represented with its atomic P-

DEVS equivalent which is defined as follows:

Given P-DEVS coupled model }{},{},{,,, , jiii ZIMDYX , we define a basic atomic

model taYSX conext
aa ,,,,,,, int λδδδ Where Mi = iiiconiextiiii taYSX ,,,,,,, int λδδδ

 for each i∈D , X � Xa, Y � Ya, S = d
Dd

Q×
∈

, ta(s)=minimum{�d | d∈D}, s∈ S, s =(…, (sd,ed), …) , �d = ta(sd)-ed, and

the transition functions are defined as follows:

δint: d
Dd

Q×
∈

→ d
Dd

Q×
∈

δext: d
Dd

Q×
∈

× X → d
Dd

Q×
∈

δcon: d
Dd

Q×
∈

 × X → d
Dd

Q×
∈

λ: d
Dd

Q×
∈

 → Y

In the case of cellular space models, all components d∈D are P-DEVS atomic cells which are identical

processing objects with the same transition functions as well as output functions *
intδ , *

extδ , *
conδ and *λ . For this

special case of the DEVS coupled model, the resultant overall cell space atomic functions will be as follows:

λ(s)={ Zd,self(*λ (sd))| d∈ IMM(s) ∧ d∈ Iself}

δint(s) = (…, (sd’,ed’), …)

where

�
�

�

�
�

�

�

+
∈

∈+

∈

=

otherwisestaes

sCONFdxs

sEXTdxstaes

sINTds

es

dd

b
ddcon

b
dddext

d

dd

))(,(

)()0),,((

)()0),),(,((

)()0),((

)','(
*

*

*
int

δ

δ

δ

δext(s,e,xb) = (…, (sd’,ed’), …)

where 0<e<ta(s) and
��

�
�
�

+
Φ≠∧∈+=

otherwiseees

xIselfxees
es

dd

b
dd

b
dddext

dd
),(

)0),,,((
)','(

*δ

δcon(s,xb) = (…, (sd’,ed’), …)

where

�
�

�

�
�

�

�

+
∈

∈+

∈

=

otherwisestaes

sCONFdxs

sEXTdxstaes

sINTds

es

dd

b
ddcon

b
dddext

d

dd

))(,(

)(')0),,((

)(')0),),(,((

)(')0),((

)','(
*

*

*
int

δ

δ

δ

Given that the cell sets are defined as follows:

IMM(s)= {d | �d=ta(s)} Set of imminent cells

INF(s)={d|i∈Id, i∈IMM(s) ∧ b
dx �Ø}, Set of cells about to receive input,

where b
dx ={Zi,d(λi(si))|i ∈IMM(s) ∩ Id}

CONF(s)=IMM(s)∩INF(s) Set of confluent cells

INT(s)=IMM(s)-INF(s) Set of imminents those receiving no inputs

EXT(s)=INF(s)-IMM(s) Set of non-imminents those receiving input

UN(s)=D-IMM(s)-EXT(s) Other cells

4.3. Event List Handling

The approach in [7] used the idea of closure under coupling to compose general (including non cell space)

coupled models to gain some speedup. Unfortunately, those approaches do not guarantee speed up in large scale

models. The first factor of scalable speedup in our approach is that it targets cell space models where all the cells are

having the same transition functions. This property will ease the process of composing coupled cell spaces by

moving these transition functions to the cell space level and implementing an iterative approach to apply these

functions to the active cells. Since we are implementing the whole framework in the discrete event simulation

domain, we need a discrete event list handler that manages, for the atomic cell space, the list of active cells at each

simulation time, namely the cells to which the cell transition functions must be applied.

Introducing the event list obviates the requirement that each cell keeps track of its own timing since time

management will be handled by scheduling events on the events list. The events list is employed at the level of the

resultant atomic model which will contain the future events expected to happen for the cells. An event record will be

in the form that describes when the event is scheduled to occur (next event time) and where it will happen (which

cell). The elapsed time of each cell inside the DEVS coupled model is normally handled by the coordinator.

However, since we are replacing the coupled model by its atomic model equivalent, it will be the atomic model’s

responsibility to keep records of the elapsed time for each of its internal cells. Therefore, the atomic model should

keep a variable that store the current simulation time for the cell space block that it represents and a vector of cell’s

history times which store when a specific cell was accessed or had a transition time last. The elapsed time can be

obtained by subtracting the history time of a specific cell from the current simulation time.

Within the DEVS framework, a cell can only receive an external message when the time advance has expired at

another cell inside the same coupled model or an external message was received by the coupled model’s input ports.

Accordingly, the events list implementation just stores the time advances of the active cells and upon time advance

expirations, the event list handler must add the neighboring cells of the imminent cells to a receiver group. This

group will be the list of the cells that may receive external messages. In addition, when the coupled model receives

external messages, the handler should identify the cells that should be aware of these new messages and add them to

the scan list for external transitions. The events list handler is the responsibility of the resultant atomic model which,

as a DEVS model, must implement all functionality solely using its transition functions.

Now, we have a cell space having an events list (£)with events ev = (time, i), where

ev ∈ £, time: R0→�, and i ∈ D.

Therefore,

CellSpace= £},{},{},{,,, , jiii ZICellDYX � taYSX conext ,,,,,,, int λδδδ

where

Celli = iii YSX ,, for each i∈D,

ta(s) = minimum {time |(time, i) ∈ £ }.

This means that in the new representation, the cell is no longer an active processing unit. It just stores the state

variables with no timing involved at its level. It still has ports and messages which means it is not yet in non-

modular form. The task of conversion to non-modular form will be done in the next subsection.

Now, the events list (£) will play role in defining cell groups as follows:

IMM(s)={ j | (ta(s), j) ∈ £ }

Given that X b
j={Zi,j(λ*(si))| i∈IMM ∧ i∈ Ij} , the collected outputs of the imminents

INF={ j | (i∈Ij | ((ta(s),i) ∈ £) ∧ Xb
j≠∅)}, receiving cells influencees

INT ={ j | ((ta(s), j) ∈ £ ∧ Xb
j=∅)},

EXT={ j | (i∈Ij | (ta(s),i) ∈ £ ∧ (ta(s),j) ∉ £ ∧ Xb
j≠∅)}

CONF= { j | ((ta(s), j) ∈ £ ∧ Xb
j≠∅)}

In addition, given that X b
j={Zi,j(λ*(si))|(i∈IMM∧ i∈ Ij)}∪ {Zself,j(x)|x∈xb ∧ self∈ Ij }

INF’={ j | ((i∈Ij |(ta(s),i) ∈ £) ∨ (self ∈ Ij)) ∧ Xb
j≠∅)}

INT’= { j | ((ta(s), j) ∈ £ ∧ Xb
j=∅)}

CONF’= { j | ((ta(s), j) ∈ £ ∧ Xb
j≠∅)}

EXT’={ j |((i∈Ij | (ta(s),i)∈ £)∨ (self ∈ Ij)) ∧(ta(s),j) ∉ £ ∧ Xb
j≠∅)}

According to these new definitions, we can reformulate the resultant transition functions of the atomic cell

space to include the events list handling. The only function that does not deal with these cell groups extracted from

event list (£), is the external function. It just deals with the boundary cells that received external inputs through the

cell space ports. At the end of every transition cycle of the atomic cell space, the model checks the events list (£) to

see if it contains more scheduled events and if so, it extracts the list of cells with minimum time advance. On the

expiration of that minimum time advance, the output function will access the IMM list and let the cells in this group

send their output messages. Then, the internal or confluent transition functions are responsible to obtain the

corresponding cell groups where the external transition function will work on the boundary cells that received

external messages. Another source of speed up in the events list can be achieved by not letting the list to hold

passive cells in its records. The following formulas shows how the transition functions are adjusted to handle the

events list.

λ(s) : for all i∈ IMM

 Apply λ* to Celli [Yi=λ* (si)]

δint(s) : obtain cell groups INT, EXT, CONF

Update £ : time=time-ta(s) for all (time, i)∈ £

 delete any ev=(0 , i) where ev∈ £

for all i∈ INT: apply *
intδ to Celli

 schedule (next ta, i)

for all i∈ EXT: apply *
extδ to Celli

 schedule (next ta, i)

for all i∈ CONF: apply *
conδ to Celli

 schedule (next ta, i)

 if (£ ≠ {})

extract IMM from £

ta(s) = minimum {time |(time, i) ∈ £ }

 else

clear IMM={}

ta(s) = ∞

δcon(s,xb) : obtain cell groups INT’, EXT’, CONF’

Update £: time=time-ta(s) for all (time, i)∈ £

 delete any ev=(0 , i) where ev∈ £

for all i∈ INT’ : apply *
intδ to Celli

 schedule (next ta, i)

for all i∈ EXT’ : apply *
extδ to Celli

 schedule (next ta, i)

for all i∈ CONF’ : apply *
conδ to Celli

 schedule (next ta, i)

if (£ ≠ {})

extract IMM from £

ta(s) = minimum {time |(time, i) ∈ £ }

 else

clear IMM={}

ta(s) = ∞

δext(s,e,xb) : Update £: time=time-e for all (time, i)∈ £

for all i∈ { j | self∈Ij ∧ Xb
j � Ø}

 apply *
extδ to Celli

schedule (next ta, i)

 if (£ ≠ {})

extract IMM from £

ta(s) = minimum {time |(time, i) ∈ £ }

 else

clear IMM={}

ta(s) = ∞

4.4. Transforming Cells to Non-Modular Form

So far, all the above specifications are in the modular form, a major speed up can be achieved by transforming

these cells into non-modular form. In non-modular form, a cell can access (read) the state variables of its neighbors

and there is no need for message passing through ports. In contrast to multi-component DEVS [6], the

implementation we are seeking here allows cells to read each other’s states, but they are only allowed to make their

own state transitions. In case a cell changes its state, its neighboring cells need to be added to the cell group EXT

instead of allowing the cell itself to change their states directly.

Celli < y > Cellj < x,y* >

y=λ*(si)
outY:=y

δ∗
ext(sj,inY)

 y*=inY
δ∗

int(sj)
 x=f(y*)

outY
inY

Celli < y > Cellj < x >

δ∗
int(sj)

 x=f(y)

Non-Modular

Modular

�

Figure-2: Switching between modular and non-modular forms.

Figure-2 shows how models can be transformed from modular into non-modular form and vice versa.

Transforming to non-modular form can be achieved by removing the ports from the atomic models and letting them

directly access the neighboring models to read their state variables. In cellular space models, this will reduce the

structure of the cell units into a smaller one that just stores states and variables only and it has no functions or

processing done at its level. However, we need to keep the coupling relations so that each cell knows which

neighboring cells to access. In this case, we can add to the cell structure a list of the neighboring cells (n) which can

be accessed by that specific cell. In cellular space models, this list is the set of influencers which is equivalent to the

influencees set.

Celli= iii YSX ,, � Celli = ii nS , , Where ni={ j | j∈ Ii }= { j | i∈ Ij }

Since we removed the ports from the cells, the cell space atomic model functions need to be redefined

according to the new changes. The first change is that we do not need cells to generate outputs to ports since their

neighboring cells can access their state variables directly. Therefore, when a cell goes through a state transition, its

neighboring cells are added to the set of cells, EXT, that should fire their external transition functions.

Assumption-1:

The output values that are sent via messages by a cell in the modular form are actually values of one or more of its

state variables.

Applying this assumption requires that we first define the state variables of each cell as follows: Given that each

cell has a state set Si, and each state si∈Si is a collection of values of the state variables that represent the current

state of the cell i. Therefore, si=(sv1
i, sv2

i, sv3
i, … svn

i) where n is the number of state variables in the cell. Note that

the primary states (e.g. passive, active … etc) are also treated as one of the state variables which contain the name of

the state as a string.

The resultant non-modular cell space can be shown to be equivalent to the modular counterpart as follows:

Given that assumption-1 is satisfied, each modular cell i will send its own values of the state variables through Yb
i to

its neighbors whenever there is a change in those values. Then, that neighboring cell j receives those values at Xb
j.

Therefore, b
ji

b
ji XY ,, = for all cells i,j∈D and there exist coupling relation Zi,j. However, the initiating cell, i, actually

sends its own selected set (vij) of state values to neighbor j and so,)}1()(|{, nkvksvY ij
k
i

b
ji ≤≤∧∈= which

represent the set of state values that should be sent to cell j.

Then, given that there exist the coupling Zi,j where i,j≠self (i.e. not a boundary coupling),

)}1()(|{,, nkvksvYX ij
k
i

b
ji

b
ji ≤≤∧∈== ,

,...},,,...,,,{)}1()(|{ 232221131211
,

k
i

k
i

k
i

k
i

k
i

k
iij

k
i

Ii

b
ji

Ii

b
i svsvsvsvsvsvnkvksvYY

jj

=≤≤∧∈×=×=
∈∈

where for each receiving cell (j) there are multiple state variables to be received denoted here as (kjw) where

ijvkjkjkj ∈,...3,2,1 , for example, k21 means the index (in svi) for the first value to be sent to cell number 2.

,...},,,...,,,{)}1()(|{ 232221131211
,

k
i

k
i

k
i

k
i

k
i

k
iij

k
i

Ii

b
ji

Ii

b
j svsvsvsvsvsvnkvksvXX

jj

=≤≤∧∈×=×=
∈∈

.

That means that all input/output values are equivalent to the state variables of the cells. Therefore, we can

redesign the cell space model to make it fully non-modular by making each cell access the required state variables of

its neighboring cells while still keeping the equivalency given that assumption-1 is met. According to Figure-2,

implementing modular cells makes each cell keep records of its neighboring state variable (y*) where, in the non-

modular from, there is no need to keep a record since every time the cell needs a value from its neighbor (y), it

access it directly. This will make the internal cell transition function defined for state variables of each cell as well

as the state variables of its neighboring cell since it has access to all of them according to the coupling relation.

For boundary cells:

Xb= b
iself

Iself
X

i
,∈

× =)}1()(|{ nkvksv xi
k
x

Iself i

≤≤∧∈×
∈

Yb= b
selfi

Ii
Y

self
,∈

× =)}1()(|{ nkvksv iy
k
i

Ii self

≤≤∧∈×
∈

Where vxi is the set of state variables needed to be received by boundary cells through external input ports and viy is

the set of state variables needed to be sent by boundary cells through external output ports. The state variables k
xsv

are used as storage for the external values that are received by the cell space through input ports and they are only

accessed by the boundary cells. On the other hand, the external outputs that are required to be sent out of the cell

space are the states variables of the boundary cells.

One more issue in the equivalency to the non-modular form is that the neighboring cells do not always have the

last updated values. One reason for that is using the quantized DEVS in which the cell does not inform the

neighboring cells with its last modification if the difference is not above a specific quantum. For example, in

differential equation models, there is a rate of change in some state variables which means the variable is

continuously changing but, in quantized DEVS, the change take place only when there is time advance expiration or

an external event occurred. The above equivalency analysis is correct if we set the quantum to zero. However, if it is

not zero, each cell should keep two copies of state variables (e.g. now and new). Whenever a cell needs to access a

value in its neighboring cell, it will access the (now) value which represents the last value that crossed the quantum

level (i.e. was sent to the cell through ports in the modular form). The (new) value is the last updated value of the

cell which is kept different from (now) till it crossed the quantum level and the change will be committed to (now)

to be available for other cells to access. Now, we can redefine the cell transition functions as follows:

For each specific cell i :

δ�int: Si-now →�Si-new where for both old and new si∈Si given si=(sv1
i, sv2

i, sv3
i, … svn

i)

δ�ext: nowj
Ij

S
i

−
∈
× × �Qi → Qi

δcon: nowj
Ij

S
i

−
∈
× × �Qi → Qi

λ �: Si-new → Si-now

The output function for each cell just updates the state variables of the current cell in case it exceeds the

quantum level and there is no need to generate any outputs if the cell is not a boundary cell. This task is actually

done in the internal transition function δ�int and we can select not to duplicate the task. Another reason is to keep the

new specification consistent with the DEVS specification where the output function is used to send messages only

and does not initiate state or variable changes in the model. Therefore, δ�int will commit the changes in variables and

add the neighboring cells to the scan group EXT.

4.5. Final Non-Modular Composed Format

The last detailed specification above shows that the cell internal output function tasks were encapsulated under

the cell space output function and there is no need to define λ* as an independent function. Similarly, δ�ext or δ�con are

not defined for non-modular cells as shown in Figure-2.

Assumption-2:

The modular cells use δ�ext and δ�con to update the values of their neighboring states and then apply δ�int to make

calculations and transitions according to the updated values. This means that δ�ext and δ�con are designed not to make

calculations or processing, but force the cell to do an internal transition which considers the new updates.

δ�ext(si,ei,x
b

i)=({“re-calculate”,svi
1, svi

2,…, svi
n},0,)}1()(|{ nkvksv ji

k
j

Ij i

≤≤∧∈×
∈

=xb
i)

ta(“re-calculate”)=0;

δ�con(si,x
b

i)= δ�int(δ�ext(si,ta(si),x
b

i))

In the non-modular form, each cell will update its own values using the internal transition function δ�int and then,

their neighboring cells will be added to the scanning list which in turn schedules an external event for the

neighboring cells. This is exactly what the cell output function λ* and the cell external transition function δ�ext do

given that assumption-2 is satisfied. Therefore, the equivalency to the modular form is satisfied and there is no need

to have the functions λ*, δ�ext, and δ�con explicitly in the resultant model since their tasks are already implied in the

new framework. As a result, the model can be simplified for ease of user specification in such a way that each cell

has only an internal transition function that is applied every time a cell becomes active. In addition, the cell groups

can be merged as we do not distinguish between the different groups. However, in addition to the IMM group, we

still need the EXT group in order to update the neighboring values of the imminent cells. Note that from now on, we

will refer to the cell internal transition function δ�int as the cell’s local transition function ∆* (∆*=δ�int).

For each specific cell i :

∆*: nowj
Ij

S
i

−
∈
× ×Si-now →�Si-new where si∈Si given si=(sv1

i, sv2
i, sv3

i, … svn
i)

An atomic cell space now consists of identical fully non-modular cells having the same transition function at the

cell space level but covering different sets of data and state variables. Finally, the cell space was converted into an

atomic non-modular P-DEVS given that assumption-1 and assumption-2 are satisfied. The resultant model can be

simplified and put in the following format:

λ(s) : for all { i | i∈ IMM ∧ i ∈ Iself }

 Y= Y ∪ Zi,self()}1()(|{ nkvksv iy
k
i ≤≤∧∈)

δint(s) : Update £: time=time-ta(s) for all (time, i)∈ £

 delete any ev=(0 , i) where ev∈ £

for all i∈ IMM

 if si-new - si-now > quantum

 for all { i| i∈ Ij ∧ j≠self } EXT=EXT∪{ j}

 si-now = si-new

for all i∈ {IMM ∪ EXT} :

apply ∆* to Celli

 schedule (next ta, i)

 clear cell group EXT={}

if (£ ≠ {})

extract IMM from £

ta(s) = minimum {time |(time, i) ∈ £ }

 else

clear IMM={}

ta(s) = ∞

δcon(s,xb) : conf = true

 δext(s,e,xb)

 δint(s)

conf = false

δext(s,e,xb) : if (!conf) Update £ : time=time-e for all (time, i)∈ £

 EXT = { j | self∈Ij ∧ Zself,i(X
b≠∅)}

for all i∈ EXT

 Sself-now = Sself-now ∪ Zself,i(X
b)

 if (!conf) IMM = EXT

 ta(s)=0 // fire δint(s) to make the state transitions

4.6. A Proposition to Show the Generality of the Approach

The generality of the approach that follows the closure under coupling property in parallel DEVS was ensured

in all steps in the procedure with no constraints except the two assumptions introduced above. The final format

reached assumes that the models satisfy those assumptions. This section shows and proves the generality of the

approach that spans all cellular DEVS models: even the ones that do not agree with the assumptions. We show that

any modular cell in cellular DEVS model can be modified to satisfy the two assumptions as follows.

A modular cell (i), that does not satisfy assumption-1, sends an output value y that is not among the cell’s state

variable values si where si∈Si. That value will either be a fixed value for each cell, fixed parameter, or cell’s

calculated value where y∉si. It was shown above that si=(sv1
i, sv2

i, sv3
i, … svn

i) where n is the number of state

variables in the cell model. To satisfy assumption-1, the modular cell (i) can be updated to extend the state variables

representation in order to include one more state variable that account for the values y. As a result si=(sv1
i, sv2

i, …

svn+1
i) where svn+1

i is a newly added state variable to the model that stores the value of y which can then be sent

through external ports according to assumption-1.

A modular cell (i), that does not satisfy assumption-2, does some computations and state transitions in δext.

Operations in this function can be separated into two phases in any DEVS cell model. The first one accepts the

external values on ports and updates the state variables accordingly in zero time. The other phase will include the

calculations and state transitions that are based on the updated values.

δ�ext(si,ei,x
b

i) = si-new � δ�ext(si,ei,x
b

i) = δ�ext(si-temp,ei) =si-new

First phase:

()}1()(|{ nkvksv ji
k
j

Ij i

≤≤∧∈×
∈

=xb
i) + si → si-temp

si-temp = {“re-caculate”, svi-temp
1,…, svi-temp

n }

Second phase:

δ�ext(si-temp,ei) = si-new = { svi-new
0, svi-new

1, …, svi-new
n }.

To satisfy assumption-2, the second phase should be moved into the internal transition function that should now deal

with a temporary state “re-calculate”. The first phase is left in the external function to update state variables based

on the received messages. Therefore, the external transition function can be defined in the following format:

δ�ext(si,ei,x
b

i)=({“re-calculate”,svi
1, svi

2,…, svi
n},0,)}1()(|{ nkvksv ji

k
j

Ij i

≤≤∧∈×
∈

=xb
i)

which account for the new updates and sets the time advance to be zero in order to fire the internal transition

function in the next step that will deal with the temporary state “re-calculate” on the updated values and hence

satisfying assumption-2. Similar approach can be done in the confluent function.

5. Fast Cellular DEVS Specification
Based on the full composition process, we can now introduce a specification (i.e. formalism layer) to represent

atomic DEVS cell space that will run faster than the conventional implementations that are based on representing

each cell as an atomic model. Therefore, a cell space can be formed in the following P-DEVS atomic structure:

Atomic CellSpace = £,,,,},{,,,,, int λδδδ conextidCellBDYSX .

Where,

D is the set of cell ID’s encapsulated in this atomic model, |D| = number of cells in the model

 B is the set of the boundary cells ID’s

Cellid = *,Sn for all id∈D and n is the set of neighboring cells and S* the state variables set (in non-

modular form) where s*=(sv1, sv2, sv3, …..) | svn is the value of the nth state variable of the cell for a given

s∈S*.

X is a set of input values defined only for boundary Cells id∈B (set of ports/values in coupled structures).

Y is a set of output values.

S is a set of general states of the atomic model

The total state set Q ={(s,e,{ *
id

Did
Q×

∈
}) | s ∈�S, 0 ≤ e ≤ ta(s)}

Q*
id = {(*

ids ,eid) | s
* ∈�S*, 0 ≤ eid ≤ ta(s*)id }

δint: Q → Q is the internal transition function.

δext: Q × Xb
B → Q is the external transition function,

δcon: Q × Xb
B → Q is the confluent transition function,

λ: Q → Yb is the output function, only for cells with id∈B

£: is the next events list

ta=min{time|(time,id)∈ £}

The four functions are executed iteratively and efficiently as explained at the end of section 3.3.3.

For multi cell spaces, we can couple more than one atomic cellular space in one coupled model which will be in the

form of parallel coupled DEVS:

CM = }{},{},{,,, , jiii ZICellSpaceDYX .

In addition, the specification can be extended to d-dimensional cell space as follows:

CellSpaced = £,,,,},{,,,},{,,, int λδδδ conextidi CellBDdNYSX .

Where, d is the dimension of the cell space and Ni is the number of cells in the ith dimension given 1 ≤ i ≤ d.

Then, id will be a set of IDs for cell in each dimension {idi}. In array implementation of the cell space

atomic mode, this update will result in d-dimensional state arrays for the state variables. However, in that

case, the cell’s id will be the set of array indexes in each dimension.

6. SLOPE CRITICALITY MODEL
Slope criticality has many applications in dynamical natural phenomena like sand piles, debris flows, landslides,

and land surface evolutions (e.g. [26, 27]). In such models a local piece of spatial space is stable in certain slopes till

it exceeds a critical slope when it starts initiating a mass flow to the neighbors. This flow might continue

propagating over neighboring areas forming a bigger global flow that keeps running until it reaches global stability.

Applying cellular space modeling techniques to these models will result in dividing the spatial space into cells

in which each cell will apply automata rules to decide its own local state. This will be based on the slope calculation

which is represented , as shown in Figure-3 by the height difference (�Z) between each two neighboring cells given

that the distance between them is fixed (dij). When a cell has a slope greater than a certain critical value, it initiates a

mass flow to its neighbor with a fixed rate R.

���

� � �

���

���
	���

�

Figure-3: Slope Calculation.

In this two dimensional cellular model, we apply the 4 neighbors rule. Criticality check involves calculating the

slopes between a cell and its four neighbors. Whenever a cell finds that the slope at any direction exceeds the known

threshold, it calculates the flow rate for that direction and informs the neighbors with its outgoing flow. The

neighboring cells then update their states according to the incoming flows. Accordingly, the height of the initiating

cell will be reduced by the amount of increase in the receiving neighbor and this conveys the mass conservation. The

simulator will iterate until there is no more cells in critical state or by reaching a predefined stopping rule.

7. MODEL EQUIVALENCY TEST
The new approach presented in this work is based on generating an equivalent atomic model of the conventional

coupled cell space approaches. Before running experiments and making conclusions, the new generated atomic

models must be made identical to the original coupled DEVS implementation. In this work, the simulation

verification method is followed in order to dynamically check the equivalency of the two approaches. Figure-4

illustrates the idea of dynamically comparing simulation runs of two systems. A DEVS atomic model is employed to

work as a comparator that monitors the state trajectories generated by both systems and generates a fail report if they

are not equivalent. The report should include the non-equivalent values generated as well as their time. If no fail

report is generated and the verification run comes to an end, the two systems can be declared identical. In case of

non-terminating simulations, the larger number of iterations employed, more is the confidence that will be obtained

in the conclusions.

Comparator

cellcellcell

cellcellcell

cellcellcell

Block Space Cell Space

out_data
out_data

Figure-4: Simulation approach of equivalency verification.

8. EXPERIMENTAL RESULTS
The slope criticality model explained above was implemented in DEVSJAVA using the new approach for the

purpose of performance comparison with the conventional cellular DEVS implementations. A 32 by 32 cellular

space model was run with different setups. In all cases, identical data (i.e. heights and flows at any given time) were

generated which ensures the equivalence of models in the new approach as well as the conventional approach.

By implementing the new method in DEVSJAVA, we achieved an enormous time reduction, messages

reduction, as well as number of simulator iterations reduction as shown in Table 1. These new findings are not in

favor of the conventional way of implementing cellular automata in DEVS especially when running on a single

machine. For example, implementing the new approach by encapsulating all cells in one atomic model gives a speed

up of 46 in execution time over the conventional approach by saving 121569 message-handling simulator iterations

using the conventional DEVSJAVA simulator (DJSim).

Table 1. Experimental Results.
Execution Time

(Min)

Message

Reduction

(%)

Iterations

DJSim ADJSim

Conventional Cell DEVS 0 171478 63.17 16.56

New Cell DEVS 100 49909 1.36 1.36

In Table 1, the last column shows the execution time when repeating the runs over the implemented activity-

based DEVSJAVA simulator (ADJSim) suggested in [2]. This simulator alone achieved a speed up of 3.8 over the

conventional simulator and noticeable speedups when combined with our approach. The last case shows that the

new simulator has no gain because the model consists of single cell which is always active during the simulation

run.

9. CONCLUSION
Conventional modular approaches of modeling cellular DEVS models were found to poorly perform in the case

of very large scale spaces with high cell activities. Some related works were done to speedup simulations by the

means of simulator enhancements that deal efficiently with the big volume of communication messages. Despite all

of these enhancements, the models still spend a large amount of computational time in dealing with messages rather

than spending all computational efforts in the actual model tasks.

In this paper, a new specification was introduced to specify the cellular DEVS models in an efficient non-

modular form. The new formalism was formulated using the closure under coupling property of DEVS in order to

ensure equivalency of the models to their modular counterparts in parallel DEVS. In this new methodology, a cell

space can be composed entirely into one or more atomic models where each contain a set of non-modular cells and

run as a standard parallel DEVS model in term of performing external and confluent operation in addition to the

internal transitions. Non-modular Models that were developed using the new cellular DEVS specification were

found to outperform their modular equivalents. The speedup was gained from two sources. The first one is the

efficient scanning of active cells which also can be achieved using simulator enhancements. The other one is the

elimination of the inter-cell messages by fully composing the cellular space model into atomic one.

Specifying large and complex cellular models using the new specification was found to be complicated and

difficult to verify. Therefore, further research work is already under progress to automate and ease the process of

model development and verification. One proposed solution is to develop a multi-layer cell DEVS representation in

which the composition task is done automatically in a hidden layer away from the model developer. In addition,

parallel and distributed simulation is another aspect of performance investigation at implementation level since the

parallel specification is ensured through the equivalency to parallel DEVS models. As a result, models developed

with the new specification can be run in any parallel and/or distributed DEVS environment.

REFERENCES
[1] G. Wainer, "Modeling and simulation of complex systems with Cell-DEVS," in WSC '04: Proceedings of

the 36th conference on Winter simulation Washington, D.C.: Winter Simulation Conference, 2004, pp. 49-
60.

[2] X. Hu and B. P. Zeigler, "A high performance simulation engine for large-scale cellular DEVS models," in
High Performance Computing Symposium (HPC'04), Advanced Simulation Technologies Conference,
2004.

[3] A. Muzy and J. Nutaro, "Algorithms for efficient implementations of the DEVS & DSDEVS abstract
simulators," in 1st Open International Conference on Modeling & Simulation (OICMS), 2005.

[4] G. Wainer and N. Giambiasi, "Application of the Cell-DEVS Paradigm for Cell Spaces Modeling and
Simulation," Simulation, vol. 76, pp. 22-39, 2001.

[5] E. Kofman and S. Junco, "Quantized-state systems: a DEVS Approach for continuous system simulation,"
Trans. Soc. Comput. Simul. Int., vol. 18, pp. 123-132, 2001.

[6] B. P. Zeigler, T. G. Kim, and H. Praehofer, Theory of Modeling and Simulation. San Diego, CA, USA:
Academic Press, Inc., 2000.

[7] W. B. Lee and T. G. Kim, "Simulation Speedup for DEVS Models By Composition-based Compilation," in
Summer Computer Simulation 2003, 2003, pp. 395 - 400.

[8] T. Beltrame, "Design and Development of a Dymola/Modelica Library for Discrete Event-oriented Systems
Using DEVS Methodology," in Department of Computational Science. vol. Master of Science: ETH
Zurich, 2006.

[9] F. A. Shiginah and B. P. Zeigler, "Transforming DEVS to non-modular form for faster cellular space
simulation," in 2006 DEVS Symposium, 2006, pp. 86-91.

[10] A. C.-H. Chow, "Parallel DEVS: a parallel, hierarchical, modular modeling formalism and its distributed
simulator," Trans. Soc. Comput. Simul. Int., vol. 13, pp. 55-67, 1996.

[11] B. Chopard and M. Droz, Cellular automata modeling of physical systems: Cambridge University Press,
1998.

[12] T. Toffoli and N. Margolus, Cellular automata machines: a new environment for modeling. Cambridge,
MA, USA: MIT Press, 1987.

[13] T. N. Mudge, R. A. Rutenbar, R. M. Lougheed, and D. E. Atkins, "Cellular image processing techniques
for VLSI circuit layout validation and routing," in DAC '82: Proceedings of the 19th Design Automation
Conference Piscataway, NJ, USA: IEEE Press, 1982, pp. 537-543.

[14] D. Talia, "Cellular Processing Tools for High-Performance Simulation," Computer, vol. 33, pp. 44-52,
2000.

[15] B. D. Malamud and D. L. Turcotte, "Cellular-Automata Models Applied to Natural Hazards," Computing in
Science and Engineering, vol. 2, pp. 42-51, 2000.

[16] X.-S. Yang, "Characterization of multispecies living ecosystems with cellular automata," in ICAL 2003:
Proceedings of the eighth international conference on Artificial life Cambridge, MA, USA: MIT Press,
2003, pp. 138-141.

[17] R. Hu and X. Ruan, "Differential equation and cellular automata model," in IEEE International Conference
on Robotics, Intelligent Systems and Signal Processing, 2003, pp. 1047-1051.

[18] M. Sipper, Evolution of Parallel Cellular Machines: The Cellular Programming Approach. Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2001.

[19] N. Ganguly, P. Maji, S. Dhar, B. K. Sikdar, and P. P. Chaudhuri, "Evolving Cellular Automata as Pattern
Classifier," in ACRI '01: Proceedings of the 5th International Conference on Cellular Automata for
Research and Industry London, UK: Springer-Verlag, 2002, pp. 56-68.

[20] T. Yu and S. Lee, "Evolving Cellular Automata to Model Fluid Flow in Porous Media," in EH '02:
Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware (EH'02) Washington, DC, USA:
IEEE Computer Society, 2002, p. 210.

[21] M. V. Avolio, G. M. Crisci, D. D'Ambrosio, S. Di-Gregorio, G. Iovine, R. Rongo, and W. Spataro, "An
Extended Notion of Cellular Automata for Surface Flows modeling," WSEAS Transactions on Computers,
vol. 2, p. 6, 2003.

[22] S. Wolfram, A New Kind of Science: Wolfram Media, 2002.
[23] R. O. Cunha, A. P. Silva, A. n. A. F. Loureiro, and L. B. Ruiz, "Simulating Large Wireless Sensor

Networks Using Cellular Automata," Simulation Symposium, Annual, vol. 0, pp. 323-330, 2005.
[24] G. wainer, "Performance Analysis of Continuous Cell-DEVS Models," in Proceedings of High

Performance Computing & Simulation (HPC&S) Conference; 18th European Simulation Multiconference,
Magdeburg, Germany, 2004.

[25] H. Saadawi and G. Wainer, "Modeling a sand pile application using Cell-DEVS," in Proceedings of the
2003 Summer Computer Simulation Conference, Montreal, QC. Canada, 2003.

[26] P. Bak, How Nature Works: The Science of Self-Organized Criticality: Springer-Verlag Telos, 1996.
[27] C. Moore and M. Nilsson, "The Computational Complexity of Sandpiles," Statistical Physics, vol. 96, pp.

205-224, 1999.

�

